
Chapter: The Q-Sphere Representation of

Quantum States

1. Introduction

While the Bloch Sphere provides an elegant visualization for single-qubit states, quantum

computers often deal with multiple qubits.

As soon as we introduce more qubits, the state space becomes exponentially large (2ⁿ-

dimensional for n qubits), making direct geometric visualization impossible.

To overcome this limitation, we use a Q-Sphere, a tool introduced in Qiskit and IBM

Quantum Experience to visualize multi-qubit superposition states in a compact, spherical

form.

The Q-Sphere preserves both:

 The probability amplitudes (magnitude of each basis state)

 The phase relationships (relative phase between amplitudes)

It provides an intuitive way to see entanglement, superposition, and interference in multi-

qubit systems.

2. The Concept of a Q-Sphere

A Q-Sphere represents the statevector of an n-qubit quantum system.

If the system has n qubits, the quantum state can be written as:

where each basis vector ∣i⟩|i\rangle∣i⟩ corresponds to a bitstring (like |00⟩, |01⟩, |10⟩, |11⟩ for

2 qubits).

Each complex amplitude αi:

Q-Sphere Visualization Rules:

 Each basis state is plotted as a point (node) on the sphere.

 Node size = magnitude ∣αi∣| (probability amplitude).

 Node color = phase arg(αi).

 Edges/Lines = phase relationships between states.

 Position of nodes → defined by Hamming weight (number of 1s in each bitstring).

3. Understanding the Geometry

The Q-sphere arranges nodes (basis states) on concentric latitudinal rings, depending on

how many 1’s appear in the bitstring.

For example, in a 3-qubit system:

Bitstring Hamming Weight Layer on Q-Sphere

000 0 North Pole

001, 010, 100 1 First ring

011, 101, 110 2 Second ring

111 3 South Pole

Each layer corresponds to the number of excited qubits (those in |1⟩).
The Q-sphere’s layout helps reveal symmetries and entanglement patterns among qubits.

4. Mathematical Representation

For a system of n qubits, each node represents an amplitude αi of the computational basis

state |i⟩:

 The phase ϕi determines node color (typically mapped from 0 → 2π using a hue wheel).

 The magnitude ∣αi∣| determines node size (larger = higher probability).

 The position (x, y, z) of each node depends on its Hamming weight and the qubit order.

5. Example: Single Qubit on a Q-Sphere

For a single qubit:

We have two nodes:

 |0⟩ → top of sphere

 |1⟩ → bottom of sphere

Each node’s color indicates the relative phase of α and β.

This is equivalent to the Bloch sphere but focuses on probability distribution and phase

visualization.

6. Example: Two-Qubit Q-Sphere Visualization

%matplotlib inline

from qiskit import QuantumCircuit

from qiskit.quantum_info import Statevector

from qiskit.visualization import plot_state_qsphere

import matplotlib.pyplot as plt

plt.close('all')

Example 1: Simple superposition of two qubits

qc = QuantumCircuit(2)

qc.h(0)

qc.cx(0, 1) # create entanglement (Bell state)

qc.draw('mpl')

Get statevector and plot Q-sphere

state = Statevector.from_instruction(qc)

plot_state_qsphere(state)

Interpretation:

 Four nodes → corresponding to |00⟩, |01⟩, |10⟩, |11⟩.
 Only |00⟩ and |11⟩ nodes have amplitude (non-zero).

 Node colors are identical → same phase.

 Both nodes have equal size → equal probability ½.

✅ This confirms the state:

is an entangled Bell state, represented by two opposite nodes on the Q-sphere.

7. Example 2: Quantum Superposition of Four Basis

States

from qiskit import QuantumCircuit

from qiskit.quantum_info import Statevector

from qiskit.visualization import plot_state_qsphere

Create a circuit

qc2 = QuantumCircuit(2)

qc2.h(0)

qc2.h(1)

qc2.draw('mpl')

Statevector

state2 = Statevector.from_instruction(qc2)

Plot Q-sphere

plot_state_qsphere(state2)

Observation:

All four nodes (|00⟩, |01⟩, |10⟩, |11⟩) are equally large and have uniform phase colors.

This represents the state:

✅ This is a uniform superposition, the starting point of most quantum algorithms like Grover’s and

Shor’s.

8. Example 3: Phase Difference Visualization

qc3 = QuantumCircuit(2)

qc3.h(0)

qc3.h(1)

qc3.z(1) # add phase to the second qubit

state3 = Statevector.from_instruction(qc3)

plot_state_qsphere(state3)

Interpretation:

 Nodes corresponding to states with the second qubit = 1 (|01⟩ and |11⟩) show

different colors (phases).

 This phase difference demonstrates interference — critical in quantum computing.

 Q-sphere helps see how gates like Z, T, and S rotate phase components in

superpositions.

9. Comparing Q-Sphere and Bloch Sphere

Feature Bloch Sphere Q-Sphere

Represents Single Qubit Multi-Qubit (n > 1)

Axes Real 3D (x, y, z) Discrete positions per basis state

Shows Amplitude & Phase of a single qubit Amplitude & Phase of all basis states

Useful for Single-qubit operations Entanglement & interference visualization

Nodes Only 2 points 2ⁿ points (for n qubits)

Thus, while the Bloch sphere helps us understand individual qubits, the Q-sphere gives a global

picture of the entire system.

10. Use Cases of the Q-Sphere

1. Quantum Education and Visualization

 Helps students and researchers visualize superpositions, interference, and

entanglement.

 Shows phase relationships that are invisible in traditional histograms.

2. Debugging Quantum Circuits

 In Qiskit, plot_state_qsphere helps verify circuit behavior:

o Whether a gate changes the phase or amplitude.

o Whether entanglement is produced (by node symmetry or correlation).

3. Quantum Algorithm Development

 Used to visualize the intermediate states in algorithms:

o Grover’s Algorithm: Shows how marked states’ phases flip.

o Quantum Fourier Transform (QFT): Displays rotating phases across basis

states.

4. Quantum Machine Learning

 Q-sphere representations of quantum states can serve as feature encodings for

quantum neural networks.

5. Quantum Error Detection

 Phase errors (Z-noise) or bit-flip errors (X-noise) manifest as distortions in node

colors and amplitudes.

11. Real-Time Applications

a) Quantum State Tomography Visualization

Experimental physicists reconstruct measured density matrices and visualize them using a Q-

sphere to ensure coherence and correct phase alignment.

b) Quantum Communication

In quantum teleportation experiments, the Q-sphere shows how the state’s phase and

amplitude are faithfully transferred between qubits.

c) Quantum Algorithm Progress Monitoring

During live runs on IBM Quantum hardware, Qiskit’s Q-sphere visualization helps track how

quantum states evolve after each operation.

12. Example: 3-Qubit GHZ State

from qiskit import QuantumCircuit

from qiskit.quantum_info import Statevector

from qiskit.visualization import plot_state_qsphere

qc4 = QuantumCircuit(3)

qc4.h(0)

qc4.cx(0, 1)

qc4.cx(0, 2)

state4 = Statevector.from_instruction(qc4)

plot_state_qsphere(state4)

Interpretation:

 Only two active nodes → |000⟩ and |111⟩.
 Both equal amplitude, same color → equal phase entanglement.

✅ This is the GHZ (Greenberger–Horne–Zeilinger) state:

It’s a cornerstone in multi-qubit entanglement and quantum communication.

13. Advantages of the Q-Sphere

 Displays both amplitude and phase information simultaneously.

 Highlights quantum interference clearly.

 Reveals entanglement structure intuitively.

 Scales well for small- to mid-size systems (up to 5–6 qubits).

14. Limitations

 For large numbers of qubits (>6), visualization becomes cluttered.

 Cannot directly show time evolution (use animation for dynamic circuits).

 Difficult to interpret quantitatively for very complex states — meant for conceptual,

not numerical, analysis.

15. Summary

Aspect Description

Purpose Visualize multi-qubit quantum states

Displays Amplitude (node size) & Phase (node color)

Best for Understanding superposition, interference, and entanglement

Implemented in Qiskit (plot_state_qsphere)

Applications Quantum education, debugging, and algorithm visualization

16. Conclusion

The Q-Sphere bridges the gap between mathematical quantum states and human intuition.

While the Bloch Sphere beautifully describes single-qubit rotations, the Q-Sphere unveils

the collective structure of multi-qubit superpositions — showing not just what the quantum

state is, but how it feels.

Through the Q-Sphere, learners, researchers, and engineers can see the invisible:

quantum phases, entanglement symmetries, and interference patterns that drive the power of

quantum computation.

17. References

1. M. Nielsen & I. Chuang, Quantum Computation and Quantum Information.

2. IBM Qiskit Textbook: Visualizing Quantum States with Q-Sphere.

3. J. Preskill, Lecture Notes on Quantum Computation.

4. A. W. Cross, J. M. Gambetta et al., Qiskit Visualization Tools (IBM Research).

