Chapter: The Q-Sphere Representation of Quantum States

1. Introduction

While the **Bloch Sphere** provides an elegant visualization for **single-qubit states**, quantum computers often deal with **multiple qubits**.

As soon as we introduce more qubits, the state space becomes **exponentially large** (2ⁿ-dimensional for n qubits), making direct geometric visualization impossible.

To overcome this limitation, we use a **Q-Sphere**, a tool introduced in Qiskit and IBM Quantum Experience to visualize **multi-qubit superposition states** in a compact, spherical form.

The **Q-Sphere** preserves both:

- The **probability amplitudes** (magnitude of each basis state)
- The **phase relationships** (relative phase between amplitudes)

It provides an intuitive way to see **entanglement**, **superposition**, and **interference** in multiqubit systems.

2. The Concept of a Q-Sphere

A **Q-Sphere** represents the **statevector** of an n-qubit quantum system.

If the system has n qubits, the quantum state can be written as:

$$|\psi
angle = \sum_{i=0}^{2^n-1} lpha_i |i
angle$$

where each basis vector $|i\rangle|i\rangle$ corresponds to a **bitstring** (like $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$ for 2 qubits).

Each complex amplitude αi:

- Magnitude \rightarrow defines the probability $|\alpha_i|^2$
- Phase → defines the angle of rotation (color on the Q-sphere)

Q-Sphere Visualization Rules:

- Each basis state is plotted as a point (node) on the sphere.
- **Node size** = magnitude $|\alpha i|$ (probability amplitude).
- **Node color** = phase $arg(\alpha i)$.
- **Edges/Lines** = phase relationships between states.
- **Position** of nodes → defined by Hamming weight (number of 1s in each bitstring).

3. Understanding the Geometry

The Q-sphere arranges nodes (basis states) on concentric **latitudinal rings**, depending on how many 1's appear in the bitstring.

For example, in a 3-qubit system:

Bitstring	Hamming Weight	Layer on Q-Sphere
000	0	North Pole
001, 010, 100	1	First ring
011, 101, 110	2	Second ring
111	3	South Pole

Each layer corresponds to the **number of excited gubits** (those in |1)).

The Q-sphere's layout helps reveal symmetries and entanglement patterns among qubits.

4. Mathematical Representation

For a system of n qubits, each node represents an amplitude α i of the computational basis state $|i\rangle$:

$$lpha_i = |lpha_i| e^{i\phi_i}$$

- The **phase** ϕ i determines node **color** (typically mapped from $0 \rightarrow 2\pi$ using a hue wheel).
- The **magnitude** $|\alpha i|$ determines node **size** (larger = higher probability).
- The **position** (x, y, z) of each node depends on its **Hamming weight** and the **qubit order**.

5. Example: Single Qubit on a Q-Sphere

For a single qubit:

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

We have two nodes:

- $|0\rangle \rightarrow \text{top of sphere}$
- $|1\rangle \rightarrow \text{bottom of sphere}$

Each node's color indicates the relative phase of α and β .

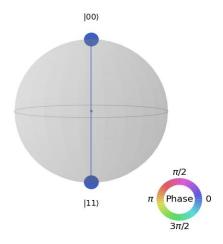
This is equivalent to the Bloch sphere but focuses on *probability distribution and phase visualization*.

6. Example: Two-Qubit Q-Sphere Visualization

%matplotlib inline from qiskit import QuantumCircuit from qiskit.quantum_info import Statevector from qiskit.visualization import plot_state_qsphere import matplotlib.pyplot as plt plt.close('all')

Example 1: Simple superposition of two qubits qc = QuantumCircuit(2) qc.h(0) qc.cx(0, 1) # create entanglement (Bell state) qc.draw('mpl')

Get statevector and plot Q-sphere state = Statevector.from_instruction(qc) plot_state_qsphere(state)



Interpretation:

- Four nodes \rightarrow corresponding to $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$.
- Only $|00\rangle$ and $|11\rangle$ nodes have amplitude (non-zero).
- Node colors are **identical** \rightarrow same phase.
- Both nodes have equal size \rightarrow equal probability $\frac{1}{2}$.

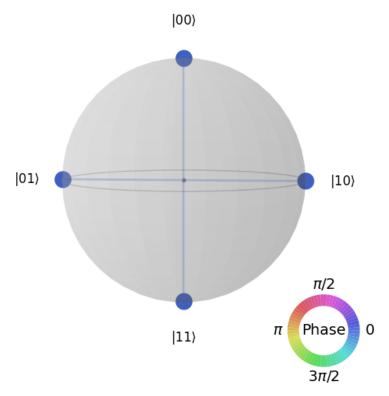
 \checkmark This confirms the state:

$$|\Phi^+
angle=rac{1}{\sqrt{2}}(|00
angle+|11
angle)$$

is an **entangled Bell state**, represented by two opposite nodes on the Q-sphere.

7. Example 2: Quantum Superposition of Four Basis States

from qiskit import QuantumCircuit
from qiskit.quantum_info import Statevector
from qiskit.visualization import plot_state_qsphere
Create a circuit
qc2 = QuantumCircuit(2)
qc2.h(0)
qc2.h(1)
qc2.draw('mpl')
Statevector
state2 = Statevector.from_instruction(qc2)
Plot Q-sphere
plot_state_qsphere(state2)



Observation:

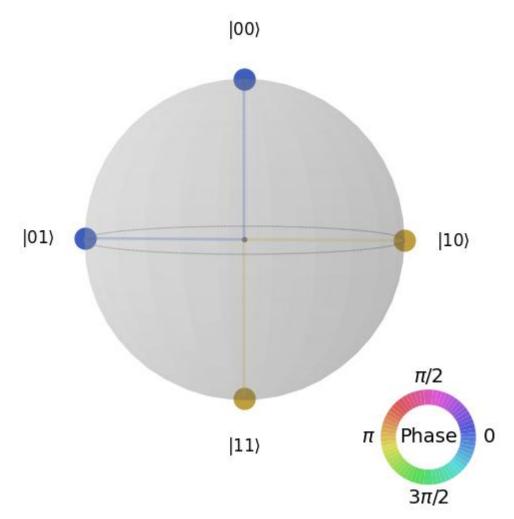
All four nodes ($|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$) are equally large and have uniform phase colors. This represents the state:

$$|\psi
angle=rac{1}{2}(|00
angle+|01
angle+|10
angle+|11
angle)$$

 \checkmark This is a **uniform superposition**, the starting point of most **quantum algorithms** like Grover's and Shor's.

8. Example 3: Phase Difference Visualization

```
qc3 = QuantumCircuit(2)
qc3.h(0)
qc3.h(1)
qc3.z(1) # add phase to the second qubit
state3 = Statevector.from_instruction(qc3)
plot state qsphere(state3)
```



Interpretation:

- Nodes corresponding to states with the second qubit = $1 (|01\rangle)$ and $|11\rangle$ show **different colors** (phases).
- This phase difference demonstrates **interference** critical in quantum computing.
- Q-sphere helps *see* how gates like **Z**, **T**, and **S** rotate phase components in superpositions.

9. Comparing Q-Sphere and Bloch Sphere

Feature	Bloch Sphere	Q-Sphere
Represents	Single Qubit	Multi-Qubit (n > 1)
Axes	Real 3D (x, y, z)	Discrete positions per basis state
Shows	Amplitude & Phase of a single qubit	Amplitude & Phase of all basis states
Useful for	Single-qubit operations	Entanglement & interference visualization
Nodes	Only 2 points	2 ⁿ points (for n qubits)

Thus, while the **Bloch sphere** helps us understand *individual* qubits, the **Q-sphere** gives a global picture of the **entire system**.

10. Use Cases of the Q-Sphere

1. Quantum Education and Visualization

- Helps students and researchers visualize **superpositions**, **interference**, **and entanglement**.
- Shows **phase relationships** that are invisible in traditional histograms.

2. Debugging Quantum Circuits

- In Qiskit, plot state qsphere helps verify circuit behavior:
 - o Whether a gate changes the **phase** or **amplitude**.
 - Whether entanglement is produced (by node symmetry or correlation).

3. Quantum Algorithm Development

- Used to visualize the **intermediate states** in algorithms:
 - o Grover's Algorithm: Shows how marked states' phases flip.
 - Quantum Fourier Transform (QFT): Displays rotating phases across basis states.

4. Quantum Machine Learning

• Q-sphere representations of quantum states can serve as **feature encodings** for quantum neural networks.

5. Quantum Error Detection

• Phase errors (Z-noise) or bit-flip errors (X-noise) manifest as distortions in node colors and amplitudes.

11. Real-Time Applications

a) Quantum State Tomography Visualization

Experimental physicists reconstruct measured density matrices and visualize them using a **Q-sphere** to ensure coherence and correct phase alignment.

b) Quantum Communication

In **quantum teleportation** experiments, the Q-sphere shows how the state's phase and amplitude are faithfully transferred between qubits.

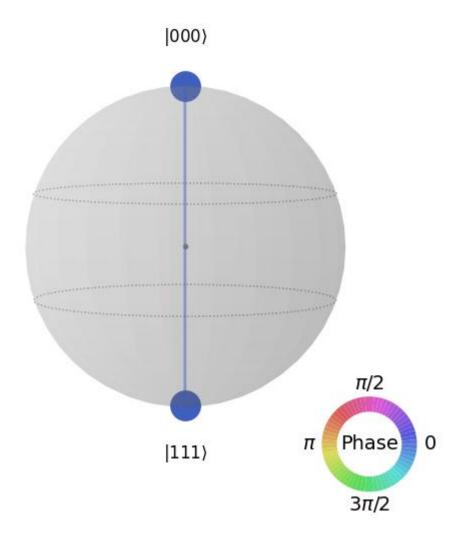
c) Quantum Algorithm Progress Monitoring

During live runs on IBM Quantum hardware, Qiskit's Q-sphere visualization helps track how quantum states evolve after each operation.

12. Example: 3-Qubit GHZ State

from qiskit import QuantumCircuit

```
from qiskit.quantum_info import Statevector
from qiskit.visualization import plot_state_qsphere
qc4 = QuantumCircuit(3)
qc4.h(0)
qc4.cx(0, 1)
qc4.cx(0, 2)
state4 = Statevector.from_instruction(qc4)
plot_state_qsphere(state4)
```



Interpretation:

- Only two active nodes $\rightarrow |000\rangle$ and $|111\rangle$.
- Both equal amplitude, same color → equal phase entanglement.

 \(\square \) This is the GHZ (Greenberger–Horne–Zeilinger) state:

$$|\mathrm{GHZ}
angle = rac{1}{\sqrt{2}}(|000
angle + |111
angle)$$

It's a cornerstone in multi-qubit entanglement and quantum communication.

13. Advantages of the Q-Sphere

- Displays **both amplitude and phase** information simultaneously.
- Highlights quantum interference clearly.
- Reveals **entanglement structure** intuitively.
- Scales well for small- to mid-size systems (up to 5–6 qubits).

14. Limitations

- For large numbers of qubits (>6), visualization becomes cluttered.
- Cannot directly show **time evolution** (use animation for dynamic circuits).
- Difficult to interpret quantitatively for very complex states meant for conceptual, not numerical, analysis.

15. Summary

Aspect	Description	
Purpose	Visualize multi-qubit quantum states	
Displays	Amplitude (node size) & Phase (node color)	
Best for	Understanding superposition, interference, and entanglement	
Implemented in	Qiskit (plot_state_qsphere)	
Applications	Quantum education, debugging, and algorithm visualization	

16. Conclusion

The **Q-Sphere** bridges the gap between mathematical quantum states and human intuition. While the **Bloch Sphere** beautifully describes single-qubit rotations, the **Q-Sphere** unveils the **collective structure** of multi-qubit superpositions — showing not just what the quantum state is, but how it *feels*.

Through the Q-Sphere, learners, researchers, and engineers can **see the invisible**: quantum phases, entanglement symmetries, and interference patterns that drive the power of quantum computation.

17. References

- 1. M. Nielsen & I. Chuang, Quantum Computation and Quantum Information.
- 2. IBM Qiskit Textbook: Visualizing Quantum States with Q-Sphere.
- 3. J. Preskill, Lecture Notes on Quantum Computation.
- 4. A. W. Cross, J. M. Gambetta et al., *Qiskit Visualization Tools (IBM Research)*.