
Entanglement of Qubits in Hilbert Space 

It integrates and expands on your uploaded notes, adding conceptual clarity, mathematical 

depth, examples (including Bell states), real-world applications, and Qiskit code 

demonstrations suitable for classroom or research-level explanation. 

 

1. Introduction 

Entanglement is one of the most profound and counterintuitive phenomena in quantum 

mechanics — a feature that distinguishes the quantum world from classical physics. 

When two or more qubits are entangled, the state of one qubit cannot be described 

independently of the other, regardless of how far apart they are in space. This phenomenon 

creates a non-local correlation between their states. 

In other words, measuring one qubit instantly determines the state of the other — even if they 

are separated by light-years. This property defies classical logic and underpins the 

extraordinary power of quantum computing, quantum communication, and quantum 

cryptography. 

2. Entanglement in Hilbert Space 

In quantum mechanics, every qubit exists in a Hilbert space, which is a mathematical vector 

space representing all possible quantum states. 

For a single qubit, this space is 2-dimensional: 

 

When multiple qubits are considered, their combined system is represented by the tensor 

product of individual Hilbert spaces. 

 
If the joint state cannot be written as such a product, it is said to be entangled. 

 

3. Mathematical Definition of Entanglement 



Let the state of two qubits be: 

 

then the qubits are entangled. 

A simple test: 

 

4. Bell States — Maximally Entangled States 

The Bell states are the most well-known examples of maximally entangled two-qubit states. 

Named after John Bell, who studied their implications on quantum reality, these four states 

form an orthonormal basis for the 4D Hilbert space of two qubits. 

They are defined as: 

 

Each Bell state represents a perfect correlation (or anti-correlation) between two qubits, even when 
separated by distance. 

5. Proof That Bell States Are Entangled 

Consider: 

 



 

 

6. Visualization Using Qiskit 

Let’s create and visualize an entangled Bell pair. 

# Cell1 

# Entanglement Visualization: Bell Pair and Single-Qubit Reduced States 

This notebook demonstrates: 

- Creation of a Bell pair |Φ⁺⟩ = (|00⟩ + |11⟩)/√2 using H and CNOT. 

- Visualization of the joint state (state-city plot). 

- Computation of reduced density matrices for each qubit. 

- Manual calculation and plotting of Bloch vectors for reduced (single-qubit) states. 

- Purity checks and a comparison with a separable state (|++⟩). 
 

Run cells in order. Requires `qiskit` and `qiskit-aer`. 

 

# Cell 2: Imports and plotting setup 

%matplotlib inline 

 

# Close any existing matplotlib figures to avoid empty placeholders 

import matplotlib.pyplot as plt 

plt.close('all') 

 

from IPython.display import display 

import numpy as np 

 

from qiskit import QuantumCircuit 

from qiskit.quantum_info import Statevector, DensityMatrix, partial_trace, Pauli 

from qiskit.visualization import plot_state_city, plot_bloch_vector 

 



Explanation: 
Load required libraries, configure inline plotting, and clear previous figures so new plots render 
cleanly. 
 
 

# Cell 3: Create the Bell state circuit |Φ+> = (|00> + |11>)/√2 

qc = QuantumCircuit(2) 

qc.h(0)      # Hadamard on qubit 0 -> superposition 

qc.cx(0, 1)  # CNOT with control 0, target 1 -> entangles 

 

# Display the circuit diagram 

display(qc.draw('mpl')) 

 

 
Explanation: 
This constructs the standard H then CNOT sequence that produces the Bell state.  
 
 

# Cell 4: Compute the full two-qubit statevector and plot the joint state (city plot) 

state = Statevector.from_instruction(qc) 

# plot_state_city returns a matplotlib Figure; capture and display it explicitly 

fig_city = plot_state_city(state) 

fig_city.suptitle("Statevector Visualization: |Φ⁺⟩ = (|00⟩ + |11⟩)/√2", fontsize=12) 

display(fig_city) 

 



Explanation: 
plot_state_city visualizes real/imag parts of amplitudes for |00>, |01>, |10>, |11>. Capturing 
and displaying the returned Figure avoids empty/placeholder axes 
 

# Cell 5 (Corrected): Compute reduced density matrices (trace out the other qubit) 

rho_total = DensityMatrix(state)        # total 2-qubit density matrix (pure) 

rho_q0 = partial_trace(rho_total, [1])  # reduced state for qubit 0 (trace out qubit 1) 

rho_q1 = partial_trace(rho_total, [0])  # reduced state for qubit 1 (trace out qubit 0) 

 

# Display types and useful info 

print("Type of rho_total:", type(rho_total)) 

print("Type of rho_q0:", type(rho_q0)) 

print("Type of rho_q1:", type(rho_q1)) 

 

# Display the underlying matrix shapes and content 

print("\nMatrix shape details:") 

print("rho_total matrix shape:", rho_total.data.shape) 

print("rho_q0 matrix shape:", rho_q0.data.shape) 

print("rho_q1 matrix shape:", rho_q1.data.shape) 

 

# Optional: display actual matrices for insight 

print("\nFull 2-qubit density matrix:\n", rho_total.data) 

print("\nReduced 1-qubit rho_q0:\n", rho_q0.data) 

print("\nReduced 1-qubit rho_q1:\n", rho_q1.data) 

 

 
 
Explanation: 
We form the full density matrix and then partial_trace to obtain each qubit's reduced density 
matrix. For maximally entangled Bell pair, these will be maximally mixed. 

 

Interpretation 

 Each reduced density matrix (ρ₀ and ρ₁) = ½ I₂, i.e., a maximally mixed qubit. 

 The full system is pure (rank-1 density matrix with purity = 1). 

 This confirms the entanglement — individually mixed, but jointly pure. 

 

 



# Cell 6: Helper to compute Bloch vector [x,y,z] from a single-qubit density matrix using 

Pauli expectations 

 

def get_bloch_vector(rho): 

    """ 

    rho: single-qubit DensityMatrix (or Operator-like) object. 

    Returns [x, y, z] where x = Tr(rho X), y = Tr(rho Y), z = Tr(rho Z). 

    """ 

    # Use Pauli objects to compute expectation values 

    x = rho.expectation_value(Pauli('X')) 

    y = rho.expectation_value(Pauli('Y')) 

    z = rho.expectation_value(Pauli('Z')) 

    return [float(x), float(y), float(z)] 

 

# Compute Bloch vectors for the reduced states 

bloch_q0 = get_bloch_vector(rho_q0) 

bloch_q1 = get_bloch_vector(rho_q1) 

 

print("Bloch vector for qubit 0:", bloch_q0) 

print("Bloch vector for qubit 1:", bloch_q1) 

 

 
Explanation: 
Newer Qiskit versions do not provide .bloch_vector() directly on DensityMatrix, so we compute 
components as expectation values of Pauli X, Y, Z. 
 

# Cell 7: Plot each single-qubit Bloch vector (figures returned; display them) 

 

fig_b0 = plot_bloch_vector(bloch_q0) 

fig_b0.suptitle("Qubit 0 (reduced state) — expected to be mixed (centered)", fontsize=12) 

display(fig_b0) 

 

fig_b1 = plot_bloch_vector(bloch_q1) 

fig_b1.suptitle("Qubit 1 (reduced state) — expected to be mixed (centered)", fontsize=12) 

display(fig_b1) 

 

  
 

 



Explanation: 
For a Bell pair the Bloch vectors will be ~[0,0,0], so the plotted spheres will be centered 

indicating mixed states (no definite direction) — this is the signature of entanglement. 

 

# Cell 8: Purity of whole system vs single-qubit reduced states 

 

purity_total = rho_total.purity() 

purity_q0 = rho_q0.purity() 

purity_q1 = rho_q1.purity() 

 

print(f"Purity of full 2-qubit system: {purity_total:.6f}") 

print(f"Purity of qubit 0 (reduced): {purity_q0:.6f}") 

print(f"Purity of qubit 1 (reduced): {purity_q1:.6f}") 

 

 
Purity of full 2-qubit system: 1.000000+0.000000j 

Purity of qubit 0 (reduced): 0.500000+0.000000j 

Purity of qubit 1 (reduced): 0.500000+0.000000j 

 

Explanation: 

 Purity 1.0 for the combined system indicates a pure state. 

 Purity 0.5 for each reduced single qubit indicates a maximally mixed single-qubit 

state — hallmark of maximal entanglement. 

 

 

# Cell 9: Create a separable product state |++> = H⊗H |00> for comparison 

qc_sep = QuantumCircuit(2) 

qc_sep.h(0) 

qc_sep.h(1) 

 

display(qc_sep.draw('mpl')) 

 

state_sep = Statevector.from_instruction(qc_sep) 

rho_sep = DensityMatrix(state_sep) 

rho_q0_sep = partial_trace(rho_sep, [1]) 

rho_q1_sep = partial_trace(rho_sep, [0]) 

 

bloch_q0_sep = get_bloch_vector(rho_q0_sep) 

bloch_q1_sep = get_bloch_vector(rho_q1_sep) 

 

print("Separable |++> Bloch vectors (expected ~ +X):") 

print("Qubit 0:", bloch_q0_sep) 

print("Qubit 1:", bloch_q1_sep) 

 

fig_sep0 = plot_bloch_vector(bloch_q0_sep) 

fig_sep0.suptitle("Qubit 0 in |+> (separable) → Bloch vector along +X", fontsize=12) 



display(fig_sep0) 

 

fig_sep1 = plot_bloch_vector(bloch_q1_sep) 

fig_sep1.suptitle("Qubit 1 in |+> (separable) → Bloch vector along +X", fontsize=12) 

display(fig_sep1) 

 

 
 

                 
 
Explanation: 
This contrasts entangled vs separable: for |++⟩ the single-qubit Bloch vectors are nonzero (pointing 
+X), unlike the Bell case where they are centered. 
 

Note : 
 

 
 

 

 

 

 

 

 

 



7. Measurement Correlation Example 

If both qubits are measured in the computational basis: 

 50% of the time → both yield 0 

 50% of the time → both yield 1 

They are perfectly correlated. 

8. Quantum Circuit for All Four Bell States 

from qiskit import QuantumCircuit 

from qiskit.visualization import plot_histogram 

from qiskit_aer import AerSimulator 

 

sim = AerSimulator() 

 

# Define a function to create Bell states 

def create_bell(index): 

    qc = QuantumCircuit(2, 2) 

    qc.h(0) 

    if index in [2, 3]:  # for Ψ states, add an X on qubit 1 

        qc.x(1) 

    qc.cx(0, 1) 

    if index in [1, 3]:  # for negative phases 

        qc.z(0) 

    qc.measure([0,1], [0,1]) 

    return qc 

 

# Execute and display measurement distributions 

bell_labels = ["Φ+", "Φ−", "Ψ+", "Ψ−"] 

 

for i in range(4): 

    qc = create_bell(i) 

    result = sim.run(qc, shots=1000).result() 

    counts = result.get_counts() 

    display(qc.draw('mpl')) 

    plot_histogram(counts, title=f"Bell State |{bell_labels[i]}⟩ Measurements") 

 

 

 
 



 

 

 
 

9. Real-Time Applications of Entanglement 

a) Quantum Communication 

 Quantum Teleportation: Transfer of quantum states between distant qubits using 

shared entanglement. 

 Superdense Coding: Sending two classical bits of information using only one 

entangled qubit. 

b) Quantum Cryptography 

 Quantum Key Distribution (QKD), e.g., BB84 protocol, uses entanglement to 

guarantee secure communication — any eavesdropper disturbs the entanglement and 

can be detected. 

c) Quantum Computing 

 Entanglement is the resource enabling quantum parallelism. 

 Algorithms like Shor’s and Grover’s exploit entanglement to correlate computational 

pathways. 

d) Quantum Sensors & Metrology 

 Entangled qubits improve measurement precision (quantum-enhanced sensing). 

 Used in atomic clocks, gravitational wave detectors, and magnetometers. 



e) Quantum Internet 

 Entanglement swapping and quantum repeaters form the foundation of quantum 

networks connecting remote quantum processors. 

 

10. Key Insights 

Concept Classical View Quantum (Entangled) View 

State of particles Independent Correlated, non-separable 

Measurement Reveals pre-existing property Collapses joint state 

Information Local Non-local (shared instantaneously) 

Mathematical form Product of states Superposition in joint Hilbert space 

 

 

11. Summary 

Entanglement reveals the non-local interconnectedness of quantum systems. 

Two qubits, once entangled, behave as a single entity described by a shared quantum state, 

even across vast distances. 

It is the cornerstone of quantum computing, quantum communication, and quantum 

security — enabling tasks impossible for classical systems. 

Understanding and harnessing entanglement is what truly unlocks the quantum advantage. 

 


