Entanglement of Qubits in Hilbert Space

It integrates and expands on your uploaded notes, adding conceptual clarity, mathematical
depth, examples (including Bell states), real-world applications, and Qiskit code
demonstrations suitable for classroom or research-level explanation.

1. Introduction

Entanglement is one of the most profound and counterintuitive phenomena in quantum
mechanics — a feature that distinguishes the quantum world from classical physics.

When two or more qubits are entangled, the state of one qubit cannot be described
independently of the other, regardless of how far apart they are in space. This phenomenon
creates a non-local correlation between their states.

In other words, measuring one qubit instantly determines the state of the other — even if they

are separated by light-years. This property defies classical logic and underpins the
extraordinary power of quantum computing, qguantum communication, and quantum

cryptography.
2. Entanglement in Hilbert Space

In quantum mechanics, every qubit exists in a Hilbert space, which is a mathematical vector
space representing all possible quantum states.
For a single qubit, this space is 2-dimensional:

lv) = a|0) + B[1)
where |a|? + |8)? = 1.

When multiple qubits are considered, their combined system is represented by the tensor
product of individual Hilbert spaces.

For two qubits, the Hilbert space becomes 4-dimensional:
1Y) = a|00) + B|01) + v|10) + 6|11)
A separable (non-entangled) state can be expressed as a product of individual states:

1) = [¥1) ® [¢a)

If the joint state cannot be written as such a product, it is said to be entangled.

3. Mathematical Definition of Entanglement

Let the state of two qubits be:

1) = a|00) + B|01) + |10) + §|11)
If there are no coefficients at, 3, 7y, d that allow this to be factored as:

%) = (al0) + b[1)) @ (¢[0) +d][1))

then the qubits are entangled.

A simple test:

The state is entangled if ad — B+ # 0.

4. Bell States — Maximally Entangled States

The Bell states are the most well-known examples of maximally entangled two-qubit states.
Named after John Bell, who studied their implications on quantum reality, these four states
form an orthonormal basis for the 4D Hilbert space of two qubits.

They are defined as:

dT) = %(oﬂ} - [11))

o1
57) = S (00) - 11)
1
¥) = = ([o1) +[10)
Ty = = (jo1) — [10))

Each Bell state represents a perfect correlation (or anti-correlation) between two qubits, even when
separated by distance.

5. Proof That Bell States Are Entangled

Consider:

1

@7) = 7

(100) +[11))

If this state were separable, we could express it as:

[@7) = (al0) + b[1)) @ (c[0) + d|1))
Expanding the right-hand side:

= ac|00) + ad|01) + be|10) + bd|11)

Comparing with the left-hand side, we must have:

1 1
ad=0, be=0, bd=——
V2

From ad = be = 0, eithera = 0 ord = 0, but if a = 0, ac can't be non-zero; similarly for d = 0, bd can't

be non-zero. Hence, it is impossible to express |$7) as a product — proving entanglement.

6. Visualization Using Qiskit

Let’s create and visualize an entangled Bell pair.
Celll

Entanglement Visualization: Bell Pair and Single-Qubit Reduced States

This notebook demonstrates:

- Creation of a Bell pair |®*) = (|00) + |11))/N2 using H and CNOT.

- Visualization of the joint state (state-city plot).

- Computation of reduced density matrices for each qubit.

- Manual calculation and plotting of Bloch vectors for reduced (single-qubit) states.
- Purity checks and a comparison with a separable state (|++)).

Run cells in order. Requires “qiskit™ and “giskit-aer".

Cell 2: Imports and plotting setup
%matplotlib inline

Close any existing matplotlib figures to avoid empty placeholders
import matplotlib.pyplot as plt
plt.close(‘all’)

from IPython.display import display
import numpy as np

from giskit import QuantumCircuit
from qgiskit.quantum_info import Statevector, DensityMatrix, partial_trace, Pauli
from giskit.visualization import plot_state city, plot_bloch_vector

Explanation:
Load required libraries, configure inline plotting, and clear previous figures so new plots render
cleanly.

Cell 3: Create the Bell state circuit |®@+> = (|00> + |11>)/\/2
qc = QuantumCircuit(2)

gc.h(0) # Hadamard on qubit O -> superposition

gc.cx(0, 1) # CNOT with control O, target 1 -> entangles

Display the circuit diagram
display(gc.draw('mpl’))

do

q1

Explanation:
This constructs the standard H then CNOT sequence that produces the Bell state.

Cell 4: Compute the full two-qubit statevector and plot the joint state (city plot)
state = Statevector.from_instruction(qc)

plot_state_city returns a matplotlib Figure; capture and display it explicitly

fig_city = plot_state_city(state)

fig_city.suptitle("Statevector Visualization: |@*) = (|00) + [11))/N2", fontsize=12)
display(fig_city)

Real Amplitude (p) Imaginary Amplitude (p)

Statevector Visualization: |®+) = (|00) + |11))/v2

Explanation:
plot state city visualizes real/imag parts of amplitudes for |00>, |01>, |10>, |11>. Capturing
and displaying the returned Figure avoids empty/placeholder axes

Cell 5 (Corrected): Compute reduced density matrices (trace out the other qubit)
rho_total = DensityMatrix(state) # total 2-qubit density matrix (pure)

rho_q0 = partial_trace(rho_total, [1]) # reduced state for qubit O (trace out qubit 1)
rho_ql = partial_trace(rho_total, [0]) # reduced state for qubit 1 (trace out qubit 0)

Display types and useful info
print("Type of rho_total:", type(rho_total))
print("Type of rho_q0:", type(rho_q0))
print("Type of rho_qg1:", type(rho_qgl))

Display the underlying matrix shapes and content
print("\nMatrix shape details:")

print("rho_total matrix shape:", rho_total.data.shape)
print("rho_g0 matrix shape:", rho_q0.data.shape)
print("rho_gl matrix shape:", rho_ql.data.shape)

Optional: display actual matrices for insight
print("\nFull 2-qubit density matrix:\n", rho_total.data)
print("\nReduced 1-qubit rho_q0:\n", rho_q0.data)
print("\nReduced 1-qubit rho_g1:\n", rho_g1l.data)

Type of rho_total: <class 'giskit.quantum_info.states.densitymatrix.DensityMatrix'>
Type of rho_g@: <class "qiskit.quantum_info.states.densitymatrix.DensityMatrix'>
Type of rho _gql: <class "qiskit.quantum_info.states.densitymatrix.DensityMatrix'>

Matrix shape details:
rho_total matrix shape: (4, 4)
rho_g® matrix shape: (2, 2)
rho_gl matrix shape: (2, 2}

Full 2-qubit density matrix:
[[@.5+0.] @. +@.7 @. +0.] ©.5+8.7]
[6. +8.7 8. +8.] 0. +8.j 8. +8.7]
[8. +8.j @. +0.j @. +8.j @. +8.]]
[6.5+0.] @. +0.] @. +8.j 8.5+0.3]]

Reduced 1-qubit rho_g@:

[[e.5+8.] 8. +0.5]
[6. +8.7 8.5+8.7]]

Reduced 1-qubit rho_g1l:
[[@.5+8.7 8. +8.7]
[6. +0.] 8.5+0.]]]

Explanation:
We form the full density matrix and then partial trace to obtain each qubit's reduced density
matrix. For maximally entangled Bell pair, these will be maximally mixed.

Interpretation
o Each reduced density matrix (po and p:) = ' L, i.e., a maximally mixed qubit.

e The full system is pure (rank-1 density matrix with purity = 1).
e This confirms the entanglement — individually mixed, but jointly pure.

Cell 6: Helper to compute Bloch vector [x,y,z] from a single-qubit density matrix using
Pauli expectations

def get_bloch_vector(rho):
rho: single-qubit DensityMatrix (or Operator-like) object.
Returns [X, y, z] where x = Tr(rho X), y = Tr(rho Y), z = Tr(rho Z).
Use Pauli objects to compute expectation values
X = rho.expectation_value(Pauli(*X"))
y = rho.expectation_value(Pauli("Y"))
z = rho.expectation_value(Pauli('Z"))
return [float(x), float(y), float(z)]

Compute Bloch vectors for the reduced states
bloch_g0 = get_bloch_vector(rho_q0)
bloch_g1 = get_bloch_vector(rho_q1)

print("Bloch vector for qubit 0:", bloch_q0)
print("Bloch vector for qubit 1:", bloch_q1)

Bloch vector for qubit 8: [8.8, 6.0, 8.8]
Bloch vector for qubit 1: [8.8, 6.8, 8.8]

Explanation:
Newer Qiskit versions do not provide .bloch vector () directly on DensityMatrix, so we compute
components as expectation values of Pauli X, Y, Z.

Cell 7: Plot each single-qubit Bloch vector (figures returned; display them)

fig_b0 = plot_bloch_vector(bloch_q0)

fig_b0.suptitle("Qubit O (reduced state) — expected to be mixed (centered)", fontsize=12)
display(fig_b0)

fig_bl = plot_bloch_vector(bloch_g1)

fig_b1.suptitle("Qubit 1 (reduced state) — expected to be mixed (centered)", fontsize=12)
display(fig_b1)

Qubit 0 (reduced state) — exp¥cted to be mixed (centered) Qubit 1 (reduced state) — expcted to be mixed (centered)

Explanation:
For a Bell pair the Bloch vectors will be ~[0,0,0], so the plotted spheres will be centered
indicating mixed states (no definite direction) — this is the signature of entanglement.

Cell 8: Purity of whole system vs single-qubit reduced states

purity_total = rho_total.purity()
purity_g0 = rho_q0.purity()
purity gl =rho_ql.purity()

print(f"Purity of full 2-qubit system: {purity_total:.6f}")
print(f"Purity of qubit 0 (reduced): {purity_q0:.6f}")
print(f"Purity of qubit 1 (reduced): {purity_q1:.6f}")

Purity of full 2-qubit system: 1.000000+0.0000007]
Purity of qubit 0 (reduced): 0.500000+0.0000007]
Purity of qubit 1 (reduced): 0.500000+0.0000007

Explanation:

e Purity 1.0 for the combined system indicates a pure state.
o Purity 0.5 for each reduced single qubit indicates a maximally mixed single-qubit
state — hallmark of maximal entanglement.

Cell 9: Create a separable product state |++> = H®H |00> for comparison
gc_sep = QuantumCircuit(2)

gc_sep.h(0)

gc_sep.h(1)

display(gc_sep.draw('mpl’))

state_sep = Statevector.from_instruction(qc_sep)
rho_sep = DensityMatrix(state_sep)

rho_q0_sep = partial_trace(rho_sep, [1])
rho_ql_sep = partial_trace(rho_sep, [0])

bloch_g0_sep = get_bloch_vector(rho_qO0_sep)
bloch_gl1 sep = get_bloch_vector(rho_ql_sep)

print("Separable |++> Bloch vectors (expected ~ +X):")
print("Qubit 0:", bloch_q0_sep)
print("Qubit 1:", bloch_gl1 sep)

fig_sepO = plot_bloch_vector(bloch_g0_sep)
fig_sep0.suptitle("Qubit 0 in [+> (separable) — Bloch vector along +X", fontsize=12)

display(fig_sep0)

fig_sepl = plot_bloch_vector(bloch_qg1_sep)

fig_sepl.suptitle("Qubit 1 in [+> (separable) — Bloch vector along +X", fontsize=12)
display(fig_sepl)

-
o -

Separable |+#> Bloch vectors (expected ~ +X):
Qubit @: [@.99909999999909%6, €.08, 2.8]
Qubit 1: [@.99909399999909%6, €.0, @.0]

X+ priols 10329V ol8 <Xslds1sgs2) <+| ni 0 fiduO Qubit 1 in |+> (separablefL Bloch vector along +X
/, €

~ S
7 ¢ \

/

Explanation:

This contrasts entangled vs separable: for |++) the single-qubit Bloch vectors are nonzero (pointing
+X), unlike the Bell case where they are centered.

Note :

e The Hadamard gate creates superposition on qubit O:
1
10) = 7(10) + 1))
e The CNOT gate correlates qubit 1 with qubit 0, forming:

#%) = = ([00) + 111)

¢ Measurement of one qubit determines the outcome of the other — this is entanglement in action.

7. Measurement Correlation Example
If both qubits are measured in the computational basis:

e 50% of the time — both yield 0
e 50% of the time — both yield 1
They are perfectly correlated.

8. Quantum Circuit for All Four Bell States

from qiskit import QuantumCircuit
from qgiskit.visualization import plot_histogram
from qiskit_aer import AerSimulator

sim = AerSimulator()

Define a function to create Bell states
def create_bell(index):
qc = QuantumCircuit(2, 2)
gc.h(0)
if index in [2, 3]: # for W states, add an X on qubit 1
gc.x(1)
gc.cx(0, 1)
if index in [1, 3]: # for negative phases
gc.z(0)
gc.measure([0,1], [0,1])
return qc

Execute and display measurement distributions
bell_labels — ["q)_i_"’ Hq)_ﬂ’ ||\I]+H, H\P_H]

for i in range(4):
qc = create_bell(i)
result = sim.run(qc, shots=1000).result()
counts = result.get_counts()
display(gc.draw('mpl’))
plot_histogram(counts, title=f"Bell State [{bell_labels[i]}) Measurements™)

do (A —

g1 © H A—
L.

qo A—

o} '@

QO—. A

o e

do X—

q1 (@

9. Real-Time Applications of Entanglement

a) Quantum Communication

e Quantum Teleportation: Transfer of quantum states between distant qubits using

shared entanglement.

e Superdense Coding: Sending two classical bits of information using only one

entangled qubit.

b) Quantum Cryptography

e Quantum Key Distribution (QKD), e.g., BB84 protocol, uses entanglement to
guarantee secure communication — any eavesdropper disturbs the entanglement and

can be detected.

c) Quantum Computing

o Entanglement is the resource enabling quantum parallelism.
o Algorithms like Shor’s and Grover’s exploit entanglement to correlate computational

pathways.

d) Quantum Sensors & Metrology

o Entangled qubits improve measurement precision (quantum-enhanced sensing).
« Used in atomic clocks, gravitational wave detectors, and magnetometers.

e) Quantum Internet

o Entanglement swapping and quantum repeaters form the foundation of quantum
networks connecting remote quantum processors.

10. Key Insights

| Concept I Classical View | Quantum (Entangled) View |
State of particles |Independent |Correlated, non-separable |
IMeasurement |Reveals pre-existing property|Collapses joint state |
[Information |Local INon-local (shared instantaneously) |
IMathematical form|[Product of states ISuperposition in joint Hilbert space

11. Summary

Entanglement reveals the non-local interconnectedness of quantum systems.
Two qubits, once entangled, behave as a single entity described by a shared quantum state,
even across vast distances.

It is the cornerstone of quantum computing, quantum communication, and quantum
security — enabling tasks impossible for classical systems.
Understanding and harnessing entanglement is what truly unlocks the quantum advantage.

