Mathematical Model for Quantum Computing

Quantum computing relies on mathematical frameworks that extend beyond
classical linear algebra and complex arithmetic. While classical computing
manipulates binary states (0 or 1), quantum computing deals with quantum
states—vectors in a complex vector space—that can exist in superpositions
of both 0 and 1 simultaneously.

To understand the working principles of qubits and quantum operations, we
must first establish the mathematical foundation that supports quantum
theory. This includes complex numbers, vector spaces, matrices, operators,
and the structure known as Hilbert space, which forms the core
mathematical environment for quantum mechanics.

1. Complex Numbers

In classical mathematics, we deal primarily with real numbers, which are
points on a one-dimensional number line. In quantum mechanics and
guantum computing, we require complex numbers, which extend this
system to two dimensions.

A complex number z is written as:
z=a+ bi

where:
« a— real part
o b — imaginary part
o | — imaginary unit (i*2 = -1)

Geometric Representation

Complex numbers can be visualized on the complex plane, where the x-axis
represents the real part and the y-axis represents the imaginary part.



The magnitude or modulus of z is given by:
1z| = vV a* + b?

The argument (angle 0) is:

b
@ =tan ' [ —
a

Thus, we can represent z in polar form:

2z =7r(cosf } isinf) = re'’

This is known as Euler’s formula, a fundamental concept in quantum theory, as it
elegantly connects complex numbers with rotations and phase shifts.

Example:

letz;=1+iandzg =2 1
Then:

o Addition:z; + 20 =(1+2)+(1-1)i=3

* Multiplication:

nzm=01+1)Q2-0)=2-i+2—i* =341
* Magnitude of z;:

2] = V12412 =2

¢ Polar form:

z = \/E Bi?rl,-"il



In quantum computing, such numbers are used to express probability
amplitudes, where the square of the magnitude gives the probability of
observing a particular quantum state.

Quantum Connection:

A gubit (quantum bit) is a unit vector represented as:

¥) = al0) + B|1)

where o,€C (complex numbers), and:

o + |8 =1

This normalization ensures that the total probability of measuring the
qubit in either state is 1.



2. Vector Spaces

A vector space (or linear space) is a mathematical structure formed by a
collection of objects called vectors, which can be added together and
multiplied (scaled) by numbers known as scalars.

In quantum computing, these vectors represent quantum states, and the
scalars are complex numbers.

Definition

A vector space V over a field C (complex numbers) is a set of elements
(vectors) satisfying the following properties:

1. Closure under addition:
fu,vcV,thenut+veV
2. Closure under scalar multiplication:
fac Candv eV, thenaveV
3. Existence of a zero vector:
There exists 0 € V suchthatv + 0 =wv
4. Existence of additive inverses:
Forevery v € V, there exists —v € V suchthatv + (~v) =0

5. Distributive and associative properties for both addition and scalar multiplication.

Quantum Vector Space

In quantum computing, each qubit is represented as a vector in a two-
dimensional complex vector space C"2.

The basis vectors are denoted as:

0)= o, 1=

Any single qubit can then be represented as a linear combination
(superposition) of these two basis vectors:



¥) = a0) + B[1)
where

a,B € Cand |a|? + |B]? = 1.

Example 1:

Let’s define a quantum state:

1 i
v) = 510 E'l}

Then in matrix form:

[¥) =

S ol

Here:

« The real and imaginary parts come from complex numbers.
« The vector space is 2-dimensional over complex numbers.

Example 2: Multi-Qubit Systems

For two qubits, the vector space becomes 4-dimensional:



For two qubits, the vector space becomes 4-dimensional:

C* = span{|00),

01),

10), [11)}
So, a general two-qubit state can be expressed as:

[¥) = |00) + B|01) + |10) + §|11)
where a, 8,7,0 € C and

la* + |BF+ [y* + 6P =1

Quantum Relevance: The vector space framework allows:

« Representation of superposition (combination of states)
« Application of linear operators (quantum gates)
. Measurement as projection onto basis vectors

Quantum algorithms like Grover’s and Shor’s exploit these linear
transformations to achieve exponential speedups over classical computation.

3. Matrices and Operators

In quantum computing, matrices and operators describe transformations
applied to quantum states. While vectors represent states, matrices represent
actions (operations) that evolve or manipulate those states.

These transformations correspond to quantum gates, the building blocks of
guantum circuits.

3.1 Matrices in Quantum Systems

A matrix is a rectangular array of numbers (usually complex numbers)
arranged in rows and columns.

For example:



A — {ﬂu ﬂlz]

1 QA22

In quantum mechanics:

« Vectors (kets like |y)) are columns.
« Operators (gates) are matrices that act on those columns.

The result of applying an operator A to a quantum state |y) is another state

|9):

¢) = Al¢)

3.2 Linear Operators

A linear operator A on a vector space V satisfies:

Alalp) + B|¢)) = aAly) + BA|9)

for all scalars a,B€C and vectors |y),|d)EV. These operators preserve the
structure of superposition, which is crucial for quantum computation.

3.3 Unitary Operators

In quantum computing, all evolution of a closed quantum system is
governed by unitary operators.

An operator U is unitary if:

UlU=U0U"=1

where;



« Ut is the conjugate transpose (Hermitian adjoint) of U
« listhe identity matrix

This property ensures probability conservation — the total probability of
all possible outcomes remains 1 after any operation.

Example: Common Quantum Gates as Matrices

Gate Symbol Matrix Representation Effect on Basis States
. (1 0
Identity I 0 1 Leaves state unchanged
. 0 1
Pauli-X (NOT) X 10 Swaps (
, 0 —i .
Pauli-Y Y i 0 Rotates state around Y-axis
. (1 0
Pauli-Z Z 0 -1 Adds a phase to (
1 |11 -
Hadamard H - Creates superposition
V2|1 —1
1 0 ,
Phase Gate S 0 i Adds a phase of /2 to (

3.4 Hermitian Operators
A matrix A is Hermitian if: AT=A

Hermitian operators correspond to observables (measurable physical
guantities), such as energy, spin, or momentum.

For instance, in quantum mechanics, the Hamiltonian H (total energy
operator) is Hermitian, ensuring that measurement outcomes are real
numbers.



3.5 Example: Applying a Matrix Operator
Let:

Then:

o[t §§-f1-

Thus, applying the Pauli-X gate flips the qubit state from 10) to |1) .



4. Inner & Outer Product

In quantum computing, inner and outer products are vital linear algebraic
operations that help define probabilities, orthogonality, and state
projection.

They serve as the mathematical link between quantum states and
measurement outcomes.

4.1 Inner Product (Dot Product)

The inner product of two quantum states (vectors) |y) and |¢) is a scalar
complex number that measures how similar or “aligned” they are.

Bra-Ket: Inner Product ({(y|¢)) :

For two qubit states |¢) and |¢), the inner product is given by:

(Ylg) = a’™y + 70

where:
* [¢) =al0)+ B[1)
* |¢) =70) +4[1)

* a,f3,7, and § are complex numbers, and a* and 3* are the complex conjugates of a and S3.

Suppose If:

o S B

Then:

(plp) = biay + bias

where * denotes the complex conjugate.



Properties of Inner Product

Forall [¢),|@),|x) € Vanda € C:

1. Conjugate symmetry:

($lo) = (o)

2. Linearity in the second argument:

(Bl(ald) +[x)) = aldld) + (dlx)

3. Positivity:
(¥l¥) =0
and (¢|¢) = O onlyif [¢p) = 0.

Example: Inner Product of Quantum States

Let:
: 5
2 2
V2 V2
Then:
1 ] = 1
i NG
<¢|¢>—(,)[£]—(1 1) =0
V2 V2 % 2
Thus, ly) and |¢)are orthogonal — they represent mutually exclusive

quantum states.



Quantum Interpretation

The square of the magnitude of an inner product gives the probability of
transitioning from one state to another:

P = |(¢|y)[*

Orthogonal states ({(¢ly)=0) cannot transform into each other through
measurement.

Another Example for Inner Product
Consider a qubit in the following state:

) = 210) + 2 1)

In ket notation: 3
v = (1)
5

The bra for this state would be:

(] = (2

Utk
S~

Let's say we have another qubit state |@) given by:

In ket notation:

The bra for this state would be:



Now, let's calculate the inner product (¢|1)), which gives the overlap between the two states:

1 1
(Bl) = (E E) (
Perform the multiplication:

_|__

€
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)
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(ol¥) = 5
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V2
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x

4.2 Outer Product

V2 52 52

The outer product of two vectors creates an operator (matrix) from them.

It is denoted by:

Ket-Bra: Outer Product (Jy){¢|)

If:
v =[] wi=pow,
then:

ol = [anh o]

(4 5] bt o b;

Example: Outer Product as Projection Operator

Let:



oyl =[5 o]

This acts as a projector onto the state |0). Similarly, |1){1| projects onto the
|1) state.

Quantum Application

« Outer products are used to construct quantum operators such as
density matrices and measurement projectors.
« For instance, the density matrix of a pure state |y) is:

p=IW)(Wl
This operator contains complete information about the quantum system.

Another Example for Outer Product

The outer product |1) (¢| results in a matrix (operator):

el = (1)

P

5 %)

O | s Lo

Perform the matrix multiplication:

3

o ot )
ey
SN——

%) (@] = (



Example: Density Matrix

If:
) 1
[9) = =0+ 1) = |
V2
Then:
B 111
P"—W)}(W—i .

This density matrix describes a superposition state with equal probabilities
for |0) and [1).

4.3 Significance in Quantum Computing

1. Measurement Operators:

Inner products determine measurement probabilities, e.g.,

P(|¢)) = |(@|¥)|?

2. State Projection:

Outer products help represent projection operations like

Py =100, P = [1)(1]
3. Density Matrices:

For a pure state |), the density matrix is given by

p = ¥) (¥l

which encodes all measurable information about the quantum system.



5. Magnitude and Normalization
In Quantum Computing, every quantum state (or qubit) is represented as a
vector in a complex vector space. To ensure that a qubit represents a valid

physical state, it must be normalized — meaning its total probability equals
1.

Normalization and magnitude play a central role in determining the physical
validity of a quantum state.

5.1 Magnitude of a Quantum State

The magnitude (or norm) of a quantum state |y) is defined as the square
root of the inner product of the state with itself:

191l = v (@¥1¥)

Then

2

=

1%l = Vlel* + 8

This norm represents the total probability amplitude of the state vector.



5.2 Normalization Condition

A normalized quantum state satisfies the following condition:

(Wl) =1

That is, the sum of the squared magnitudes of all amplitudes equals one.
2 2
af” +[B8]" =1

This ensures that when a measurement is made, the total probability of all
possible outcomes (e.g., [0) and |1)) is exactly 1.

Example:

Let's say the qubit vector is:

S8

o (3)

The magnitude would be:

1
26-10-2025 I \/‘E

2

1 1
>t 5 V1

2+’ 1
V2

Example 1: Normalized Qubit

Let

Then:



(W) = 512 +17) =1

Hence, this qubit is normalized.

Example 2: Non-normalized Qubit

Let

Then:

(plp) =2* +1°=5

To normalize |$), divide by its magnitude:

||¢|| — \/ga |¢)rmrmulized>

Now,

||¢|| — \/ga |¢)rmrmuiizﬁd>

Now,

<¢nm-rnuﬁzﬁd|@nwmulé:ed) =1



5.3 Physical Meaning

In a quantum system, normalization ensures probability conservation.
If a qubit is in state:

[¥) = al0) + B[1)
then:

* The probability of measuring [0) is |i::uz|2

* The probability of measuring [1) is |j3|‘ar

e Total probability = |a|? + |B]* = 1

This property guarantees that one of the outcomes must occur upon measurement.

5.4 Geometric Interpretation

Normalization can be visualized geometrically.

A normalized qubit lies on the surface of the unit sphere (known as the
Bloch Sphere) in complex 3D space.

Thus, every valid qubit corresponds to a point on this sphere, ensuring it has
a magnitude of 1.

Normalization Process

To normalize %), you divide each component by the norm of the vector:

= (e
"l,bnormahzed> Hq’bH (b) (%)

Example

Let's consider a qubit vector:

= (%)



Step 1: Calculate the norm of [1)):

)l = V/I3]2 + |47 = VO +16 = V25 =5

Step 2: Normalize the vector:

To normalize |1), divide each component by the norm:

|%normalized) = % (i) - @)

So the normalized qubit vector is:

0.6
‘wnorma]_ized> — (08)

Step 3: Verify the normalization:

Let's check the magnitude of the normalized vector:

H"abnormalized” - \/(06)2 + (08)2 = ‘\/036 + 0.64 = \/I =1

Since the magnitude is 1, the vector is properly normalized.

Normalization ensures that the qubit vector has a magnitude of 1, making it consistent with the

. . . 3 . 0.6
principles of quantum mechanics. In this example, the vector g ) Was normalized to 08)"

Perpendicular and Parallel Qubit Vectors

Two qubit vectors are perpendicular if their inner product (dot product) is zero. For example:

* Qubit Vector 1: [¢;) = ((1))

* Qubit Vector 2: |¢p2) = ([1])

(p1ld2) = (1 0) ((1:') =(1-0)+(0-1)=0

Since the inner product is zero, |@,) and |@s) are perpendicular.



Parallel Qubit Vectors

Two vectors are parallel if one is a scalar multiple of the other. Let's check if |1y ) is a scalar multiple

of [1)y).

Example:

* Qubit Vector 1: [¢)1) = (;)

* Qubit Vector 2: [¢)2) = (i)

We can express |15) as:

=2t =2 3) = (3)

Since |12) is exactly 2 times |11 ), the vectors |11) and |¥2) are parallel.

6. Angle Between Quantum Vectors

In Quantum Computing, the angle between two gquantum state vectors
represents their degree of similarity or overlap. The closer two states are
(smaller angle), the more similar they are in terms of probability amplitudes.
Orthogonal states (angle = 90°) represent mutually exclusive or
distinguishable quantum outcomes.

6.1 Definition

For two quantum states |y) and |$), the angle 6 between them is defined as:

{¥]9)|

cos = ——"—

R4l

If both states are normalized (i.e., |ly|I=II$11=1), then:



cos b = [(¢]9)|

This relationship directly connects the inner product with the geometric
interpretation of the quantum state space.

6.2 Interpretation

e Whenf =0":
The states are identical — |¢)) = |¢).

[(]p)| =1
e Whenf =90":

The states are orthogonal — completely distinct.

[(¢]o)[ =0
e When0" < 8 < 90":

The states are partially similar — they have some probability overlap.

Example:

Let's consider two qubit vectors:

o= ("5 %) wa = (9)

Step 1: Compute the Inner Product
(1|2 = (1 —3)-040-1=0

The inner product is 0.

Step 2: Find the Magnitudes

1] = /|1 + 42 + 02 = /(12 + 12) = v2

Il = VO + 1P = vV1=1



Step 3: Calculate the Cosine of the Angle

Since the inner product is 0, cos(#) will also be 0:

cos(f) = \/50_1 =0

Step 4: Find the Angle

f = arccos(0) = g radians = 90°

L4
The angle 6 between the two qubit vectors |1 ) = ( g%) and [ts) = ((1]) is 90°, meaning

they are orthogonal (perpendicular) to each other.

6.3 Example 1: Orthogonal States

Let

|1 10
0) =, =]
Then,

(0]1) =0=-cos@=0=60=90"

Hence, |0) and |1) are orthogonal — they represent mutually exclusive
measurement outcomes.



6.4 Example 2: Non-Orthogonal States

Let
1 |1 1
W=7 i) =]
Then,
(6] = - = cosf = —— = 6 = 45°

V2 V2

Thus, the states are partially overlapping — not orthogonal, but not
identical either.

6.5 Geometric Visualization (Bloch Sphere)

On the Bloch Sphere, the angle between two quantum states corresponds to
the geodesic distance between their points on the sphere.

For qubit states:

) = cos (3 ) 10) + sin (3 ) 1

Here:
o - polar angle (controls superposition amplitude)

* ¢ - azimuthal phase (controls relative phase difference)

Thus, the angle between vectors encodes quantum distinguishability — how easily one state can be told

apart from another upon measurement.



6.6 Importance in Quantum Computing

1. Quantum State Fidelity:
The fidelity between two states is defined as

¥

¢)|* = cos® 6

F(lv),[¢)) = (¥

It measures how “close” two quantum states are.

e Error Detection:
Orthogonal states ensure perfect distinguishability — critical for quantum
error correction.

e Quantum Gates:
Operations like the Hadamard gate create specific angular separations (e.g.,
45° rotations) between basis states, forming superpositions

7. Linear Combination of Qubit Vectors

A linear combination of qubit vectors is a fundamental operation in
guantum computing and linear algebra. It allows us to describe
superpositions — one of the most essential and unique features of quantum
mechanics.

A linear combination of two qubit vectors involves creating a new qubit
vector by adding the vectors together, each multiplied by a scalar (which can
be a complex number).

Given two qubit vectors 1) and |1, a inear combination of these vectors can be expressed as
b=l + ol

where c1 and cp are complex numbers (scalars).



Example :

Consider two qubit vectors:

wi=(g). 1= (})

These are the basis states |0) and |1), respectively.

Let's form a linear combination:

) = sl + olu) = (é) + (g‘) _ (@

In essence, any valid quantum state can be formed by linearly combining
basis states such as |0) and |1).

7.1 Definition

If [0) and |1) are the standard computational basis states, then any single-
qubit state |y) can be written as:

¥) = al0) + B1)

where;

. oand p are complex probability amplitudes, and
« the normalization condition holds:

3

af* + 8" =1

Thus, |y) is a linear combination of |0) and |1).



7.2 Example 1: Equal Superposition

In general, the superposition state can have any complex coefficients ¢; and cs:

) = ¢1]0) + e2|1) = (El)

2
The state is normalized if:
1] + |eaf> = 1

Consider

1
1Y) = E(IO) 1))

This represents an equal probability of being in both |0) and |1) states.
Probabilities:

2
1

P(0) = P '

()=

Such a state is often generated using the Hadamard gate (H):

H|0) = %HDD 1)

7.3 Example 2: Unequal Superposition

6=/ 20+ 2

Probabilities:



3 1

P(l0))=~-, P(|1)) =~

(10) =3, P(1) =5
Here, the qubit is more likely to collapse to |0) upon measurement.

Example : Biased Towards |0)

In this state, the probability of measuring |0) is higher than that of measuring |1):

9= 2o+ 2

Probabilities:

Example : Biased Towards |1)

Here, the probability of measuring |1) is higher:

2/2

1
1Y) = §\0> + TH)

Probabilities:

2
e P(1) = |M| — g ~ 88.89%

Example : Closer to |0)



This state has a higher probability of being in |0) but still a significant chance of being in |1):

2 1
%) = E‘UHEU

Probabilities:
. P(0)= ‘%r S
. P(1)= %F_%_M%
Example : Very Close to |1)

This state has a high probability of being in |1):

1 v 15
= — — 1

B) = £10) + 1)
Probabilities:
e P(0)= =4 =6.25%

2
o P(1) = B[ = L = 93.75%
Note

* Ketnotation |y): Represents the state as a column vector.

* Bra notation (¥|: Represents the conjugate transpose of the ket as a row vector.

* Inner product (¢[y): Gives a scalar, indicating the overlap between two quantum
states.

*  Outer product [){¢|: Results in a matrix, useful for constructing quantum
operators.



7.4 Linear Independence and Span

The states |0) and |1) are linearly independent. This means no scalar
multiple of one can produce the other:

al0)+b|1)=0 = a=b=0

The set {10),I1)} thus spans the two-dimensional qubit space, meaning any
gubit state can be represented as their linear combination.

7.5 Linear Combination in Multi-Qubit Systems

For two qubits, the basis expands as:
100),/01),/10),I111)

A general two-qubit state is a linear combination of these four basis
states:

U) = ago|00) + ap1|01) + a10/10) + aq1|11)
Normalization condition:

>t el + el =1

lago|* + |

7.6 Importance in Quantum Computing

1. Superposition Principle: Linear combination forms the mathematical
foundation of quantum superposition, enabling quantum parallelism.,

2. Quantum Algorithms: Algorithms like Grover’s and Shor’s rely on
manipulating linear combinations of states to amplify or suppress
certain outcomes.

3. Quantum Interference: When multiple quantum states combine,
their amplitudes interfere (constructively or destructively), directly
resulting from their linear combination properties.



7.7 Geometric Interpretation

On the Bloch Sphere, every possible linear combination of |0) and |1)
corresponds to a unique point on the surface.
The coefficients a and 3 determine:

« The latitude (magnitude ratio)
« The longitude (phase difference)

This gives a clear geometric representation of how linear combination =
superposition = rotation on the Bloch sphere.

8. Hilbert Space in Quantum Computing

A Hilbert space in quantum computing is a mathematical framework
used to describe the state space of quantum systems. It is a complete
inner product space where:

e Vectors represent quantum states.

¢ Inner product defines the overlap or similarity between states.

e Norm of a vector represents the probability amplitude of finding the
system in that state.

e Unitary Operators represent quantum gates.

e Projection Operators represent measurements.

e Probabilities are calculated based on the norms and inner products.

In quantum computing, the Hilbert space C? for a single qubit includes:

1
Basis Vectors: [0) and |1), represented as (0) and ((1)) respectively.

* State Vectors: Any qubit state can be expressed as a superposition of the basis vectors.
* Unitary Operators: Transform the state vectors; for example, the Hadamard gate.

* Measurement: Projects the state vector onto the basis vectors and gives probabilities for

measurement outcomes.



Basis in Quantum Mechanics

* In quantum mechanics, a basis typically refers to a set of orthonormal
vectors in a Hilbert space.

* For qubits, the basis vectors are often represented as |0) and |1),
which are the standard basis vectors for a single qubit

|0> and |1> are ortho normal basis

1. Orthogonality

To check orthogonality, we calculate the inner product (dot product) of |0) and |1):
(0]1) = (1 0) G’) =(1x0)+(0x1)=0
Since (0|1) = 0, the vectors |0) and |1) are orthogonal.

2. Normalization
To check normalization, we calculate the norm of each vector:

* For|0):

[ 10) || = 4/{0]0) =4/ (1 0) VIx1)+0x0)=v1=1

1) 1= v/(L[1) = 4/ (0 VOx0)+(1x1)=v1=1

Both |0) and |1) are normalized since their norms are equal to 1.

. For|1):




9. Tensor Products

* If we have two vector spaces V and W, their tensor product of V and
W is a new vector space formed from all possible combinations of
vectors from V and W.

» The dimension of the tensor product space is the product of the
dimensions of the individual spaces.

» For example, if V has dimension m and W has dimension n, then tensor
product of V and W has dimension mxn.

Tensor Product Notation

The tensor product of two vectors [101) and |15) is denoted as:

|11) ® [1a)

It is often written simply as |11 )|12) or [1112).

Example 1 :

xer-[ ey

o) 1) | _ [g g} [(1) (ﬂ
[1(1) 0(1)} 1 0 0O O
o 1] (8ol

Example 2:

0 1 1 0 1 [cl: 0 é
[1] o [o] B2 [0] = [1] o ol = [1] 1o
oo 0

EENR 18

0 g g

= :[): = o

1 1

sl 18

L Lol L0




Example 3:
Consider two qubits in the states |1) and |1)2):

o Let[yy) = a1|0) + £if1)

* Let[ths) = as|0) + Baf1)
The tensor product [11) ® [1)9) is:

1) ® [tha) = (@1|0) + B1|1)) ® (@2|0) + B2[1))
Expanding this:
Y1) ® |2) = a12|00) + a1 52|01) + Brae[10) + B15511)

Example 4:

Let's take specific qubit states:

< v =100 = (5)
« e =10~ ()

The tensor product is:

me= ()= ()

This results in:

0)® 1) = = |01)

o O = =
_ o = O
o O = O



Example 5:

Now, let's consider two qubits each in the state %HD) + [1)):
o 1) = 2(10) + 1))
o — 1
h2) = L (10) + 1))

The tensor product gives:

1 1
[%1) ® |¢2) = E(M +D)® E(lm +11))
1
¥1) ® |h2) = ﬂ_ﬁ(\om +(01) + [10) + [11))

1) ® [¢2) = o (100) + [01) + [10) + [11))



