
Mathematical Model for Quantum Computing 

Quantum computing relies on mathematical frameworks that extend beyond 

classical linear algebra and complex arithmetic. While classical computing 

manipulates binary states (0 or 1), quantum computing deals with quantum 

states—vectors in a complex vector space—that can exist in superpositions 

of both 0 and 1 simultaneously. 

To understand the working principles of qubits and quantum operations, we 

must first establish the mathematical foundation that supports quantum 

theory. This includes complex numbers, vector spaces, matrices, operators, 

and the structure known as Hilbert space, which forms the core 

mathematical environment for quantum mechanics. 

 

1. Complex Numbers 

In classical mathematics, we deal primarily with real numbers, which are 

points on a one-dimensional number line. In quantum mechanics and 

quantum computing, we require complex numbers, which extend this 

system to two dimensions. 

A complex number z is written as: 

 

where: 

 a → real part 

 b → imaginary part 

 i → imaginary unit (i^2 = -1) 

Geometric Representation 

Complex numbers can be visualized on the complex plane, where the x-axis 

represents the real part and the y-axis represents the imaginary part. 



The magnitude or modulus of z is given by: 

 

The argument (angle θ) is: 

 

Thus, we can represent z in polar form: 

 

This is known as Euler’s formula, a fundamental concept in quantum theory, as it 

elegantly connects complex numbers with rotations and phase shifts. 

 

Example: 

 



In quantum computing, such numbers are used to express probability 

amplitudes, where the square of the magnitude gives the probability of 

observing a particular quantum state.  

Quantum Connection: 

A qubit (quantum bit) is a unit vector represented as: 

 

where  α,β∈C (complex numbers), and: 

 

This normalization ensures that the total probability of measuring the 
qubit in either state is 1. 

 

 

 

 

 

 

 

 

 



2. Vector Spaces 

A vector space (or linear space) is a mathematical structure formed by a 

collection of objects called vectors, which can be added together and 

multiplied (scaled) by numbers known as scalars. 

In quantum computing, these vectors represent quantum states, and the 

scalars are complex numbers. 

Definition 

A vector space V over a field C (complex numbers) is a set of elements 

(vectors) satisfying the following properties: 

 

 

Quantum Vector Space 

In quantum computing, each qubit is represented as a vector in a two-

dimensional complex vector space C^2. 

 

The basis vectors are denoted as: 

 
Any single qubit can then be represented as a linear combination 

(superposition) of these two basis vectors: 



 
where  

 
 

 

Example 1: 

Let’s define a quantum state: 

 

Then in matrix form: 

 
 

Here: 

 The real and imaginary parts come from complex numbers. 

 The vector space is 2-dimensional over complex numbers. 

 

 

Example 2: Multi-Qubit Systems 

For two qubits, the vector space becomes 4-dimensional: 

 



 

Quantum Relevance: The vector space framework allows: 

 Representation of superposition (combination of states) 

 Application of linear operators (quantum gates) 

 Measurement as projection onto basis vectors 

Quantum algorithms like Grover’s and Shor’s exploit these linear 

transformations to achieve exponential speedups over classical computation. 

 

3. Matrices and Operators 

In quantum computing, matrices and operators describe transformations 

applied to quantum states. While vectors represent states, matrices represent 

actions (operations) that evolve or manipulate those states. 

These transformations correspond to quantum gates, the building blocks of 

quantum circuits. 

 

3.1 Matrices in Quantum Systems 

A matrix is a rectangular array of numbers (usually complex numbers) 

arranged in rows and columns. 

For example: 



 

In quantum mechanics: 

 Vectors (kets like ∣ψ⟩) are columns. 

 Operators (gates) are matrices that act on those columns. 

The result of applying an operator A to a quantum state ∣ψ⟩ is another state 

∣ϕ⟩: 

 

3.2 Linear Operators 

A linear operator A on a vector space V satisfies: 

 

for all scalars α,β∈C and vectors ∣ψ⟩,∣ϕ⟩∈V. These operators preserve the 

structure of superposition, which is crucial for quantum computation. 

 

3.3 Unitary Operators 

In quantum computing, all evolution of a closed quantum system is 

governed by unitary operators. 

An operator U is unitary if: 

 

where: 



 U† is the conjugate transpose (Hermitian adjoint) of U 

 I is the identity matrix 

This property ensures probability conservation — the total probability of 

all possible outcomes remains 1 after any operation. 

 

Example: Common Quantum Gates as Matrices 

 

 

3.4 Hermitian Operators 

A matrix A is Hermitian if:  A†=A 

Hermitian operators correspond to observables (measurable physical 

quantities), such as energy, spin, or momentum. 

For instance, in quantum mechanics, the Hamiltonian H (total energy 

operator) is Hermitian, ensuring that measurement outcomes are real 

numbers. 

 

 



3.5 Example: Applying a Matrix Operator 

Let: 

 

Then: 

 

Thus, applying the Pauli-X gate flips the qubit state from ∣0⟩ to  ∣1⟩ . 

 

 

 

 

 

 

 

 

 

 



4. Inner & Outer Product 

In quantum computing, inner and outer products are vital linear algebraic 

operations that help define probabilities, orthogonality, and state 

projection. 

They serve as the mathematical link between quantum states and 

measurement outcomes. 

 

4.1 Inner Product (Dot Product) 

The inner product of two quantum states (vectors) ∣ψ⟩ and ∣ϕ⟩ is a scalar 

complex number that measures how similar or “aligned” they are. 

 

Bra-Ket: Inner Product (⟨ψ|ϕ⟩) :  

 

 

 

Suppose If: 

 

Then:  

where * denotes the complex conjugate. 



Properties of Inner Product 

 

 

Example: Inner Product of Quantum States 

Let: 

 

Then: 

 

Thus, ∣ψ⟩ and ∣ϕ⟩are orthogonal — they represent mutually exclusive 

quantum states. 

 



Quantum Interpretation 

The square of the magnitude of an inner product gives the probability of 

transitioning from one state to another: 

 

Orthogonal states (⟨ϕ∣ψ⟩=0) cannot transform into each other through 

measurement. 

Another Example for Inner Product  

 

 



 

4.2 Outer Product 

The outer product of two vectors creates an operator (matrix) from them. 

It is denoted by: 

Ket-Bra: Outer Product (|ψ⟩⟨ϕ|) 

If: 

 

then: 

 

Example: Outer Product as Projection Operator 

Let: 

 

Then: 



 

This acts as a projector onto the state ∣0⟩.  Similarly, ∣1⟩⟨1∣ projects onto the 

∣1⟩ state. 

Quantum Application 

 Outer products are used to construct quantum operators such as 

density matrices and measurement projectors. 

 For instance, the density matrix of a pure state ∣ψ⟩ is: 

ρ=∣ψ⟩⟨ψ∣  

This operator contains complete information about the quantum system. 

Another Example for Outer Product  

 

 

 

 

 

 

 



Example: Density Matrix 

If: 

 

Then: 

 

This density matrix describes a superposition state with equal probabilities 

for ∣0⟩ and ∣1⟩. 

 

4.3 Significance in Quantum Computing 

 

 



5. Magnitude and Normalization 

In Quantum Computing, every quantum state (or qubit) is represented as a 

vector in a complex vector space. To ensure that a qubit represents a valid 

physical state, it must be normalized — meaning its total probability equals 

1. 

Normalization and magnitude play a central role in determining the physical 

validity of a quantum state. 

 

5.1 Magnitude of a Quantum State 

The magnitude (or norm) of a quantum state |ψ⟩ is defined as the square 

root of the inner product of the state with itself: 

 

 

If 

 

 

Then 

 

This norm represents the total probability amplitude of the state vector. 

 



5.2 Normalization Condition 

A normalized quantum state satisfies the following condition: 

 

That is, the sum of the squared magnitudes of all amplitudes equals one. 

 

This ensures that when a measurement is made, the total probability of all 

possible outcomes (e.g., |0⟩ and |1⟩) is exactly 1. 

 

 

Example 1: Normalized Qubit 

Let 

 

Then: 



 

Hence, this qubit is normalized. 

 

Example 2: Non-normalized Qubit 

Let 

 

Then: 

 

To normalize |ϕ⟩, divide by its magnitude: 

 

Now, 

 

Now, 

 



5.3 Physical Meaning 

In a quantum system, normalization ensures probability conservation. 

If a qubit is in state: 

 

then: 

 

This property guarantees that one of the outcomes must occur upon measurement. 

5.4 Geometric Interpretation 

Normalization can be visualized geometrically. 

A normalized qubit lies on the surface of the unit sphere (known as the 

Bloch Sphere) in complex 3D space. 

Thus, every valid qubit corresponds to a point on this sphere, ensuring it has 

a magnitude of 1. 

Normalization Process 

 

 



 

 

 

 

Perpendicular and Parallel Qubit Vectors 

 

 

 



Parallel Qubit Vectors 

 

 

 

 

6. Angle Between Quantum Vectors 

In Quantum Computing, the angle between two quantum state vectors 

represents their degree of similarity or overlap. The closer two states are 

(smaller angle), the more similar they are in terms of probability amplitudes. 

Orthogonal states (angle = 90°) represent mutually exclusive or 

distinguishable quantum outcomes. 

6.1 Definition 

For two quantum states ∣ψ⟩  and ∣ϕ⟩, the angle θ between them is defined as: 

 

If both states are normalized (i.e., ∣∣ψ∣∣=∣∣ϕ∣∣=1), then: 



 

This relationship directly connects the inner product with the geometric 

interpretation of the quantum state space. 

6.2 Interpretation 

 

Example:  

 

 



 

 

 

6.3 Example 1: Orthogonal States 

Let 

 

Then, 

 

Hence, |0⟩ and |1⟩ are orthogonal — they represent mutually exclusive 

measurement outcomes. 

 

 

 

 

 



6.4 Example 2: Non-Orthogonal States 

Let 

 

Then, 

 

Thus, the states are partially overlapping — not orthogonal, but not 

identical either. 

 

6.5 Geometric Visualization (Bloch Sphere) 

On the Bloch Sphere, the angle between two quantum states corresponds to 

the geodesic distance between their points on the sphere. 

For qubit states: 

 

 



6.6 Importance in Quantum Computing 

1. Quantum State Fidelity: 
The fidelity between two states is defined as 

 

It measures how “close” two quantum states are. 

  Error Detection: 

Orthogonal states ensure perfect distinguishability — critical for quantum 

error correction. 

  Quantum Gates: 

Operations like the Hadamard gate create specific angular separations (e.g., 

45° rotations) between basis states, forming superpositions 

 

7. Linear Combination of Qubit Vectors 

A linear combination of qubit vectors is a fundamental operation in 

quantum computing and linear algebra. It allows us to describe 

superpositions — one of the most essential and unique features of quantum 

mechanics. 

A linear combination of two qubit vectors involves creating a new qubit 

vector by adding the vectors together, each multiplied by a scalar (which can 

be a complex number). 

 



Example :  

 

In essence, any valid quantum state can be formed by linearly combining 

basis states such as |0⟩ and |1⟩. 

7.1 Definition 

If ∣0⟩ and ∣1⟩ are the standard computational basis states, then any single-

qubit state ∣ψ⟩  can be written as: 

 

where: 

 α and β are complex probability amplitudes, and 

 the normalization condition holds: 

 

Thus, ∣ψ⟩ is a linear combination of |0⟩ and |1⟩. 

 

 

 



7.2 Example 1: Equal Superposition 

 

Consider  

 

This represents an equal probability of being in both |0⟩ and |1⟩ states. 

Probabilities: 

 

Such a state is often generated using the Hadamard gate (H): 

 

7.3 Example 2: Unequal Superposition 

 

Probabilities: 



 

Here, the qubit is more likely to collapse to |0⟩ upon measurement. 

Example : Biased Towards ∣0⟩ 

 

Example : Biased Towards ∣1⟩ 

 

Example : Closer to ∣0⟩ 



 

Example : Very Close to ∣1⟩ 

 

Note: 

• Ket notation ∣𝜓⟩: Represents the state as a column vector. 
• Bra notation ⟨𝜓∣: Represents the conjugate transpose of the ket as a row vector. 
• Inner product ⟨𝜙∣𝜓⟩: Gives a scalar, indicating the overlap between two quantum 

states. 
• Outer product ∣𝜓⟩⟨𝜙∣: Results in a matrix, useful for constructing quantum 

operators. 

 

 

 

 

 



7.4 Linear Independence and Span 

The states |0⟩ and |1⟩ are linearly independent. This means no scalar 

multiple of one can produce the other: 

a∣0⟩+b∣1⟩=0  ⟹  a=b=0   

The set {∣0⟩,∣1⟩} thus spans the two-dimensional qubit space, meaning any 

qubit state can be represented as their linear combination. 

 

7.5 Linear Combination in Multi-Qubit Systems 

For two qubits, the basis expands as: 

∣00⟩,∣01⟩,∣10⟩,∣11⟩ 

A general two-qubit state is a linear combination of these four basis 
states: 

 

Normalization condition: 

 

7.6 Importance in Quantum Computing 

1. Superposition Principle: Linear combination forms the mathematical 

foundation of quantum superposition, enabling quantum parallelism. 

2. Quantum Algorithms: Algorithms like Grover’s and Shor’s rely on 

manipulating linear combinations of states to amplify or suppress 

certain outcomes. 

3. Quantum Interference: When multiple quantum states combine, 

their amplitudes interfere (constructively or destructively), directly 

resulting from their linear combination properties. 



7.7 Geometric Interpretation 

On the Bloch Sphere, every possible linear combination of |0⟩ and |1⟩ 
corresponds to a unique point on the surface. 

The coefficients α and β determine: 

 The latitude (magnitude ratio) 

 The longitude (phase difference) 

This gives a clear geometric representation of how linear combination = 

superposition = rotation on the Bloch sphere. 

 

8. Hilbert Space in Quantum Computing 

A Hilbert space in quantum computing is a mathematical framework 
used to describe the state space of quantum systems. It is a complete 
inner product space where: 

 Vectors represent quantum states. 
 Inner product defines the overlap or similarity between states. 
 Norm of a vector represents the probability amplitude of finding the 

system in that state. 
 Unitary Operators represent quantum gates. 
 Projection Operators represent measurements. 
 Probabilities are calculated based on the norms and inner products. 

 

 



Basis in Quantum Mechanics 

• In quantum mechanics, a basis typically refers to a set of orthonormal 
vectors in a Hilbert space.  

• For qubits, the basis vectors are often represented as ∣0⟩ and ∣1⟩, 
which are the standard basis vectors for a single qubit 

|0> and |1> are ortho normal basis 

 

 

 

 

 

 

 



9. Tensor Products 

• If we have two vector spaces V and W, their tensor product of V and 

W is a new vector space formed from all possible combinations of 

vectors from V and W.  

• The dimension of the tensor product space is the product of the 

dimensions of the individual spaces.  

• For example, if V has dimension m and W has dimension n, then  tensor 

product of V and W has dimension m×n. 

Tensor Product Notation 

 

Example 1 : 

 

 

Example 2: 

 



Example 3: 

 

Example 4: 

 

 

 

 

 



Example 5: 

 

 

 

 

 


