

Python Quick Reference
Essential Syntax and Concepts

Python Quick Reference
Essential Syntax and Concepts

First Edition

Author
Palguni G. T

Python Quick Reference

ii

Title of the Book: Python Quick Reference Essential Syntax and Concepts

Edition First: 2023

Copyright 2023 © Palguni G. T, Computer Science and Business Systems
at the esteemed Malnad College of Engineering (MCE) in Hassan.

No part of this book may be reproduced or transmitted in any form by any
means, electronic or mechanical, including photocopy, recording, or any
information storage and retrieval system, without permission in writing from the
copyright owners.

Disclaimer

The author is solely responsible for the contents published in this book. The
publishers or editors do not take any responsibility for the same in any manner.
Errors, if any, are purely unintentional and readers are requested to
communicate such errors to the editors or publishers to avoid discrepancies in
future.

ISBN: 978-93-5747-903-5

MRP Rs. 440/-

Publisher, Printed at & Distribution by:
Selfypage Developers Pvt Ltd.,
Pushpagiri Complex,
Beside SBI Housing Board,
K.M. Road Chikkamagaluru, Karnataka.
Tel.: +91-8861518868
E-mail:publish@iiponline.org

IMPRINT: I I P Iterative International Publishers

For Sales Enquiries
Contact: +91- 8861511583
E-mail: sales@iiponline.org

iii

Dedicated To

My Parents and Friends

iv

Preface….

Welcome to "Python Quick Reference: Essential Syntax and Concepts".
This comprehensive and concise guide is designed to be your go-to resource for
mastering Python, one of the most versatile and widely used programming
languages in the world.

Python's simplicity and readability make it an excellent choice for both
beginners and experienced developers. Whether you're just starting your
programming journey or looking to expand your skills, this book provides a
valuable reference for understanding Python's core syntax and concepts.

Book Structure

 Introduction to Python Programming Language: I begin by
introducing Python, delving into its history and its significance within the
programming world.

 Zen of Python: Delve into the guiding principles and philosophies that
shape Python development.

 Essential Syntax and Concepts: Gain a solid foundation by exploring
Python's program structure, symbols, tokens, keywords, and more.

 Data Handling: Dive into the world of data in Python, including
variables, data types, operators, and control statements.

 Functions and Modules: Learn about functions, scope, and modules,
essential for building structured and reusable code.

 Working with Data Structures: Explore Python's built-in data
structures, including lists, dictionaries, sets, and tuples.

 Advanced Topics: Go beyond the basics with topics like exception
handling, file I/O, object-oriented programming, regular expressions, web
scraping, and more.

 Data Science and Visualization: Get an introduction to data science
libraries like NumPy, Pandas, Matplotlib, and Seaborn, essential for data
analysis and visualization.

 GUI Development: Discover the world of graphical user interface (GUI)
development using the Tkinter library.

 Interview Questions and Sample Programs: Prepare for interviews
with a collection of Python interview questions and explore sample
Python programs.

 Tips and Tricks: Learn valuable tips and tricks to enhance your Python
programming skills.

 References: Find additional resources for further exploration and
learning.

v

"Python Quick Reference" is designed to be a practical and accessible guide
that you can turn to whenever you need to refresh your memory on Python
syntax or concepts. Whether you're a student, a professional developer, or
anyone looking to harness the power of Python, this book is your essential
companion on your Python journey.

I authored this book during my summer vacation in the months of October and
November 2023 as a passionate endeavor. To prepare for this project, I
diligently completed prerequisite courses, including "Introduction to Python
Programming" during my regular B.E 1st Semester and "Python for Data
Science" through an NPTEL Course.

The concepts and programs featured in this book have been meticulously crafted
through an in-depth study and analysis of the literature mentioned in the
references section. Additionally, ChatGPT-3.5 prompts were employed during
the design process. These programs were executed and rigorously tested within
the Jupyter Notebook environment to ensure their effectiveness and reliability.
I hope you will find this book to be a valuable resource as you navigate the
world of Python programming. Happy coding!

Palguni G T
Author

vi

Acknowledgements….

I express my gratitude to my father, Dr. Thyagaraju G S, who is currently

working as a professor and HoD in the Department of CSE at SDM Institute of

Technology, Ujire. His invaluable assistance in designing the book is deeply

appreciated. His contributions included setting the Contents and reviewing the

book.

……..Palguni G T

vii

Contents….

1 Introduction to Python Programming Language 1

2 Zen of Python 3

3 Structure of Python Program 4

4 Python Symbols 6

5 Python Tokens 8

6 Python Keywords 10

7 Expressions 12

8 Comments 14

9 Indentation 17

10 Statements 19

11 Variables 21

12 Data Types 25

13 Operators 27

14 Pemdas Rule 30

15 Operator Precedence 32

16 Control Statements 35

17 Pass 39

18 Functions 40

19 Types of User Defined Functions 42

20 Keyword Arguments 45

viii

21 Local and Global Scope 47

22 Lambda Function 49

23 Mapping 51

24 Filter 53

25 Exception Handling 55

26 Built in Functions 58

27 List 61

28 List Slicing 63

29 List Comprehension 68

30 Strings 71

31 Format Operators 77

32 Tuples 79

33 Python References 81

34 Dictionaries 83

35 Sets 88

36 Sets Examples and Applications 90

37 Set Operations 92

38 Sets Manipulation Functions 94

39 Reading and Writing Files 98

40 Organizing Files 101

41 Debugging 104

42 Object Oriented Programming 107

ix

43 Interface 117

44 Docstring 119

45 __init__() 121

46 __str__() 124

47 Walrus Operator in Python 126

48 Match Case Statement 128

49 Regular Expressions 130

50 Difference Between if and if Else Statement 142

51 Difference Between for and While Loop 144

52 Difference Between List and Strings 146

53 Difference between Sets and List 148

54 Difference between Sets and Dictionary 151

55 Difference between Map and Filter 154

56 Difference Between Method Overriding and
Method Overloading

157

57 Web Scrapping 160

58 Introduction to NumPy 165

59 Introduction to Pandas 172

60 Introduction to Matplotlib 176

61 Introduction to Seaborn 181

62 Introduction to Tkinter 186

63 Python Tips 190

x

64 Python Tricks 199

65 Sample Python Interview Questions and Answers 203

66 Top 100 Python Interview Questions 209

67 Sample Python Programs 214

68 Top Python programming Questions 225

69 Sample Projects 232

70 References 252

Page | 1

1

Introduction to
Python Programming Language

Python is a high-level programming language that has gained widespread

popularity due to its simplicity, readability, and versatility. Guido van Rossum

released the first version of Python in 1991, and since then, it has evolved into a

powerful tool used in various domains, from web development to data science.

List of key features of the Python programming language:

Readability and Simplicity: Python's clean and intuitive syntax emphasizes

code readability, reducing the chances of errors and making it easier for

developers to write and maintain code.

Interpreted: Python code is executed line by line by an interpreter, eliminating

the need for a separate compilation step.

Dynamic Typing: Variables are dynamically typed, meaning their types are

determined during runtime.

Large Standard Library: Python comes with an extensive collection of built-

in modules and libraries that provide ready-to-use functions and tools for

various tasks, saving development time.

Extensibility: Python can be easily integrated with other languages like C,

C++, and Java, allowing for optimized performance or interaction with existing

codebases.

Indentation-Based Blocks: Python uses indentation to define code blocks,

promoting consistent and well-structured code.

Object-Oriented: Python supports object-oriented programming, allowing

developers to model real-world entities with classes and objects.

Open Source: Python is an open-source language, which means the source

code is available to the public and can be modified and distributed freely.

Python Quick Reference

Page | 2

Portability: Python code written on one platform can run on other platforms

with minimal modifications.

Versatility: Python can be used in various domains, including web

development, data analysis, scientific computing, machine learning, artificial

intelligence, automation, scripting, and more, making it a versatile language for

diverse applications.

Cross-Platform Compatibility: Python is available on multiple platforms and

operating systems, ensuring that code can be written once and run on different

environments.

High-Level Language: Python abstracts complex low-level operations,

providing a higher-level interface and allowing developers to focus on problem-

solving.

Diverse Community and Ecosystem: Python has a large and active

community of developers, resulting in extensive resources, support, and a wide

range of third-party libraries and frameworks.

Exception Handling: Python provides a robust and clear mechanism for

handling exceptions, allowing developers to write code that gracefully handles

errors and exceptions.

Page | 3

2

Zen of Python

The "Zen of Python" is a collection of guiding principles for writing computer

programs in the Python language. These principles are meant to encapsulate the

philosophy and design principles that shape the Python programming

community's approach to software development. They were written by Tim

Peters, a prominent Python developer, in 2004 and are accessible by typing

import this in a Python interpreter or script.

Code :
import this

#Output

The Zen of Python, by Tim Peters

1. Beautiful is better than ugly.

2. Explicit is better than implicit.

3. Simple is better than complex.

4. Complex is better than complicated.

5. Flat is better than nested.

6. Sparse is better than dense.

7. Readability counts.

8. Special cases aren't special enough to break the rules.

9. Although practicality beats purity.

10. Errors should never pass silently.

11. Unless explicitly silenced.

12. In the face of ambiguity, refuse the temptation to guess.

13. There should be one-- and preferably only one --obvious way to do it.

14. Although that way may not be obvious at first unless you're Dutch.

15. Now is better than never.

16. Although never is often better than *right* now.

17. If the implementation is hard to explain, it's a bad idea.

18. If the implementation is easy to explain, it may be a good idea.

19. Namespaces are one honking great idea -- let's do more of those!

Page | 4

3

Structure of Python Program

A typical Python program consists of different components and follows a

specific structure. Here's an explanation of each part along with an example:

Import statements (optional)
import math
import random

Function and class definitions (optional)
def greet(name):
 return f"Hello, {name}!"

class Calculator:
 def add(self, a, b):
 return a + b

Main code block
def main():
 user_name = input("Enter your name: ")
 greeting = greet(user_name)
 print(greeting)

 calculator = Calculator()
 result = calculator.add(5, 7)
 print("Result:", result)

Conditional check to ensure the script is run as the main program
if __name__ == "__main__":
 main()

Import Statements: These lines bring in external modules or libraries to use

their functions and classes. They're usually placed at the beginning of the script.

Python Quick Reference

Page | 5

Function and Class Definitions: This is where you define functions and

classes that you'll use in the main code block. These definitions provide a way

to encapsulate and organize your code.

Main Code Block: This is the core of your program where you put the main

logic and operations. It's the part that gets executed when you run the script.

Conditional Check (if name == "main"): This conditional statement checks

whether the script is being run as the main program (not imported as a module).

This ensures that the main code block is executed only when the script is run

directly.

Page | 6

4

Python Symbols

Python uses a variety of symbols and operators for different purposes. There are

over 40 symbols and operators in Python. This includes mathematical operators,

comparison operators, logical operators, assignment operators, bitwise

operators, punctuation symbols, and more. The exact number can vary slightly

depending on how you categorize certain operators.

Sl. No Symbols Meaning

1. + Addition

2. - Subtraction

3. * Multiplication

4. / Division

5. % Modulo (remainder)

6. ** Exponentiation

7. // Floor division (quotient without remainder)

8. = Assignment

9. == Equal to

10. != Not equal to

11. < Less than

12. > Greater than

13. <= Less than or equal to

14. >= Greater than or equal to

15. and Logical AND

16. or Logical OR

17. not Logical NOT

18. is Identity comparison

19. in Membership test

20. not in Negated membership test

21. += Add and assign

22. -= Subtract and assign

23. *= Multiply and assign

24. /= Divide and assign

25. %= Modulo and assign

26. **= Exponentiation and assign

27. //= Floor division and assign

28. & Bitwise AND

Python Quick Reference

Page | 7

29. | Bitwise OR

30. ^ Bitwise XOR

31. ~ Bitwise NOT

32. << Bitwise left shift

33. >> Bitwise right shift

34. () Parentheses

35. [] Brackets

36. {} Curly braces

37. : Colon

38. , Comma

39. . Dot

40. ... Ellipsis

41. -> Function annotation (used to indicate the

return type)

42. @ : Decorator symbol

Page | 8

5

Python Tokens

In programming languages, a token is a basic building block, representing the

smallest individual units of code. Tokens are used by the compiler or interpreter

to understand and process the code. In Python, tokens include identifiers,

keywords, literals, operators, and other symbols. Here is a list of Python tokens:

1. Keywords: And, as, assert, async, await, break, class, continue, def, del, elif,

else, except, False, finally, for, from, global, if, import, in, is, lambda, None,

nonlocal, not, or, pass, raise, return, True, try, while, with, yield.

2. Identifiers: Names given to various programming elements such as

variables, functions, classes, etc.

Examples: variable_name, functionName, ClassName

3. Literals

Numeric Literals:

Integers: 42, -100, 0b1010 (binary), 0o755 (octal), 0x1F (hexadecimal)

Floating-Point: 3.14, -0.5, 1e3 (scientific notation)

String Literals
'Hello, world!'

"Python"

'''Multiline string'''

Boolean Literals: True, False

Non-Literal: None

4. Operators

Arithmetic Operators: +, -, *, /, %, //, **

Comparison Operators: ==, !=, <, >, <=, >=

Assignment Operators: =, +=, -=, *=, /=, %=, //=, **=

Bitwise Operators: &, |, ^, ~, <<, >>

Python Quick Reference

Page | 9

Logical Operators: and, or, not, is, in, not in

Membership Operators: in, not in

Identity Operators: is, is not

5. Delimiters
(,) : Parentheses

[,] : Brackets

{, } : Curly Braces

 , : Comma

 : : Colon

 ; : Semicolon

6. Comments: Lines beginning with # that provide explanatory text.

7. Special tokens: ... (ellipsis), None (null-like object), True, False.

8. String formatting tokens: % (used with strings to format values).

These are the main categories of Python tokens. They make up the syntax of the

Python programming language and are used to compose valid code that the

interpreter or compiler can understand and execute.

Page | 10

6

Python Keywords

Keywords in Python are reserved words that have special meanings and

purposes within the programming language. These keywords cannot be used as

identifiers (variable names, function names, etc.) because they are already

predefined for specific operations or control flow. Examples of Python

keywords include if, else, while, for, def, class, import, return, and so on.

To list all the keywords in Python, you can use the keyword module. Here's a

code snippet that demonstrates how to do this:

import keyword
Get a list of all keywords
keywords = keyword.kwlist
Print the list of keywords
for kw in keywords:
 print(kw)

List of all 35 Python Keywords

Sl. No Keyword Meaning

1. False Boolean value representing false.

2. None Represents a null or empty value.

3. True Boolean value representing true.

4. and Logical operator for boolean AND.

5. as Used in context of the with statement to create an

alias.

6. assert Used for debugging, raises an exception if a given

condition is not true.

7. async Declares a coroutine function.

8. await Used to pause the execution of a coroutine until a

result is ready.

9. break Used to exit the current loop.

10. class Defines a class.

11. continue Used to skip the rest of the current loop iteration and

move to the next one.

12. def Defines a function.

Python Quick Reference

Page | 11

13. del Used to delete references to objects.

14. elif Short for "else if", used in conditional statements.

15. else Executes when the conditional statement is false.

16. except Catches exceptions in a try...except block.

17. finally Executes code regardless of whether an exception

occurred or not.

18. for Used to iterate over a sequence (like a list or string).

19. from Used to import specific attributes or functions from a

module.

20. global Declares that a variable is global, not local.

21. if Used for conditional branching.

22. import Used to import modules into a Python script.

23. in Used to check if a value exists in a sequence.

24. is Used to compare object identity.

25. lambda Used to create anonymous (inline) functions.

26. nonlocal Declares that a variable refers to a variable in an outer

(but non-global) scope.

27. not Logical operator for boolean NOT.

28. or Logical operator for boolean OR.

29. pass Placeholder statement that does nothing, used for code

structure.

30. raise Raises an exception explicitly.

31. return Used to return a value from a function.

32. try Begins a block of code that might raise exceptions.

33. while Creates a loop that executes as long as a given

condition is true.

34. with Used to simplify exception handling by encapsulating

resource management.

35. yield Used in generator functions to produce a value for

iteration.

Page | 12

7

Expressions

In programming, an expression is a combination of one or more values,

variables, operators, and function calls that are evaluated to produce a result.

Expressions are the building blocks of statements and are used to perform

calculations, comparisons, and other operations in a programming language. An

expression can be as simple as a single value or as complex as a combination of

values and operations.

Here are a few examples of expressions

Type of Expression Example Expression Result

Arithmetic

5 + 3 8

2 * 4 - 1 7

10 / 2 5.0

9 // 2 4

3 ** 2 9

7 % 3 1

String

Concatenation

"Hello" + " " + "World" "Hello World"

'Python' * 3 "PythonPythonPython"

Comparison

7 > 5 True

10 == 5 False

x != y True

age >= 18 and age <= 65 Depends on age value

Logical True and False False

not True False

Function Call

len("Hello") 5

math.sqrt(25) 5.0 (if math module is

imported)

my_function(2, 3) Depends on

my_function

Conditional

(Ternary)

x if x > 0 else -x Depends on x value

List Comprehension [x * 2 for x in range(5)] [0, 2, 4, 6, 8]

Set Comprehension {x % 2 for x in range(10)} {0, 1}

Dictionary

Comprehension

{x: x ** 2 for x in range(3)} {0: 0, 1: 1, 2: 4}

Python Quick Reference

Page | 13

Generator

Expression

(x ** 2 for x in range(5)) Generator object

Lambda lambda x: x ** 2 Lambda function object

Attribute Access my_object.attribute Value of attribute

module.constant Value of constant

my_list.append(5) Appends 5 to my_list

Indexing

my_list[2] Value at index 2

my_string[1:4] Substring from index 1

to 3

my_tuple[-1] Last value of the tuple

my_dict['key'] Value associated with

'key'

matrix[2][3] Value in row 2, column

3

Bitwise

5 & 3 1 (bitwise AND)

~12 -13 (bitwise NOT)

10 ^ 3 9 (bitwise XOR)

16 >> 2 4 (bitwise right shift)

4 << 1 8 (bitwise left shift)

Please note that some expressions depend on the values of variables or functions

used, and the examples provided are illustrative.

Page | 14

8

Comments

In programming, comments are annotations or explanatory notes added to the

source code that are ignored by the compiler or interpreter. Comments are used

to provide information, explanations, or context about the code to developers,

making it easier to understand and maintain. They are not executed as part of

the program and do not affect the program's functionality.

Comments are crucial for documenting code, improving its readability, and

helping other developers (including your future self) understand the purpose and

logic behind the code.

In Python, there are two types of comments:

Single-line Comments:

Single-line comments are used to add a short description to a single line of

code. In Python, single-line comments start with the # symbol and continue

until the end of the line.

This is a single-line comment
x = 5 # This is also a comment explaining the variable assignment

Multi-line Comments (Docstrings):

While Python doesn't have a traditional multi-line comment syntax like some

other languages, it uses docstrings (documentation strings) to create multi-line

comments. Docstrings are often used to document functions, classes, and

modules. They are enclosed in triple quotes (''' or """) and can span multiple

lines.

def add(x, y):
 """
 This function takes two arguments, x and y,
 and returns their sum.
 """
 return x + y

The docstring in this example provides a detailed explanation of the purpose

and behavior of the add function.

Python Quick Reference

Page | 15

Comments play a crucial role in making code more understandable, especially

for complex algorithms or when collaborating with other programmers. They

help in providing context, explaining decisions, and highlighting important

details about the code. However, it's important to maintain a balance – while

comments are useful, well-written code should also be self-explanatory and easy

to understand without excessive comments.

Benefits of Comments: Comments in programming offer several benefits,

enhancing the quality, maintainability, and collaborative aspects of code

development. Some of the key benefits of using comments include:

Code Documentation: Comments serve as a form of documentation,

explaining the purpose, behavior, and usage of code elements such as functions,

classes, and variables. They provide a clear understanding of what each part of

the code is meant to do.

Explanation of Logic: Comments can help explain complex algorithms,

intricate logic, or non-obvious solutions. This is especially valuable when

dealing with intricate business rules or optimization techniques that might not

be immediately apparent from the code alone.

Maintainability: Well-commented code is easier to maintain. If another

developer, including your future self, needs to modify or extend the code later

on, comments provide insights into how the code works and what its intended

behavior is.

Code Reviews: During code reviews, comments can aid in discussing design

decisions, suggesting improvements, or pointing out potential issues. They

facilitate communication between team members and ensure that everyone is on

the same page.

Collaboration: In collaborative projects, where multiple developers work

together, comments help other team members understand your code and

contribute effectively. Clear comments reduce the learning curve for new team

members joining the project.

Debugging and Troubleshooting: Comments can be used to indicate areas of

code that might be problematic or need further testing. They can also provide

insights into known issues or workarounds.

Regulatory and Compliance: In industries with regulatory requirements,

comments can document compliance strategies, security measures, or data

handling procedures.

Python Quick Reference

Page | 16

Educational Purposes: Comments can act as teaching tools, helping novice

programmers learn about different programming concepts by reading and

understanding code.

Code Reuse: Comments can include information about how to use or modify a

piece of code for reuse in other projects.

Version Control and History: Comments in commit messages or version

control annotations help track changes, making it easier to understand the

purpose of each modification over time.

While comments offer numerous advantages, it's important to use them

judiciously and effectively. Over-commenting can clutter code and make it

harder to read. Ideally, code should be written in a self-explanatory manner, and

comments should complement the code by providing additional context,

explanations, or insights.

Page | 17

9

Indentation

Indentation in programming refers to the practice of structuring code by visually

aligning blocks of code to indicate their hierarchy or scope. It is primarily used

in languages that use indentation for block delimiters, like Python. Indentation

is crucial for code readability and to define the scope of control structures like

loops, conditionals, and functions.

In Python, indentation is significant because it replaces traditional braces or

keywords to mark code blocks. It enforces a consistent and clear way of

representing the nesting and structure of code. Indentation typically consists of

spaces or tabs, but they must be used consistently within a single code block.

Here's an example to illustrate indentation in Python:

if True:
 print("This line is indented by one level.")
 if False:
 print("This line is indented by two levels.")
 print("This line is also indented by one level.")
 print("This line is at the outermost level.")

In this example

 The if True: statement is a block of code that requires indentation. The

indented lines following this statement are part of this block.

 The Nested if False: statement is indented further to indicate that it's

nested inside the outer if block.

 The line print("This line is also indented by one level.") is at the same

indentation level as the preceding print statement, so it's still part of the

same block.

 The line print("This line is at the outermost level.") is not indented,

indicating that it's outside any previous block.

Python Quick Reference

Page | 18

Types of Indentation in Python

1. Space Indentation: Python conventionally uses spaces for indentation. A

common practice is to use four spaces for each level of indentation. The

use of spaces ensures consistent and visually clear code.

2. Tab Indentation: While spaces are recommended, tabs can also be used for

indentation. However, mixing tabs and spaces should be avoided, as it can

lead to inconsistent indentation.

Indentation is also used in various control structures:

 In if, elif, and else statements.

 In for and while loops.

 In function and class definitions.

 In context managers created with the with statement.

Proper indentation is essential to maintain code readability and to ensure that

the intended program structure matches the actual structure. Incorrect or

inconsistent indentation can lead to syntax errors or unexpected behavior in

Python programs.

Page | 19

10

Statements

In Python, statements are individual lines of code that perform specific actions

or operations. They are the building blocks of a program and are executed

sequentially, one after the other. Each statement typically performs a specific

task, such as assigning a value to a variable, calling a function, or controlling

the flow of the program.

Python supports several types of statements, each serving a different purpose.

Let's explore some of the most common types of statements along with

examples:

Assignment Statements: Assignment statements are used to assign values to

variables.

x = 5
name = "Alice"

Expression Statements: Expression statements consist of expressions that are

evaluated, and their results are sometimes used or discarded.

y = x + 3 # An expression statement with an arithmetic expression

print(y) # An expression statement with a function call

Print Statements: The print statement is used to output data to the console.

print("Hello, World!")

Conditional Statements: Conditional statements allow you to execute code

based on conditions.

if x > 10:
 print("x is greater than 10")
else:
 print("x is not greater than 10")

Loop Statements: Loop statements are used to repeat a block of code multiple

times.

Python Quick Reference

Page | 20

for i in range(5):
 print(i)

Function Definition Statements: Function definition statements are used to

create user-defined functions.

def greet(name):
 print("Hello, " + name + "!")

Import Statements: Import statements are used to bring external modules or

libraries into your program.

import math

Break and Continue Statements: The break statement is used to exit a loop

prematurely, while the continue statement skips the rest of the current iteration

and moves to the next one.

for i in range(10):
 if i == 5:
 break
 print(i)

Return Statements: Return statements are used in functions to specify a value

to be returned when the function is called.

def add(x, y):
 return x + y

Raise Statements: Raise statements are used to raise exceptions.

if x < 0:
 raise ValueError("x must be a positive number")

These are just a few examples of the many types of statements available in

Python. Statements are the executable components of your code that define its

behavior and functionality. Understanding how to use different types of

statements is essential for effective programming in Python.

Page | 21

11

Variables

In Python, a variable is a symbolic name that refers to a value stored in the

computer's memory. It allows you to store and manipulate data, making your

code more flexible and dynamic. Variables enable you to give meaningful

names to data values, making your code more readable and understandable.

Here's how you declare and use variables in Python, along with some examples:

Variable Declaration: In Python, you don't need to explicitly declare a

variable's data type. You simply assign a value to a name using the assignment

operator =.

Variable assignment
age = 25
name = "John"
height = 5.11
is_student = True

Variable Names: Variable names must start with a letter (a-z, A-Z) or an

underscore (_) and can be followed by letters, digits (0-9), or underscores.

Variable names are case-sensitive.

Valid variable names
first_name = "Alice"
_last_name = "Smith"
age_2023 = 30

Using Variables: You can use variables in expressions, assignments, and

various operations.

Using variables in expressions
birth_year = 1990
current_year = 2023
age = current_year - birth_year
print("Age:", age)

Python Quick Reference

Page | 22

Updating variables
count = 5
count = count + 1 # Incrementing count
print("Updated count:", count)

Dynamic Typing: Python is dynamically typed, meaning you can reassign

variables to different types.

x = 10
print(x) # Output: 10

x = "Hello"
print(x) # Output: Hello

Multiple Assignment: You can assign multiple variables in a single line using

commas.

a, b, c = 5, 10, 15
print("a:", a, "b:", b, "c:", c)

Swapping Values: Python allows you to easily swap the values of variables.

x = 5
y = 10
x, y = y, x # Swapping values
print("x:", x, "y:", y)

Constants: While Python doesn't have true constants, it's a convention to use

uppercase variable names to represent constant values.

PI = 3.14159

GRAVITY = 9.81

Remember that variables hold data in memory, and their values can change

during the program's execution. Proper naming and usage of variables can

enhance the clarity and maintainability of your code.

Rules for Naming Variables

When naming variables in Python, there are certain rules and conventions you

should follow to ensure clarity, readability, and compatibility with the

language's syntax. Here are the key rules for naming variables in Python:

Python Quick Reference

Page | 23

Valid Characters: Variable names can consist of letters (both uppercase and

lowercase), digits (0-9), and underscores (_). They must start with a letter or an

underscore. Special characters, spaces, and punctuation marks are not allowed.

Case Sensitivity: Python variable names are case-sensitive. This means that

myVariable, myvariable, and MYVARIABLE are all treated as different

variables.

Reserved Keywords: You cannot use Python's reserved keywords (also known

as keywords or reserved words) as variable names. These are words that have

special meanings in Python and are used to define the language's structure and

behavior. For example, you can't use words like if, while, for, True, False, def,

etc., as variable names.

Meaningful Names: Choose descriptive and meaningful names for your

variables. This improves code readability and helps others (and your future self)

understand the purpose of the variable.

Snake Case: Use the snake_case naming convention for variables. This

involves writing all lowercase letters and separating words with underscores.

For example: user_name, total_amount, current_balance.

Avoid Single Letters: Except for some standard cases like loop iterators (i, j,

k), avoid using single-letter variable names. It's usually better to give more

descriptive names.

Avoid Ambiguous Names: Choose names that clearly represent the purpose of

the variable. Avoid using names that could be ambiguous or misleading.

Avoid Leading Underscore: While starting a variable name with an underscore

is allowed, it has a specific meaning in Python. A single leading underscore is

often used to indicate a "private" variable, but it doesn't actually make the

variable private or inaccessible. It's a convention to let others know that a

variable or method is intended for internal use.

Multiple Words: If your variable name consists of multiple words, use

underscores to separate them. This enhances readability. For example:

student_name, item_count.

Length Consideration: Variable names can be of any length, but excessively

long names might make the code harder to read. Aim for a balance between

being descriptive and concise.

Python Quick Reference

Page | 24

Constants: While Python doesn't have true constants, it's a convention to use

uppercase letters and underscores to name variables that are intended to be

treated as constants. For example: MAX_SIZE, PI, DEFAULT_COLOR.

Here are some examples of valid variable names:

age = 25
first_name = "John"
total_amount = 100.50
is_student = True

And here are some examples of invalid variable names:

1st_place = "Alice" # Cannot start with a digit
my-variable = 10 # Cannot contain a hyphen
for = 5 # Reserved keyword cannot be used

By following these rules and conventions, you'll create more readable and

maintainable Python code.

Page | 25

12

Data Types

In programming, data types define the type of values that variables can hold.

Each data type has specific characteristics and operations associated with it.

Python is a dynamically typed language, meaning you don't need to declare the

data type explicitly; the interpreter infers it based on the value assigned to the

variable. Here are some of the common data types in Python:

Type Meaning Example

Numeric

int Represents integers

(whole numbers).

age = 25

count = -10

float Represents floating-

point.

 numbers (decimal

numbers)

temperature = 98.6

pi = 3.14159

complex Represents complex

numbers in the form

real + imaginary*j

2+3*j

4*j

Boolean Represents a binary

value, True or False.

is_student = True

is_adult = False

String Represents sequences

of characters enclosed

in single or double

quotes.

name = "Alice"

message = 'Hello, World!'

List Represents an ordered

collection of items,

which can be of

different data types.

numbers = [1, 2, 3, 4, 5]

names = ["Alice", "Bob",

"Charlie"]

Tuple Similar to a list, but

tuples are immutable

(cannot be changed

after creation).

coordinates = (3, 7)

rgb_color = (255, 0, 0)

Set Represents an

unordered collection of

unique elements.

unique_numbers = {1, 2, 3,

4, 5}

unique_chars = {'a', 'b', 'c'}

Dictionary Represents a collection

of key-value pairs,

student = {"name":

"Alice", "age": 20,

Python Quick Reference

Page | 26

where keys are unique. "is_student": True}

book = {"title": "Python

Programming", "pages":

300}

None Type Represents the absence

of a value or a null

value.

result = None

These are the fundamental data types in Python. It's important to understand the

characteristics and appropriate use cases for each type, as it influences how you

manipulate and process your data. Python also supports type conversion

(casting) between different data types using built-in functions like int(), float(),
str(), etc.

Page | 27

13

Operators

Operators in Python are symbols or special functions that perform operations on

values or variables. They enable you to manipulate data and perform various

calculations. Python supports a wide range of operators, categorized into

different types:

Arithmetic Operators: These operators perform basic arithmetic operations.

a = 10
b = 3
addition = a + b # 13
subtraction = a - b # 7
multiplication = a * b # 30
division = a / b # 3.333...
floor_division = a // b # 3 (floor division)
modulus = a % b # 1 (remainder)
exponentiation = a ** b # 1000 (a raised to the power of b)

Comparison Operators: These operators compare two values and return a

boolean value (True or False).

x = 5
y = 7
is_equal = x == y # False
not_equal = x != y # True
greater_than = x > y # False
less_than = x < y # True
greater_equal = x >= y # False
less_equal = x <= y # True

Logical Operators: These operators perform logical operations on boolean

values.

p = True
q = False

Python Quick Reference

Page | 28

logical_and = p and q # False
logical_or = p or q # True
logical_not = not p # False

Assignment Operators: These operators are used to assign values to variables.

x = 10
y = 5
x += y # Equivalent to x = x + y
x -= y # Equivalent to x = x - y
x *= y # Equivalent to x = x * y
x /= y # Equivalent to x = x / y
x //= y # Equivalent to x = x // y
x %= y # Equivalent to x = x % y
x **= y # Equivalent to x = x ** y

Bitwise Operators: These operators perform bit-level operations on integers.

a = 5
b = 3
bitwise_and = a & b # 1 (bitwise AND)
bitwise_or = a | b # 7 (bitwise OR)
bitwise_xor = a ^ b # 6 (bitwise XOR)
bitwise_not = ~a # -6 (bitwise NOT)
left_shift = a << 1 # 10 (left shift)
right_shift = a >> 1 # 2 (right shift)

Membership Operators: These operators test if a value is a member of a

sequence (like strings, lists, or sets).

colors = ['red', 'green', 'blue']
is_red_present = 'red' in colors # True
is_yellow_present = 'yellow' in colors # False

Identity Operators: These operators compare the memory addresses of two

objects.

x = [1, 2, 3]
y = x
is_same_object = x is y # True (same memory address)
is_different_object = x is not y # False (same memory address)

Python Quick Reference

Page | 29

Unary Operators: These operators perform operations on a single operand.

a = 5
positive = +a # 5 (unary plus)
negative = -a # -5 (unary minus)

These are the primary types of operators in Python. Understanding how to use

them effectively is crucial for performing various tasks in programming.

Page | 30

14

Pemdas Rule

PEMDAS is an acronym that stands for Parentheses, Exponents, Multiplication

and Division (from left to right), Addition and Subtraction (from left to right).

It's a rule used to determine the order of operations when evaluating

mathematical expressions. This rule ensures that expressions are evaluated

consistently and accurately.

Let's break down each part of the PEMDAS rule with examples:

Parentheses: Perform operations within parentheses first.

result = (3 + 5) * 2
Inside parentheses: 3 + 5 = 8
Multiply by 2: 8 * 2 = 16
Result: 16

Exponents: Evaluate exponential operations.

result = 2 ** 3 + 1
2 raised to the power of 3: 2 ** 3 = 8
Add 1: 8 + 1 = 9
Result: 9

Multiplication and Division: Evaluate multiplication and division from left to

right.

result = 10 / 2 * 3
Divide 10 by 2: 10 / 2 = 5
Multiply by 3: 5 * 3 = 15
Result: 15

Addition and Subtraction: Evaluate addition and subtraction from left to right.

result = 8 - 3 + 2
Subtract 3 from 8: 8 - 3 = 5
Add 2: 5 + 2 = 7
Result: 7

By following the PEMDAS rule, you ensure that mathematical expressions are

evaluated correctly. Keep in mind that if there are nested parentheses, you'll

Python Quick Reference

Page | 31

start with the innermost set and work your way outward, applying the order of

operations at each step. This helps avoid ambiguity and ensures that calculations

are performed consistently.

Example: Let's consider the expression (8 - 3) ** 2 * 4 / 2 + 10 / 2 and walk

through its evaluation step by step using the PEMDAS rule.

Expression: (8 - 3) ** 2 * 4 / 2 + 10 / 2

Parentheses: We start by evaluating the operations within parentheses:

(8 - 3) ** 2 * 4 / 2 + 10 / 2

= 5 ** 2 * 4 / 2 + 10 / 2

= 25 * 4 / 2 + 10 / 2

Exponents: Now we evaluate the exponentiation operation:

25 * 4 / 2 + 10 / 2

= 100 / 2 + 10 / 2

Multiplication and Division: We perform multiplication and division from left

to right:

100 / 2 + 10 / 2

= 50 + 10 / 2

= 50 + 5

Addition and Subtraction: Finally, we perform addition:

50 + 5

= 55

So, the result of the expression (8 - 3) ** 2 * 4 / 2 + 10 / 2 is 55.

This example demonstrates how the PEMDAS rule ensures that we follow a

specific order of operations when evaluating expressions. It's important to

understand this rule to accurately compute the results of mathematical

expressions in a consistent manner.

Page | 32

15

Operator Precedence

Operator precedence, also known as operator priority, establishes the order of

evaluation for operators in expressions with multiple operators. It ensures

consistent and accurate mathematical evaluation, preventing ambiguity. In

Python, like many languages, operators are prioritized based on a hierarchy.

Those with higher precedence are evaluated first, and when precedence is equal,

associativity determines the order.

The Python operator precedence table (given below) categorizes operators from

top to bottom, indicating their tightness of binding, with operators in the same

row having equal precedence.

This system ensures proper calculation, as seen in expressions like 3 + 5 * 2,

where multiplication precedes addition, yielding 13.

 Operator Description Associativity

1. () Parentheses (grouping) No associativity, as

they are used for

grouping and have no

inherent direction.

2. [] Brackets (list indexing) Left to Right

3. {} Curly braces (dictionary, set) No associativity, as

they are used for

dictionary and set

literals.

4. . Dot (attribute access) Left to Right

5. ** Exponentiation Right to Left

6. +x, -x, ~x Unary plus, Unary minus,

Bitwise NOT

Right to Left

7. *, /, % Multiplication, Division, Modulo Left to Right

8. +, - Addition, Subtraction Left to Right

9. <<, >> Bitwise left shift, Bitwise right

shift

Left to Right

10. & Bitwise AND Left to Right

11. ^ Bitwise XOR Left to Right

12. | Bitwise OR Left to Right

Python Quick Reference

Page | 33

13. in, not in,

is, is not

Comparisons, Identity No associativity, as

these are binary

operators that compare

two values.
14. <, <=, >,

>=

Comparisons

15. ==, != Equality, Inequality Left to Right

16. not Logical NOT Right to Left

17. and Logical AND Left to Right

18. or Logical OR Left to Right

19. =, +=, -=,

*=, /=, //=,

%=, **=,

&=, |=, ^=,

<<=, >>=

Assignment Right to Left

Example: Consider the expression given below

x = [1, 2, 3]

y = {4, 5, 6}

z = 7

result = (z ** 2 + (-(x[1] * 3) // y.pop()) & 9) ^ (8 | z)

Evaluation of Expression takes place as follows

1. Parentheses

x[1] is evaluated: 2

x[1] * 3 is evaluated: 6

y.pop() removes and returns an element from set y: Let's say it's 4

Now the expression becomes: (z ** 2 + (-6 // 4) & 9) ^ (8 | z)

2. Exponents

z ** 2 is evaluated: 49

Now the expression becomes: (49 + (-6 // 4) & 9) ^ (8 | z)

3. Unary Minus, Division, and Floor Division

-6 // 4 is evaluated: -2

Now the expression becomes: (49 + (-2) & 9) ^ (8 | z)

4. Bitwise AND
-2 & 9 is evaluated: 8

Now the expression becomes: (49 + 8) ^ (8 | z)

5. Bitwise OR

8 | z is evaluated: 15

Now the expression becomes: (49 + 8) ^ 15

Python Quick Reference

Page | 34

6. Addition

49 + 8 is evaluated: 57

Now the expression becomes: 57 ^ 15

7. Bitwise XOR

57 ^ 15 is evaluated: 50

8. Assignment:

The result 50 is assigned to the variable result.

So, after evaluating the entire expression, the value of the variable result

becomes 50. This process demonstrates how the Python operator precedence

table guides the order of operations to compute the final result of the expression.

Page | 35

16

Control Statements

Control statements in programming are used to determine the flow of execution

of a program. They allow you to make decisions, repeat actions, and control the

order in which different parts of your code are executed. There are three main

types of control statements: conditional statements, looping statements, and

branching statements.

Here's a brief explanation of each type along with their syntax in a typical

programming language like Python:

1. Conditional Statements: Conditional statements are used to make decisions

in your code. They allow you to execute different blocks of code based on

whether a certain condition is true or false. Here are examples of

conditional statements using if, elif, and else:

If Statement: The if statement is used to execute a block of code if a certain

condition is true.

Syntax

if condition:
 # Code to be executed if the condition is true

Example

age = 20
if age >= 18:
 print("You are an adult.")

If-Else Statement: The if-else statement is used to execute one block of

code if a condition is true, and another block if the condition is false.

Syntax

if condition:
 # Code to be executed if the condition is true
else:
 # Code to be executed if the condition is false

Python Quick Reference

Page | 36

 Example

age = 18
if age >= 18:
 print("You are an adult.")
else:
 print("You are not yet an adult.")

elif statement: The elif statement, short for "else if," is used in conjunction

with an if statement to provide an additional condition to check when the

initial if condition is false. It allows you to test multiple conditions in

sequence and execute different blocks of code based on which condition is

true. Here's the syntax for using elif in a typical programming language like

Python:

if condition1:
 # Code to be executed if condition1 is true
elif condition2:
 # Code to be executed if condition2 is true
elif condition3:
 # Code to be executed if condition3 is true
... (you can have more elif blocks)
else:
 # Code to be executed if none of the above conditions are true

The elif statement allows you to create a chain of conditions that are tested

one after the other. If the first if condition is true, its corresponding code

block is executed. If the first if condition is false, the program moves on to

the next elif condition. This process continues until either a condition is true

or the final else block (if present) is executed.

Here's a simple example:

score = 85
if score >= 90:
 grade = "A"
elif score >= 80:
 grade = "B"
elif score >= 70:
 grade = "C"
else:
 grade = "D"

Python Quick Reference

Page | 37

print("Your grade:", grade)

2. Looping Statements: Looping statements allow you to execute a block of

code repeatedly as long as a certain condition remains true.

Syntax (in Python)

while condition:
 # Code to be executed repeatedly as long as the condition is true

Example

count = 0
while count < 5:
 print("Count:", count)
 count += 1

3. Branching Statements: Branching statements provide a way to alter the

flow of execution by transferring control to a different part of the program.

Break: The break statement is used to exit the current loop prematurely,

regardless of whether the loop's condition is still true.

Syntax (in Python)

while condition:
 if some_condition:
 break

Example

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

for number in numbers:
 if number == 5:
 break # Exit the loop when number is 5
 print(number)

Output: 1 2 3 4

4. Continue: The continue statement is used to skip the current iteration of a

loop and continue with the next iteration.

Syntax (in Python)

for item in sequence:

Python Quick Reference

Page | 38

 if some_condition:
 continue

Example

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

for number in numbers:
 if number % 2 == 0:
 continue # Skip even numbers.
 print(number)

Output: 1 3 5 7 9

5. Return: In functions, the return statement is used to exit the function and

optionally return a value to the caller.

Syntax (in Python)

def my_function():
 # Code
 return some_value

Example

def add_numbers(a, b):
 result = a + b
 return result

sum_result = add_numbers(5, 3)
print("Sum:", sum_result)

Output: Sum: 8

These control statements are fundamental building blocks in programming that

allow you to create dynamic and responsive applications by controlling the flow

of execution based on different conditions and requirements. The syntax

provided here is in Python, but similar concepts exist in most programming

languages with some variations in syntax.

Page | 39

17

Pass

In programming, the pass statement is used as a placeholder for future code. It

doesn't perform any action and is often used when a statement is syntactically

required but you don't want to execute any code at that point. It's commonly

used during development when you're creating the structure of your code and

plan to fill in the details later.

Here's an example to illustrate the use of the pass statement:

def process_data(data):
 if len(data) > 10:
 # TODO: Implement code to process large data
 pass
 else:
 # TODO: Implement code to process small data
 pass

The implementation of processing large and small data is not ready yet,

but the code structure is in place using the pass statement.

In this example, the process_data function is intended to process data based on

its length. If the data is larger than 10 elements, the plan is to process it in a

certain way (which hasn't been implemented yet). If the data is smaller or equal

to 10 elements, there's another intended processing method (also not yet

implemented).

By using the pass statement in these blocks, you're indicating that these portions

of code are intentionally left blank and will be filled in later. This helps you

maintain the overall structure of your code while you're in the process of

development or when you're writing pseudocode to plan out your program's

logic.

Page | 40

18

Functions

In programming, a function is a self-contained block of code that performs a

specific task or a set of related tasks. Functions allow you to break down your

code into smaller, reusable components, making it easier to manage, debug, and

maintain your codebase. In Python, there are several types of functions:

Built-in Functions: Python comes with a variety of built-in functions that are

readily available for use without needing to define them yourself. These

functions cover a wide range of tasks, such as converting data types, performing

mathematical operations, and working with collections.

Example

num_list = [5, 2, 8, 1, 3]
max_value = max(num_list)
print("Maximum value:", max_value)

User-Defined Functions: User-defined functions are functions that you create

yourself to perform specific tasks. They allow you to encapsulate a sequence of

statements into a single unit that can be called and reused.

Syntax

def function_name(parameters):
 # Function body
 return result # Optional

Example

def greet(name): # Function Definition
 return "Hello, " + name

message = greet("Alice") # Function Call
print(message)

Lambda Functions (Anonymous Functions): Lambda functions, also known

as anonymous functions, are small, one-line functions defined without a name.

They are typically used for simple operations where you don't need a full

function definition.

Python Quick Reference

Page | 41

Syntax

lambda arguments: expression

Example

square = lambda x: x * x
result = square(5)
print(result)

Recursive Functions: Recursive functions are functions that call themselves in

their own definition. They are useful for solving problems that can be broken

down into smaller, similar sub-problems.

Example (calculating factorial using recursion):

def factorial(n):
 if n == 0:
 return 1
 else:
 return n * factorial(n - 1)

result = factorial(5)
print(result)

Higher-Order Functions: Higher-order functions are functions that can take

other functions as arguments or return functions as results. They enable

powerful functional programming paradigms.

Example (using the map function to apply a function to all elements of a list):

numbers = [1, 2, 3, 4, 5]
squared = list(map(lambda x: x * x, numbers))
print(squared)

These are some of the main types of functions in Python. Functions play a

crucial role in organizing and modularizing your code, making it more readable

and maintainable.

Page | 42

19

Types of User Defined Functions

User-defined functions are functions that you create in your code to perform

specific tasks. They allow you to encapsulate a sequence of statements into a

single unit that can be called and reused. User-defined functions enhance code

readability, modularity, and reusability.

Based on return values and arguments, there are several types of user-defined

functions:

Function with No Arguments and No Return Value

These functions don't take any input arguments and don't return any value.

Example

def greet():
 print("Hello!")

greet() # Calling the function

Function with Arguments and No Return Value:

These functions accept input arguments (parameters) but don't return any value.

Example

def add_numbers(a, b):
 sum_result = a + b
 print("Sum:", sum_result)

add_numbers(5, 3) # Calling the function with arguments

Function with Arguments and Return Value

These functions take input arguments and return a computed value.

Example

def multiply(a, b):

Python Quick Reference

Page | 43

 product = a * b
 return product

result = multiply(4, 6) # Calling the function and storing the
result
print("Product:", result)

Function with Default Arguments

Default arguments are used when a value is not provided for a certain parameter

during function call.

Example

def power(base, exponent=2):
 result = base ** exponent
 return result

print(power(3)) # Using default exponent (2)
print(power(2, 4)) # Using provided exponent (4)

Function with Variable Number of Arguments (Variadic Functions)

These functions accept a variable number of arguments using the *args syntax.

Example

def average(*numbers):
 total = sum(numbers)
 count = len(numbers)
 return total / count

print(average(5, 10, 15)) # Average of 5, 10, and 15
print(average(2, 6, 8, 10)) # Average of 2, 6, 8, and 10

Function with Keyword Arguments

Keyword arguments are used to specify parameter values by name, enhancing

readability.

Example

def person_info(name, age):
 print("Name:", name)
 print("Age:", age)

Python Quick Reference

Page | 44

person_info(age=25, name="Alice")

Function with Multiple Return Values

Python allows functions to return multiple values as a tuple. Even though the

syntax involves returning a single tuple, you can unpack the values into separate

variables when you receive the return value.

Here's how you can define and use a function that returns multiple values:

def calculate_statistics(data):
 mean = sum(data) / len(data)
 variance = sum((x - mean) ** 2 for x in data) / len(data)
 min_value = min(data)
 max_value = max(data)
 return mean, variance, min_value, max_value

data = [5, 8, 10, 12, 15]
mean_value, variance_value, min_value, max_value =
calculate_statistics(data)

print("Mean:", mean_value)
print("Variance:", variance_value)
print("Minimum Value:", min_value)
print("Maximum Value:", max_value)

In this example, the calculate_statistics function computes the mean, variance,

minimum, and maximum values of a given dataset. The function returns a tuple

containing these four values. When calling the function, the returned tuple is

unpacked into separate variables, allowing you to access each value

individually.

Page | 45

20

Keyword Arguments

Keyword arguments, also known as named arguments, allow you to pass

arguments to a function using their parameter names. This enhances code

readability by making it clear which value corresponds to which parameter,

especially when a function has multiple parameters.

Here's how you can use keyword arguments in Python functions:

def person_info(name, age):
 print("Name:", name)
 print("Age:", age)
person_info(name="Alice", age=25) # Using keyword arguments

In this example, the person_info function takes two parameters: name and age.

When calling the function, you provide the values using their parameter names,

separated by equals signs (=). This makes the code more self-explanatory and

less error-prone, especially when the function has multiple parameters.

Keyword arguments also allow you to provide arguments in any order, as long

as you specify their names:

person_info(age=30, name="Bob") # Order of keyword arguments doesn't

matter

Using keyword arguments is particularly helpful when a function has default

values for some parameters:

def greet(name, greeting="Hello"):
 print(greeting, name)

greet(name="Alice") # Using default greeting ("Hello")
greet(name="Bob", greeting="Hi") #Providing a custom greeting ("Hi")

In this example, the greet function has a default greeting of "Hello." When

calling the function, you can explicitly provide a value for the greeting

parameter using a keyword argument.

Python Quick Reference

Page | 46

Using keyword arguments makes your code more readable, self-explanatory,

and flexible when working with functions that have multiple parameters or

default values.

Page | 47

21

Local and Global Scope

In Python, "scope" refers to the region of the code where a particular variable or

name can be accessed. Python has two main types of variable scopes: local

scope and global scope.

Local Scope: Variables defined within a function have local scope. They can

only be accessed within the function where they are defined. Once the function

completes execution, the local variables are destroyed and cannot be accessed

from outside the function.

Example

def my_function():
 local_var = 10 # This is a local variable
 print(local_var)

my_function()
Accessing local_var here would result in an error

Global Scope: Variables defined outside of any function have global scope.

They can be accessed from anywhere in the code, both inside and outside

functions.

Example

global_var = 20 # This is a global variable

def another_function():
 print(global_var) # Accessing global_var here

another_function()
print(global_var) # Accessing global_var here as well

It's important to note that when you assign a value to a variable within a

function, Python considers it a local variable by default, even if a variable with

the same name exists in the global scope.

Python Quick Reference

Page | 48

Example illustrating global and local scope interactions

x = 5 # Global variable
def my_function():
 x = 10 # This creates a new local variable x within the function
 print(x) # Prints the local x (10)

my_function()
print(x) # Prints the global x (5)

To modify a global variable from within a function, you need to explicitly

declare it as a global variable using the global keyword.

Example modifying a global variable within a function

x = 5 # Global variable

def modify_global():
 global x # Declare x as a global variable
 x = 15
modify_global()
print(x) # Prints the modified global x (15)

It's generally a good practice to avoid using global variables as much as

possible, as they can make code harder to understand and maintain. Instead,

prefer passing values as function arguments and returning values from functions

to maintain better control over variable scope.

Page | 49

22

Lambda Function

Lambda functions, also known as anonymous functions, are a concise way to

create small, one-line functions in Python. They are often used when you need

a simple function for a short period of time and don't want to define a regular

named function using the def keyword. Lambda functions are defined using the

lambda keyword, followed by the input parameters and the expression to be

evaluated.

The general syntax of a lambda function is:

 lambda arguments: expression

Here are some examples to illustrate the concept of lambda functions:

Basic Example: A lambda function to calculate the square of a number:

square = lambda x: x ** 2
result = square(4) # Result will be 16

Sorting with Lambda: Lambda functions are often used as the key parameter

in sorting functions to customize the sorting criteria:

students = [("Alice", 25), ("Bob", 22), ("Charlie", 28)]
students.sort(key=lambda student: student[1]) # Sort based on age

Using Lambda with map(): Lambda functions are frequently used with the

map() function to apply a function to each element of an iterable:

numbers = [1, 2, 3, 4, 5]
squared = map(lambda x: x ** 2, numbers) # Applies lambda to each number

Filtering with Lambda: Lambda functions can be used with the filter()
function to filter elements based on a condition:

numbers = [1, 2, 3, 4, 5, 6]
even_numbers = filter(lambda x: x % 2 == 0, numbers) # Filters even numbers

Python Quick Reference

Page | 50

Using Lambda in Key Functions: Lambda functions can be used as key

functions for more complex operations, like getting the max item based on a

specific property:

data = [("apple", 3), ("banana", 5), ("cherry", 1)]

max_item = max(data, key=lambda item: item[1]) # Gets item with max

count

Lambda functions are useful for quick operations, but keep in mind that they're

limited to single expressions and shouldn't be used for complex logic. In cases

where you need more complex logic or reusability, it's better to define regular

functions using the def keyword.

Page | 51

23

Mapping

Mapping is a fundamental concept in programming that involves applying a

function to every element of a collection (like a list) and getting a new

collection with the results. Python provides several ways to perform mapping,

such as using loops, list comprehensions, and the built-in map() function.

Mapping is particularly useful for transforming data and performing operations

on each element of a collection.

Here are examples of various mapping techniques in Python:

Using a Loop

Mapping using a loop involves iterating through each element of a collection,

applying a function, and collecting the results in a new list.

numbers = [1, 2, 3, 4, 5]
squared = []
for num in numbers:
 squared.append(num ** 2)
squared is now [1, 4, 9, 16, 25]

Using List Comprehensions

List comprehension provides a concise way to create new lists by applying an

expression to each element of an existing list.

numbers = [1, 2, 3, 4, 5]
squared = [num ** 2 for num in numbers]
squared is now [1, 4, 9, 16, 25]

Using the map() Function

The built-in map() function applies a given function to each item of an iterable

(e.g., a list) and returns an iterator containing the results.

numbers = [1, 2, 3, 4, 5]

Python Quick Reference

Page | 52

squared = map(lambda x: x ** 2, numbers)
squared is a map object, so you can convert it to a list
squared_list = list(squared) # [1, 4, 9, 16, 25]

Mapping with Multiple Iterables

The map() function can accept multiple iterables as arguments. The function

provided should also accept the same number of arguments.

numbers = [1, 2, 3]
multipliers = [10, 20, 30]
results = map(lambda x, y: x * y, numbers, multipliers)
results is an iterator: [10, 40, 90]

Mapping with Built-in Functions

Python's built-in functions, like len() and str(), can also be used with mapping

techniques.

words = ["apple", "banana", "cherry"]
lengths = map(len, words)
lengths is an iterator: [5, 6, 6]

Mapping is a versatile technique that helps you efficiently transform data and

perform operations on entire collections, without needing explicit loops.

Depending on your specific use case and preference, you can choose the

mapping technique that suits your needs best.

Page | 53

24

Filter

Filtering is a concept in programming that involves selecting elements from a

collection (like a list) that meet a certain condition. Python provides various

ways to perform filtering, such as using loops, list comprehensions, and the

built-in filter() function. Filtering is useful for extracting specific elements from

a collection based on some criteria.

Here are examples of filtering techniques in Python:

Using a Loop

Filtering using a loop involves iterating through each element of a collection,

checking a condition, and adding elements that satisfy the condition to a new

list.

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]
even_numbers = []
for num in numbers:
 if num % 2 == 0:
 even_numbers.append(num)
even_numbers is now [2, 4, 6, 8]

Using List Comprehensions: List comprehensions provide a concise way to

create new lists by applying a condition to each element of an existing list.

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]
even_numbers = [num for num in numbers if num % 2 == 0]
even_numbers is now [2, 4, 6, 8]

Using the filter() Function: The built-in filter() function filters an iterable (e.g.,

a list) based on a given function and returns an iterator containing the elements

that satisfy the condition.

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]
even_numbers = filter(lambda x: x % 2 == 0, numbers)
even_numbers is an iterator, so you can convert it to a list

Python Quick Reference

Page | 54

even_numbers_list = list(even_numbers) # [2, 4, 6, 8]

Filtering with Built-in Functions: Python's built-in functions, like

str.isnumeric() or str.startswith(), can also be used with filtering techniques.

words = ["apple", "banana", "123", "cherry"]
numeric_words = filter(str.isnumeric, words)
numeric_words is an iterator: ["123"]

Filtering with Multiple Conditions: You can use logical operators (and, or,

not) to combine multiple conditions for filtering.

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]
filtered_numbers = filter(lambda x: x % 2 == 0 or x % 3 == 0, numbers)
filtered_numbers is an iterator: [2, 3, 4, 6, 8, 9]

Filtering allows you to extract specific elements from a collection based on

criteria, making it a powerful tool for data manipulation and selection. Choose

the filtering technique that best fits your specific use case and coding style.

Page | 55

25

Exception Handling

Exception handling is a programming concept that allows you to gracefully

handle and manage errors or exceptions that may occur during the execution of

your code. Instead of letting errors crash your program, you can use exception

handling to catch these errors, provide meaningful feedback to users, and

potentially recover from the error. In Python, exceptions are raised when an

error occurs, and you can use try, except, else, and finally blocks to manage

them.

Here's how exception handling works, along with examples

Basic Exception Handling

Use the try and except blocks to handle exceptions. If an exception occurs

within the try block, the code in the corresponding except block is executed.

try:
 num = int(input("Enter a number: "))
 result = 10 / num
 print("Result:", result)
except ZeroDivisionError:
 print("Cannot divide by zero!")
except ValueError:
 print("Invalid input. Please enter a number.")

Handling Multiple Exceptions

You can handle multiple exceptions using multiple except blocks.

try:
 value = int(input("Enter a number: "))
 result = 10 / value
 print("Result:", result)
except (ZeroDivisionError, ValueError):
 print("Error: Invalid input or division by zero.")

Python Quick Reference

Page | 56

Using else Block

The else block is executed when no exceptions occur in the try block

try:
 num = int(input("Enter a number: "))
 result = 10 / num
except ZeroDivisionError:
 print("Cannot divide by zero!")
else:
 print("Result:", result)

Using Finally Block

The finally block is executed no matter what, whether an exception occurred or

not. It's often used for cleanup operations.

try:
 file = open("example.txt", "r")
 content = file.read()
except FileNotFoundError:
 print("File not found.")
finally:
 if file:
 file.close()

Catching All Exceptions

You can use a generic except block to catch all exceptions, but this should be

used carefully as it might hide unexpected errors.

try:
 # code that might raise exceptions
except Exception as e:
 print("An error occurred:", e)

Raising Exceptions

You can use the raise statement to explicitly raise exceptions in your code

def check_positive(number):
 if number < 0:
 raise ValueError("Number must be positive")

Python Quick Reference

Page | 57

try:
 value = int(input("Enter a positive number: "))
 check_positive(value)
except ValueError as ve:
 print("Error:", ve)

Exception handling is crucial for writing robust and reliable code. By

anticipating and handling errors effectively, you can provide a better user

experience and make your programs more stable.

Page | 58

26

Built in Functions

Built-in functions, also known as standard library functions, are pre-defined

functions that are provided by programming languages or libraries. These

functions serve specific purposes and are readily available for use without

needing to be explicitly defined by the programmer. They can help perform

common tasks, manipulate data, and interact with the system.

In Python, you can use the dir() function to get a list of names in the current

module's namespace. Since many built-in functions are available by default in

Python, you can use dir(__builtins__) to get a list of built-in function names.

Here's the command:

print(dir(__builtins__))
#Output:

['ArithmeticError', 'AssertionError', 'AttributeError', 'BaseException',
'BlockingIOError', 'BrokenPipeError', 'BufferError', 'BytesWarning',
'ChildProcessError', 'ConnectionAbortedError', 'ConnectionError',
'ConnectionRefusedError', 'ConnectionResetError', 'DeprecationWarning',
'EOFError', 'Ellipsis', 'EncodingWarning', 'EnvironmentError', 'Exception', 'False',
'FileExistsError', 'FileNotFoundError', 'FloatingPointError', 'FutureWarning',
'GeneratorExit', 'IOError', 'ImportError', 'ImportWarning', 'IndentationError',
'IndexError', 'InterruptedError', 'IsADirectoryError', 'KeyError',
'KeyboardInterrupt', 'LookupError', 'MemoryError', 'ModuleNotFoundError',
'NameError', 'None', 'NotADirectoryError', 'NotImplemented',
'NotImplementedError', 'OSError', 'OverflowError',
'PendingDeprecationWarning', 'PermissionError', 'ProcessLookupError',
'RecursionError', 'ReferenceError', 'ResourceWarning', 'RuntimeError',
'RuntimeWarning', 'StopAsyncIteration', 'StopIteration', 'SyntaxError',
'SyntaxWarning', 'SystemError', 'SystemExit', 'TabError', 'TimeoutError', 'True',
'TypeError', 'UnboundLocalError', 'UnicodeDecodeError', 'UnicodeEncodeError',
'UnicodeError', 'UnicodeTranslateError', 'UnicodeWarning', 'UserWarning',
'ValueError', 'Warning', 'WindowsError', 'ZeroDivisionError', '__IPYTHON__',
'__build_class__', '__debug__', '__doc__', '__import__', '__loader__',
'__name__', '__package__', '__spec__', 'abs', 'aiter', 'all', 'anext', 'any', 'ascii',
'bin', 'bool', 'breakpoint', 'bytearray', 'bytes', 'callable', 'chr', 'classmethod',

Python Quick Reference

Page | 59

'compile', 'complex', 'copyright', 'credits', 'delattr', 'dict', 'dir', 'display',
'divmod', 'enumerate', 'eval', 'exec', 'execfile', 'filter', 'float', 'format',
'frozenset', 'get_ipython', 'getattr', 'globals', 'hasattr', 'hash', 'help', 'hex', 'id',
'input', 'int', 'isinstance', 'issubclass', 'iter', 'len', 'license', 'list', 'locals', 'map',
'max', 'memoryview', 'min', 'next', 'object', 'oct', 'open', 'ord', 'pow', 'print',
'property', 'range', 'repr', 'reversed', 'round', 'runfile', 'set', 'setattr', 'slice',
'sorted', 'staticmethod', 'str', 'sum', 'super', 'tuple', 'type', 'vars', 'zip']

Here are some examples of built-in functions in Python

Function Meaning Example Usage

abs() Returns the absolute value of a

number.

abs(-5) returns 5

len() Returns the length of a

sequence (string, list, etc.).

len("Hello") returns 5

type() Returns the type of an object. type(5) returns <class 'int'>

print() Displays output to the console. print("Hello, world!")

input() Takes user input from the

console.

name = input("Enter your

name: ")

str() Converts an object to a string. str(42) returns '42'

int() Converts a string or number to

an integer.

int("5") returns 5

float() Converts a string or number to a

floating-point num.

float("3.14") returns 3.14

list() Converts an iterable to a list. list("hello") returns ['h', 'e',

'l', 'l', 'o']

dict() Creates a dictionary from a

sequence of key-value.

dict([('a', 1), ('b', 2)])

max() Returns the maximum value

from a sequence.

max([5, 2, 8]) returns 8

min() Returns the minimum value

from a sequence.

min([5, 2, 8]) returns 2

sum() Returns the sum of elements in

a sequence.

sum([1, 2, 3]) returns 6

sorted() Returns a sorted list from a

sequence.

sorted([3, 1, 4]) returns [1,

3, 4]

range() Generates a sequence of

numbers within a range.

list(range(1, 5)) returns [1,

2, 3, 4]

round() Rounds a floating-point number

to a specified precision.

round(3.14159, 2) returns

3.14

zip() Combines multiple iterables

into tuples.

list(zip([1, 2, 3], ['a', 'b', 'c']))

Python Quick Reference

Page | 60

enumerate() Returns an enumerate object

with index-value pairs.

list(enumerate(['a', 'b', 'c']))

chr() Returns a character from an

ASCII value.

chr(65) returns 'A'

ord() Returns the ASCII value of a

character.

ord('A') returns 65

abs() Returns the absolute value of a

number.

abs(-5) returns 5

len() Returns the length of a

sequence.

len("Hello") returns 5

all() Returns True if all elements in

an iterable are true.

all([True, True, False])

returns False

any() Returns True if any element in

an iterable is true.

any([True, False, False])

returns True

pow() Raises a number to a power. pow(2, 3) returns 8

Page | 61

27

List

In Python, a list is a built-in data structure that allows you to store and organize

a collection of values. Lists are one of the most commonly used data types in

Python and provide a flexible and versatile way to work with collections of

items.

A list in Python

 Is Ordered: The elements in a list are ordered, meaning they have a

specific position or index within the list. This order is maintained unless

you explicitly change it.

 Is Mutable: Lists are mutable, which means you can modify their

contents after they are created. You can add, remove, or change elements

within a list.

 Can Contain Different Data Types: Lists can hold elements of various

data types, including integers, floats, strings, and even other lists.

Lists in Python are incredibly useful for storing and manipulating collections of

data. They are used in a wide range of applications, from basic data storage to

more complex data processing tasks. Lists also support various operations such

as slicing, sorting, counting elements, and more.

List Operations Code Example Description

Creating Lists

Create fruits = ["apple", "banana",
"orange"]

Create a list with

elements

Empty List empty_list = [] Create an empty list

Accessing

Elements

Indexing fruits[0] Access element at index

0

Negative

Indexing
fruits[-1] Access last element

using negative index

Modifying Lists

Appending fruits.append("grape") Add element to the end

of the list

Extending fruits.extend(["peach", Add multiple elements

Python Quick Reference

Page | 62

"pear"]) from another list

Inserting fruits.insert(1, "kiwi") Insert element at a

specific index

Removing fruits.remove("banana") Remove element by

value

Popping popped = fruits.pop(1) Remove and return

element at index 1

List Operations

Length len(fruits) Get the number of

elements in the list

Sorting fruits.sort() Sort the list in ascending

order

Reversing fruits.reverse() Reverse the order of

elements

Counting count = fruits.count("apple") Count occurrences of an

element

Index index = fruits.index("orange") Get the index of the first

occurrence

Copying

Shallow Copy new_list = old_list.copy() Create a shallow copy of

the list

Deep Copy import copy;
new_list =
copy.deepcopy(old_list)

Create a deep copy

Page | 63

28

List Slicing

List slicing is a way to extract a portion of a list in Python by specifying a range

of indices. It allows you to create a new list containing elements from the

original list within that specified range.

The syntax for list slicing is list[start: end: step],

where

 start is the index of the first element you want to include (inclusive).

 end is the index of the first element you want to exclude (exclusive).

 step is the interval between elements to be included. It's optional and

defaults to 1.

Here's an example to illustrate list slicing:

original_list = [10, 20, 30, 40, 50, 60, 70, 80]

Positive Slicing
sliced_positive = original_list[2:5] # [30, 40, 50]

Negative Slicing
sliced_negative = original_list[-4:-1] # [50, 60, 70]

Slicing with Steps
sliced_step = original_list[1:7:2] # [20, 40, 60]

Omitted Start/End
sliced_omitted = original_list[:4] # [10, 20, 30, 40]

Full Slice
full_slice = original_list[:] # [10, 20, 30, 40, 50, 60, 70, 80]

In this example, sliced_positive contains elements with indices 2, 3, and 4 from

the original list, sliced_negative contains elements with indices -4, -3, and -2

(which correspond to the same elements as in sliced_positive), sliced_step

Python Quick Reference

Page | 64

includes every second element starting from index1, sliced_omitted includes

elements from the start up to index3, and full_slice is a copy of the original list.

Example 1: Here is a list of all possible positive and negative slice notations for

the given list x = [10, 20, 30, 40, 50, 60, 70, 80]

Positive Slices of x = [10, 20, 30, 40, 50, 60, 70, 80]

x[0:1] -> [10]

x[0:2] -> [10, 20]

x[0:3] -> [10, 20, 30]

x[0:4] -> [10, 20, 30, 40]

x[0:5] -> [10, 20, 30, 40, 50]

x[0:6] -> [10, 20, 30, 40, 50, 60]

x[0:7] -> [10, 20, 30, 40, 50, 60, 70]

x[0:8] -> [10, 20, 30, 40, 50, 60, 70, 80]

x[:1] -> [10]

x[:2] -> [10, 20]

x[:3] -> [10, 20, 30]

x[:4] -> [10, 20, 30, 40]

x[:5] -> [10, 20, 30, 40, 50]

x[:6] -> [10, 20, 30, 40, 50, 60]

x[:7] -> [10, 20, 30, 40, 50, 60, 70]

x[:8] -> [10, 20, 30, 40, 50, 60, 70, 80]

x[1:] -> [20, 30, 40, 50, 60, 70, 80]

x[2:] -> [30, 40, 50, 60, 70, 80]

x[3:] -> [40, 50, 60, 70, 80]

x[4:] -> [50, 60, 70, 80]

x[5:] -> [60, 70, 80]

x[6:] -> [70, 80]

x[7:] -> [80]

Negative Slices of x = [10, 20, 30, 40, 50, 60, 70, 80]

x[-1:] -> [80]

x[-2:] -> [70, 80]

x[-3:] -> [60, 70, 80]

x[-4:] -> [50, 60, 70, 80]

x[-5:] -> [40, 50, 60, 70, 80]

x[-6:] -> [30, 40, 50, 60, 70, 80]

x[-7:] -> [20, 30, 40, 50, 60, 70, 80]

x[-8:] -> [10, 20, 30, 40, 50, 60, 70, 80]

x[:-1] -> [10, 20, 30, 40, 50, 60, 70]

Python Quick Reference

Page | 65

x[:-2] -> [10, 20, 30, 40, 50, 60]

x[:-3] -> [10, 20, 30, 40, 50]

x[:-4] -> [10, 20, 30, 40]

x[:-5] -> [10, 20, 30]

x[:-6] -> [10, 20]

x[:-7] -> [10]

Empty Slices of x = [10, 20, 30, 40, 50, 60, 70, 80]

x[8:8] -> []

x[2:2] -> []

x[4:4] -> []

x[-3:-3] -> []

Omitted Start/End of x = [10, 20, 30, 40, 50, 60, 70, 80]

x[:1] -> [10]

x[:5] -> [10, 20, 30, 40, 50]

x[:-1] -> [10, 20, 30, 40, 50, 60, 70]

x[2:] -> [30, 40, 50, 60, 70, 80]

x[4:] -> [50, 60, 70, 80]

x[7:] -> [80]

Full Slices of x = [10, 20, 30, 40, 50, 60, 70, 80]

x[:] -> [10, 20, 30, 40, 50, 60, 70, 80]

x[::1] -> [10, 20, 30, 40, 50, 60, 70, 80]

x[::-1] -> [80, 70, 60, 50, 40, 30, 20, 10]

x[::2] -> [10, 30, 50, 70]

x[1::2] -> [20, 40, 60, 80]

x[1:7:2] -> [20, 40, 60]

x[-1::-1] -> [80, 70, 60, 50, 40, 30, 20, 10]

Step Slices of x = [10, 20, 30, 40, 50, 60, 70, 80]

x[::1] -> [10, 20, 30, 40, 50, 60, 70, 80]

x[::-1] -> [80, 70, 60, 50, 40, 30, 20, 10]

x[::2] -> [10, 30, 50, 70]

x[1::2] -> [20, 40, 60, 80]

x[1:7:2] -> [20, 40, 60]

Python Quick Reference

Page | 66

Combination of Slicing Parameters of x = [10, 20, 30, 40, 50, 60, 70, 80]

x[2:5] -> [30, 40, 50]

x[3:6] -> [40, 50, 60]

x[1:7:2] -> [20, 40, 60]

x[-3:-1] -> [50, 60]

x[-6:-2] -> [30, 40, 50, 60]

x[2:7:3] -> [30, 60]

Negative Step Slices

x[::-1] -> [80, 70, 60, 50, 40, 30, 20, 10]

x[::-2] -> [80, 60, 40, 20]

x[-1:-9:-1] -> [80, 70, 60, 50, 40, 30, 20, 10]

x[-1:-9:-2] -> [80, 60, 40, 20]

x[-2:-9:-2] -> [70, 50, 30, 10]

x[-3:-9:-2] -> [60, 40, 20]

x[-4:-9:-2] -> [50, 30, 10]

Omitted Step of x = [10, 20, 30, 40, 50, 60, 70, 80]

x[::] -> [10, 20, 30, 40, 50, 60, 70, 80]

x[1::] -> [20, 30, 40, 50, 60, 70, 80]

x[:7:] -> [10, 20, 30, 40, 50, 60, 70]

x[:-1:] -> [10, 20, 30, 40, 50, 60, 70]

Combination of All Parameters of x = [10, 20, 30, 40, 50, 60, 70, 80]

x[1:7:2] -> [20, 40, 60]

x[-2:-8:-2] -> [70, 50, 30]

x[4::-2] -> [50, 30, 10]

Combination of All Parameters with Full Slices of x = [10, 20, 30, 40, 50, 60,

70, 80]

x[:] -> [10, 20, 30, 40, 50, 60, 70, 80]

x[::] -> [10, 20, 30, 40, 50, 60, 70, 80]

x[:8] -> [10, 20, 30, 40, 50, 60, 70, 80]

x[1::] -> [20, 30, 40, 50, 60, 70, 80]

x[1:] -> [20, 30, 40, 50, 60, 70, 80]

Python Quick Reference

Page | 67

Example 2

x = [1,2,[10,10.75,[[10,20,30], "mce","pgt"]], 2023, ["hello","palguni"]]

Slices Slice values

print(len(x)) 5

print(len(x[2])) 3

print(len(x[4])) 2

print(x[:])

[1, 2, [10, 10.75, [[10, 20, 30], 'mce', 'pgt']], 2023,

['hello', 'palguni']]

print(x[0]) 1

print(x[1] 2

print(x[2]) [10, 10.75, [[10, 20, 30], 'mce', 'pgt']]

print(x[3]) 2023

print(x[4]) ['hello', 'palguni']

print(x[::1]) [1, 2, [10, 10.75, [[10, 20, 30], 'mce', 'pgt']], 2023,

['hello', 'palguni']]

print(x[::-1]) [['hello', 'palguni'], 2023, [10, 10.75, [[10, 20, 30],

'mce', 'pgt']], 2, 1]

print(x[::2]) [1, [10, 10.75, [[10, 20, 30], 'mce', 'pgt']], ['hello',

'palguni']]

print(x[::-2]) [['hello', 'palguni'], [10, 10.75, [[10, 20, 30], 'mce',

'pgt']], 1]

print(x[2][0]) 10

print(x[2][1]) 10.75

print(x[2][2]) [[10, 20, 30], 'mce', 'pgt']

print(x[2][1:3]) [10.75, [[10, 20, 30], 'mce', 'pgt']]

print(x[2][::-1]) [[[10, 20, 30], 'mce', 'pgt'], 10.75, 10]

print(x[2][2][:]) [[10, 20, 30], 'mce', 'pgt']

print(x[2][2][::-1]) ['pgt', 'mce', [10, 20, 30]]

print(x[2][2][0]) [10, 20, 30]

print(x[2][2][0][::-1]) [30, 20, 10]

print(x[2][2][0][1:3]) [20, 30]

print(x[2][2][1]) mce

print(x[2][2][2]) pgt

print(x[4][0][::-1]) olleh

print(x[4][1][::-2]) iulp

Page | 68

29

List Comprehension

List comprehension is a concise way to create lists in Python by applying an

expression to each item in an iterable (like a list, tuple, or range) and then

collecting the results in a new list. It provides a compact and readable syntax to

generate lists without the need for explicit loops. List comprehensions are

powerful and versatile tools in Python, enabling you to create lists with complex

expressions and conditions in a succinct manner.

The basic syntax of list comprehension is:

new_list = [expression for item in iterable]

Here's an example to illustrate list comprehension:

Generating a list of squares using a for loop
squares_using_loop = []
for x in range(1, 6):
 squares_using_loop.append(x ** 2)

Generating a list of squares using list comprehension
squares_using_comprehension = [x ** 2 for x in range(1, 6)]

print("Squares using loop:", squares_using_loop)
print("Squares using comprehension:", squares_using_comprehension)

Output

Squares using loop: [1, 4, 9, 16, 25]

Squares using comprehension: [1, 4, 9, 16, 25]

You can also include conditions (filtering) in list comprehensions using an if

statement. Here's an example:

Generating a list of even squares using list comprehension with a condition
even_squares = [x ** 2 for x in range(1, 6) if x % 2 == 0]
print("Even squares:", even_squares)

Python Quick Reference

Page | 69

In this example, only the squares of even numbers from 1 to 5 are included in

the even_squares list.

Example: List Comprehension

Sl.

No
List Comprehension Output

1 [x for x in range(5)] [0, 1, 2, 3, 4]

2 [x*2 for x in range(4)] [0, 2, 4, 6]

3 [c.upper() for c in "hello"] ['H', 'E', 'L', 'L', 'O']

4 [len(word) for word in ["cat", "dog",

"elephant"]]

[3, 3, 8]

5 [(x, y) for x in range(3) for y in

range(2)]

[(0, 0), (0, 1), (1, 0), (1, 1),

(2, 0), (2, 1)]

6 [row[0] for row in matrix] Output depends on the

matrix used.

7 [num for num in range(10) if num % 2

== 0]

[0, 2, 4, 6, 8]

8 [x + y for x in list1 for y in list2] Output depends on list1 and

list2.

9 [word[::-1] for word in words] ['tac', 'god', 'tnahpele']

10 [num if num % 2 == 0 else "odd" for

num in range(6)]

[0, 'odd', 2, 'odd', 4, 'odd']

11 [x for x in range(1, 11) if x % 2 == 0] [2, 4, 6, 8, 10]

12 [char.upper() for word in sentence.split()

for char in word]

Depends on sentence.

13 [x**2 for x in range(5)] [0, 1, 4, 9, 16]

14 [len(word) for word in sentence.split()] Output depends on sentence.

15 [num * 2 for num in range(1, 6)] [2, 4, 6, 8, 10]

16 [char for word in words if len(word) > 3

for char in word]

Depends on words.

17 [x * y for x in range(1, 4) for y in

range(1, 4)]

[1, 2, 3, 2, 4, 6, 3, 6, 9]

18 [num for num in range(1, 11) if num %

2 != 0]

[1, 3, 5, 7, 9]

19 [c for c in "hello" if c.isalpha()] ['h', 'e', 'l', 'l', 'o']

20 [x**2 if x % 2 == 0 else x for x in

range(1, 6)]

[1, 4, 3, 16, 5]

21 [num for num in range(1, 11) if num %

3 == 0]

[3, 6, 9]

22 [word.upper() for word in

sentence.split()]

Output depends on sentence.

Python Quick Reference

Page | 70

23 [len(word) for word in words if

len(word) % 2 == 0]

Depends on words.

24 [char * 3 for char in "python"] ['ppp', 'yyy', 'ttt', 'hhh', 'ooo',

'nnn']

25 [x**3 if x % 2 == 0 else x**2 for x in

range(1, 6)]

[1, 4, 9, 16, 25]

26 [word[:3] for word in sentence.split()] Output depends on sentence.

27 [num for num in range(1, 21) if num %

2 == 0 or num % 5 == 0]

[2, 4, 5, 6, 8, 10, 12, 15, 16,

18, 20]

28 [char for char in "programming" if char

not in "aeiou"]

['p', 'r', 'g', 'r', 'm', 'm', 'n', 'g']

29 [x*y for x in range(2, 5) for y in

range(1, 4)]

[2, 4, 6, 3, 6, 9, 4, 8, 12]

30 [word for word in words if len(word) >=

5 and word.endswith("s")]

Depends on words.

31 [num if num % 2 == 0 else -num for

num in range(1, 6)]

[-1, 2, -3, 4, -5]

32 [char.upper() if index % 2 == 0 else

char.lower() for index, char in

enumerate("listcomp")]

'LiStCoMp'

33 [str(x) + str(y) for x in range(1, 4) for y

in range(3, 6)]

['13', '14', '15', '23', '24', '25',

'33', '34', '35']

34 [word[::-1] for word in sentence.split()

if len(word) % 2 == 0]

Output depends on sentence.

35 [x for x in range(1, 11) if all(x % i != 0

for i in range(2, int(x**0.5) + 1))]

[2, 3, 5, 7]

Page | 71

30

Strings

In Python, a string is a sequence of characters enclosed within single ('') or

double (" ") quotes. Strings are widely used to represent textual data and can

contain letters, numbers, symbols, and whitespace.

Here are some examples that illustrate the concept of strings in Python:

Sl.

No
Concept Examples

1

Creating Strings: You can create

strings by enclosing characters in

either single or double quotes.

single_quoted = 'This is a single-
quoted string.'
double_quoted = "This is a
double-quoted string."

2

Escaping Characters: You can

use escape characters (prefixed

with a backslash) to include

special characters within a string.

escaped_string = "She said,
\"Hello!\""
newline_string = "Line 1\n Line
2”

3 Multiline Strings: Triple quotes

(''' or """) are used to create

multiline strings, which can span

across multiple lines.

multiline = '''This is a
multiline
string.'''

4 String Concatenation: Strings

can be concatenated using the +

operator.

first_name = "John"
last_name = "Doe"
full_name = first_name + " " +
last_name
Produces : "John Doe”

5 String Replication: You can

replicate a string using the *

operator.

repeated = "abc" * 3
Produces: "abcabcabc"

6 String Indexing and Slicing:

Strings are sequences of

characters, and you can access

individual characters using index

positions. Indexing starts from 0.

word = "Python"
print(word[0]) # Output: "P"
print(word[2:5]) # Output: "tho"
print(word[:4]) # Output: "Pyth"
print(word[2:]) # Output: "thon"
print(word[-1]) # Output: "n"

Python Quick Reference

Page | 72

7 String Methods: Strings have

built-in methods for various

operations, such as transforming

case, finding substrings,

replacing, and more.

message = "Hello, World!"
print(message.upper())
Output: "HELLO, WORLD!"
print(message.lower())
Output: "hello, world!"
print(message.startswith("H"))
Output: True
print(message.find("World"))
Output: 7
print(message.replace("World",
"Python"))
Output: "Hello, Python!"

8 String Formatting: String

formatting allows you to insert

values into strings in a formatted

manner.

name = "Alice"
age = 30
formatted_string = f"My name is
{name} and I'm {age} years old."

These are just a few examples showcasing the use of strings in Python. Strings

are fundamental data types used for various purposes, including text processing,

manipulation, and representation.

String Manipulating Functions: String manipulating functions are built-in

functions in programming languages that allow you to perform various

operations on strings (sequences of characters). These functions help you

modify, extract, transform, and manipulate strings according to your

requirements. They are essential tools for tasks like searching, replacing,

formatting, and cleaning up strings. Here are some examples of string

manipulating functions in Python:

len(string): Returns the length of the string.

text = "Hello, world!"
length = len(text) # 13

string.lower() and string.upper(): Converts the string to lowercase or
uppercase.

message = "Python is Amazing"
lower_case = message.lower() # "python is amazing"
upper_case = message.upper() # "PYTHON IS AMAZING"

Python Quick Reference

Page | 73

string.replace(old, new): Replaces all occurrences of a substring with another
substring.

sentence = "I like cats, but I prefer dogs."
modified_sentence = sentence.replace("cats", "birds")
"I like birds, but I prefer dogs."

string.split(separator): Splits the string into a list of substrings based on the
provided separator.

names = "Alice,Bob,Charlie"
name_list = names.split(",") # ['Alice', 'Bob', 'Charlie']

string.join(iterable): Joins a sequence of strings into a single string using the
specified string as a separator.

words = ["Hello", "world", "Python"]
joined_string = " ".join(words) # "Hello world
Python"

string.startswith(prefix) and string.endswith(suffix): Checks if the string starts
with a given prefix or ends with a given suffix.

title = "Python Programming"
starts_with = title.startswith("Python") # True
ends_with = title.endswith("Programming") # True

string.strip(), string.lstrip(), string.rstrip(): Removes leading/trailing/both
whitespace characters from the string.

data = " example "
stripped = data.strip() # "example"

**string.format(*args, kwargs): Formats the string by replacing placeholders
with values from arguments or keyword arguments.

name = "Alice"
age = 30
message = "My name is {}, and I am {} years old.".format(name, age)
"My name is Alice, and I am 30 years old."

Python Quick Reference

Page | 74

f-strings (formatted string literals, Python 3.6+): Provides a concise way to
embed expressions inside string literals.

item = "book"
count = 5
description = f"I have {count} {item}s." # "I have 5 books."

Following table illustrates the list of some most important python functions,

syntax and examples

Sl.

No

String

Function
Syntax Example

1 len() len(string) length = len("Hello")
2 .upper() string.upper() "hello".upper() -> "HELLO"
3 .lower() string.lower() "Hello".lower() -> "hello"
4 .capitalize() string.capitalize() "hello world".capitalize() ->

"Hello world"
5 .title() string.title() "hello world".title() -> "Hello

World"
6 .swapcase() string.swapcase() "Hello World".swapcase() ->

"hELLO wORLD"
7 .strip() string.strip([characters]) " hello ".strip() -> "hello"
8 .rstrip() string.rstrip([characters]) "hello ".rstrip() -> "hello"
9 .lstrip() string.lstrip([characters]) " hello".lstrip() -> "hello"
10 .replace() string.replace(old, new) "Hello,

World!".replace("World",
"Python") -> "Hello,
Python!"

11 .count() string.count(substring) "hello hello".count("hello") -
> 2

12 .find() string.find(substring) "hello world".find("world") -
> 6

13 .index() string.index(substring) "hello world".index("world")
-> 6

14 .startswith() string.startswith(prefix) "hello
world".startswith("hello") ->
True

15 .endswith() string.endswith(suffix) "hello
world".endswith("world") ->
True

Python Quick Reference

Page | 75

16 .split() string.split([separator]) "apple,banana,cherry".split(
",") -> ['apple', 'banana',
'cherry']

17 .splitlines() string.splitlines() "Line 1\nLine 2".splitlines() -
> ['Line 1', 'Line 2']

18 .join() separator.join(iterable) ",".join(['apple', 'banana',
'cherry']) ->
"apple,banana,cherry"

19 .isalpha() string.isalpha() "hello".isalpha() -> True
20 .isdigit() string.isdigit() "123".isdigit() -> True
21 .isalnum() string.isalnum() "hello123".isalnum() -> True
22 .isspace() string.isspace() " ".isspace() -> True
23 .title() string.title() "hello world".title() -> "Hello

World"
24 .startswith() string.startswith(prefix) "hello

world".startswith("hello") ->
True

25 .endswith() string.endswith(suffix) "hello
world".endswith("world") ->
True

26 .isupper() string.isupper() "HELLO".isupper() -> True
27 .islower() string.islower() "hello".islower() -> True
28 .istitle() string.istitle() "Hello World".istitle() -> True
29 .find() string.find(substring) "hello world".find("world") -

> 6
30 .index() string.index(substring) "hello world".index("world")

-> 6
31 .replace() string.replace(old, new) "Hello,

World!".replace("World",
"Python") -> "Hello,
Python!"

32 .count() string.count(substring) "hello hello".count("hello") -
> 2

33 .center() string.center(width,
[fillchar])

"hello".center(10) -> " hello
"

34 .zfill() string.zfill(width) "42".zfill(5) -> "00042"
35 .startswith() string.startswith(prefix) "hello

world".startswith("hello") ->
True

Python Quick Reference

Page | 76

36 .endswith() string.endswith(suffix) "hello
world".endswith("world") ->
True

37 .isalpha() string.isalpha() "hello".isalpha() -> True
38 .isdigit() string.isdigit() "123".isdigit() -> True
39 .isalnum() string.isalnum() "hello123".isalnum() -> True
40 .isspace() string.isspace() " ".isspace() -> True
41 .join() separator.join(iterable) ",".join(['apple', 'banana',

'cherry']) ->
"apple,banana,cherry"

42 .split() string.split([separator]) "apple,banana,cherry".split(
",") -> ['apple', 'banana',
'cherry']

43 .splitlines() string.splitlines() "Line 1\nLine 2".splitlines() -
> ['Line 1', 'Line 2']

44 .encode() string.encode(encoding) "hello".encode("utf-8")

Consider a string x = "Contextual Python". Here are the values of the given

slice expressions for the string x = "Contextual Python":

x[:] (All characters): "Contextual Python"

x[::] (All characters with default step): "Contextual Python"

x[::-1] (All characters in reverse order): "nohtyP lautotsnoC"

x[0:16:1] (All characters from index 0 to 15 with step 1): "Contextual Pytho"

x[0:16:2] (Every second character from index 0 to 15): "Cnoua yhn"

x[0:16:3] (Every third character from index 0 to 15): "Ctayn"

x[0:16:4] (Every fourth character from index 0 to 15): "Cu h"

In slice expressions, the format is x[start:stop:step], where:

 start is the index to start slicing from (inclusive).

 stop is the index to stop slicing at (exclusive).

 step is the step size between elements in the slice. If not provided, it

defaults to 1

Page | 77

31

Format Operators

In Python, there are multiple ways to format and display output when using the

print statement or function. Three common methods for string formatting are the

% operator, the str.format() method, and f-strings (formatted string literals).

Each method has its own syntax and use cases. Let's explore them with

examples:

1. % Operator (String Interpolation)

The % operator is an older way of formatting strings in Python. It is often

referred to as "string interpolation." You use placeholders in the string and

then provide values to replace those placeholders using the % operator.

name = "Alice"
age = 30

Using the % operator
print("My name is %s, and I am %d years old." % (name, age))

Output

My name is Alice, and I am 30 years old.

In this example

%s is a placeholder for a string.

%d is a placeholder for an integer.

You provide the values to replace these placeholders in the same order in

which they appear in the string.

2. str.format() Method

The str.format() method is a more flexible and modern way of formatting

strings. It uses placeholders enclosed in curly braces {} and allows you to

specify the order of replacement using positional or keyword arguments.

name = "Bob"

Python Quick Reference

Page | 78

age = 25

Using str.format()
print("My name is {}, and I am {} years old.".format(name, age))

Output

My name is Bob, and I am 25 years old.

You can also use positional and keyword arguments to specify the values for

placeholders, providing more control over the formatting:

Using positional arguments
print("My name is {0}, and I am {1} years old.".format(name, age))

Using keyword arguments
print("My name is {name}, and I am {age} years old.".format(name=name,
age=age))

3. f-strings (Formatted String Literals)

f-strings are a concise and Pythonic way to format strings. They were

introduced in Python 3.6 and provide a more readable and convenient way to

interpolate variables directly into string literals.

name = "Eve"
age = 22

Using f-strings
print(f"My name is {name}, and I am {age} years old.")

Output

My name is Eve, and I am 22 years old.

In an f-string, you place an f or F character before the string literal, and you

can directly embed variables and expressions within curly braces {}. Python

evaluates the expressions and inserts their values into the string at runtime.

f-strings offer the advantages of readability, clarity, and simplicity for string

formatting.

In summary, Python provides several methods for string formatting: %

operator, str.format() method, and f-strings (f"..."). You can choose the one

that suits your coding style and readability preferences. F-strings are

recommended for Python 3.6 and later due to their readability and

convenience.

Page | 79

32

Tuples

A tuple in Python is an ordered, immutable collection of elements. Tuples are

like lists, but they cannot be modified once created. They are defined using

parentheses () and can hold a mix of different data types, including numbers,

strings, and even other tuples.

Here's an explanation of tuples with examples and applications:

Creating Tuples: You can create a tuple by enclosing elements in parentheses.

Elements are separated by commas.

Creating tuples
empty_tuple = ()
single_item_tuple = (42,)
fruit_tuple = ("apple", "banana", "orange")
mixed_tuple = ("Alice", 25, True)

Accessing Elements: You can access elements of a tuple using indexing, just

like with lists.

fruits = ("apple", "banana", "orange")
print(fruits[0]) # "apple"
print(fruits[2]) # "orange"

Tuples are Immutable: Unlike lists, once a tuple is created, you cannot modify

its elements. You can't add, remove, or change elements.

fruits = ("apple", "banana", "orange")
fruits[0] = "pear" # This will result in an error

Tuple Unpacking: You can unpack a tuple into variables, which can be useful

when returning multiple values from a function.

name, age = ("Alice", 30)
print(name) # "Alice"
print(age) # 30

Python Quick Reference

Page | 80

Applications of Tuples

Returning Multiple Values: Functions can return multiple values as a tuple.

This is particularly useful when you want to return different pieces of

information together.

def get_name_and_age():
 return "Alice", 30

name, age = get_name_and_age()

Data Integrity: Tuples can be used to ensure the integrity of data. If you want

to represent data that should not be changed, using a tuple can prevent

accidental modifications.

Dictionary Keys: Since tuples are immutable, they can be used as keys in

dictionaries, unlike lists.

coordinates =
{

(10, 20): "Location A",
 (5, 15): "Location B"

}

Database Records: Tuples can be used to store database records. Each tuple

element can represent a different field in the record.

user_record = ("Alice", "alice@example.com", 25)

Unordered Operations: In cases where order doesn't matter, and you want to

prevent modifications, tuples are a good choice. For example, storing RGB

color values.

white = (255, 255, 255)

Multiple Data Types: Tuples can hold elements of different data types, making

them suitable for scenarios where you need to group heterogeneous data.

student_info = ("Alice", 25, [95, 87, 92])

Tuples are a versatile data structure, and their immutability makes them suitable

for situations where you want to store data that shouldn't change after creation

or when you want to group related information together.

Page | 81

33

Python References

In Python, variables work as references to objects in memory. Understanding

references in Python is essential because it affects how data is stored, shared,

and manipulated. Let's explore the concept of references in Python with

examples:

Assigning Variables

When you create a variable and assign it a value, you're creating a reference to

an object in memory. For example:

x = 42

Here, x is a reference to the integer object 42.

Multiple References

You can have multiple variables referencing the same object:

a = 10

b = a # Both a and b reference the same integer object 10.

Changes to a will affect b, and vice versa because they both refer to the same

object.

Lists and References

Lists in Python also work with references. When you create a list and assign it

to another variable, both variables reference the same list:

list1 = [1, 2, 3]
list2 = list1 # Both list1 and list2 reference the same list object.

Changes made to list1 will be reflected in list2, and vice versa.

Python Quick Reference

Page | 82

Function Parameters

In Python, function parameters are references to objects. When you pass an

object as an argument to a function, you're passing a reference to that object.

Here's an example:

def modify_list(my_list):
 my_list.append(4)

original_list = [1, 2, 3]
modify_list(original_list)

In this case, modify_list modifies the original list because it received a reference

to the same list object.

Objects and Classes

Python's object-oriented nature relies heavily on references. When you create an

instance of a class, you're creating a reference to that object:

class Person:
 def __init__(self, name):
 self.name = name

person1 = Person("Alice")
person2 = person1 # Both person1 and person2 reference the same Person
object.

Here, both person1 and person2 reference the same Person object.

Copying vs. Referencing

Python offers ways to create copies of objects instead of referencing the same

object. For example, you can create a shallow copy of a list using slicing:

list1 = [1, 2, 3]
list2 = list1[:] # Create a shallow copy of list1.

Now, list1 and list2 are separate objects, and changes to one won't affect the

other.

Understanding references is crucial in Python to avoid unexpected behavior,

especially when working with mutable objects like lists and dictionaries. It

helps you manage how data is shared and modified across different parts of your

code.

Page | 83

34

Dictionaries

Dictionaries in Python: A dictionary is a built-in data structure in Python that

allows you to store and manage data in key-value pairs. Each key in a dictionary

is unique, and it maps to a corresponding value. Dictionaries are unordered

collections, meaning the order of the key-value pairs isn't guaranteed to be

maintained.

Creating Dictionaries: You can create a dictionary using curly braces {} and

specifying key-value pairs separated by colons. Here are examples of creating

dictionaries:

Creating an empty dictionary
empty_dict = {}

Creating a dictionary with multiple elements
student =
{
 "name": "Alice",
 "age": 25,
 "grade": "A"
}

Accessing and Modifying Values: You can access values in a dictionary by

providing the corresponding key in square brackets. You can also modify values

using their keys.

Accessing values
name = student["name"] # "Alice"
age = student["age"] # 25

Modifying values
student["grade"] = "B"

Adding and Removing Key-Value Pairs: You can add new key-value pairs to

a dictionary by assigning a value to a new key. You can also remove key-value

pairs using the del statement.

Adding a new key-value pair

Python Quick Reference

Page | 84

student["school"] = "ABC School"
Removing a key-value pair
del student["age"]

Dictionary Methods: Dictionaries provide several methods for performing

various operations:

keys = student.keys() # Returns keys as a view
values = student.values() # Returns values as a view
items = student.items() # Returns key-value pairs as a view

Examples and Applications

Data Storage and Retrieval: Dictionaries are often used to store data with

meaningful identifiers (keys) for easy retrieval.

user =
{
 "username": "john_doe",
 "email": "john@example.com"
}

Configurations and Settings: Dictionaries are handy for storing configuration

settings and preferences.

app_config =
{
 "theme": "dark",
 "language": "en"
}

Frequency Counting: Dictionaries are used to count occurrences of items in a

dataset.

text = "hello world"
char_count = {}
for char in text:
 if char in char_count:
 char_count[char] += 1
 else:
 char_count[char] = 1

Python Quick Reference

Page | 85

Lookup and Mapping: Dictionaries are effective for mapping one value to

another.

product_prices =
{
 "apple": 0.5,
 "banana": 0.3
}
price = product_prices["apple"] # 0.5

Data Aggregation: Dictionaries can be used to aggregate data by grouping

related information.

sales = [
 {"product": "apple", "quantity": 5},
 {"product": "banana", "quantity": 3}
]
product_quantities = {}
for sale in sales:
 product = sale["product"]
 quantity = sale["quantity"]
 if product in product_quantities:
 product_quantities[product] += quantity
 else:
 product_quantities[product] = quantity

JSON-like Data: Dictionaries can represent structured data, similar to JSON.

person =
{
 "name": "Alice",
 "age": 30,
 "address":

{
 "street": "123 Main St",
 "city": "Cityville"
 }
}

Python Quick Reference

Page | 86

Dictionaries are essential for storing and manipulating data using meaningful

labels (keys). They are widely used for tasks involving data organization,

lookups, mappings, and aggregations.

Dictionary Manipulating Functions

Sl.

No
Function Example Output

1 dict.keys() my_dict = {"a": 1, "b": 2}
keys = my_dict.keys()

keys = ["a", "b"]

2 dict.values() my_dict = {"a": 1, "b": 2}
values = my_dict.values()

values = [1, 2]

3 dict.items() my_dict = {"a": 1, "b": 2}
items = my_dict.items()

items = [("a", 1),
("b", 2)]

4 dict.get(key, default) my_dict = {"a": 1, "b": 2}
value = my_dict.get("c", 0)

value = 0

5 dict.setdefault(key,
default)

my_dict = {"a": 1, "b": 2}
value =
my_dict.setdefault("c", 0)

value = 0

6 dict.pop(key, default) my_dict = {"a": 1, "b": 2}
value = my_dict.pop("a", 0)

value = 1

7 dict.popitem() my_dict = {"a": 1, "b": 2}
key, value =
my_dict.popitem()

key = "b", value
= 2

8 dict.update(other_dict) my_dict = {"a": 1}
other_dict = {"b": 2}
my_dict.update(other_dict)

my_dict = {"a":
1, "b": 2}

9 dict.clear() my_dict = {"a": 1, "b": 2}
my_dict.clear()

my_dict = {}

10 len(dict) my_dict = {"a": 1, "b": 2}
length = len(my_dict)

length = 2

11 key in dict my_dict = {"a": 1, "b": 2}
exists = "a" in my_dict

exists = True

12 dict.copy() my_dict = {"a": 1, "b": 2}
new_dict = my_dict.copy()

new_dict = {"a":
1, "b": 2}

13 dict.fromkeys(keys,
value)

keys = ["a", "b"]
value = 0
new_dict =
dict.fromkeys(keys, value)

new_dict = {"a":
0, "b": 0}

14 dict.items() my_dict = {"a": 1, "b": 2} items = [("a", 1),

Python Quick Reference

Page | 87

items = my_dict.items() ("b", 2)]
15 dict.keys() my_dict = {"a": 1, "b": 2}

keys = my_dict.keys()
keys = ["a", "b"]

16 dict.values() my_dict = {"a": 1, "b": 2}
values = my_dict.values()

values = [1, 2]

17 dict.popitem() my_dict = {"a": 1, "b": 2}
key, value =
my_dict.popitem()

key = "b", value
= 2

18 dict.values() my_dict = {"a": 1, "b": 2}
values = my_dict.values()

values = [1, 2]

19 dict.popitem() my_dict = {"a": 1, "b": 2}
key, value =
my_dict.popitem()

key = "b", value
= 2

20 dict.clear() my_dict = {"a":1,"b":2}
 my_dict.clear()

my_dict = {}

21 len(dict) my_dict = {"a": 1, "b": 2}
 length = len(my_dict)

length = 2

22 key in dict my_dict = {"a": 1, "b": 2}
exists = "a" in my_dict

exists = True

23 dict.copy() my_dict = {"a": 1, "b": 2}
 new_dict = my_dict.copy()

new_dict = {"a":
1, "b": 2}

24 dict.fromkeys(keys,
value)

keys = ["a", "b"]
value = 0
new_dict =
dict.fromkeys(keys, value)

new_dict = {"a":
0, "b": 0}

25 dict.clear() my_dict = {"a": 1, "b": 2}
my_dict.clear()

my_dict = {}

Page | 88

35

Sets

Sets in Python: A set is an unordered collection of unique elements in Python.

Sets are used to store a collection of distinct items, and they are particularly

useful for membership testing and eliminating duplicate values from a

sequence. Sets are defined using curly braces {}.

Creating Sets: You can create a set by enclosing elements in curly braces, or by

using the set() constructor. Here are examples of creating sets:

Creating an empty set
empty_set = set()

Creating a set with multiple elements
fruits = {"apple", "banana", "orange"}

Using the set() constructor
colors = set(["red", "green", "blue"])

Adding and Removing Elements: You can add elements to a set using the

add() method, and you can remove elements using the remove() method.

fruits = {"apple", "banana"}
fruits.add("orange")
fruits.remove("apple")

Set Operations: Sets support various set operations such as union, intersection,

and difference.

set1 = {1, 2, 3}
set2 = {3, 4, 5}

union = set1 | set2 # Union: {1, 2, 3, 4, 5}
intersection = set1 & set2 # Intersection: {3}
difference = set1 - set2 # Difference: {1, 2}

Python Quick Reference

Page | 89

Set Methods: Python sets provide several methods for performing operations

on sets:

Union using the union() method
 union = set1.union(set2)

Intersection using the intersection() method
 intersection = set1.intersection(set2)

Difference using the difference() method

difference = set1.difference(set2)

Page | 90

36

Sets Examples and Applications

Removing Duplicates: Sets are useful for removing duplicate values from a

sequence, such as a list.

numbers = [1, 2, 2, 3, 4, 4, 5]
unique_numbers = set(numbers)

Membership Testing: Sets are designed for efficient membership testing.

student_names = {"Alice", "Bob", "Charlie"}

if "Alice" in student_names:
 print("Alice is in the set")

Mathematical Set Operations: Sets are commonly used to perform

mathematical set operations.

set1 = {1, 2, 3}
set2 = {3, 4, 5}
union = set1.union(set2)
intersection = set1.intersection(set2)

Removing Duplicates from Text: Sets can be used to extract unique words

from a text document.

text = "This is a sample text. This text has repeated words."
words = set(text.split())

Data Filtering: Sets can be used to filter out specific elements from a dataset.

all_products = {"apple", "banana", "orange", "grape"}
selected_products = {"apple", "banana"}
filtered_products = all_products - selected_products

Membership Check in Social Networks: Sets can be used to determine

common friends or connections in social networks.

Python Quick Reference

Page | 91

my_connections = {"Alice", "Bob", "Charlie"}
friend_connections = {"Alice", "David", "Eve"}
common_friends = my_connections & friend_connections

Set-based Operations in Database Queries: Sets can be used to perform set-

based operations in database queries.

approved_users = {"Alice", "Charlie", "David"}
users_query = "SELECT * FROM users WHERE username IN
{}".format(tuple(approved_users))

Sets are versatile data structures in Python that are particularly useful for

managing collections of distinct and unordered items. They have applications in

data processing, filtering, and various operations involving unique elements.

Page | 92

37

Set Operations

Set operations in Python involve various operations that you can perform on

sets to manipulate their elements and relationships. Here are the common set

operations with explanations and examples:

Union (union() or |): The union of two sets A and B is a set containing all the

elements from both A and B without duplicates.

Example

set1 = {1, 2, 3}
set2 = {3, 4, 5}
result_set = set1.union(set2)

Alternatively: result_set = set1 | set2
print(result_set) # Output: {1, 2, 3, 4, 5}

Intersection (intersection() or &): The intersection of two sets A and B is a set

containing elements that are present in both A and B.

Example

set1 = {1, 2, 3}
set2 = {3, 4, 5}
result_set = set1.intersection(set2)
Alternatively: result_set = set1 & set2
print(result_set) # Output: {3}

Difference (difference() or -): The difference between two sets A and B (A - B)

is a set containing elements that are in A but not in B.

Example

set1 = {1, 2, 3}
set2 = {3, 4, 5}
result_set = set1.difference(set2)
Alternatively: result_set = set1 - set2
print(result_set) # Output: {1, 2}

Python Quick Reference

Page | 93

Symmetric Difference (symmetric_difference() or ^): The symmetric

difference between two sets A and B is a set containing elements that are in

either A or B, but not in both.

Example

set1 = {1, 2, 3}
set2 = {3, 4, 5}
result_set = set1.symmetric_difference(set2)
Alternatively: result_set = set1 ^ set2
print(result_set) # Output: {1, 2, 4, 5}

Subset (issubset()): Checks if one set is a subset of another set. A set A is a

subset of B if all elements of A are also in B.

Example

set1 = {1, 2}
set2 = {1, 2, 3, 4}
is_subset = set1.issubset(set2)
print(is_subset) # Output: True

Superset (issuperset()): Checks if one set is a superset of another set. A set A is

a superset of B if all elements of B are also in A.

Example

set1 = {1, 2, 3, 4}
set2 = {1, 2}
is_superset = set1.issuperset(set2)
print(is_superset) # Output: True

These are some of the basic set operations available in Python. They are used to

perform common set manipulations and comparisons efficiently.

Page | 94

38

Sets Manipulation Functions

Sl.

No
Function Example Output

1 add() my_set = {1, 2, 3}
my_set.add(4)

{1, 2, 3, 4}

2 remove() my_set = {1, 2, 3}
my_set.remove(2)

{1, 3}

3 discard() my_set = {1, 2, 3}
my_set.discard(2)

{1, 3}

4 pop() my_set = {1, 2, 3}
removed_item =
my_set.pop()

removed_item
can be 1, 2, or 3

5 clear() my_set = {1, 2, 3}
my_set.clear()

{}

6 update() or union() set1 = {1, 2, 3}
set2 = {3, 4, 5}
set1.update(set2)

{1, 2, 3, 4, 5}

7 intersection_update
()

set1 = {1, 2, 3}
set2 = {3, 4, 5}
set1.intersection_update(s
et2)

{3}

8 difference_update() set1 = {1, 2, 3}
set2 = {3, 4, 5}
set1.difference_update(set
2)

{1, 2}

9 symmetric_differenc
e_update()

set1 = {1, 2, 3}
set2 = {3, 4, 5}
set1.symmetric_difference
_update(set2)

{1, 2, 4, 5}

10 intersection() set1 = {1, 2, 3}
set2 = {3, 4, 5}
result_set =
set1.intersection(set2)

{3}

Python Quick Reference

Page | 95

11 difference() set1 = {1, 2, 3}
set2 = {3, 4, 5}
result_set =
set1.difference(set2)

{1, 2}

12 symmetric_differenc
e()

set1 = {1, 2, 3}
set2 = {3, 4, 5}
result_set =
set1.symmetric_difference(
set2)

{1, 2, 4, 5}

13 union() set1 = {1, 2, 3}
set2 = {3, 4, 5}
result_set =
set1.union(set2)

{1, 2, 3, 4, 5}

14 issubset() set1 = {1, 2}
set2 = {1, 2, 3, 4}
is_subset =
set1.issubset(set2)

True

15 issuperset() set1 = {1, 2, 3, 4}
set2 = {1, 2}
is_superset =
set1.issuperset(set2)

True

16 copy() set1 = {1, 2, 3}
set2 = set1.copy()

set2 is a copy of
{1, 2, 3}

17 clear() my_set = {1, 2, 3}
my_set.clear()

my_set is now an
empty set: {}

18 isdisjoint() set1 = {1, 2, 3}
set2 = {4, 5, 6}
is_disjoint =
set1.isdisjoint(set2)

True (no common
elements)

19 remove() my_set = {1, 2, 3}
my_set.remove(2)

{1, 3}

20 discard() my_set = {1, 2, 3}
my_set.discard(2)

{1, 3}

21 pop() my_set = {1, 2, 3}
removed_item =
my_set.pop()

removed_item
can be 1, 2, or 3

22 union() or ` set1 = {1, 2, 3}
set2 = {3, 4, 5}
result_set =
set1.union(set2)

Python Quick Reference

Page | 96

23 intersection() or & set1 = {1, 2, 3}
set2 = {3, 4, 5}
result_set =
set1.intersection(set2)

{3}

24 difference() or - set1 = {1, 2, 3}
set2 = {3, 4, 5}
result_set =
set1.difference(set2)

{1, 2}

25 symmetric_differenc
e() or ^

set1 = {1, 2, 3}
set2 = {3, 4, 5}
result_set =
set1.symmetric_difference(
set2)

{1, 2, 4, 5}

26 update() set1 = {1, 2, 3}
set2 = {3, 4, 5}
set1.update(set2)

set1 is updated to
{1, 2, 3, 4, 5}

27 intersection_update
()

set1 = {1, 2, 3}
set2 = {3, 4, 5}
set1.intersection_update(s
et2)

set1 is updated to
{3}

28 difference_update() set1 = {1, 2, 3}
set2 = {3, 4, 5}
set1.difference_update(set
2)

set1 is updated to
{1, 2}

29 symmetric_differenc
e_update()

set1 = {1, 2, 3}
set2 = {3, 4, 5}
set1.symmetric_difference
_update(set2)

set1 is updated to
{1, 2, 4, 5}

16 copy() set1 = {1, 2, 3}
set2 = set1.copy()

set2 is a copy of
{1, 2, 3}

17 clear() my_set = {1, 2, 3}
my_set.clear()

my_set is now an
empty set: {}

18 isdisjoint() set1 = {1, 2, 3}
set2 = {4, 5, 6}
is_disjoint =
set1.isdisjoint(set2)

True (no common
elements)

19 remove() my_set = {1, 2, 3}
my_set.remove(2)

{1, 3}

20 discard() my_set = {1, 2, 3}
my_set.discard(2)

{1, 3}

Python Quick Reference

Page | 97

21 pop() my_set = {1, 2, 3}
removed_item =
my_set.pop()

removed_item
can be 1, 2, or 3

22 union() or ` set1 = {1, 2, 3}
set2 = {3, 4, 5}
result_set =
set1.union(set2)

Page | 98

39

Reading and Writing Files

In computer programming, a "file" refers to a named collection of data or

information that is stored on a storage medium, such as a hard drive, SSD, or

network storage. Files are used to store and organize data for various purposes,

and they come in different types and formats depending on their content and

usage. Here's an overview of files and some common types:

Text Files: Text files store data in plain text format, where each character is

represented by a specific character encoding (e.g., ASCII or UTF-8). They are

commonly used for storing human-readable text data, such as configuration

files, source code, and documents.

Binary Files: Binary files store data in a format that is not human-readable.

They can contain a wide range of data types, including images, audio, video,

executables, and more. Binary files are used to store non-textual data.

CSV (Comma-Separated Values) Files: CSV files are a specific type of text

file used for tabular data storage. They consist of rows and columns, with each

field separated by a comma or other delimiters like tabs or semicolons. CSV

files are commonly used for data interchange between applications.

JSON (JavaScript Object Notation) Files: JSON files are text-based data

interchange format often used for configuration files and data storage. They

represent data in a hierarchical key-value structure.

XML (eXtensible Markup Language) Files: XML files are used to store

structured data in a text-based format using custom tags. They are commonly

used for configuration files and data exchange between systems.

How to read and write files in Python

Reading Files in Python: Python provides several ways to read files. The most

common method uses the open() function and the read() or readline() methods.

Open a file for reading
with open('example.txt', 'r') as file:

Python Quick Reference

Page | 99

 content = file.read() # Read the entire file
 # Alternatively, you can read line by line using a loop
 # for line in file:
 # process(line)

In this code, 'example.txt' is the name of the file you want to read. The 'r'

argument indicates that you are opening the file for reading. Using a with

statement ensures that the file is properly closed after reading.

Writing Files in Python: To write data to a file, you can open it in write mode

('w') or append mode ('a'). Here's how to write to a file:

Open a file for writing
with open('output.txt', 'w') as file:
 file.write("Hello, World!\n") # Write a string to the file

To append data to an existing file
with open('output.txt', 'a') as file:
 file.write("This is an appended line.")

Remember that opening a file in write mode ('w') will overwrite the file's

existing content, so use it carefully. If you want to add content without

overwriting, use append mode ('a').

Python also provides context managers (the with statement) to automatically

close files after reading or writing, ensuring proper resource management.

These are the basics of reading and writing files in Python. Depending on your

specific requirements, you may need to work with different file types and use

specialized libraries for parsing and processing data in those files.

Here's a table listing common file handling functions in Python, along with their

syntax and examples:

Sl. No Function Syntax Example

1 open() open(file, mode,
buffering)

with open('example.txt', 'r')
as file:
 content = file.read()

2 close() file.close() file.close()
3 read() file.read(size=-1) content = file.read()
4 readline() file.readline(size=-1) line = file.readline()
5 readlines() file.readlines(hint=-1) lines = file.readlines()

Python Quick Reference

Page | 100

6 write() file.write(string) file.write("Hello, World!")
7 writelines() file.writelines(lines) file.writelines(['Line 1', 'Line

2'])
8 tell() file.tell() position = file.tell()
9 seek() file.seek(offset,

whence=0)
file.seek(0, 0)

10 flush() file.flush() file.flush()
11 truncate() file.truncate(size=None) file.truncate(100)
12 exists() os.path.exists(path) import os

exists =
os.path.exists('myfile.txt')

13 isfile() os.path.isfile(path) python import os
isfile =
os.path.isfile('myfile.txt')

14 isdir() os.path.isdir(path) python import os
 isdir =
os.path.isdir('/myfolder')

15 mkdir() os.mkdir(path,
mode=0o777, *,
dir_fd=None)

python import os
os.mkdir('newfolder')

16 rmdir() os.rmdir(path, *,
dir_fd=None)

python import os
os.rmdir('oldfolder')

17 rename() os.rename(src, dst, *,
src_dir_fd=None,
dst_dir_fd=None)

python import os
os.rename('old.txt',
'new.txt')

18 remove() os.remove(path, *,
dir_fd=None)

python import os
os.remove('file.txt')

Note: Functions like os.path.exists(), os.path.isfile(), os.path.isdir(), etc., are

part of the os module and are used to check file and directory attributes. These

are not file operations themselves but are commonly used alongside file

handling.

Page | 101

40

Organizing Files

Organizing files in Python involves performing various file management tasks

like creating directories, moving files, renaming files, and deleting files. The os

module and the shutil module are commonly used for these purposes. Below

are examples of how to organize files in Python:

Creating Directories: The os.mkdir() function can be used to create a new

directory.

import os
Create a new directory
os.mkdir('my_folder')

Moving Files: The shutil.move() function can be used to move files from one

location to another.

import shutil
Move a file to a new directory
shutil.move('file.txt', 'my_folder/')

Renaming Files: To rename a file, use the os.rename() function.

import os
Rename a file
os.rename('old_name.txt', 'new_name.txt')

Deleting Files: You can use the os.remove() function to delete a file.

import os
Delete a file
os.remove('file_to_delete.txt')

Listing Files in a Directory: To list all files in a directory, the os.listdir()
function can be used as illustrated below:

Python Quick Reference

Page | 102

import os
List all files in the current directory
files = os.listdir('.')
for file in files:
 print(file)

Filtering Files by Extension: You can filter files by their extensions using list

comprehensions.

import os
List all .txt files in the current directory
txt_files = [file for file in os.listdir('.') if file.endswith('.txt')]
for file in txt_files:
 print(file)

Recursively Walking Through Directories: The os.walk() function enables

recursive directory traversal.

import os
Recursively list all files and directories
for root, dirs, files in os.walk('.'):
 for file in files:
 print(os.path.join(root, file))

Copying Files: The shutil.copy() function can be used to copy files.

import shutil
Copy a file to a new location
shutil.copy('source_file.txt', 'destination_folder/')

Deleting Directories: To delete a directory, use the os.rmdir() function (for

empty directories) or shutil.rmtree() (to remove directories and their contents).

import os
import shutil

Remove an empty directory
os.rmdir('empty_folder')

Remove a directory and its contents recursively
shutil.rmtree('directory_to_remove')

Python Quick Reference

Page | 103

These are some common file organization tasks in Python. The os and shutil

modules provide a wide range of functions for managing files and directories, to

automate various file-related operations in Python programs.

Page | 104

41

Debugging

Debugging is the process of identifying and fixing errors or bugs in code.

Python provides several tools and techniques to help developers debug their

programs effectively. This section discusses the concept of debugging with

examples using Python's built-in debugging tools.

1. Print Statements: One of the simplest debugging techniques is to use print

statements to display variable values or program flow information. This can

help user to understand how program is executing.

Example

def divide(a, b):
 result = a / b
 print(f"Dividing {a} by {b} gives {result}")
 return result

result = divide(10, 2)

2. Using pdb (Python Debugger): Python comes with a built-in interactive

debugger called pdb. Breakpoints can be inserted into the code and

interactively inspect variables and step through the code.

Example

import pdb

def divide(a, b):
 pdb.set_trace() # Start debugging session
 result = a / b
 return result

result = divide(10, 2)

When user run this code, it will pause execution at the pdb.set_trace() line,

allowing user to interactively inspect variables and step through the code

using commands like c (continue), n (next line), s (step into function), and

more.

Python Quick Reference

Page | 105

3. Using IDEs with Debugging Support: Integrated Development

Environments (IDEs) like PyCharm, Visual Studio Code, and others provide

advanced debugging features. One can set breakpoints, inspect variables, and

use visual debugging tools.

Example using Visual Studio Code: Set a breakpoint by clicking to the left

of the line number. Run Python script in debug mode. The program will stop

at the breakpoint, and user can inspect variables in the Debug Sidebar.

4. Assertions: Assertions are used to check if a condition holds true at a

particular point in the code. If the condition is False, an AssertionError is

raised, helping programmer to identify issues.

Example

def divide(a, b):
 assert b != 0, "Division by zero is not allowed"
 result = a / b
 return result

result = divide(10, 0) # This will raise an AssertionError

5. Logging: Python's logging module allows you to add detailed log messages

to your code. This can help you track the flow of your program and capture

relevant information.

Example

import logging
logging.basicConfig(level=logging.DEBUG)

def divide(a, b):
 logging.debug(f"Dividing {a} by {b}")
 result = a / b
 return result

result = divide(10, 2)

The log messages will provide insights into the program's execution.

6. Using try and except: You can use try-except blocks to catch and handle

exceptions gracefully. This prevents your program from crashing and allows

you to handle errors more effectively.

Python Quick Reference

Page | 106

Example

def divide(a, b):
 try:
 result = a / b
 except ZeroDivisionError as e:
 print(f"Error: {e}")
 result = None
 return result

result = divide(10, 0)

These are some of the common techniques for debugging in Python. Effective

debugging is an essential skill for any developer, as it helps identify and resolve

issues in the code, leading to more robust and reliable software.

Page | 107

42

Object Oriented Programming

Object-Oriented Programming (OOP) is a programming paradigm that revolves

around the concept of "objects." In OOP, software is designed and structured

using objects, which are instances of classes. Objects can contain both data

(attributes) and the methods (functions) that operate on that data. Python is an

object-oriented programming language, and it fully supports OOP principles.

The key OOP concepts in Python with examples are as follows:

1. Classes and Objects: In Python, a class is a blueprint or template for

creating objects, and an object is an instance of a class. Classes provide a

way to define the structure and behavior of objects, allowing programmers to

create and manipulate objects based on that blueprint. Let's delve deeper into

classes and objects in Python:

Defining a Class: To define a class in Python, use the class keyword,

followed by the class name. Inside a class, define attributes (data) and

methods (functions) that operate on those attributes. Here's a basic example

of a class definition:

class Person:
 def __init__(self, name, age):
 self.name = name
 self.age = age

 def greet(self):
 return f"Hello, my name is {self.name} and I am {self.age} years old."

In this example

 Person is the class name.

 The __init__ method is a special method called a constructor. It

initializes object attributes when an object is created.

 self is a reference to the object being created. It is the first parameter of

all instance methods in Python and is used to access and manipulate

object attributes.

Python Quick Reference

Page | 108

Creating Objects (Instances): Once a class has been defined, objects

(instances) of that class can be created. Objects are instances of the class and

contain the attributes and methods defined in the class. The creation of

objects is done as follows.

Create two instances of the Person class
person1 = Person("Alice", 30)
person2 = Person("Bob", 25)
In this example, person1 and person2 are objects created from the Person

class.

Accessing Attributes and Methods: The attributes and methods of an

object can be accessed using the dot notation. For example:

print(person1.name) # Access the 'name' attribute of person1
print(person2.greet()) # Call the 'greet' method of person2.

2. Encapsulation: Encapsulation is the practice of bundling data (attributes)

and methods (functions) that operate on that data into a single unit (i.e., a

class). It helps in hiding the internal implementation details and provides an

interface to interact with the object.

Here's an example of encapsulation in Python:

class Student:
 def __init__(self, name, roll_number):
 self.__name = name # Private attribute
 self._roll_number = roll_number # Protected attribute

 # Public method to get the student's name
 def get_name(self):
 return self.__name

 # Public method to set the student's name
 def set_name(self, name):
 if len(name) > 0:
 self.__name = name

 # Public method to display student details
 def display_details(self):
 print(f"Name: {self.__name}")

Python Quick Reference

Page | 109

 print(f"Roll Number: {self._roll_number}")
Creating a Student object
student = Student("Alice", "A12345")

Accessing public methods to get and set private attributes
student.set_name("Bob")
print("Student's Name:", student.get_name())

Accessing protected attribute directly (not recommended)
print("Roll Number:", student._roll_number)

Accessing private attribute directly (not recommended, but possible)
Note: It's a convention to prefix private attributes with double
underscores, but it's still accessible.
print("Name (Direct Access):", student._Student__name)

Displaying student details using a public method
student.display_details()

In this example

__name is a private attribute, indicated by the double underscores prefix. It's

intended to be hidden from external access.

_roll_number is a protected attribute, indicated by a single underscore

prefix. While not private, it's considered a convention that it should not be

accessed directly from outside the class.

get_name() and set_name() are public methods that provide controlled

access to the private __name attribute.

display_details() is a public method that displays the student's details.

Encapsulation ensures that the internal state of an object is not easily

modified from outside the class and that interactions with the object are done

through well-defined methods.

3. Inheritance: Inheritance allows a new class (subclass or derived class) to

inherit properties and methods from an existing class (superclass or base

class). This promotes code reuse and allows programmers to create

specialized classes based on existing ones.

class Animal:

Python Quick Reference

Page | 110

 def speak(self):
 pass

class Dog(Animal):
 def speak(self):
 return "Woof!"

class Cat(Animal):
 def speak(self):
 return "Meow!"

dog = Dog()
cat = Cat()

print(dog.speak()) # Output: Woof!
print(cat.speak()) # Output: Meow!

4. Polymorphism: Polymorphism allows objects of different classes to be

treated as objects of a common superclass. This concept is often

implemented through method overriding, where subclass methods provide

their own implementations of methods defined in the superclass.

Method overriding is a concept in object-oriented programming where a

subclass provides a specific implementation for a method that is already

defined in its superclass. The overridden method in the subclass should have

the same name, parameters, and return type as the method in the superclass.

This allows you to provide specialized behavior in the subclass while

maintaining a common interface.

Here's an example of method overriding in Python:

class Animal:
 def speak(self):
 return "This is a generic animal sound."

class Dog(Animal):
 def speak(self):
 return "Woof!"

class Cat(Animal):
 def speak(self):
 return "Meow!"

Python Quick Reference

Page | 111

Creating instances of the derived classes
dog = Dog()
cat = Cat()

Calling the overridden method
print(dog.speak()) # Output: Woof!
print(cat.speak()) # Output: Meow!

In this example

"A base class, Animal, contains a method called speak(), which supplies a

generic animal sound.

Two subclasses, Dog and Cat, are derived from the Animal class. In both of

these subclasses, the speak() method is overridden with their respective

implementations.

When instances of Dog and Cat are created, and the speak() method is

invoked on them, the overridden method in each subclass is executed,

producing the specific sound associated with that animal.

Method overriding enables the implementation of polymorphism, where

objects from different classes can be treated as instances of the same

superclass. This is a fundamental concept in object-oriented programming

and is employed to create flexible and extensible code."

5. Abstraction: Abstraction involves simplifying complex reality by modeling

classes based on real-world entities. It focuses on the essential attributes and

behaviors of objects while hiding the unnecessary details.

Encapsulation, Abstraction, and Access Modifiers: Python supports

encapsulation and abstraction through the use of access modifiers like

private (__) and protected (_). These modifiers allow the control of the

visibility of attributes and methods within a class. For example:

class MyClass:
 def __init__(self):
 self.__private_var = 42
 self._protected_var = 10

 def my_method(self):
 return self.__private_var + self._protected_var

Python Quick Reference

Page | 112

In this example, __private_var is a private attribute, and _protected_var is a

protected attribute. These are conventionally considered non-public, and

their access should be limited.

6. Method Overloading and Operator Overloading: Method Overloading

and Operator Overloading: Python does not support method overloading in

the same way it is supported in some other languages, where multiple

methods with the same name but different parameter lists can be defined.

However, similar behavior can be achieved in Python using default

arguments or variable-length argument lists.

Method Overloading: Method overloading in Python is not supported in the

same way as in some other languages, where multiple methods with the

same name but different parameter lists can be defined. However, Python

provides a flexible way to achieve similar behavior using default arguments

or variable-length argument lists. An example of 'overloading' a method in

Python using these techniques is shown below:

Method Overloading with Default Arguments: In this approach, a single

method is defined with default argument values. Depending on the number

and types of arguments passed when the method is called, it behaves

differently.

class Calculator:
 def add(self, a, b=0, c=0):
 return a + b + c

Creating an instance of the Calculator class
calculator = Calculator()

Calling the add method with different numbers of arguments
result1 = calculator.add(5)
result2 = calculator.add(5, 3)
result3 = calculator.add(5, 3, 2)

print(result1) # Output: 5
print(result2) # Output: 8
print(result3) # Output: 10

In this example, the add() method accepts three arguments but provides

default values of 0 for b and c. Depending on how many arguments are

passed when the method is called, it behaves accordingly.

Python Quick Reference

Page | 113

Method Overloading with Variable-Length Argument Lists

Python allows the use of variable-length argument lists using *args and

**kwargs. This enables the definition of a single method that can accept a

variable number of arguments.

class Calculator:
 def add(self, *args):
 result = 0
 for num in args:
 result += num
 return result

Creating an instance of the Calculator class
calculator = Calculator()

Calling the add method with different numbers of arguments
result1 = calculator.add(5)
result2 = calculator.add(5, 3)
result3 = calculator.add(5, 3, 2, 1, 4)

print(result1) # Output: 5
print(result2) # Output: 8
print(result3) # Output: 15

In this example, the add() method accepts a variable number of arguments

using *args. It iterates through the arguments and calculates their sum.

While Python doesn't have method overloading based on argument types like

some statically-typed languages, these techniques allow you to achieve

similar functionality by providing different argument options or using

variable-length argument lists to handle various cases.

7. Operator Overloading: Python allows the definition of special methods

(e.g., __add__, __sub__) to specify how operators should behave for

instances of custom classes. Here's a simple example of operator

overloading:

class ComplexNumber:
 def __init__(self, real, imag):
 self.real = real

Python Quick Reference

Page | 114

 self.imag = imag

 def __add__(self, other):
 # Overloading the '+' operator for complex number addition
 return ComplexNumber(self.real + other.real, self.imag +
other.imag)

 def __str__(self):
 return f"{self.real} + {self.imag}i"

Usage
c1 = ComplexNumber(1, 2)
c2 = ComplexNumber(3, 4)
result = c1 + c2 # Calls the __add__ method
print(result) # Output: 4 + 6i

8. Method Overriding: Method overriding is a feature in object-oriented

programming that allows a subclass to provide a specific implementation of

a method that is already defined in its superclass. When a method is

overridden in a subclass, the subclass version of the method takes

precedence over the superclass version when called on instances of the

subclass. This customization of the behavior of inherited methods is done to

suit the needs of the subclass.

Here's an explanation of method overriding in Python with examples:

1. Base Class and Subclass: Let's start by defining a base class (superclass)

and a subclass. The base class will have a method that we'll override in the

subclass:

class Animal:
 def speak(self):
 return "Animal speaks something."

class Dog(Animal):
 pass

In this example, Animal is the base class, and Dog is the subclass that

inherits from Animal.

2. Method Overriding: To override a method from the superclass in the

subclass, define a method with the same name in the subclass. The method

Python Quick Reference

Page | 115

signature (name and parameters) must match the one in the superclass. Here,

we override the speak method in the Dog subclass:

class Dog(Animal):
 def speak(self):
 return "Dog barks"

Now, the speak method in the Dog class overrides the speak method in the

Animal class.

3. Using the Override Method: You can create instances of the subclass and

call the overridden method:

animal = Animal()
dog = Dog()

print(animal.speak()) # Output: "Animal speaks something"
print(dog.speak()) # Output: "Dog barks"

When you call speak on the dog object, it uses the overridden version in the

Dog class. When you call speak on the animal object, it uses the version in

the Animal class.

4. Using super() for Method Overriding: In some cases, it may be desirable

to extend the behavior of the superclass method in the subclass while still

utilizing the superclass's implementation. This can be achieved using super():

class Cat(Animal):
 def speak(self):
 base_sound = super().speak()
 return f"Cat meows and then {base_sound}"

cat = Cat()
print(cat.speak()) # Output: "Cat meows and then Animal speaks
something"

In this example, the Cat class extends the speak method by calling

super().speak() to get the result from the Animal class and then adding

additional behavior.

Method overriding is a powerful mechanism in Python's object-oriented

programming that allows you to customize and specialize the behavior of

Python Quick Reference

Page | 116

methods in subclasses while maintaining a common interface with the

superclass.

These are the fundamental concepts of Object-Oriented Programming in

Python. OOP provides a powerful and organized way to structure code, promote

code reusability, and model real-world entities in programs.

Page | 117

43

Interface

In Python, there is no direct concept of interfaces as found in some other

programming languages, such as Java or C#. Nevertheless, Python offers a

method to achieve similar functionality through abstract base classes (ABCs)

and multiple inheritance. Abstract base classes in Python serve as a means to

define a shared interface that derived classes should follow, even though Python

does not strictly enforce interface implementation.

Here's an explanation of how to create and use interfaces using abstract base

classes in Python with an example:

Step 1: Import the abc module: Import the abc module, which provides the

ABC (Abstract Base Class) class and the abstract method decorator.

from abc import ABC, abstractmethod

Step 2: Define an Interface (Abstract Base Class): Create an interface by

defining a class that is inherited from ABC and using the @abstractmethod

decorator to specify abstract methods (methods without implementation). These

abstract methods represent the interface's contract that implementing classes

must follow.

class Shape(ABC):
 @abstractmethod
 def area(self):
 pass

 @abstractmethod
 def perimeter(self):
 pass

In this example, the Shape class defines an interface with two abstract methods,

area, and perimeter. Any class that implements this interface must provide

concrete implementations for these methods.

Python Quick Reference

Page | 118

Step 3: Implement the Interface in a Class: To implement the interface, create

a class that inherits from the interface and provides concrete implementations

for all its abstract methods.

class Rectangle(Shape):
 def __init__(self, width, height):
 self.width = width
 self.height = height

 def area(self):
 return self.width * self.height

 def perimeter(self):
 return 2 * (self.width + self.height)

Here, the Rectangle class implements the Shape interface by providing concrete

implementations for the area and perimeter methods.

Step 4: Using the Implemented Interface: Create instances of the class that

implements the interface and use them as objects that adhere to the interface's

contract.

rectangle = Rectangle(4, 5)
print("Rectangle Area:", rectangle.area()) # Output: Rectangle Area: 20
print("Rectangle Perimeter:", rectangle.perimeter())
Output: Rectangle Perimeter: 18

Note: Python does not enforce the implementation of abstract methods like

some languages do. However, it does provide a mechanism for documenting

and indicating the expected interface for derived classes. Attempting to create

an instance of a class that doesn't implement all the abstract methods of its base

class will result in a TypeError at runtime.

Page | 119

44

Docstring

In Python, a docstring is a special type of string literal that appears as the first

statement in a module, class, method, or function. Its purpose is to provide

documentation, explanations, and descriptions of the code's purpose, behavior,

and usage. Docstrings are used to help developers understand and use the code,

and they are accessible through various tools like documentation generators and

interactive help.

Docstrings are enclosed in triple-quotes (either single or double) and can span

multiple lines. There are various conventions for docstrings in Python, but the

most common one is the "Google-style" or "PEP 257" style.

Here's how to use docstrings in Python with examples:

1. Module-level Docstring: A module-level docstring is used to provide an

overview of the entire module's purpose and contents. It appears at the

beginning of a Python module file.

"""This module contains functions for performing mathematical operations."""

def add(a, b):
 """Add two numbers and return the result."""
 return a + b

def subtract(a, b):
 """Subtract b from a and return the result."""
 return a - b

The module-level docstring can be accessed using the __doc__ attribute:

import mymodule
print(mymodule.__doc__)

2. Class Docstring: A class docstring is used to provide information about the

class and its purpose. It appears immediately below the class definition.

Python Quick Reference

Page | 120

class Person:
 """Represents a person with a name and age."""

 def __init__(self, name, age):
 self.name = name
 self.age = age

3. Method Docstring: A method docstring describes the purpose and usage of

a method. It appears immediately below the method definition.

class Calculator:
 """A simple calculator class."""

 def add(self, a, b):
 """Add two numbers and return the result."""
 return a + b

 def subtract(self, a, b):
 """Subtract b from a and return the result."""
 return a - b

You can access method docstrings using the help() function or by accessing

the .__doc__ attribute of the method:

calc = Calculator()
help(calc.add)
print(calc.add.__doc__)

4. Function Docstring: A function docstring provides information about the

purpose and usage of a function. It appears immediately below the function

definition.

def greet(name):
 """Greet the user by name."""
 return f"Hello, {name}!"

You can access function docstrings in the same way as method docstrings

using help() or the .__doc__ attribute.

5. Multi-line Docstrings: Docstrings can span multiple lines for more detailed

documentation. Here's an example with a multi-line function docstring:

Python Quick Reference

Page | 121

def complex_function(a, b):
 """
 This function performs a complex operation.

 Args:
 a (int): The first operand.
 b (int): The second operand.

 Returns:
 int: The result of the complex operation.
 """
 # Function implementation goes here

Using descriptive docstrings is a good practice in Python because it helps to

understand the code, and tools like Sphinx can generate documentation from

docstrings for larger projects.

Page | 122

45

__init__()

In Python, __init__() is a special method (also known as a constructor) that is

automatically called when an object of a class is created. It is used to initialize

the attributes (variables) of an object. The __init__() method is one of the most

commonly used methods in Python classes and is crucial for setting up the

initial state of objects.

Here's an explanation of __init__() in Python with examples:

Basic Usage

class MyClass:
 def __init__(self, arg1, arg2):
 self.attr1 = arg1
 self.attr2 = arg2

In this example

__init__(self, arg1, arg2) is the constructor method.

 self is a reference to the instance of the class (the object being created).

 arg1 and arg2 are parameters passed to the constructor.

 self.attr1 and self.attr2 are instance attributes that are initialized with the

values of arg1 and arg2, respectively.

Creating Objects: To create an object of the class and initialize its attributes

using the __init__() method:

obj = MyClass(42, "hello")

Now, obj is an instance of MyClass with attr1 set to 42 and attr2 set to "hello".

Default Arguments: You can provide default values for constructor arguments

to make them optional:

class Person:
 def __init__(self, name="Unknown", age=0):

Python Quick Reference

Page | 123

 self.name = name
 self.age = age

In this example, if you create a Person object without providing arguments, it

will use the default values:

p1 = Person() # Uses default values
p2 = Person("Alice", 30)

Instance Variables vs. Class Variables: Instance variables (like self.attr1 and

self.attr2 in the first example) are unique to each instance of a class. Class

variables, on the other hand, are shared among all instances of a class. To create

a class variable, define it outside the __init__() method and use it without self.

class MyClass:
 class_var = 10 # Class variable shared among all instances

 def __init__(self, instance_var):
 self.instance_var = instance_var

Common Patterns

 Initializing instance variables to default values.

 Performing setup operations that should occur when an object is created.

 Validating and initializing attributes based on input data.

class Circle:
 def __init__(self, radius):
 if radius < 0:
 raise ValueError("Radius cannot be negative")
 self.radius = radius
 self.area = 3.14159 * radius**2

circle = Circle(5)

The __init__() method is a fundamental part of object-oriented programming in

Python, allowing you to create objects with specific initial states and behaviors.

It helps ensure that objects of a class are properly configured when they are first

created.

Page | 124

46

__str__()

In Python, the __str__() method is a special method (also known as a magic

method or dunder method) that is used to define a custom string representation

for an object. When you call the str() function or use the print() function with an

object, Python will internally call the object's __str__() method to obtain a

string representation of that object.

Here's an explanation of __str__() with an example in Python:

Basic Usage

class MyClass:
 def __init__(self, value):
 self.value = value

 def __str__(self):
 return f"MyClass object with value: {self.value}"

In this example

 __str__(self) is the __str__() method.

 self is a reference to the instance of the class.

 Inside the __str__() method, you can return a string that represents the

object in a human-readable way.

Using __str__() Method: Now, let's create an object of the class and see how

the __str__() method is used:

obj = MyClass(42)
print(obj) # Output: MyClass object with value: 42

When you call print(obj) or str(obj), Python internally calls obj.__str__() to

obtain the string representation of the obj object.

Python Quick Reference

Page | 125

Custom String Representation: You can customize the string representation in

any way you like, including formatting attributes and including additional

information:

class Person:
 def __init__(self, name, age):
 self.name = name
 self.age = age

 def __str__(self):
 return f"Person: {self.name}, Age: {self.age}"

Now, when you create a Person object and print it:

person = Person("Alice", 30)
print(person) # Output: Person: Alice, Age: 30

Using __str__() for Debugging: The __str__() method is also helpful for

debugging, as it provides a human-readable representation of an object's state.

It's a good practice to define __str__() for your classes to aid in debugging and

make your code more understandable.

class Point:
 def __init__(self, x, y):
 self.x = x
 self.y = y

 def __str__(self):
 return f"Point(x={self.x}, y={self.y})"

With this implementation, when you print a Point object, you get a clear

representation of its coordinates:

point = Point(3, 5)
print(point) # Output: Point(x=3, y=5)

Page | 126

47

Walrus Operator in Python

The "walrus operator" is a colloquial term for the assignment expression

operator (:=) introduced in Python 3.8. It allows you to assign a value to a

variable as part of an expression. This operator is named "walrus" because its

symbol (:=) resembles the eyes and tusks of a walrus.

The primary use case for the walrus operator is to simplify code by both

assigning a value to a variable and using that value in an expression. It is

especially helpful in situations where you need to avoid redundant calculations

or evaluate an expression with side effects, such as in loops and conditionals.

Here's an example to illustrate the use of the walrus operator:

Without Walrus Operator:

Calculate the sum of squares of numbers until the sum exceeds 100

total = 0
num = 1

while total <= 100:
 total += num ** 2
 num += 1

print(total) # Output: 140

In this example, we calculate the sum of squares of numbers until the sum

exceeds 100. We need to update the num variable both within the loop condition

and inside the loop body.

With Walrus Operator

Calculate the sum of squares of numbers until the sum exceeds 100
total = 0
num = 1

while (total := total + num ** 2) <= 100:
 num += 1
print(total) # Output: 140

Python Quick Reference

Page | 127

In this version, we use the walrus operator (:=) to both update the total variable

and check if it exceeds 100 in a single line. This results in more concise and

readable code.

The walrus operator is not limited to loops; it can be used in various contexts,

including list comprehensions, conditional expressions, and function calls.

Here's an example with a list comprehension:

Filter and double values in a list using the walrus operator

numbers = [1, 2, 3, 4, 5, 6]
filtered_numbers = [y for x in numbers if (y := x * 2) <= 8]
print(filtered_numbers) # Output: [2, 4, 6, 8]

In this example, the walrus operator is used to avoid recomputing the value x *

2 multiple times within the list comprehension.

The walrus operator enhances code readability and can lead to more efficient

code by avoiding redundant computations. However, it should be used

judiciously to maintain code clarity and avoid excessive assignment expressions

within complex expressions.

Page | 128

48

Match Case Statement

In Python 3.10 and later versions, the match statement has been introduced as a

powerful and flexible way to perform pattern matching and make decisions

based on the structure of data. It allows you to compare an expression to a set of

patterns and execute code based on the first matching pattern. The match

statement is often used in situations where you would have used a series of if

and elif statements in the past, simplifying code and making it more readable.

Here's the basic syntax of the match statement:

match expression:
 case pattern1:
 # Code to execute if the expression matches pattern1
 case pattern2:
 # Code to execute if the expression matches pattern2
 case pattern3:
 # Code to execute if the expression matches pattern3
 ...
 case _:
 # Code to execute if no patterns match (optional)

Each case block specifies a pattern, and the code within that block is executed if

the expression matches that pattern. You can use various patterns, including

literals, variables, and data structures. Here's an example of how to use the

match statement in Python:

def get_day_name(day_number):
 match day_number:
 case 1:
 return "Monday"
 case 2:
 return "Tuesday"
 case 3:
 return "Wednesday"
 case 4:

Python Quick Reference

Page | 129

 return "Thursday"
 case 5:
 return "Friday"
 case 6:
 return "Saturday"
 case 7:
 return "Sunday"
 case _:
 return "Invalid day number"

day_number = 3
day_name = get_day_name(day_number)
print(day_name) # Output: "Wednesday"

In this example

We define a function get_day_name that takes a day_number as an argument.

Inside the function, we use the match statement to compare day_number with

different cases.

If day_number matches one of the specified cases (e.g., case 3:), the

corresponding code block is executed, and the corresponding day name is

returned.

If day_number doesn't match any of the specified cases, the case _: block is

executed, which returns "Invalid day number."

In this way, the match statement simplifies the code by providing a concise and

readable way to perform pattern matching and make decisions based on the

value of an expression.

Page | 130

49

Regular Expressions

In Python, a regular expression, often referred to as a regex or regexp, is a

powerful tool for pattern matching and manipulation of strings. It allows you to

define a pattern that can be used to search for, match, or manipulate text data.

Python's re module provides support for regular expressions.

Here's a brief overview of how regular expressions work in Python, followed by

an example:

Import the re module: First, you need to import the re module to use regular

expressions in Python.

import re

Define a regular expression pattern: You specify a pattern using a

combination of regular characters and special metacharacters that define the

pattern you want to match.

Use functions from the re module: You can use functions like re.match(),
re.search(), re.findall(), re.finditer(), re.sub(), and re.split() to perform various

operations with regular expressions. Here's a simple example:

import re

Sample text
text = "Hello, my email address is john.doe@example.com, and my
phone number is 555-123-4567."

Define a regular expression pattern for finding email addresses
email_pattern = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,7}\b'

Use re.findall() to find all email addresses in the text
email_addresses = re.findall(email_pattern, text)

Print the found email addresses

Python Quick Reference

Page | 131

for email in email_addresses:
 print("Found email:", email)

In this example, the regular expression pattern r'\b[A-Za-z0-9._%+-]+@[A-Za-

z0-9.-]+\.[A-Z|a-z]{2,7}\b' is used to find email addresses in the text. It looks

for patterns that match typical email address formats. The re.findall() function is

then used to find all email addresses in the given text.

Output
Found email: john.doe@example.com

This is just a basic example. Regular expressions can be as simple or as

complex as your pattern matching needs require. They are a powerful tool for

tasks such as data validation, text parsing, and data extraction from strings.

Regular Expressions in Python: Cheat Sheet

Regular expressions, commonly known as regex, play a pivotal role in Python

programming, as well as in numerous other programming languages. They serve

the essential purpose of locating and potentially altering specific text patterns

within strings. In the realm of regular expressions, a cluster of characters

collaborates to define the sought-after pattern, often referred to as the "reg-ex"

pattern.

The challenge with regex lies not so much in comprehending its principles, but

in recalling the precise syntax and the intricacies of crafting patterns tailored to

our specific needs.

To simplify this endeavor, we offer a comprehensive Regex Cheat Sheet that

encompasses a wide array of character classes, special symbols, modifiers, sets,

and more, all of which are indispensable tools within the realm of regular

expressions. This resource serves as a valuable aid for those navigating the

intricate landscape of pattern matching and manipulation.

Meta-Characters

Metacharacter Meaning Example

. Match any character

except a newline
re.search(r'c.t', 'cat') matches
'cat'

^ Match the start of a

string
re.match(r'^Hello', 'Hello,
World!') matches 'Hello'

$ Match the end of a re.search(r'World!$', 'Hello,

Python Quick Reference

Page | 132

string World!') matches 'World!'
* Match 0 or more

repetitions
re.search(r'ab*', 'a') matches 'a'

+ Match 1 or more

repetitions
re.search(r'ab+', 'abbb')
matches 'abb'

? Match 0 or 1 repetition re.search(r'colou?r', 'color')
matches 'color'

| Alternation (OR)
() Groups characters for

operations
`re.search(r'(cat

[] Defines a character class re.search(r'[aeiou]', 'apple')
matches 'a'

{} Specifies a specific

number of repetitions
re.search(r'a{2,3}', 'aaa')
matches 'aaa'

Character Classes

Character/

Metacharacter
Meaning Example

\d Matches any digit (equivalent

to [0-9])
re.search(r'\d', 'The
number is 42') matches '4'

\D Matches any non-digit

character (equivalent to [^0-9])
re.search(r'\D', 'The
number is 42') matches 'T'

\w Matches any word character

(equivalent to [a-zA-Z0-9_])
re.search(r'\w', 'Hello,
world!') matches 'H'

\W Matches any non-word

character (equivalent to [^a-

zA-Z0-9_])

re.search(r'\W', 'Hello,
world!') matches ','

\s Matches any whitespace

character (equivalent to [

\t\n\r\f\v])

re.search(r'\s',
'Hello\tworld!') matches
'\t'

\S Matches any non-whitespace

character (equivalent to [^

\t\n\r\f\v])

re.search(r'\S',
'Hello\tworld!') matches
'H'

[abc] Matches any one of the

characters within the square

brackets

re.search(r'[aeiou]',
'apple') matches 'a'

[^abc] Matches any character that is

not in the square brackets
re.search(r'[^0-9]', 'The
price is $42') matches 'T'

[a-z] Matches any lowercase letter

from 'a' to 'z'
re.search(r'[a-z]', 'Hello
World') matches 'e'

Python Quick Reference

Page | 133

[A-Z] Matches any uppercase letter

from 'A' to 'Z'
re.search(r'[A-Z]', 'Hello
World') matches 'H'

[0-9] Matches any digit from 0 to 9 re.search(r'[0-9]', 'The
answer is 42') matches '4'

[a-zA-Z] Matches any letter (either

lowercase or uppercase)
re.search(r'[a-zA-Z]',
'123abc') matches 'a'

[0-9A-Fa-f] Matches a hexadecimal digit

(0-9, A-F, or a-f)
re.search(r'[0-9A-Fa-f]',
'1A2b3C') matches '1'

[0-9a-zA-Z_] Matches any word character,

including letters, digits, and

underscore

re.search(r'[0-9a-zA-Z_]',
'Hello_123') matches 'H'

[^ \t] Matches any character that is

not a space or tab
re.search(r'[^ \t]', 'Hello
World') matches 'H'

\b Matches a word boundary re.search(r'\bword\b',
'This is a word.') matches
'word'

\B Matches a non-word boundary re.search(r'\Bnot\b', 'This
is not a test.') matches
'not'

\A Matches the start of a string re.search(r'\AHello',
'Hello, World!') matches
'Hello'

\Z Matches the end of a string re.search(r'World\Z',
'Hello, World') matches
'World'

\n Matches a newline character re.search(r'Line1\nLine2',
'Line1\nLine2') matches
'\n'

Quantifiers

Quantifier Meaning Example

* Matches 0 or more repetitions re.search(r'ab*', 'a')
matches 'a'

+ Matches 1 or more repetitions re.search(r'ab+', 'abbb')
matches 'abb'

? Matches 0 or 1 repetition re.search(r'colou?r', 'color')
matches 'color'

{n} Matches exactly n times re.search(r'a{2}', 'aaa')
matches 'aa'

Python Quick Reference

Page | 134

{n,} Matches n or more times re.search(r'a{2,}', 'aaaa')

matches 'aaaa'
{n,m} Matches between n and m times re.search(r'a{2,4}', 'aaaa')

matches 'aaaa'
*? Matches 0 or more repetitions

(non-greedy)
re.search(r'ab*?', 'abbb')
matches 'a'

+? Matches 1 or more repetitions

(non-greedy)
re.search(r'ab+?', 'abbb')
matches 'ab'

?? Matches 0 or 1 repetition (non-

greedy)
re.search(r'colou??r',
'color') matches 'col'

{n}? Matches exactly n times (non-

greedy)
re.search(r'a{2}?', 'aaa')
matches 'aa'

{n,}? Matches n or more times (non-

greedy)
re.search(r'a{2,}?', 'aaaa')
matches 'aa'

{n,m}? Matches between n and m times

(non-greedy)
re.search(r'a{2,4}?', 'aaaa')
matches 'aa'

Quantifiers specify how many repetitions of a character or group you want to

match in a regular expression. Greedy quantifiers (e.g., *, +, ?, {n}, {n,},

{n,m}) match as much text as possible, while non-greedy quantifiers (e.g., *?,

+?, ??, {n}?, {n,}?, {n,m}?) match as little as possible while still satisfying the

pattern.

These quantifiers allow you to control the flexibility and specificity of your

pattern matching in regular expressions. The examples demonstrate how each

quantifier behaves when applied to different strings.

Sets

Set Meaning Example

[aeiou] Matches any one vowel (a, e,

i, o, or u)
re.search(r'[aeiou]', 'apple')
matches 'a'

[0-9] Matches any digit (0 through

9)
re.search(r'[0-9]', 'The
answer is 42') matches '4'

[A-Z] Matches any uppercase letter

(A through Z)
re.search(r'[A-Z]', 'Hello
World') matches 'H'

[a-zA-Z] Matches any letter (either

lowercase or uppercase)
re.search(r'[a-zA-Z]',
'123abc') matches 'a'

[0-9a-z] Matches any lowercase letter

or digit
re.search(r'[0-9a-z]',
'Hello123') matches 'e'

Python Quick Reference

Page | 135

[^abc] Matches any character that is

not 'a', 'b', or 'c'
re.search(r'[^0-9]', 'The
price is $42') matches 'T'

[A-EH-J] Matches any uppercase letter

from 'A' to 'E' or 'H' to 'J'
re.search(r'[A-EH-J]', 'Hello
World') matches 'H'

[0-9A-Fa-f] Matches a hexadecimal digit

(0-9, A-F, or a-f)
re.search(r'[0-9A-Fa-f]',
'1A2b3C') matches '1'

[^ \t] Matches any character that is

not a space or tab
re.search(r'[^ \t]', 'Hello
World') matches 'H'

[0-9A-Za-z] Matches any alphanumeric

character
re.search(r'[0-9A-Za-z]',
'@123ABC') matches '1'

[a-zA-Z0-9_] Matches any word character

(letters, digits, or underscore)
re.search(r'[a-zA-Z0-9_]',
'Hello_123') matches 'H'

[^A-Za-z0-9] Matches any character that is

not alphanumeric
re.search(r'[^A-Za-z0-9]',
'Hello_123!') matches '!'

[\t\n\r] Matches any of the specified

whitespace characters
re.search(r'[\t\n\r]',
'Hello\nworld!') matches
'\n'

[^\t\n\r] Matches any character that is

not a whitespace character
re.search(r'[^\t\n\r]',
'Hello\nworld!') matches 'H'

[1-5a-c] Matches any character from

'1' to '5' or 'a' to 'c'
re.search(r'[1-5a-c]',
'apple2') matches 'a'

[^XYZ] Matches any character that is

not 'X', 'Y', or 'Z'
re.search(r'[^XYZ]', 'Hello
World') matches 'H'

[\d\D] Matches any character (digit

or non-digit)
re.search(r'[\d\D]',
'Hello123') matches 'H'

[\w\W] Matches any character (word

or non-word)
re.search(r'[\w\W]',
'Hello_123') matches 'H'

[\s\S] Matches any character

(whitespace or non-

whitespace)

re.search(r'[\s\S]', 'Hello
world') matches 'H'

Anchors

Anchor Meaning Example

^ Matches the start of a string re.match(r'^Hello', 'Hello, World!')
matches 'Hello'

$ Matches the end of a string re.search(r'World!$', 'Hello,
World!') matches 'World!'

\b Matches a word boundary re.search(r'\bword\b', 'This is a
word.') matches 'word'

Python Quick Reference

Page | 136

\B Matches a non-word

boundary
re.search(r'\Bnot\b', 'This is not a
test.') matches 'not'

\A Matches the start of a string

(like ^, but doesn't work in

multiline mode)

re.search(r'\AHello', 'Hello,
World!') matches 'Hello'

\Z Matches the end of a string

(like $, but doesn't work in

multiline mode)

re.search(r'World\Z', 'Hello,
World') matches 'World'

\n Matches a newline character re.search(r'Line1\nLine2',
'Line1\nLine2') matches '\n'

\t Matches a tab character re.search(r'Tab\tSeparated',
'Tab\tSeparated') matches '\t'

\r Matches a carriage return

character
re.search(r'End\rLine', 'End\rLine')
matches '\r'

\f Matches a form feed

character
re.search(r'Page\fBreak',
'Page\fBreak') matches '\f'

\v Matches a vertical tab

character
re.search(r'Page\vBreak',
'Page\vBreak') matches '\v'

\A Matches the start of a string

(like ^, but doesn't work in

multiline mode)

re.search(r'\AHello', 'Hello,
World!') matches 'Hello'

These anchors allow you to specify positions within a string where a match

should occur. The examples demonstrate how each anchor can be used to find

text patterns at specific locations within strings.

Modifiers: Modifiers, also known as flags, are used in regular expressions in

Python to control various matching behaviors. Here's a list of more than 10

common modifiers, their meanings, and examples:

Modifier Meaning Example

re.I

Case-insensitive

matching

re.search(r'apple', 'APPLE',

re.I) matches 'APPLE'

re.M Multiline mode

re.search(r'^Line',

'Line1\nLine2', re.M) matches
'Line'

re.S

Dot matches all

(including newline)

re.search(r'.+', 'Line1\nLine2',

re.S) matches 'Line1\nLine2'

re.X

Extended flag (ignore

whitespace and

comments)

re.search(r'Hello World', 'Hello

World', re.X) matches
'HelloWorld'

Python Quick Reference

Page | 137

re.U Unicode matching

re.search(r'\u00E9', 'Café',

re.U) matches 'é'

re.L

Locale dependent

matching

re.search(r'\w+', 'café', re.L)
matches 'café'

re.A ASCII-only matching

re.search(r'\w+', 'café', re.A)
doesn't match 'café'

re.DEBUG Debugging mode

re.search(r'apple', 'apple',
re.DEBUG) provides debugging
information

re.IGNORECASE

Case-insensitive

matching (alternative)

re.search(r'apple', 'APPLE',
re.IGNORECASE) matches
'APPLE'

re.MULTILINE

Multiline mode

(alternative)

re.search(r'^Line',

'Line1\nLine2', re.MULTILINE)
matches 'Line'

re.DOTALL

Dot matches all

(including newline,

alternative)

re.search(r'.+', 'Line1\nLine2',

re.DOTALL) matches
'Line1\nLine2'

re.VERBOSE

Extended flag (ignore

whitespace and

comments,

alternative)

re.search(r'Hello World', 'Hello
World', re.VERBOSE) matches
'HelloWorld'

These modifiers can be passed as optional flags when using regular expression

functions like re.search() or re.compile(). They allow you to customize the

behavior of your regular expressions to meet specific matching requirements.

The examples demonstrate how each modifier affects the matching behavior of

regular expressions.

Here are the regular expression flags with explanations rewritten for clarity:

a: This flag makes the regular expression pattern match ASCII characters only,

excluding non-ASCII characters.

i: When this flag is enabled, the regular expression matching becomes case-

insensitive. It means that uppercase and lowercase letters are treated as the

same.

L: Enabling this flag causes the regular expression to use locale-specific

character classes when matching. It considers the current locale settings for

character classification.

Python Quick Reference

Page | 138

m: With this flag turned on, the ^ and $ anchors in the regular expression

pattern match the start and end of each line within the text, making it useful for

multi-line matching.

s: When this flag is set, the dot . in the regular expression pattern matches

everything, including newline characters. In essence, it makes the dot "dot-all."

u: Enabling this flag allows the regular expression to match Unicode character

classes. It ensures that Unicode characters are treated correctly in character class

expressions.

x: With this flag active, the regular expression ignores whitespace and allows

for comments. This makes complex patterns more readable by permitting spaces

and comments within the pattern.

Examples

Here are more than 25 commonly used regular expressions in Python for

various purposes, along with their meanings, presented in rows and

columns:

Regular Expression Meaning Example

Email Address:

^[a-zA-Z0-9._%+-

]+@[a-zA-Z0-9.-]+\.[a-

zA-Z]{2,}$

Matches a valid email

address.

re.match(email_pattern,

'user@example.com')

Date of Birth:

`^(0[1-9] 1[0-2])/(0[1-9] [12][0-9]

IP Address:

^(\d{1,3}\.){3}\d{1,3}

$

Matches a valid IPv4

address.

re.match(ip_pattern,

'192.168.0.1')

Name of Person:

^[A-Z][a-z]+ [A-Z][a-

z]+$

Matches a full name

with an initial and

capitalization.

re.match(name_pattern,

'John Doe')

Date Format:

`^(0[1-9] 1[0-2])/(0[1-9] [12][0-9]

Mobile Number:

^[0-9]{10}$ Matches a 10-digit

mobile phone number.

re.match(phone_pattern,

'1234567890')

Python Quick Reference

Page | 139

Landline Number:

^\d{3}-\d{3}-\d{4}$ Matches a standard US

phone number in the

format "123-456-

7890".

re.match(landline_pattern

, '123-456-7890')

URL:

`^(https? ftp)://[^\s/$.?#].[^\s]*$

`

Matches a valid URL

starting with "http://",

"https://", or "ftp://".

ZIP Code:

^\d{5}(-\d{4})?$ Matches a US ZIP

code in the format

"12345" or "12345-

6789".

re.match(zip_code_patter

n, '12345')

Credit Card Number:

^\d{4}-\d{4}-\d{4}-

\d{4}$

Matches a 16-digit

credit card number in

the format "0000-

0000-0000-0000".

re.match(credit_card_patt

ern, '1234-5678-9012-

3456')

Social Security

Number:

^\d{3}-\d{2}-\d{4}$ Matches a US Social

Security Number in the

format "123-45-6789".

re.match(ssn_pattern,

'123-45-6789')

HTML Tags:

`<(?:"[^"]"['"] '[^']'['"] [^'">])+>`

Hex Color Code:

`^#([A-Fa-f0-9]{6} [A-Fa-f0-9]{3})$` Matches a valid

hexadecimal color code

in the format

"#RRGGBB" or "#RGB".

Time in 12-Hour

Format:

`^(1[0-2] 0?[1-9]):[0-5][0-9]

(AM

PM)$`

Time in 24-Hour

Format:

`^([01][0-9] 2[0-3]):[0-5][0-9]$` Matches a time in 24-

hour format, e.g.,

"14:15".

Python Quick Reference

Page | 140

- r"^\d{3}$" matches exactly 3 digits.
- r"\b\w+\b" matches whole words.
- r"\d{3}-\d{2}-\d{4}" matches a social security number.
- r"[A-Z][a-z]+" matches capitalized words.
- r"\d+" matches one or more digits.
- r"(cat|dog)" matches "cat" or "dog".

Functions in Python re Module

Here are more than 10 commonly used functions in the Python re module for

working with regular expressions, along with their meanings and examples

presented in rows and columns:

Function Meaning Example

re.match(pattern,
string)

Determines if the regular

expression pattern

matches at the beginning

of the string. If it

matches, it returns a

match object; otherwise,

it returns None.

re.match('abc', 'abcdef')
returns a match object.

re.search(pattern,
string)

Searches the entire

string for a match to the

regular expression

pattern. Returns a match

object if a match is

found; otherwise, returns

None.

re.search('apple', 'I like
apples') returns a match
object.

re.findall(pattern,
string)

Returns all non-

overlapping matches of

the regular expression

pattern in the string as a

list of strings.

re.findall('\d+', 'There are
123 apples and 456
oranges.') returns ['123',
'456'].

re.finditer(pattern,
string)

Returns an iterator

yielding match objects

for all non-overlapping

matches of the regular

expression pattern in the

string.

matches = re.finditer('ab',
'ababab'); [m.group() for m
in matches] returns ['ab',
'ab', 'ab'].

re.split(pattern,
string)

Splits the string by

occurrences of the

regular expression

re.split(r'\s+', 'Hello
World') returns ['Hello',
'World'].

Python Quick Reference

Page | 141

pattern and returns a list

of substrings.

re.sub(pattern,
replacement, string)

Searches the string for

all matches of the

regular expression

pattern and replaces

them with the

replacement string.

Returns the modified

string.

re.sub(r'\d', 'X', 'There are
123 apples.') returns
'There are XXX apples.'.

re.subn(pattern,
replacement, string)

Similar to re.sub(), but

returns a tuple

containing the modified

string and the number of

substitutions made.

re.subn(r'\d', 'X', 'There are
123 apples.') returns
('There are XXX apples.', 3).

re.compile(pattern) Compiles the regular

expression pattern into a

regex object, which can

be reused for matching.

pattern =
re.compile(r'\d+');
pattern.match('123')
returns a match object.

re.purge() Clears the regular

expression cache,

removing any cached

regex objects.

re.purge()

re.escape(string) Escapes any special

characters in the string,

making it safe to use as a

literal part of a regular

expression pattern.

re.escape('special*chars')
returns 'special*chars'.

re.fullmatch(pattern,
string)

Determines if the entire

string matches the

regular expression

pattern. Returns a match

object if it's a full match;

otherwise, returns None.

re.fullmatch('abc', 'abc')
returns a match object.

Page | 142

50

Difference Between if and if Else
Statement

If statement

 The if statement is used to conditionally execute a block of code when a

specified condition is True.

 If the condition is True, the code inside the if block is executed.

 There is no alternative code executed if the condition is False.

 It's a simple branching structure for conditional execution.

Example

age = 18
if age >= 18:
 print("You are an adult.")

if-else Statement

 The if-else statement is used to conditionally execute one block of code

when a specified condition is True and another block when it's False.

 If the condition is True, the code inside the if block is executed.

Otherwise, the code inside the else block is executed.

 It provides an alternative path of execution when the condition is not met.

Example

age = 16
if age >= 18:
 print("You are an adult.")
else:
 print("You are not an adult.")

In the first example using the if statement, the message is printed because the

condition age >= 18 is True.

In the second example using the if-else statement, since the condition age >= 18

is False, the message in the else block is printed instead.

Python Quick Reference

Page | 143

In summary, the key difference is that the if statement provides a single branch

of code execution based on a condition, while the if-else statement provides two

branches, allowing you to handle both the True and False outcomes of the

condition.

Page | 144

51

Difference Between for and While
Loop

for Loop

 The for loop is used when you know in advance how many times you

want to iterate or loop through a sequence.

 It iterates over a sequence (e.g., a list, tuple, string, or range) and executes

a block of code for each item in the sequence.

 The loop variable takes on the value of each item in the sequence during

each iteration.

 It's particularly useful when you have a collection of items to process or a

specific number of iterations.

Example

fruits = ["apple", "banana", "cherry"]
for fruit in fruits:
 print(fruit)

In this example, the for loop iterates over the list of fruits and prints each fruit.

while Loop

 The while loop is used when you want to repeat a block of code as long

as a specific condition is True.

 It keeps executing the block of code as long as the condition remains

True.

 It's useful when you don't know in advance how many iterations are

needed, and the loop continues until a condition is no longer met.

Example

count = 1
while count <= 5:
 print(f"Count is {count}")
 count += 1

Python Quick Reference

Page | 145

In this example, the while loop repeatedly prints the value of count until it

reaches 5.

In summary

Use a for loop when you have a known sequence to iterate over a specific

number of times. Use a while loop when you want to keep looping until a

certain condition becomes False, and you may not know in advance how many

iterations are needed.

Page | 146

52

Difference Between List and Strings

Lists and strings are both data types in Python, but they have some fundamental

differences:

Data Type

 A string is a sequence of characters enclosed in single (' ') or double (" ")

quotes.

 A list is an ordered collection of items enclosed in square brackets [].

Mutability

 Strings are immutable, meaning you cannot change the characters in a

string once it's created. You can create a new string with the desired

modifications.

 Lists are mutable, so you can modify, add, or remove elements within a

list after it's created.

Ordered vs. Unordered

 Strings are ordered, meaning the characters have a specific sequence, and

you can access them by their index.

 Lists are ordered as well, and each element has an index, allowing you to

access, modify, or reorder elements based on their positions.

Character vs. Element

 In a string, the individual elements are characters.

 In a list, the elements can be of different data types, including strings,

numbers, or other objects.

Representation

 Strings are represented as a single sequence of characters, e.g., "Hello,

World!".

Python Quick Reference

Page | 147

 Lists are represented as a sequence of items enclosed in square brackets,

e.g., [1, 2, 3, 4].

Methods and Operations

 Strings have methods specific to strings, such as split(), join(), and

replace().

 Lists have methods specific to lists, such as append(), insert(), and

remove().

Examples

String

my_string = "Hello, World!"
print(my_string[0]) # Accessing a character
This will raise an error because strings are immutable:
my_string[0] = 'h'

List

my_list = [1, 2, 3, 4]
print(my_list[0]) # Accessing an element
my_list[0] = 5 # Modifying an element
print(my_list) # Output: [5, 2, 3, 4]

In summary, while strings and lists are both sequences in Python, they differ in

terms of mutability, the types of elements they can contain, and the operations

you can perform on them. Strings are suitable for working with textual data,

while lists are versatile for storing collections of items of various types.

Page | 148

53

Difference between Sets and List

In Python, sets and lists are both used to store collections of elements, but they

have distinct characteristics and use cases. Here's a differentiation between sets

and lists with examples:

1. Order

List: Lists are ordered collections, which means the elements are stored in a

specific order, and you can access them by their position (index) in the list.

Set: Sets are unordered collections, which means they do not have a specific

order for their elements, and you cannot access elements by index.

Example

List
my_list = [3, 1, 2, 3]
print(my_list[0]) # Accessing by index, prints 3

Set
my_set = {3, 1, 2, 3}
You cannot access elements by index in a set.

2. Duplicate Elements

List: Lists allow duplicate elements. You can have the same value multiple

times in a list.

Set: Sets do not allow duplicate elements. If you try to add a duplicate element,

it will be ignored.

Example

List with duplicates
my_list = [1, 2, 2, 3, 3, 3]
print(my_list) # Prints [1, 2, 2, 3, 3, 3]

Set without duplicates

Python Quick Reference

Page | 149

my_set = {1, 2, 2, 3, 3, 3}
print(my_set) # Prints {1, 2, 3}

3. Mutable vs. Immutable

List: Lists are mutable, which means you can change their contents (add,

remove, modify elements) after creation.

Set: Sets are mutable, but the elements themselves must be immutable (e.g.,

numbers, strings, tuples). You can add and remove elements from a set, but you

cannot change an element that is already in the set.

Example

List is mutable
my_list = [1, 2, 3]
my_list.append(4) # Modifying the list
print(my_list) # Prints [1, 2, 3, 4]

Set is also mutable
my_set = {1, 2, 3}
my_set.add(4) # Modifying the set
print(my_set) # Prints {1, 2, 3, 4}

However, you cannot change an element in a set:
my_set[0] = 5 # This will result in an error.

4. Membership and Operations

List: Lists are typically used when the order and duplicates matter, and you

need to access elements by their index. Lists support various operations like

slicing, concatenation, and more.

Set: Sets are used when you need to store a collection of distinct elements, and

you want to perform set operations like union, intersection, and checking for

membership efficiently.

Example

List operations
my_list1 = [1, 2, 3]
my_list2 = [3, 4, 5]
concatenated_list = my_list1 + my_list2
print(concatenated_list) # Prints [1, 2, 3, 3, 4, 5]

Python Quick Reference

Page | 150

Set operations
my_set1 = {1, 2, 3}
my_set2 = {3, 4, 5}
union_set = my_set1.union(my_set2)
print(union_set) # Prints {1, 2, 3, 4, 5}

In summary, lists are ordered, allow duplicates, and are mutable, while sets are

unordered, do not allow duplicates, and are also mutable but with restrictions on

the mutability of elements. The choice between lists and sets depends on your

specific use case and requirements.

Page | 151

54

Difference between Sets and
Dictionary

In Python, sets and dictionaries are both data structures used to store collections

of items, but they serve different purposes and have distinct characteristics.

Here's a differentiation between sets and dictionaries with examples:

Sets

Purpose: Sets are used to store an unordered collection of unique elements.

They are primarily used for membership testing and performing set operations

like union, intersection, and difference.

Structure: Sets are enclosed in curly braces {} or created using the set()

constructor.

Example

my_set = {1, 2, 3}

Uniqueness: Sets do not allow duplicate elements. If you try to add a duplicate

element, it will be ignored.

Access: You cannot access elements in a set by indexing because they are

unordered.

Dictionaries

Purpose: Dictionaries are used to store key-value pairs, where each value is

associated with a unique key. They are used for mapping and looking up values

based on keys.

Structure: Dictionaries are enclosed in curly braces {} and consist of key-value

pairs separated by colons:.

Example

my_dict = {'key1': 'value1', 'key2': 'value2', 'key3': 'value3'}

Python Quick Reference

Page | 152

Uniqueness: Dictionary keys must be unique, but the values can be duplicated.

Access: You can access values in a dictionary using keys.

Examples

Sets Example

fruits = {'apple', 'banana', 'cherry'}

Adding an element
fruits.add('orange')

Attempting to add a duplicate element
fruits.add('apple') # Will not raise an error, but 'apple' won't be added again

Removing an element
fruits.remove('banana')

Membership testing
print('cherry' in fruits) # Prints True

Set operations
vegetables = {'carrot', 'broccoli', 'cherry'}
common_items = fruits.intersection(vegetables)
print(common_items) # Prints {'cherry'}

Iterating over a set
for fruit in fruits:
 print(fruit)

Dictionaries Example

student = {'name': 'Alice', 'age': 25, 'grade': 'A'}

Accessing values
print(student['name']) # Prints 'Alice'
print(student['age']) # Prints 25

Modifying values
student['age'] = 26

Adding a new key-value pair
student['country'] = 'USA'

Python Quick Reference

Page | 153

Dictionary keys must be unique, but values can be duplicated
grades = {'Alice': 'A', 'Bob': 'B', 'Charlie': 'A', 'David': 'B'}

Iterating over dictionary keys
for key in student:
 print(key, student[key])

Iterating over key-value pairs using items()
for key, value in student.items():
 print(key, value)

In summary, sets are used to store unique elements and are suitable for set

operations, while dictionaries are used to map keys to values and are suitable for

looking up values based on keys. The choice between sets and dictionaries

depends on the specific problem you're trying to solve in your Python program.

Page | 154

55

Difference between Map and Filter

In Python, map and filter are both built-in functions used for working with

sequences (like lists, tuples, and iterators) to transform or filter elements based

on specific criteria. However, they have different purposes and usage patterns.

Here's a differentiation between map and filter with examples:

map Function

The map function is used to apply a given function to each item in an iterable

(e.g., a list) and return a new iterable (typically a map object or list) containing

the results of applying the function to each item. It takes two arguments: the

function to apply and the iterable to apply it to.

Syntax

map(function, iterable)

Example of map:
Define a function to square a number
def square(x):
 return x * x

Apply the square function to a list of numbers
numbers = [1, 2, 3, 4, 5]
squared_numbers = map(square, numbers)

Convert the map object to a list
squared_numbers_list = list(squared_numbers)

print(squared_numbers_list) # Prints [1, 4, 9, 16, 25]

filter Function

The filter function is used to filter elements from an iterable based on a given

function (predicate) that returns either True or False. It returns a new iterable

Python Quick Reference

Page | 155

(typically a filter object or list) containing the elements for which the function

returned True.

Syntax

filter(function, iterable)

Define a function to check if a number is even
def is_even(x):
 return x % 2 == 0

Filter even numbers from a list
numbers = [1, 2, 3, 4, 5, 6]
even_numbers = filter(is_even, numbers)

Convert the filter object to a list
even_numbers_list = list(even_numbers)

print(even_numbers_list) # Prints [2, 4, 6]

Key Differences

Purpose

map is used to apply a function to each element and return a new iterable with

the transformed values.

filter is used to filter elements from an iterable based on a function's criteria and

return a new iterable with the filtered values.

Function Return Values

map applies a function to each element and includes the results (possibly

modified values) for all elements.

filter applies a function (predicate) to each element and includes only the

elements for which the function returns True.

Example Usage

Use map when you want to transform all elements of an iterable.

Use filter when you want to select specific elements from an iterable based on a

condition.

Python Quick Reference

Page | 156

Output Type

Both map and filter return iterable objects, which can be converted to lists or

other iterables using list() or other constructors if needed.

In summary, map is for transforming elements, while filter is for selecting

elements based on a condition. Both functions are powerful tools for working

with iterables in Python and are often used in combination with lambda

functions for conciseness.

Page | 157

56

Difference Between Method
Overriding and Method

Overloading

Method Overriding and Method Overloading are two concepts in object-

oriented programming, primarily used in languages like Python and Java. They

both involve defining multiple methods with the same name in a class, but they

serve different purposes. Let's differentiate between them and provide examples

for each:

Method Overriding

Method overriding occurs when a subclass provides a specific implementation

for a method that is already defined in its superclass. In other words, a subclass

defines a method with the same name, return type, and parameters as the

method in the parent class. This allows the subclass to provide its own behavior

for that method while preserving the method's signature.

Key Points about Method Overriding

Occurs in inheritance when a subclass redefines a method from the parent class.

Method signature (name, return type, and parameters) must be the same in the

parent and subclass.

The purpose is to provide a specialized implementation of the method in the

subclass.

Example of Method overriding in Python

class Animal:
 def make_sound(self):
 pass

class Dog(Animal):
 def make_sound(self):

Python Quick Reference

Page | 158

 return "Woof!"

class Cat(Animal):
 def make_sound(self):
 return "Meow!"

Usage
dog = Dog()
print(dog.make_sound()) # Outputs "Woof!"

cat = Cat()
print(cat.make_sound()) # Outputs "Meow!"

In this example, both Dog and Cat classes override the make_sound method

defined in the Animal class with their specific implementations.

Method Overloading

Method overloading involves defining multiple methods in a class with the

same name but different parameters (i.e., a different number of parameters or

different types of parameters). The choice of which method to call is determined

by the number and types of arguments passed during the method invocation.

Key Points About Method Overloading

Occurs within a single class when multiple methods with the same name have

different parameter lists.

The purpose is to provide multiple ways to call a method based on the

arguments passed.

Python does not support method overloading in the traditional sense, as it

allows only one method with a specific name in a class. However, you can

achieve a similar effect by using default parameter values or variable-length

argument lists (e.g., *args or **kwargs).

Example of method "overloading" using default parameters in Python:

class Calculator:
 def add(self, a, b=0):
 return a + b

Python Quick Reference

Page | 159

Usage
calc = Calculator()
result1 = calc.add(2, 3) # Calls add(a, b) and returns 5
result2 = calc.add(2) # Calls add(a) and returns 2

print(result1)
print(result2)

In this example, the add method can take one or two arguments. If only one

argument is provided, it uses a default value of 0 for the second parameter.

To summarize, method overriding involves providing a specific implementation

for a method in a subclass with the same name and signature, while method

overloading, though not directly supported in Python, simulates providing

multiple methods with the same name but different parameters within a single

class.

Page | 160

57

Web Scrapping

Web scraping is the process of extracting data from websites. It involves

sending HTTP requests to a web page, parsing the HTML content of the page,

and extracting the desired information. Python provides several libraries and

tools to facilitate web scraping, including requests for making HTTP requests

and BeautifulSoup for parsing HTML.

Here's an explanation of the concept of web scraping with examples in Python:

1. Installing Required Libraries: Before you start web scraping, you need to

install the necessary libraries. You can use pip to install them:

pip install requests beautifulsoup4

2. Sending HTTP Requests

You start by sending an HTTP GET request to a web page using the requests

library. This retrieves the HTML content of the page.

import requests
url = 'https://example.com'
response = requests.get(url)
if response.status_code == 200:
 html_content = response.text
else:
 print('Failed to retrieve the web page')

3. Parsing HTML with BeautifulSoup: Next, you use BeautifulSoup to parse

the HTML content. This library helps you navigate the HTML structure and

extract data.

from bs4 import BeautifulSoup

Create a BeautifulSoup object
soup = BeautifulSoup(html_content, 'html.parser')

Extract data using CSS selectors

Python Quick Reference

Page | 161

title = soup.title.text
paragraphs = soup.find_all('p')

print('Title:', title)
print('Number of paragraphs:', len(paragraphs))

4. Extracting Specific Data: You can use BeautifulSoup to extract specific

data from the HTML structure based on your requirements. For example, to

extract all the links from a web page:

Extract all links (anchor tags)
links = soup.find_all('a')

for link in links:
 print(link['href']) # Print the href attribute of each link

5. Handling Pagination and Pagination Links: When scraping multiple

pages, you can iterate through paginated content by following links to the

next page.

Example of paginated content
next_page_link = soup.find('a', text='Next')

if next_page_link:
 next_page_url = next_page_link['href']
 response = requests.get(next_page_url)
 # Continue parsing the next page's content

6. Handling Dynamic Content: Some websites load content dynamically

using JavaScript. In such cases, libraries like Selenium can be used to

interact with the page as a user would and scrape data.

from selenium import webdriver
Set up a webdriver (e.g., Chrome)
driver = webdriver.Chrome()
driver.get(url)

Use driver to interact with the page, wait for dynamic content, and
scrape data

Python Quick Reference

Page | 162

7. Handling Authentication

Use requests with authentication
username = 'your_username'
password = 'your_password'
auth = (username, password)
response = requests.get(url, auth=auth)

8. Dealing with API

Fetch data from APIs (often returns data in JSON format)
response = requests.get(api_url)
data = response.json()

9. Respect Robots.txt: When scraping websites, it's essential to respect the

site's robots.txt file, which provides guidelines on what can and cannot be

scraped. You can use the robotparser library to check if a page can be

scraped.

from urllib import robotparser
rp = robotparser.RobotFileParser()
rp.set_url('https://example.com/robots.txt')
rp.read()

if rp.can_fetch('*', url):
 # You are allowed to scrape this page
 pass
else:
 # Respect the site's rules and don't scrape
 pass

10. Legal and Ethical Considerations: When scraping websites, always

ensure that you have the legal right to access and use the data. Respect the

site's terms of service, use reasonable rate limiting, and avoid causing harm

to the website.

Web scraping is a powerful tool for extracting data from websites, but it should

be used responsibly and ethically. Always check the website's terms of use and

robots.txt file before scraping, and be considerate of the site's resources and

policies.

Python Quick Reference

Page | 163

Library

Name
Description Example

BeautifulSoup A popular

library for

parsing HTML

and XML

documents

from bs4 import BeautifulSoup

import requests

Send an HTTP GET request

url = 'https://example.com'

response = requests.get(url)

Parse the HTML content of the page

soup = BeautifulSoup(response.text,

'html.parser')

Extract specific data

title = soup.title.string

print('Title:', title)

Requests A simple

library for

making HTTP

requests

import requests

Send an HTTP GET request

url = 'https://example.com'

response = requests.get(url)

Print the content of the response

print(response.text)

Scrapy A powerful

web scraping

framework

import scrapy

class MySpider(scrapy.Spider):

 name = 'myspider'

 start_urls = ['https://example.com']

def parse(self, response):

#Extract data from the response\n

 title = response.css('title::text').get()\n

 print('Title:', title)

process= scrapy.crawler.CrawlerProcess()

process.crawl(MySpider)

process.start()

Selenium A tool for

automating

web browsers

from selenium import webdriver\n\n#

Launch a web browser\nbrowser =

webdriver.Chrome()\n\n# Visit a

website\nurl =

'https://example.com'\nbrowser.get(url)\n\n#

Extract data using browser

automation\ntitle =

browser.title\nprint('Title:', title)\n\n# Close

the browser\nbrowser.quit()

PyQuery A library for

jQuery-like

syntax with

lxml

python from pyquery import PyQuery as

pq\nimport requests\n\n# Send an HTTP

GET request\nurl =

'https://example.com'\nresponse =

Python Quick Reference

Page | 164

requests.get(url)\n\n# Parse the HTML

content of the page\ndoc =

pq(response.text)\n\n# Extract specific

data\ntitle = doc('title').text()\nprint('Title:',

title)

Goutte A web

scraping

library for PHP

and Symfony

python from goutte import Goutte\n\nclient

= Goutte()\ncrawler = client.request('GET',

'https://example.com')\n\ndom_crawler =

crawler.filter('title')\n\ntitle =

dom_crawler.text()\nprint('Title:', title)

Lxml A library for

processing

XML and

HTML

python from lxml import html\nimport

requests\n\n# Send an HTTP GET

request\nurl =

'https://example.com'\nresponse =

requests.get(url)\n\n# Parse the HTML

content of the page\ntree =

html.fromstring(response.text)\n\n# Extract

specific data\ntitle =

tree.xpath('//title/text()')[0]\nprint('Title:',

title)

Pyppeteer A Python port

of Puppeteer, a

headless

Chrome

python from pyppeteer import

launch\n\nasync def main():\n browser =

await launch(headless=True)\n page = await

browser.newPage()\n await

page.goto('https://example.com')\n title =

await page.title()\n print('Title:', title)\n

await browser.close()\n\nimport

asyncio\nasyncio.run(main())

Beautiful

Soup 4k

A smaller

version of

BeautifulSoup

(4k version)

python from bs4k import

BeautifulSoup\nimport requests\n\n# Send

an HTTP GET request\nurl =

'https://example.com'\nresponse =

requests.get(url)\n\n# Parse the HTML

content of the page\nsoup =

BeautifulSoup(response.text,

'html.parser')\n\n# Extract specific

data\ntitle = soup.title.string\nprint('Title:',

title)

Page | 165

58

Introduction to NumPy

NumPy (Numerical Python) is a popular Python library used for numerical and

mathematical operations. It provides support for multi-dimensional arrays and

matrices, along with a wide range of mathematical functions to perform

operations on these arrays efficiently. NumPy is a fundamental library for

scientific computing and data analysis in Python.

Here's an explanation of NumPy with examples:

Installing NumPy

You can install NumPy using pip if it's not already installed:

pip install numpy

Importing NumPy

To use NumPy in your Python program, you need to import it:

import numpy as np

Now, let's explore some key aspects of NumPy with examples:

1. Creating NumPy Arrays: You can create NumPy arrays from Python lists

or other iterable objects. NumPy arrays are homogeneous, meaning all

elements have the same data type.

import numpy as np

Creating a 1D array from a Python list
arr1d = np.array([1, 2, 3, 4, 5])

Creating a 2D array (matrix) from a list of lists
arr2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

print("1D Array:")
print(arr1d)

print("\n2D Array:")

Python Quick Reference

Page | 166

print(arr2d)

2. Array Attributes: NumPy arrays have several useful attributes:

import numpy as np

arr = np.array([1, 2, 3, 4, 5])

Shape: Returns the dimensions of the array
print("Shape:", arr.shape)

Data Type: Returns the data type of elements in the array
print("Data Type:", arr.dtype)

Size: Returns the total number of elements in the array
print("Size:", arr.size)

Dimension: Returns the number of dimensions (axes)
print("Dimension:", arr.ndim)

3. Array Operations: NumPy allows you to perform various operations on

arrays, such as arithmetic operations and element-wise operations.

import numpy as np

arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])

Element-wise addition
result_add = arr1 + arr2

Element-wise multiplication
result_mul = arr1 * arr2

Dot product of two arrays
dot_product = np.dot(arr1, arr2)

print("Element-wise Addition:", result_add)
print("Element-wise Multiplication:", result_mul)
print("Dot Product:", dot_product)

Python Quick Reference

Page | 167

4. Array Indexing and Slicing: You can access and manipulate specific

elements or sub-arrays of a NumPy array using indexing and slicing.

import numpy as np

arr = np.array([0, 1, 2, 3, 4, 5])

Accessing a specific element
element = arr[3] # Retrieves the element at index 3 (0-based indexing)
print("Element at index 3:", element)

Slicing to get a sub-array
sub_array = arr[2:5] # Retrieves elements from index 2 (inclusive) to 5
(exclusive)
print("Sub-array:", sub_array)

5. NumPy Functions: NumPy provides a wide range of mathematical

functions that can be applied to arrays efficiently.

import numpy as np

arr = np.array([1, 2, 3, 4, 5])

Calculating the mean of an array
mean_value = np.mean(arr)

Calculating the sum of array elements
sum_value = np.sum(arr)

Finding the maximum and minimum values in an array
max_value = np.max(arr)
min_value = np.min(arr)

print("Mean:", mean_value)
print("Sum:", sum_value)
print("Max:", max_value)
print("Min:", min_value)

These are just some of the fundamental concepts and operations you can

perform with NumPy. NumPy is extensively used in scientific computing,

Python Quick Reference

Page | 168

machine learning, and data analysis for its efficiency and versatility when

working with numerical data.

NumPy Cheat Sheet

Importing NumPy

import numpy as np

Creating Arrays

1D array from a list
arr1d = np.array([1, 2, 3, 4, 5])

2D array (matrix) from a list of lists
arr2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

Create an array of zeros
zeros_arr = np.zeros(3)

Create an array of ones
ones_arr = np.ones(3)

Create an identity matrix
identity_matrix = np.eye(3)

Create an array with a range of values
range_arr = np.arange(0, 10, 2) # Start, Stop, Step

Create an array with evenly spaced values
linspace_arr = np.linspace(0, 1, 5) # Start, End, Number of values

Array Attributes

arr = np.array([1, 2, 3, 4, 5])

Shape: Dimensions of the array

print(arr.shape)

Data Type: Type of elements in the array

print(arr.dtype)

Python Quick Reference

Page | 169

Size: Total number of elements

print(arr.size)

Dimension: Number of dimensions (axes)

print(arr.ndim)

Array Operations

arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])

Element-wise addition
result_add = arr1 + arr2

Element-wise multiplication
result_mul = arr1 * arr2

Dot product of two arrays
dot_product = np.dot(arr1, arr2)

Array Indexing and Slicing
arr = np.array([0, 1, 2, 3, 4, 5])

Accessing a specific element
element = arr[3]

Slicing to get a sub-array
sub_array = arr[2:5]

NumPy Functions

arr = np.array([1, 2, 3, 4, 5])

Mean of an array
mean_value = np.mean(arr)

Sum of array elements
sum_value = np.sum(arr)

Maximum and minimum values
max_value = np.max(arr)

Python Quick Reference

Page | 170

min_value = np.min(arr)

Reshaping Arrays

arr = np.array([1, 2, 3, 4, 5, 6])

Reshape into a 2x3 matrix
reshaped_arr = arr.reshape(2, 3)

Random Number Generation

Generate random numbers
random_nums = np.random.rand(3, 3) # Uniform distribution between 0 and 1

Generate random integers
random_ints = np.random.randint(1, 10, size=(2, 2)) # Low, High, Size

Element-wise Functions

arr = np.array([1, 2, 3])

Square root
sqrt_arr = np.sqrt(arr)

Exponential
exp_arr = np.exp(arr)

Logarithm

log_arr = np.log(arr)

Linspace

In NumPy, linspace is a function used to create an array of evenly spaced values

within a specified range. The name "linspace" stands for "linear space." It is

particularly useful when you need a set of values that are evenly distributed

between a start and end point, and you want to specify the number of values you

want in that range.

Python Quick Reference

Page | 171

The Basic Syntax of Linspace is as Follows

numpy.linspace(start, stop, num=50, endpoint=True, retstep=False,
dtype=None)

start: The starting value of the sequence.

stop: The end value of the sequence.

num: The number of evenly spaced values you want in the array. This is an

optional parameter, and the default value is 50.

endpoint: If True (default), the end value (stop) is included in the sequence. If

False, it's not included.

retstep: If True, it returns a tuple with the array of values and the step size

between them.

dtype: The data type of the output array (e.g., int, float). If not specified, it is

inferred from the input values.

Here's an example of how to use linspace:

import numpy as np

Create an array of 5 evenly spaced values between 0 and 1 (inclusive)

arr = np.linspace(0, 1, 5)

print(arr)

Output

[0. 0.25 0.5 0.75 1.]

In this example, linspace generates an array with 5 values that are evenly

distributed between 0 and 1 (inclusive). The start and stop values specify the

range, and the num parameter specifies the number of values. If you set

endpoint=False, the end value (1.0 in this case) would not be included in the

generated sequence.

linspace is particularly useful for generating data points for plotting or for

creating evenly spaced values for numerical simulations and calculations.

Page | 172

59

Introduction to Pandas

Pandas is a popular Python library for data manipulation and analysis. It

provides data structures and functions for working with structured data, making

it a fundamental tool for data scientists, analysts, and engineers. In Pandas, the

two primary data structures are Series and DataFrame, which allow you to

work with one-dimensional and two-dimensional data, respectively.

Here's an explanation of Pandas with examples:

Installing Pandas

You can install Pandas using pip if it's not already installed:

pip install pandas

Importing Pandas

To use Pandas in your Python program, you need to import it:

import pandas as pd

Now, let's explore some key aspects of Pandas with examples:

1. Series: A Series is a one-dimensional array-like object in Pandas. It can hold

data of various types and is labeled, meaning it has an index.

import pandas as pd

Creating a Series from a list
data = [1, 2, 3, 4, 5]
series = pd.Series(data)

Accessing values and index
print(series.values)
print(series.index)

Specifying custom index
custom_index = ['A', 'B', 'C', 'D', 'E']
series = pd.Series(data, index=custom_index)

Python Quick Reference

Page | 173

Accessing by index label
print(series['B'])

2. DataFrame: A DataFrame is a two-dimensional tabular data structure in

Pandas. It is essentially a collection of Series objects, and each Series

becomes a column in the DataFrame.

import pandas as pd
Creating a DataFrame from a dictionary
data =
{

'Name': ['Alice', 'Bob', 'Charlie'],
 'Age': [25, 30, 35],
 'City': ['New York', 'San Francisco', 'Los Angeles']
}
df = pd.DataFrame(data)

Accessing columns
print(df['Name'])
print(df['Age'])

Accessing rows
print(df.loc[0])

3. Loading Data: Pandas provides functions to load data from various file

formats, such as CSV, Excel, and SQL databases.

import pandas as pd

Reading data from a CSV file
df = pd.read_csv('data.csv')

Reading data from an Excel file
df = pd.read_excel('data.xlsx')

Reading data from a SQL database
import sqlite3
conn = sqlite3.connect('mydb.db')
query = 'SELECT * FROM mytable'
df = pd.read_sql_query(query, conn)

Python Quick Reference

Page | 174

4. Data Exploration: Pandas offers various functions for exploring and

summarizing data.

Display the first few rows of the DataFrame
print(df.head())

Summary statistics
print(df.describe())

Counting unique values
print(df['Category'].value_counts())

Filtering data
filtered_df = df[df['Age'] > 25]

5. Data Manipulation: Pandas allows you to perform various data

manipulation tasks, such as sorting, merging, and grouping.

Sorting by a column
sorted_df = df.sort_values(by='Age', ascending=False)

Merging DataFrames
merged_df = pd.merge(df1, df2, on='Key')

Grouping and aggregating data
grouped_df = df.groupby('Category')['Sales'].sum()

6. Data Visualization: Pandas integrates with other libraries like Matplotlib

and Seaborn for data visualization.

import matplotlib.pyplot as plt

Creating a bar chart
df['Category'].value_counts().plot(kind='bar')
plt.title('Category Distribution')
plt.xlabel('Category')
plt.ylabel('Count')
plt.show()

Python Quick Reference

Page | 175

These are just some of the fundamental concepts and operations you can

perform with Pandas. Pandas is a versatile library for data manipulation and

analysis, making it an essential tool in the data science toolkit.

Page | 176

60

Introduction to Matplotlib

Matplotlib is a widely used Python library for creating static, animated, and

interactive visualizations in Python. It provides a flexible and comprehensive

set of tools for creating a wide range of plots, charts, and graphs to help you

visualize your data. In this explanation, I'll cover the basics of Matplotlib with

examples.

Installing Matplotlib:You can install Matplotlib using pip if it's not already

installed:

pip install matplotlib

Importing Matplotlib: To use Matplotlib in your Python program, you need to

import it:

import matplotlib.pyplot as plt

Basic Plotting with Matplotlib

Let's start with a simple example of creating a basic line plot:

import matplotlib.pyplot as plt

Data
x = [1, 2, 3, 4, 5]
y = [2, 4, 6, 8, 10]

Create a line plot
plt.plot(x, y)

Adding labels and a title
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title('Simple Line Plot')

Display the plot
plt.show()

Python Quick Reference

Page | 177

In this example:

We create a basic line plot using plt.plot(x, y).

We add labels to the X and Y axes using plt.xlabel() and plt.ylabel().
We set the title of the plot using plt.title().
Finally, we display the plot using plt.show().

Scatter Plot

Here's an example of creating a scatter plot:

import matplotlib.pyplot as plt

Data
x = [1, 2, 3, 4, 5]
y = [2, 4, 6, 8, 10]

Create a scatter plot
plt.scatter(x, y, marker='o', color='blue', label='Data Points')

Adding labels and a legend
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.legend()

Display the plot
plt.show()

In this example, we use plt.scatter() to create a scatter plot and customize it with

markers, colors, and labels.

Python Quick Reference

Page | 178

Bar Chart: Here's an example of creating a bar chart:

import matplotlib.pyplot as plt
Data
categories = ['A', 'B', 'C', 'D']
values = [10, 15, 7, 12]

Create a bar chart
plt.bar(categories, values, color='green')

Adding labels and a title
plt.xlabel('Categories')
plt.ylabel('Values')
plt.title('Bar Chart')

Display the plot
plt.show()

In this example, we use plt.bar() to create a bar chart and customize it with

categories, values, colors, and labels.

Python Quick Reference

Page | 179

Multiple Plots: You can create multiple plots in a single figure using subplots.

Here's an example:

import matplotlib.pyplot as plt

Data
x = [1, 2, 3, 4, 5]
y1 = [2, 4, 6, 8, 10]
y2 = [1, 3, 5, 7, 9]

Create two subplots (1 row, 2 columns)
plt.subplot(1, 2, 1)
plt.plot(x, y1)
plt.title('Plot 1')

plt.subplot(1, 2, 2)
plt.plot(x, y2)
plt.title('Plot 2')

Adjust layout
plt.tight_layout()

Display the plots
plt.show()

Python Quick Reference

Page | 180

In this example, we use plt.subplot() to create two subplots side by side within

the same figure.

These are just some of the basic plotting examples with Matplotlib. Matplotlib

provides extensive customization options and supports various types of plots,

such as histograms, pie charts, and 3D plots. It is a powerful tool for data

visualization and exploration in Python.

Page | 181

61

Introduction to Seaborn

Seaborn is a Python data visualization library based on Matplotlib. It provides a

high-level interface for creating informative and attractive statistical graphics.

Seaborn is particularly useful for visualizing complex datasets with minimal

effort, as it simplifies many of Matplotlib's plotting functions and adds a layer

of style and aesthetics. In this explanation, I'll introduce Seaborn and provide

examples of its main features.

Installing Seaborn: pip install seaborn

Importing Seaborn: import seaborn as sns

Seaborn Features and Examples

1. Styling and Themes: Seaborn comes with different built-in themes and

color palettes that can enhance the visual appearance of your plots. You can

set a theme using sns.set_style() and choose a palette with sns.set_palette().

Here's an example:

import seaborn as sns

import pandas as pd

import matplotlib.pyplot as plt

Creating a DataFrame using pandas

data = {'Category': ['A', 'B', 'C'], 'Values':

 [5, 10, 15]}

df = pd.DataFrame(data)

Set the style and palette

sns.set_style('whitegrid')

sns.set_palette('pastel')

Create a simple bar plot using Seaborn

sns.barplot(x='Category', y='Values', data=df)

Show the plot

plt.show()

Python Quick Reference

Page | 182

In this example, we set the style to 'whitegrid' and the palette to 'pastel,' and

then create a bar plot using Seaborn.

2. Distribution Plots: Seaborn provides distribution plots like histograms,

kernel density plots, and box plots to visualize the distribution of data. Here's

an example of a histogram and a kernel density plot:

import seaborn as sns
import matplotlib.pyplot as plt

Load example data
data = sns.load_dataset("tips")

Create a histogram
sns.histplot(data["total_bill"], kde=True)

Show the plot
plt.show()

In this example, we use sns.histplot() to create a histogram with a kernel

density plot overlay.

3. Pair Plots: Pair plots are a great way to visualize pairwise relationships

between variables in a dataset. Seaborn's pairplot function automatically

creates scatterplots for numerical variables and histograms for numerical and

categorical variables.

Python Quick Reference

Page | 183

import seaborn as sns
import matplotlib.pyplot as plt

Load example data
data = sns.load_dataset("iris")

Create a pair plot
sns.pairplot(data, hue="species")
Show the plot
plt.show()

In this example, we use sns.pairplot() to create a pair plot for the Iris dataset,

coloring the points by species.

4. Heatmaps: Heatmaps are useful for visualizing the correlation matrix of a

dataset. Seaborn's heatmap function can create heatmaps with annotated

values.

Python Quick Reference

Page | 184

import seaborn as sns
import matplotlib.pyplot as plt

Load example data
data = sns.load_dataset("flights")
pivot_data = data.pivot_table(index="month", columns="year",
values="passengers")

Create a heatmap
sns.heatmap(pivot_data, cmap="YlGnBu", annot=True, fmt="d")

Show the plot
plt.show()

In this example, we use sns.heatmap() to create a heatmap of the passenger

counts for different months and years.

5. Regression Plots: Seaborn makes it easy to create regression plots for

visualizing relationships between two variables and fitting regression

models.

import seaborn as sns
import matplotlib.pyplot as plt

Load example data

Python Quick Reference

Page | 185

data = sns.load_dataset("tips")

Create a regression plot
sns.regplot(x="total_bill", y="tip", data=data)

Show the plot
plt.show()

In this example, we use sns.regplot() to create a regression plot between total

bill and tip amounts.

These are just a few examples of what you can do with Seaborn. It offers a wide

range of visualization options and customization capabilities, making it a

valuable tool for data exploration and presentation in Python.

Page | 186

62

Introduction to Tkinter

Tkinter is a standard Python library for creating graphical user interfaces

(GUIs). It provides a set of tools and widgets for building windows, dialog

boxes, buttons, labels, textboxes, and more. With Tkinter, you can create

desktop applications with a graphical interface. In this explanation, I'll introduce

the basic concepts of Tkinter and provide examples of creating a simple GUI

application.

Importing Tkinter: To use Tkinter, you need to import it:

import tkinter as tk

Creating a Basic Tkinter Application: Here's an example of a minimal Tkinter

application that creates a simple window:

import tkinter as tk
Create a main window
window = tk.Tk()
Add a label to the window
label = tk.Label(window, text="Hello, Tkinter!")
label.pack()
Start the main loop
window.mainloop()

Python Quick Reference

Page | 187

Adding Buttons and Event Handling: Let's enhance the previous example by

adding a button and an event handler:

import tkinter as tk

Function to handle button click
def on_button_click():
 label.config(text="Button Clicked!")

Create a main window
window = tk.Tk()

Add a label to the window
label = tk.Label(window, text="Hello, Tkinter!")
label.pack()

Add a button to the window
button = tk.Button(window, text="Click Me", command=on_button_click)
button.pack()

Start the main loop
window.mainloop()

In this example

We define a function on_button_click() to be called when the button is clicked.

We create a button widget using tk.Button() and associate the on_button_click

function with the command parameter.

Python Quick Reference

Page | 188

When the button is clicked, the on_button_click function changes the text of

the label.

Creating a Simple Form: Let's create a simple form with labels, entry widgets,

and a submit button:

import tkinter as tk
Function to handle form submission
def submit_form():
 name = name_entry.get()
 age = age_entry.get()
 result_label.config(text=f"Name: {name}, Age: {age}")

Create a main window
window = tk.Tk()

Add labels, entry widgets, and a button
tk.Label(window, text="Name:").pack()
name_entry = tk.Entry(window)
name_entry.pack()

tk.Label(window, text="Age:").pack()
age_entry = tk.Entry(window)
age_entry.pack()

submit_button = tk.Button(window, text="Submit", command=submit_form)
submit_button.pack()

result_label = tk.Label(window, text="")
result_label.pack()
Start the main loop
window.mainloop()

Python Quick Reference

Page | 189

In this example

We create labels, entry widgets, and a button to create a simple form.The

submit_form() function retrieves the values from the entry widgets when the

button is clicked and updates the result label with the information.

These examples provide a basic introduction to creating GUI applications with

Tkinter in Python. Tkinter offers a wide range of widgets and features for

building more complex and interactive desktop applications.

Page | 190

63

Python Tips

Here's a list of Python tips to help you become a more efficient and effective

Python programmer:

Use Descriptive Variable Names: Choose meaningful names for your variables

and functions to enhance code readability.

Follow PEP 8: Adhere to the Python Enhancement Proposal (PEP) 8 style guide

for consistent code formatting.

Use a Virtual Environment: Isolate project dependencies using virtual

environments to prevent conflicts.

Leverage List Comprehensions: Simplify list creation and manipulation with

list comprehensions.

Avoid Global Variables: Minimize the use of global variables to reduce

complexity and improve code maintainability.

Keep Functions Short and Focused: Aim for small, focused functions that

perform a single task.

Document Your Code: Use docstrings and comments to explain your code's

purpose and usage.

Learn Built-in Functions: Familiarize yourself with Python's built-in functions

to avoid reinventing the wheel.

Use Iterators and Generators: Utilize iterators and generators to process large

datasets efficiently.

Handle Exceptions Gracefully: Use try-except blocks to handle exceptions

and errors gracefully.

Use Context Managers: Employ context managers (e.g., with statements) for

resource management.

Python Quick Reference

Page | 191

Optimize Loops: Try to optimize loops by moving constant calculations

outside the loop when possible.

Profile Your Code: Use profilers to identify performance bottlenecks in your

code.

Choose the Right Data Structure: Select the appropriate data structure (lists,

sets, dictionaries, etc.) for your task.

Know Built-in Types: Familiarize yourself with Python's built-in data types

and their methods.

Master String Formatting: Learn the various ways to format strings, including

f-strings, % formatting, and str.format().

Understand Mutable vs. Immutable: Understand the distinction between

mutable (e.g., lists) and immutable (e.g., tuples) data types.

Keep Your Dependencies Updated: Regularly update your project's

dependencies to benefit from bug fixes and new features.

Use Virtual Environments: Isolate project dependencies using virtual

environments to avoid conflicts.

Write Unit Tests: Implement unit tests to ensure your code behaves as expected

and catches regressions.

Learn List Slicing: Master list slicing to efficiently manipulate and extract data

from lists.

Use the enumerate() Function: Iterate over both index and value with

enumerate() in loops.

Avoid Hardcoding Values: Avoid hardcoding constants; use named constants

or configuration files.

Utilize the collections Module: Explore the collections module for specialized

data structures like defaultdict and Counter.

Practice DRY (Don't Repeat Yourself): Reuse code through functions or

classes rather than duplicating it.

Python Quick Reference

Page | 192

Learn Regular Expressions: Familiarize yourself with regular expressions for

powerful text processing.

Handle Time and Dates with datetime: Use the datetime module for working

with dates and times.

Optimize Imports: Import only what you need to reduce clutter and improve

readability.

Use List and Dictionary Comprehensions: Use comprehensions to create and

manipulate lists and dictionaries efficiently.

Explore Functional Programming: Learn functional programming concepts

like map, filter, and reduce.

Understand Closures: Understand how closures work in Python and how they

can be useful.

Learn Decorators: Explore decorators for modifying or extending the behavior

of functions.

Avoid Using Global: Limit the use of the global keyword; prefer passing

variables as arguments.

Use the logging Module: Implement logging for better debugging and

monitoring.

Profile Your Code: Use profiling tools to identify performance bottlenecks and

optimize your code.

Handle Exceptions Gracefully: Use try and except to handle errors and

exceptions effectively.

Explore Third-party Libraries: Discover and utilize third-party libraries to

extend Python's capabilities.

Learn List Methods: Familiarize yourself with list methods like append(),

extend(), and sort().

Use Generators for Large Datasets: Use generators to process large datasets

efficiently without loading them entirely into memory.

Python Quick Reference

Page | 193

Master Object-Oriented Programming (OOP): Understand OOP principles

and how to create classes and objects.

Customize Exception Handling: Create custom exceptions to provide

meaningful error messages.

Use the zip() Function: Combine multiple iterable elements with the zip()

function.

Know the collections Module: Explore advanced data structures like

namedtuple, deque, and ChainMap in the collections module.

Use Set Operations: Leverage set operations (union, intersection, etc.) for

efficient set manipulation.

Optimize with List Comprehensions: Filter and transform data efficiently

using list comprehensions.

Apply Functional Programming: Implement functional programming

concepts like map(), filter(), and reduce().

Learn Context Managers: Understand and create custom context managers for

resource management.

Use Type Hinting: Employ type hinting for improved code documentation and

static analysis.

Write Unit Tests: Develop unit tests to ensure code correctness and

maintainability.

Keep Learning: Python is a vast language with a rich ecosystem. Keep

learning and exploring new features and libraries to become a better Python

programmer.

Avoid Using eval(): Refrain from using eval() to execute arbitrary code, as it

can pose security risks.

Consider Using with for Files: Use the with statement (with open(...) as ...)

when working with files to ensure proper resource management.

Master Dictionaries: Become proficient in working with dictionaries, as they

are versatile and widely used in Python.

Python Quick Reference

Page | 194

Use sorted() with Custom Key Functions: Sort lists and other iterables with

sorted() using custom key functions for complex sorting criteria.

Leverage Python's Ecosystem: Explore and utilize Python's vast ecosystem of

libraries and frameworks to streamline development.

Use List Comprehensions for Filtering: Use list comprehensions with

conditional expressions to filter elements efficiently.

Customize print(): Customize the print() function with optional parameters

like sep and end for more control over output formatting.

Understand __init__.py Files: Learn how to use __init__.py files to make

directories act as Python packages.

Avoid Mutating Lists During Iteration: Avoid modifying a list while iterating

over it to prevent unexpected behavior.

Experiment and Refactor: Don't hesitate to experiment with different

approaches, and refactor your code for continuous improvement.

Use is for Identity Comparison: Use is to compare object identity (memory

address) and == for value equality.

Apply Defaultdict for Default Values: Utilize collections.defaultdict to

provide default values for dictionary keys.

Use the heapq Module for Heap Operations: Explore the heapq module for

efficient heap operations like creating heaps and heapsorting.

Handle JSON Data with json Module: Read and write JSON data easily using

Python's built-in json module.

Learn and Use List Methods: Familiarize yourself with list methods like

append(), extend(), insert(), and pop() for list manipulation.

Use the math Module for Mathematical Operations: The math module offers

a wide range of mathematical functions and constants for numerical tasks.

Work with Dates and Times Using Datetime: Utilize the datetime module to

perform date and time calculations and formatting.

Python Quick Reference

Page | 195

Explore Regular Expressions: Master regular expressions (re module) for

advanced text search and manipulation.

Optimize String Concatenation: Use str.join() for efficient string

concatenation instead of repeated + operations.

Be Mindful of Mutable Default Arguments: Be cautious when using mutable

objects like lists as default function arguments.

Learn and Use Decorators: Explore decorators for modifying or extending the

behavior of functions and methods.

Understand Generators and Yield: Create generators using the yield keyword

to efficiently generate and process data on-the-fly.

Implement __str__ and __repr__ Methods: Define these special methods in

your classes for customized string representations.

Learn about Python's Garbage Collection: Understand how Python's garbage

collection works to manage memory efficiently.

Optimize Imports: Organize and optimize your imports to make your code

more readable and maintainable.

Use try...else...finally Blocks: Leverage the else and finally blocks in exception

handling for better control and cleanup.

Dive into Object-Oriented Programming (OOP): Understand OOP principles

like inheritance, encapsulation, and polymorphism.

Work with File Paths Using os.path: Use the os.path module for platform-

independent file path manipulation.

Leverage Closures for Encapsulation: Use closures to encapsulate data and

functions within a single scope.

Learn and Use collections.deque: Use collections.deque for efficient and

thread-safe double-ended queues (dequeues).

Know When to Use map() and filter(): Learn when to use map() and filter() for

efficient iterable processing.

Python Quick Reference

Page | 196

Use itertools for Advanced Iteration: Explore the itertools module for

advanced tools for creating iterators.

Understand and Use Python's asyncio: Dive into asynchronous programming

with Python's asyncio library for concurrent and non-blocking code execution.

Optimize Recursive Functions: Implement memoization or tail recursion for

more efficient recursive functions.

Master Context Managers: Create custom context managers using the

contextlib module for resource management and clean code.

Avoid Using * for Importing Everything: Avoid using wildcard imports (e.g.,

from module import *) to maintain code clarity.

Use the bytes and bytearray Types for Binary Data: The bytes and bytearray

types are ideal for handling binary data.

Keep a Clean and Tidy Codebase: Regularly refactor and clean up your

codebase to improve maintainability.

Learn and Use functools.partial: Customize functions by using

functools.partial to fix certain arguments.

Know How to Extend Classes: Understand how to extend built-in classes and

create your own custom classes.

Use List and Dictionary Unpacking: Unpack lists and dictionaries elegantly

using unpacking syntax (* and **).

Write Docstrings for Functions and Modules: Document your code with

docstrings for clear explanations and automated documentation generation.

Explore Web Development with Python: Learn web development frameworks

like Django or Flask for building web applications.

Keep Up with Python Updates: Stay informed about new Python versions and

their features and migrate to newer versions as appropriate.

Consider Testing Frameworks: Explore testing frameworks like pytest for

comprehensive test suites.

Python Quick Reference

Page | 197

Use collections.namedtuple for Simple Classes: Simplify class creation with

collections.namedtuple for classes with a fixed set of attributes.

Learn About Python's Global Interpreter Lock (GIL): Understand the

implications of the Global Interpreter Lock on multi-threaded Python programs.

Handle Command-Line Arguments with argparse: Utilize the argparse

module for parsing command-line arguments in a structured way.

Optimize with functools.lru_cache: Speed up functions with expensive

calculations by using functools.lru_cache for caching results.

Experiment with Jupyter Notebooks: Explore Jupyter notebooks for

interactive Python coding, data exploration, and visualization.

Utilize Python Data Serialization Libraries: Learn about libraries like Pickle

and JSON for serializing and deserializing data.

Understand the GIL's Impact on Multi-Threading: Be aware of the Global

Interpreter Lock (GIL) when working with multi-threading in Python.

Work with CSV and Excel Data: Familiarize yourself with libraries like csv

and pandas for handling CSV and Excel data.

Create Python Scripts for Automation: Write Python scripts to automate

repetitive tasks and save time.

Use unittest.mock for Testing: Employ the unittest.mock module to create and

manipulate mock objects for testing.

Know How to Profile Code: Learn how to use profiling tools like cProfile to

identify performance bottlenecks.

Consider Using Python for Data Science: Explore Python libraries like

NumPy, pandas, and scikit-learn for data analysis and machine learning.

Understand the Global State in Modules: Be cautious about global variables

and state in modules; prefer passing data explicitly.

Learn About Python Design Patterns: Study and apply common design

patterns to write clean and maintainable code.

Python Quick Reference

Page | 198

Stay Active in the Python Community: Participate in Python forums,

meetups, and conferences to learn from others and share your knowledge.

Continuing to practice and apply these tips will help you become a more

proficient Python programmer and unlock the full potential of the language for

various applications.

These Python tips cover a wide range of topics and can help you write more

efficient, readable, and maintainable Python code.

Page | 199

64

Python Tricks

Sl.

No
Python Tricks Example

1 Flatten the lists import itertools

a = [[10, 20], [30, 40], [50, 60]]

b = list(itertools.chain.from_iterable(a))

print(b)

Output: [10, 20, 30, 40, 50, 60]

2 Reverse a list a = ["10", "9", "8", "7"]

print(a[::-1])

Output: 10, 9, 8, 7

3 Combining

different lists

a = ['a', 'b', 'c', 'd']

b = ['e', 'f', 'g', 'h']

for x, y in zip(a, b):

print(x, y)

Output: a e, b f, c g, d h

4 Negative

indexing lists

a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
a[-3:-

1]
Output: [8, 9]

5 Analyzing the

most frequent

on the list

a = [1, 2, 3, 4, 2, 2, 3, 1, 4, 4,

4]
print(max(set(a), key=a.count))
Output:

4

6 Reversing the

string

a = "python"
print("Reverse is", a[::-

1])
Output: Reverse is nohtyp

7 Splitting the

string

a = "Python is the language of the future"
b =

a.split()
print(b)
Output: ['Python', 'is', 'the',

'language', 'of', 'the', 'future']

8 Printing out

multiple values

of strings

print("on" * 3 + ' ' + "off" * 2)
Output: ononon

offoff

9 Creating a

single string

a = ["I", "am", "not", "available"]
print("

".join(a))
Output: I am not available

10 Checking if two

words are

anagrams

from collections import Counter
def

is_anagram(str1, str2):
 return Counter(str1) ==

Counter(str2)
print(is_anagram('taste',

'state'))
print(is_anagram('beach',

'peach'))
Output: True, False

Python Quick Reference

Page | 200

11 Transposing a

matrix

mat = [[8, 9, 10], [11, 12, 13]]
new_mat =

zip(*mat)
for row in new_mat:

print(row)
Output: (8, 11), (9, 12), (10, 13)

12 Chaining

comparison

operators

a = 17
b = 21
c = 11
print(c <

a)
print(a < b)
Output: True, True, True

13 Inverting the

Dictionary

dict1 = {'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5, 'f': 6, 'g':

7}
dict2 = {v: k for k, v in

dict1.items()}
print(dict2)
Output: {1: 'a', 2:

'b', 3: 'c', 4: 'd', 5: 'e', 6: 'f', 7: 'g'}

14 Iterating value

pairs and

dictionary keys

dict1 = {'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5, 'f': 6}
for

a, b in dict1.iteritems():
 print('{: {}'.format(a,

b))
Output: a: 1, b: 2, c: 3, d: 4, f: 6

15 Merging

multiple

dictionaries

x = {'a': 1, 'b': 2}
y = {'b': 3, 'c': 4}
z =

{**x, **y}
print(z)
Output: {'a': 1, 'b': 3, 'c':

4}

6 Initializing

empty spaces

a_list = list()
a_dict = dict()
a_map =

map()
a_set = set()

17 Initializing lists

filled with

numbers

listA = [1] * 1000
listB = [2] * 1000

18 Checking and

analyzing the

memory unit of

an object

import sys
a =

10
print(sys.getsizeof(a))
Output: 28

19 Swapping

values

x, y = 13, 26
x, y = y, x
print(x,

y)
Output: 26 13

20 Implementing

the map

function

In competitive coding, you might come across an

input like this:
1234567890
To get the input

as a list of numbers, perform the

following:
list(map(int,

input().split()))
Note: Always use the input()

function irrespective of the type of input and convert

it using the map function.

21

Merging

different lists

The Collections module allows you to remove

duplicates from a list. In Java, you have to use the

HashMap to remove duplicate modules, but it‘s far

easier in the case of Python.
print(list(set([1, 2,

3, 4, 3, 4, 5, 6, 7, 8, 9])))
Output: [1, 2, 3, 4, 5,

6, 7, 8, 9]
You need to use extend() and

append() in the lists while merging multiple

lists.
a = [1, 2, 3, 4]
b = [5, 6, 7, 8,

Python Quick Reference

Page | 201

 9]
Note: a.extend(b) will display one

list.
a
[1, 2, 3, 4]
Note: a.append(b)

will display the list of lists.
a
[1, 2, 3, 4, [5,

6, 7, 8, 9]]

22

Writing code

within functions

In Python, it is always better to write your code

within functions.
def main():
 for i in

range(2 ** 3):
 print(x)
main()
The

above code fragment is better than the one

below:
for x in range(2 ** 3):

print(x)
The CPython implementation saves

time in the case of storing local variables.

23

Bonus tip

These useful Python tricks will help you code better

and more efficiently. Here is a bonus tip that you

should know and implement.
Strings

concatenation:
str1 = ""
some_list =

["Welcome ", "To ", "Bonus ", "Tips

"]
print(str1.join(some_list))
Use the

above code instead of:
str1 = ""
some_list

= ["Welcome ", "To ", "Bonus ", "Tips

"]
for x in some_list:
 str1 +=

x
print(str1)
Speed and, most of all,

efficiency, are key to coding better. By incorporating

the tips outlined in this article, you can significantly

improve your Python programming skills. Give

them a try in your next competitive coding event or

other Python projects and notice the difference they

make.

24 Use

Namedtuples

for Readability

Namedtuples are a convenient way to define simple

classes for storing data records. They provide both

named fields and immutability. Example:
from

collections import namedtuple
Point =

namedtuple('Point', ['x', 'y'])
p = Point(1,

2)
print(p.x, p.y)
Output: 1 2

25 Understand and

Use List

Comprehension

s

List comprehension is a concise way to create lists.

Example:
squares = [x**2 for x in

range(10)]
print(squares)
Output: [0, 1, 4, 9,

16, 25, 36, 49, 64, 81]

26 Master Python's

enumerate

Function

enumerate allows you to loop over iterable objects

while keeping track of the current index.

Example:
fruits = ['apple', 'banana',

'cherry']
for idx, fruit in enumerate(fruits):

print(idx, fruit)

Python Quick Reference

Page | 202

27 Swap Values

Using Tuple

Packing/Unpac

king

You can swap values of variables without using a

temporary variable using tuple packing/unpacking.

Example:
a, b = 1, 2
a, b = b, a
print(a,

b)
Output: 2 1

28 Use the any and

all Functions

for Conditions

any checks if at least one element in an iterable is

True, while all checks if all elements are True.

Example:
numbers = [True, False,

True]
print(any(numbers))
print(all(number

s))
Output: True (at least one True), False (not

all are True)

29 Learn About

Python's

Generators

Generators allow you to create iterators without

building large data structures in memory.

Example:
def square_numbers(n):
 for i in

range(n):
 yield i**2
for num in

square_numbers(5):
 print(num)

30 Use List Slicing

for Sublists

List slicing lets you create sublists efficiently.

Example:
my_list = [1, 2, 3, 4, 5]
sublist =

my_list[1:4]
print(sublist)
Output: [2, 3, 4]

31 Explore

Python's zip

Function for

Iteration

zip combines multiple iterables element-wise.

Example:
names = ['Alice', 'Bob',

'Charlie']
scores = [85, 92, 78]
for name,

score in zip(names, scores):
 print(name, score)

32 Utilize Python's

sorted Function

sorted allows you to sort iterables in ascending

order. Example:
numbers = [3, 1, 4, 1, 5, 9, 2, 6,

5, 3, 5]
sorted_numbers =

sorted(numbers)
print(sorted_numbers)
Out

put: [1, 1, 2, 3, 3, 4, 5, 5, 5, 6, 9]

33 Use Python's

filter Function

for Filtering

filter filters elements from an iterable based on a

function. Example:
numbers = [1, 2, 3, 4, 5, 6,

7, 8, 9, 10]
even_numbers = list(filter(lambda x:

x % 2 == 0,

numbers))
print(even_numbers)
Output: [2,

4, 6, 8, 10

Page | 203

65

Sample Python Interview Questions
and Answers

1. What is Python?

Answer: Python is a high-level, interpreted programming language known

for its simplicity and readability. It is widely used for web development, data

analysis, machine learning, and more.

2. What are the key features of Python?

Answer: Key features of Python include easy-to-read syntax, dynamic

typing, automatic memory management, and extensive standard libraries.

3. How is Python different from other programming languages like Java or

C++?

Answer: Python is dynamically typed, has automatic memory management,

and emphasizes simplicity and readability, making it different from

statically-typed languages like Java and C++.

4. Explain Python's GIL (Global Interpreter Lock).

Answer: The GIL is a mutex in Python that allows only one thread to

execute in the interpreter at a time. It can limit the multi-threading

performance in CPU-bound applications.

5. What are the different data types in Python?

Answer: Python has various built-in data types, including int, float, str, list,

tuple, set, and dict.

6. What is a Python list comprehension?

Answer: List comprehensions provide a concise way to create lists. For

example, [x for x in range(10)] generates a list of numbers from 0 to 9.

Python Quick Reference

Page | 204

7. Explain the difference between 'deep copy' and 'shallow copy' in

Python.

Answer: A shallow copy creates a new object, but it doesn't create copies of

nested objects. A deep copy creates new objects for both the outer object and

all nested objects.

8. What is the purpose of the 'if name == "main":' statement in Python

scripts?

Answer: It allows you to check whether the script is being run as the main

program or imported as a module. Code within this block only executes if it's

the main program.

9. What is a Python generator, and how is it different from a list?

Answer: A generator is an iterable that produces values on-the-fly using a

yield statement. Unlike lists, generators do not store all values in memory

simultaneously, making them memory-efficient.

10. Explain the purpose of Python's 'enumerate' function.

Answer: The enumerate function is used to iterate through an iterable while

keeping track of the index or position of the current item.

11. How do you handle exceptions in Python?

Answer: You can use try, except, and optionally finally blocks to handle

exceptions. For example:

try:
 # Code that may raise an exception
except SomeException as e:
 # Handle the exception
else:
 # Code to run if no exception is raised
finally:
 # Code that always runs

Python Quick Reference

Page | 205

12. What are decorators in Python?

Answer: Decorators are a way to modify or extend the behavior of

functions or methods without changing their source code. They are often

used for aspects such as logging, authentication, or memoization.

13. Explain the use of 'lambda' functions in Python.

Answer: Lambda functions are small, anonymous functions defined using

the lambda keyword. They are typically used for simple operations and can

be passed as arguments to higher-order functions.

14. What is the difference between 'deep copy' and 'shallow copy' in

Python?

Answer: A shallow copy creates a new object but doesn't create copies of

nested objects. A deep copy creates new objects for both the outer object

and all nested objects, recursively.

15. What is a Python package?

Answer: A package is a way of organizing related Python modules into a

single directory hierarchy. It helps in modularizing and structuring larger

Python applications.

16. Explain the purpose of Python's 'with' statement.

Answer: The with statement is used to simplify resource management (e.g.,

file handling). It ensures that cleanup code is executed even if an exception

occurs.

17. What is the Global Interpreter Lock (GIL) in Python, and how does it

affect multi-threaded programs?

Answer: The GIL is a mutex that protects access to Python objects. It

allows only one thread to execute Python code at a time. In multi-threaded

CPU-bound programs, it can limit performance, but it doesn't affect I/O-

bound or multi-processing tasks.

18. Explain the purpose of the 'yield' keyword in Python.

Answer: The yield keyword is used in a function to turn it into a generator.

It allows the function to generate a value and then pause its execution,

Python Quick Reference

Page | 206

allowing for efficient memory usage in situations where the result set could

be large.

19. What is the difference between 'append' and 'extend' methods in

Python lists?

Answer: The append method adds its entire argument as a single element to

the end of a list. The extend method adds each element of its argument to

the list.

20. What is a Python virtual environment, and why is it useful?

Answer: A virtual environment is an isolated Python environment where

you can install packages independently of the system-wide Python

installation. It helps manage dependencies and avoids conflicts between

packages in different projects.

21. What is the purpose of the 'self' keyword in Python classes?

Answer: In Python, self refers to the instance of the class itself and is used

to access instance variables and methods within the class.

22. Explain the use of 'args' and 'kwargs' in Python function definitions.

Answer: *args and **kwargs allow functions to accept a variable number

of positional and keyword arguments, respectively. *args collects extra

positional arguments into a tuple, while **kwargs collects extra keyword

arguments into a dictionary.

23. What is a Python dictionary comprehension?

Answer: Dictionary comprehensions provide a concise way to create

dictionaries. For example, {k: k**2 for k in range(5)} generates a dictionary

with squares of numbers as key-value pairs.

24. What is a Python set, and what is its main use case?

Answer: A set is an unordered collection of unique elements. Its primary

use case is to eliminate duplicate values from a sequence.

Python Quick Reference

Page | 207

25. Explain the purpose of the 'super()' function in Python classes.

Answer: super() is used to call a method from a parent class. It is often

used to extend the behavior of a method in a child class.

26. What is the difference between 'deep copy' and 'shallow copy' in

Python?

Answer: A shallow copy creates a new object, but it doesn't create copies of

nested objects. A deep copy creates new objects for both the outer object

and all nested objects.

27. Explain the Global Interpreter Lock (GIL) in Python.

Answer: The Global Interpreter Lock (GIL) is a mutex in CPython (the

most commonly used implementation of Python) that allows only one

thread to execute Python bytecode at a time. This can limit multi-threading

performance in CPU-bound applications.

28. What is the purpose of the 'with' statement in Python?

Answer: The with statement is used for context management. It ensures that

resources are acquired and released properly, such as in file handling (auto-

closing files).

29. What is a Python generator, and how is it different from a list?

Answer: A generator is an iterable that generates values on-the-fly using a

yield statement. Unlike lists, generators do not store all values in memory

simultaneously, making them memory-efficient.

30. Explain the purpose of Python's 'enumerate' function.

Answer: The enumerate function is used to iterate through an iterable while

keeping track of the index or position of the current item.

31. What is a Python decorator, and how is it used?

Answer: A decorator is a function that takes another function and extends

or modifies its behavior without changing its source code. Decorators are

often used for aspects like logging, authentication, or memoization.

Python Quick Reference

Page | 208

32. How can you handle exceptions in Python?

Answer: You can use try, except, and optionally finally blocks to handle

exceptions. For example:

try:
 # Code that may raise an exception
except SomeException as e:
 # Handle the exception
else:
 # Code to run if no exception is raised
finally:
 # Code that always runs

33. What is the purpose of 'lambda' functions in Python?

Answer: Lambda functions are small, anonymous functions defined using

the lambda keyword. They are typically used for simple operations and can

be passed as arguments to higher-order functions.

34. What is the difference between 'deep copy' and 'shallow copy' in

Python?

Answer: A shallow copy creates a new object, but it doesn't create copies of

nested objects. A deep copy creates new objects for both the outer object

and all nested objects, recursively.

35. What is a Python package, and how is it different from a module?

Answer: A package is a way of organizing related Python modules into a

single directory hierarchy. Packages contain multiple modules, while a

module is a single Python file.

36. Explain the purpose of Python's 'yield' keyword.

Answer: The yield keyword is used in a function to turn it into a generator.

It allows the function to generate a value and then pause its execution,

allowing for efficient memory usage in situations where the result set could

be large.

Python Quick Reference

Page | 209

37. What is the difference between 'append' and 'extend' methods in

Python lists?

Answer: The append method adds its entire argument as a single element to

the end of a list. The extend method adds each element of its argument to

the list.

38. What is a Python virtual environment, and why is it useful?

Answer: A virtual environment is an isolated Python environment where

you can install packages independently of the system-wide Python

installation. It helps manage dependencies and avoids conflicts between

packages in different projects.

39. How do you comment on multiple lines in Python?

Answer: You can use triple quotes (either single or double) to comment

multiple lines, although this is typically used as docstrings for functions and

classes.

40. What is the purpose of the 'pass' statement in Python?

Answer: The pass statement is a no-op statement that does nothing. It is

often used as a placeholder to avoid syntax errors while writing code.

Page | 210

66

Top 100 Python Interview
Questions

1. What is Python?

2. What are the benefits of using Python language in the present scenario?

3. Is Python a compiled language or an interpreted language?

4. What is the significance of the ‗#‘ symbol in Python?

5. How would you describe Python as a dynamically typed language?

6. Explain the difference between Mutable and Immutable data types in

Python.

7. How are arguments passed in Python, by value or by reference?

8. What distinguishes a Set from a Dictionary in Python?

9. What are *args and *kwargs in Python functions?

10. Is indentation mandatory in Python code?

11. Define the concept of Scope in Python.

12. What is a docstring in Python, and why is it used?

13. Explain the concept of a namespace in Python.

14. What are Access Specifiers in Python?

15. In Python, what are the roles of 'break,' 'continue,' and 'pass'?

16. Differentiate between 'for' loops and 'while' loops in Python.

17. Can you pass a function as an argument in Python?

18. What's the difference between '/' and '//' in Python division?

19. How do you implement exceptional handling in Python?

20. What is List Comprehension in Python? Provide an example.

21. Explain what a lambda function is in Python.

22. What is the purpose of the 'pass' statement in Python?

23. Describe the distinction between a shallow copy and a deep copy in

Python.

24. Which sorting technique is employed by Python's 'sort()' and 'sorted()'

functions?

25. What are Decorators in Python?

26. Define Iterators in Python.

27. What are Generators in Python?

28. Does Python support multiple inheritance?

29. Explain Polymorphism in Python.

30. Define encapsulation in Python.

Python Quick Reference

Page | 211

31. How do you achieve data abstraction in Python?

32. Describe the memory management approach used in Python.

33. How can you delete a file using Python?

34. What is slicing in Python?

35. What is Dictionary Comprehension in Python? Can you provide an

example?

36. Is there Tuple Comprehension in Python? If so, how does it work, and if

not, why?

37. What distinguishes a List from a Tuple?

38. Explain the difference between a shallow copy and a deep copy in Python.

39. What is Python's Switch Statement, and how does it work?

40. What is the purpose of the Walrus Operator in Python?

41. What are the Built-in data types in Python?

42. What does the 'swapcase()' function do in Python?

43. Explain the significance of 'init()' in Python.

44. Can you write code to display the current time in Python?

45. What is PIP in Python, and what is its role?

46. Describe the purpose of the 'zip' function in Python.

47. What are Pickling and Unpickling in Python?

48. Define monkey patching in Python.

49. Explain the concept of Function Annotations in Python.

50. What are Exception Groups in Python?

51. What is the significance of PYTHONPATH in Python?

52. What are unit tests in Python?

53. What is the Global Interpreter Lock (GIL) in Python?

54. How do you debug a Python program?

55. Explain the concepts of Class and Object in Python.

56. How does inheritance work in Python, and can you provide an example?

57. Are access specifiers used in Python?

58. Differentiate between the 'new' and 'override' modifiers.

59. Why is the 'finalize' method used in Python?

60. What is the 'main' function in Python, and how do you invoke it?

61. Describe how to create a class in Python.

62. What do you know about pandas in Python?

63. Define a pandas data frame.

64. How can you combine different pandas‘ data frames?

65. Can you create a series from a dictionary object in pandas?

66. How do you identify and handle missing values in a data frame?

67. Explain the concept of reindexing in pandas.

68. How can you add a new column to a panda‘s data frame?

69. What methods are available to delete indices, rows, and columns from a

data frame in pandas?

70. How can you get items from series A that are not present in series B?

Python Quick Reference

Page | 212

71. How can you obtain items that are unique to both series A and B?

72. Does the panda‘s library recognize dates when importing data from

different sources?

73. Explain the concept of NumPy in Python.

74. What advantages do NumPy arrays offer over Python lists?

75. What steps are involved in creating 1D, 2D, and 3D arrays in NumPy?

76. Given a numpy array and a new column, how do you delete the second

column and replace it with a new column value?

77. How do you efficiently load data from a text file in NumPy?

78. How do you read CSV data into an array in NumPy?

79. How do you sort an array based on the Nth column in NumPy?

80. How do you find the nearest value in each numpy array?

81. How do you reverse a numpy array using a single line of code?

82. How do you determine the shape of a given NumPy array?

83. Differentiate between a package and a module in Python.

84. List some commonly used built-in modules in Python.

85. What are lambda functions, and how are they used in Python?

86. How can you generate random numbers in Python?

87. Can you check if all characters in a string are alphanumeric in Python?

88. Define GIL in Python.

89. Explain the significance of PYTHONPATH in Python.

90. What is PIP, and how is it used in Python?

91. Are there any tools available for identifying bugs and performing static

analysis in Python?

92. What distinguishes deep copies from shallow copies in Python?

93. How is Python code organized into files and directories?

94. Why should one choose Python as a programming language?

95. What types of applications can Python be used for?

96. What are the key advantages of using Python?

97. Define Python literals.

98. Describe Python Functions.

99. What is the purpose of the 'zip()' capability in Python?

100. How does Python's parameter passing system work?

101. How do you overload methods or constructors in Python?

102. What is the difference between the 'remove()' function and the 'del'

statement in Python?

103. How do you remove whitespaces from a string in Python?

104. How do you remove leading whitespaces from a string in Python?

105. Why is the 'join()' function used in Python?

106. Provide an example of the 'shuffle()' method in Python.

107. Explain the use of the 'break' statement in Python.

108. Define a tuple in Python.

109. List some file-related libraries/modules in Python.

Python Quick Reference

Page | 213

110. What are the different file processing modes supported by Python?

111. What are operators in Python, and how are they categorized?

112. How can you create a Unicode string in Python?

113. Is Python an interpreted language?

114. What are the rules governing local and global variables in Python?

115. Describe the concept of a namespace in Python.

116. What are iterators in Python?

117. What is a generator in Python?

118. Explain the concept of 'Pass' in Python.

119. Describe docstrings in Python.

120. What are negative indices in Python, and why are they used?

121. What is pickling and unpickling in Python?

122. When choosing between Java and Python, what factors should be

considered?

123. What is the usage of the 'help()' and 'dir()' functions in Python?

124. How does Python perform Compile-time and Run-time code checking?

125. What is the shortest method for opening a text file and displaying its

content in Python?

126. What is the purpose of the 'enumerate()' function in Python?

127. Given the list A=[10,40,16,17,29,66,2,94], what would be the output of

A[3]?

128. What is type conversion in Python?

129. How do you send an email in Python Language?

130. Can you create a program to add two integers greater than 0 without using

the plus operator?

131. Create a program to convert dates from yyyy-mm-dd to dd-mm-yyyyy.

132. Create a program that combines two dictionaries, summing values for

similar keys to create a new dictionary.

133. Is there a built-in do-while loop in Python?

134. What types of joins are offered by Pandas for data manipulation?

135. How are data frames merged in Pandas?

136. What is the best way to obtain the first five entries of a Pandas data frame?

137. How can you access the latest five entries in a Pandas data frame?

138. Explain the concept of a classifier in Python.

Page | 214

67

Sample Python Programs

1. Write a Python program to calculate the sum, product, division,

multiplication, and modular division of two numbers entered by the

user.

Input the two numbers from the user
num1 = float(input("Enter the first number: "))
num2 = float(input("Enter the second number: "))

Calculate the sum of the two numbers
sum_result = num1 + num2

Calculate the product of the two numbers
product_result = num1 * num2

Calculate the division of the two numbers
division_result = num1 / num2

Calculate the multiplication of the two numbers
multiplication_result = num1 * num2

Calculate the modulus (remainder) of the two numbers
modulus_result = num1 % num2

Print the results
print("Sum:", sum_result)
print("Product:", product_result)
print("Division:", division_result)
print("Multiplication:", multiplication_result)
print("Modulus:", modulus_result)

2. Write a Python program to check if a given number is even or odd.

number = int(input("Enter a number: "))
if number % 2 == 0:
 print(number, "is even.")

Python Quick Reference

Page | 215

else:
 print(number, "is odd.")

3. Write a Python program to convert temperature in Celsius to

Fahrenheit.

celsius = float(input("Enter temperature in Celsius: "))
fahrenheit = (celsius * 9/5) + 32
print("Temperature in Fahrenheit:", fahrenheit)

4. Write a Python program to calculate the factorial of a given number.

number = int(input("Enter a number: "))
factorial = 1
if number < 0:
 print("Factorial cannot be calculated for negative numbers.")
elif number == 0:
 print("The factorial of 0 is 1.")
else:
 for i in range(1, number + 1):
 factorial *= i
print("The factorial of", number, "is", factorial)

5. Write a Python program to find the area of a triangle given its base and

height.

base = float(input("Enter the base of the triangle: "))
height = float(input("Enter the height of the triangle: "))
area = (base * height) / 2
print("The area of the triangle is:", area)

6. Write a Python Program to find the simple interest.

Input the principal amount, interest rate, and time period from the
user
principal = float(input("Enter the principal amount: "))
rate = float(input("Enter the interest rate: "))
time = float(input("Enter the time period (in years): "))

Calculate the simple interest

Python Quick Reference

Page | 216

interest = (principal * rate * time) / 100

Print the result
print("The simple interest is:", interest)

7. Write a python program to swap two numbers using all 3 approaches.

Approach 1 : Using a temporary variable

Input the two numbers from the user
num1 = float(input("Enter the first number: "))
num2 = float(input("Enter the second number: "))

Swap the numbers using a temporary variable
temp = num1
num1 = num2
num2 = temp

Print the swapped numbers
print("After swapping:")
print("First number:", num1)
print("Second number:", num2)

Approach 2: Using arithmetic operations.

Input the two numbers from the user
num1 = float(input("Enter the first number: "))
num2 = float(input("Enter the second number: "))

Swap the numbers using arithmetic operations
num1 = num1 + num2
num2 = num1 - num2
num1 = num1 - num2

Print the swapped numbers
print("After swapping:")
print("First number:", num1)
print("Second number:", num2)

Python Quick Reference

Page | 217

Approach 3: Using multiple assignment

Input the two numbers from the user
num1 = float(input("Enter the first number: "))
num2 = float(input("Enter the second number: "))

Swap the numbers using multiple assignment
num1, num2 = num2, num1

Print the swapped numbers
print("After swapping:")
print("First number:", num1)
print("Second number:", num2)

8. Write a program to find the sum of n natural numbers.

Approach 1:

Input the value of n from the user
n = int(input("Enter a positive integer: "))

Calculate the sum of the first n natural numbers
sum_natural = (n * (n + 1)) // 2

Print the result
print("The sum of the first", n, "natural numbers is:", sum_natural)

Approach 2:

Input the value of n from the user
n = int(input("Enter a positive integer: "))

Initialize variables
sum_natural_numbers = 0
count = 1

Calculate the sum of the first n natural numbers using a while loop
while count <= n:
 sum_natural_numbers += count
 count += 1

Python Quick Reference

Page | 218

Print the result
print("The sum of the first", n, "natural numbers is:",
sum_natural_numbers)

Approach 3:

Input the value of n from the user
n = int(input("Enter a positive integer: "))

Initialize variable
sum_natural_numbers = 0

Calculate the sum of the first n natural numbers using a for loop
for i in range(1, n + 1):
 sum_natural_numbers += i

Print the result
print("The sum of the first", n, "natural numbers is:",
sum_natural_numbers)

9. Python program to calculate the area of rectangle and triangle print the

result.

Calculate the area of a rectangle and a triangle

Rectangle

width = float(input("Enter the width of the rectangle: "))
height = float(input("Enter the height of the rectangle: "))
rectangle_area = width * height
print("The area of the rectangle is:", rectangle_area)

Triangle

base = float(input("Enter the base length of the triangle: "))
height_triangle = float(input("Enter the height of the triangle: "))
triangle_area = 0.5 * base * height_triangle
print("The area of the triangle is:", triangle_area)

#Ouput:

Enter the width of the rectangle: 10

Enter the height of the rectangle: 32

The area of the rectangle is: 320.0

Python Quick Reference

Page | 219

Enter the base length of the triangle: 3

Enter the height of the triangle: 4

The area of the triangle is: 6.0

10. Write a python program to find the sum of all numbers, odd numbers

and even numbers upto n.

Input

n = int(input("Enter a number: "))

Sum of all numbers, odd numbers, and even numbers

sum_all = 0
sum_odd = 0
sum_even = 0

for num in range(1, n + 1):
 sum_all += num
 if num % 2 == 1:
 sum_odd += num
 else:
 sum_even += num
print(f"Sum of all numbers up to {n}: {sum_all}")
print(f"Sum of odd numbers up to {n}: {sum_odd}")
print(f"Sum of even numbers up to {n}: {sum_even}")

#Output:

Enter a number: 10

Sum of all numbers up to 10: 55

Sum of odd numbers up to 10: 25

Sum of even numbers up to 10: 30

11. Python Program to find the largest of 3 numbers

Input

num1 = float(input("Enter the first number: "))
num2 = float(input("Enter the second number: "))
num3 = float(input("Enter the third number: "))

Finding the largest number
if num1 >= num2:
 if num1 >= num3:
 largest = num1

Python Quick Reference

Page | 220

 else:
 largest = num3
else:
 if num2 >= num3:
 largest = num2
 else:
 largest = num3

print(f"The largest number among {num1}, {num2}, and {num3} is:
{largest}")

#Output

Enter the first number: 12

Enter the second number: -3

Enter the third number: 34

The largest number among 12.0, -3.0, and 34.0 is: 34.0

12. Python program to perform basic calculations

Sample numbers
num1 = int(input("Enter first number"))
num2 = int(input("Enter second number"))

Calculate the sum of two numbers
sum_result = num1 + num2
print("Sum:", sum_result)

Calculate the product of two numbers
product_result = num1 * num2
print("Product:", product_result)

Calculate the difference of two numbers
difference_result = num1 - num2
print("Difference:", difference_result)

Calculate the division of two numbers
division_result = num1 / num2
print("Division:", division_result)

Calculate the integer division of two numbers
integer_division_result = num1 // num2

Python Quick Reference

Page | 221

print("Integer Division:", integer_division_result)

Calculate the modulo division of two numbers
modulo_division_result = num1 % num2
print("Modulo Division:", modulo_division_result)

Output

Enter first number 3

Enter second number 2

Sum: 5

Product: 6

Difference: 1

Division: 1.5

Integer Division: 1

Modulo Division: 1

13. Python program to check whether the given number is prime or not.

Function to check if a number is prime
def is_prime(n):
 if n <= 1:
 return False
 for i in range(2, int(n ** 0.5) + 1):
 if n % i == 0:
 return False
 return True

Input

num = int(input("Enter a number: "))

Check and print result
if is_prime(num):
 print(f"{num} is a prime number.")
else:
 print(f"{num} is not a prime number.")

#Output

Enter a number: 7

7 is a prime number.

Python Quick Reference

Page | 222

14. Python Program to print the pascal triangle

Function to print Pascal's triangle

def print_pascals_triangle(n):
 for line in range(1, n + 1):
 num = 1
 for i in range(1, n - line + 1):
 print(" ", end="")

 for j in range(1, line + 1):
 print(num, end=" ")
 num = num * (line - j) // j

 print()

Input

rows = int(input("Enter the number of rows: "))

Print Pascal's triangle
print_pascals_triangle(rows)

#Output:

Enter the number of rows: 5

 1

 1 1

 1 2 1

 1 3 3 1

1 4 6 4 1

15. Python Program to generate Fibonacci series upto n.

Function to generate Fibonacci series up to n

def generate_fibonacci(n):
 a, b = 0, 1
 while a <= n:
 print(a, end=" ")
 a, b = b, a + b

Input

limit = int(input("Enter the limit for Fibonacci series: "))

Python Quick Reference

Page | 223

Generate and print Fibonacci series

print("Fibonacci series up to", limit, ": ", end="")
generate_fibonacci(limit)

#ouput:

Enter the limit for Fibonacci series: 10

Fibonacci series up to 10 : 0 1 1 2 3 5 8

16. Implement a code which prompts the user for Celsius temperature,

convert the temperature to Fahrenheit and print out the converted

temperature by handling the exception.

Function to convert Celsius to Fahrenheit

def celsius_to_fahrenheit(celsius):
 return (celsius * 9/5) + 32

try:
 celsius_temp = float(input("Enter the temperature in Celsius: "))
 fahrenheit_temp = celsius_to_fahrenheit(celsius_temp)
 print(f"The temperature {celsius_temp}°C is equivalent to
{fahrenheit_temp:.2f}°F.")
except ValueError:
 print("Invalid input. Please enter a valid numeric value for
temperature.")
except Exception as e:
 print("An error occurred:", e)

#Output

Enter the temperature in Celsius: 100

The temperature 100.0°C is equivalent to 212.00°F.

17. Explain Negative Integer Modulo division in python

In Python, the modulo operator (%) calculates the remainder of the division

between two integers. When dealing with negative numbers, the behavior of the

modulo operation might not be immediately intuitive, but it follows a consistent

rule.

Positive Dividend with Negative Divisor

result = 7 % -3

print(result) # Output: -2

Python Quick Reference

Page | 224

In this case, 7 % -3 calculates the remainder when 7 is divided by -3. The result

is -2 because -2 is the remainder that, when added to -3, gives you 7.

Mathematically, -3 * -3 + (-2) equals 7.

Negative Dividend with Positive Divisor

result = -7 % 3
print(result) # Output: 2

Here, -7 % 3 calculates the remainder when -7 is divided by 3. The result is 2

because 2 is the remainder that, when added to 3, gives you -7. Mathematically,

3 * -3 + 2 equals -7.

Negative Dividend with Negative Divisor:

result = -7 % -3
print(result) # Output: -1

In this case, -7 % -3 calculates the remainder when -7 is divided by -3. The

result is -1 because -1 is the remainder that, when added to -3, gives you -7.

Mathematically, -3 * 3 + (-1) equals -7.

The behavior of the modulo operation ensures that the quotient and remainder,

when recombined, reconstruct the original dividend, regardless of the sign of

the numbers involved. Keep in mind that the sign of the remainder might not

always match the sign of the dividend or divisor, which can sometimes be

counter intuitive

Page | 225

68

Top Python programming
Questions

1. Program to check whether the given number is odd or even.

2. Program to check whether the given string is Palindrome or not.

3. Program to compute the Factorial of a given number.

4. Program to generate Fibonacci Series up to n.

5. Program to determine whether the given number is Armstrong Number or

not.

6. Program to simulate simple Calculator.

7. Program to check whether the given year or not.

8. Program to check whether the given number is Prime or not.

9. Program to find Area of triangle In Python

10. Program to Reverse a List

11. Program to Reverse a Number

12. Program to Swap two numbers.

13. Program to Reverse a String

14. Program to Print the Fibonacci Series

15. Program to check if the given strings are anagram or not.

16. Program to find a maximum of two numbers.

17. Program to find a minimum of two numbers.

18. Program to find GCD of two numbers.

19. Program to Solve Quadratic Equation

20. Program to Generate a Random Number

21. Program to Find the Largest Among Three Numbers

22. Program to Find Numbers Divisible by Another Number

23. Program to Count the Number of Each Vowel

24. Program to Merge Mails

25. Program to Merge Two Dictionaries

26. Program to Safely Create a Nested Directory

27. Program to Get Line Count of a File

28. Program to Count the Number of Digits Present in a Number.

29. Program to Remove Duplicate Element from a List.

30. Program to do arithmetical operations.

31. Program to solve quadratic equation.

32. Program to swap two variables.

Python Quick Reference

Page | 226

33. Program to generate a random number.

34. Program to convert kilometers to miles.

35. Program to convert Celsius to Fahrenheit.

36. Program to display calendar.

37. Program to Check if a Number is Positive, Negative or Zero.

38. Program to Print all Prime Numbers in an Interval.

39. Program to Display the multiplication Table.

40. Program to Print the Fibonacci sequence.

41. Program to Check Armstrong Number.

42. Program to Find Armstrong Number in an Interval

43. Program to Find the Sum of Natural Numbers.

44. Program to Convert Decimal to Binary, Octal and Hexadecimal

45. Program to Find ASCII value of a character.

46. Program to Make a Simple Calculator.

47. Program to Display Calendar.

48. Program to Display Fibonacci Sequence Using Recursion.

49. Program to Find Factorial of Number Using Recursion.

50. Program to check if the given number is a Disarium Number.

51. Program to check if the given number is Happy Number.

52. Program to copy all elements of one array into another array.

53. Program to find the frequency of each element in the array.

54. Program to left rotate the elements of an array.

55. Program to print the duplicate elements of an array.

56. Program to print the elements of an array.

57. Program to print the elements of an array in reverse order.

58. Program to print the elements of an array present on even position.

59. Program to print the elements of an array present on odd position.

60. Program to print the largest element in an array.

61. Program to print the smallest element in an array.

62. Program to print the number of elements present in an array.

63. Program to print the sum of all elements in an array.

64. Program to right rotate the elements of an array.

65. Program to sort the elements of an array in ascending order.

66. Program to sort the elements of an array in descending order.

67. Program to Add Two Matrices

68. Program to Multiply Two Matrices

69. Program to Transpose a Matrix

70. Program to Sort Words in Alphabetic Order

71. Program to Remove Punctuation From a String

72. Program to reverse a string

73. Program to convert list to string

74. Program to convert int to string

75. Program to concatenate two strings

Python Quick Reference

Page | 227

76. Program to generate a Random String

77. Program to convert Bytes to string

78. Program to append element in the list

79. Program to compare two lists

80. Program to convert list to dictionary

81. Program to remove an element from a list

82. Program to add two lists

83. Program to convert List to Set

84. Program to convert list to string

85. Program to create a dictionary

86. Program to convert list to dictionary

87. Program to sort a dictionary

88. Program to Merge two Dictionaries

89. Binary Search in Python

90. Linear Search in Python

91. Bubble Sort in Python

92. Insertion Sort in Python

93. Heap Sort in Python

94. Merge Sort in Python

95. Program to Check Whether a Given Number is Even or Odd using

Recursion

96. Program to Print All Odd Numbers in a Range

97. Program to Check if a Number is a Palindrome

98. Program to Reverse a Number

99. Program to Print All Integers that Aren‘t Divisible by Either 2 or 3

100. Program to Find Numbers which are Divisible by 7 and Multiple of 5 in a

Given Range

101. Program to Print All Numbers in a Range Divisible by a Given Number

102. Program to Find Sum of Digits of a Number

103. Program to Find Sum of Digit of a Number using Recursion

104. Program to Find Sum of Digit of a Number Without Recursion

105. Program to Count the Number of Digits in a Number

106. Program to Find All the Divisors of an Integer

107. Program to Find the Smallest Divisor of an Integer

108. Program to Print Binary Equivalent of an Integer using Recursion

109. Program to Print Binary Equivalent of a Number without Using Recursion

110. Program to Print Table of a Given Number

111. Program to Calculate Grade of a Student

112. Program to Check if a Date is Valid and Print the Incremented Date if it is

113. Program to Check Whether a given Year is a Leap Year

114. Program to Convert Centimeters to Feet and Inches

115. Program to Read a Number n and Compute n+nn+nnn

116. Program to Check Whether a Given Number is Perfect Number

Python Quick Reference

Page | 228

117. Program to Check if a Number is a Strong Number

118. Program to Print Numbers in a Range Without using Loops.

119. Program to Find the Prime Factors of a Number

120. Program to Check If Two Numbers are Amicable Numbers or Not

121. Program to Find Whether a Number is a Power of Two

122. Program to Calculate the Power using Recursion

123. Program to Find Product of Two Numbers using Recursion

124. Program to Find All Perfect Squares in the Given Range

125. Program to Print All Possible Combinations of Three Digits

126. Factorial & Fibonacci Programs in Python

127. Program to Find Fibonacci Numbers using Recursion

128. Program to Find the Fibonacci Series Without using Recursion

129. Program to Find the Factorial of a Number using Recursion

130. Program to Convert Binary to Gray Code

131. Program to Print an Inverted Star Pattern

132. Program to Print Pascal Triangle

133. Program to Find the Roots of a Quadratic Equation

134. Program to Find Quotient and Remainder of Two Numbers

135. Program to Find All Pythagorean Triplets in the Range

136. Program to Compute a Polynomial Equation

137. Program to Swap Two Numbers without using Third Variable

138. Program to Find Sum of Series 1 + 1/2 + 1/3 + 1/4 + ……. + 1/N

139. Program to Find the Sum of the Series 1/1!+1/2!+1/3!+…1/N!

140. Program to Find the Sum of the Series: 1 + x^2/2 + x^3/3 + … x^n/n

141. Program to Read a Number n and Print the Series ―1+2+…..+n= ―

142. Program to Find the Sum of Sine Series

143. Program to Find the Sum of Cosine Series

144. Program to Find the GCD and LCM of Two Numbers

145. Python Program to Find the GCD and LCM of Two Numbers using

Recursion.

146. Program to Check if a String is a Pangram or Not

147. Program to Remove Odd Indexed Characters in a string.

148. Program to Reverse a String using Recursion.

149. Program to Reverse a String Without using Recursion.

150. Program to Find the Length of a String without Library Function.

151. Program to Count the Number of Words and Characters in a String.

152. Program to Count Number of Lowercase Characters in a String.

153. Program to Count the Number of Vowels in a String.

154. Program to Count Number of Uppercase and Lowercase Letters in a

String.

155. Program to Count the Number of Digits and Letters in a String.

156. Program to Check if the Substring is Present in the Given String

157. Program to Find Common Characters in Two Strings

Python Quick Reference

Page | 229

158. Program to Print All Letters Present in Both Strings

159. Program that Displays which Letters are in First String but not in Second.

160. Program that Displays Letters that are not Common in Two Strings.

161. Program to Create a New String Made up of First and Last 2 Characters.

162. Program to Find the Larger String without using Built-in Functions.

163. Program to Swap the First and the Last Character of a String.

164. Program to Sort Hyphen Separated Sequence of Words in Alphabetical

Order.

165. Program to Count the Occurrences of Each Word in a String.

166. Program to Count Number of Vowels in a String using Sets.

167. Program to Check if a Given String is Palindrome.

168. Program to Check whether two Strings are Anagrams.

169. Program to Check whether a String is Palindrome or not using Recursion.

170. Program to Find All Odd Palindrome Numbers in a Range without using

Recursion.

171. Program to Create Dictionary from an Object.

172. Program to Check if a Key Exists in a Dictionary or Not.

173. Program to Add a Key-Value Pair to the Dictionary.

174. Program to Find the Sum of All the Items in a Dictionary

175. Program to Multiply All the Items in a Dictionary

176. Program to Remove a Key from a Dictionary

177. Program to Concatenate Two Dictionaries

178. Program to Map Two Lists into a Dictionary

179. Program to Create a Dictionary with Key as First Character and Value as

Words Starting with that Character

180. Program to Create Dictionary that Contains Number

181. Program to Count the Frequency of Each Word in a String using

Dictionary.

182. Program to Create a List of Tuples with the First Element as the Number

and Second Element as the Square of the Number

183. Program to Remove All Tuples in a List Outside the Given Range

184. Program to Sort a List of Tuples in Increasing Order by the Last Element

in Each Tuple

185. Python Program to Create a Class which Performs Basic Calculator

Operations

186. Python Program to Append, Delete and Display Elements of a List using

Classes

187. Python Program to Find the Area of a Rectangle using Classes

188. Python Program to Find the Area and Perimeter of the Circle using Class

189. Python Program to Create a Class in which One Method Accepts a String

from the User and Another Prints it

190. Python Program to Create a Class and Get All Possible Distinct Subsets

from a Set

Python Quick Reference

Page | 230

191. Python Programs on File Handling

192. Python Program to Read the Contents of the File

193. Python Program to Copy One File to Another File

194. Python Program to Count the Number of Lines in Text File

195. Python Program to Count the Number of Blank Spaces in a Text File

196. Python Program to Count the Occurrences of a Word in a Text File

197. Python Program to Count the Number of Words in a Text File

198. Python Program to Capitalize First Letter of Each Word in a File

199. Python Program to Counts the Number of Times a Letter Appears in the

Text File

200. Python Program to Extract Numbers from Text File

201. Python Program to Print the Contents of File in Reverse Order

202. Python Program to Append the Content of One File to the End of Another

File

203. Python Program to Read a String from the User and Append it into a File

204. Python Programming Examples on List

205. Python Program to Find Largest Number in a List

206. Python Program to Find Second Largest Number in a List

207. Python Program to Print Largest Even and Largest Odd Number in a List

208. Python Program to Split Even and Odd Elements into Two Lists

209. Python Program to Find Average of a List

210. Python Program to Print Sum of Negative Numbers, Positive Even & Odd

Numbers in a List

211. Python Program to Count Occurrences of Element in List

212. Python Program to Find the Sum of Elements in a List using Recursion

213. Python Program to Find the Length of a List using Recursion

214. Python Program to Merge Two Lists and Sort it

215. Python Program to Remove Duplicates from a List

216. Python Program to Swap the First and Last Element in a List

217. Python Program to Sort a List According to the Second Element in Sublist

218. Python Program to Return the Length of the Longest Word from the List

of Words

219. Python Program to Find the Number Occurring Odd Number of Times in a

List

220. Python Program to Generate Random Numbers from 1 to 20 and Append

Them to the List

221. Python Program to Remove the ith Occurrence of the Given Word in a List

222. Python Program to Find the Cumulative Sum of a List

223. Python Program to Find the Union of Two Lists

224. Python Program to Find the Intersection of Two Lists

225. Python Program to Flatten a List without using Recursion

226. Python Program to Find the Total Sum of a Nested List Using Recursion

227. Python Program to Flatten a Nested List using Recursion

Python Quick Reference

Page | 231

228. Python Programs on File Handling

229. Python Program to Read the Contents of the File

230. Python Program to Copy One File to Another File

231. Python Program to Count the Number of Lines in Text File

232. Python Program to Count the Number of Blank Spaces in a Text File

233. Python Program to Count the Occurrences of a Word in a Text File

234. Python Program to Count the Number of Words in a Text File

235. Python Program to Capitalize First Letter of Each Word in a File

236. Python Program to Counts the Number of Times a Letter Appears in the

Text File

237. Python Program to Extract Numbers from Text File

238. Python Program to Print the Contents of File in Reverse Order

239. Python Program to Append the Content of One File to the End of Another

File

240. Python Program to Read a String from the User and Append it into a File

Page | 232

69

Sample Projects

1. Guess the Number

import random
number = random.randint(1, 10)

player_name = input("Hello, what is your name? ")
number_of_guesses = 0
print('I\'m glad to meet you! {} \nLet\'s play a game with you, I will think a
number between 1 and 10 then you will guess, alright? \nDon\'t forget! You
have only 3 chances so guess:'.format(player_name))

while number_of_guesses < 3:
 guess = int(input())
 number_of_guesses += 1
 if guess < number:
 print('Your estimate is too low, go up a little!')
 if guess > number:
 print('Your estimate is too high, go down a bit!')
 if guess == number:
 break
if guess == number:
 print('Congratulations {}, you guessed the number in {}
tries!'.format(player_name, number_of_guesses))
else:
 print('Close but no chocklet, you couldn\'t guess the number. \nWell, the
number was {}.'.format(number))

Sample Output
Hello, what is your name? Thyagu

I'm glad to meet you! Thyagu

Let's play a game with you, I will think a number between 1 and 10 then you

will guess, alright?

Don't forget! You have only 3 chances so guess:

10

Your estimate is too high, go down a bit!

Python Quick Reference

Page | 233

5

Your estimate is too low, go up a little!

7

Your estimate is too high, go down a bit!

Close but no chocklet, you couldn't guess the number.

Well, the number was 6.

2. Magic 8 Ball with a List

The Magic 8 Ball problem refers to a hypothetical situation in computer science

where a program needs to make a decision based on incomplete or ambiguous

information. It is named after the Magic 8 Ball toy, which is a popular fortune-

telling device that provides random answers to yes-or-no questions. The

following program illustrates the Magic 8 Ball for yes or no questions.

import random

messages = ['It is certain',

 'It is decidedly so',

 'Yes definitely',

 'Reply hazy try again',

 'Ask again later',

 'Concentrate and ask again',

 'My reply is no',

 'Outlook not so good',

 'Very doubtful']

print(messages[random.randint(0, len(messages) - 1)])

#Output: Any one of the messages like, ‗Concentrate and ask again‘

3. Password Locker

A simple password locker in Python is a basic program that allows users to store

and retrieve passwords for different accounts. In this explanation, I'll walk you

through the fundamental components and functionality of a simple password

locker.

Data Storage

The password locker needs a way to store the account names and their

corresponding passwords. In this example, we'll use a Python dictionary to store

Python Quick Reference

Page | 234

this data, where the account names will act as keys, and the passwords will be

the values.

passwords =

{
 'email': 'password1',
 'social_media': 'password2',
 'bank': 'password3'
}

Functionality

The password locker should provide several functionalities, such as:

1. Saving a new password for an account.

2. Retrieving a password for a specific account.

3. Listing all the accounts and their associated passwords.

4. Quitting the program.

Save Password Function

We need a function to save a new password to the password locker. This

function takes the account name and password as input and stores it in the

passwords dictionary.

def save_password(account, password):
 passwords[account] = password

Retrieve Password Function

To retrieve a password, we need a function that takes the account name as input,

looks it up in the passwords dictionary, and returns the password if it exists. We

can use the pyperclip library to copy the password to the clipboard for easy

access.

import pyperclip

def retrieve_password(account):
 if account in passwords:
 pyperclip.copy(passwords[account])
 print(f"Password for '{account}' copied to clipboard.")
 else:
 print(f"No password found for '{account}'.")

Python Quick Reference

Page | 235

List Accounts Function

We also want to list all the accounts stored in the password locker.

def list_accounts():
 print("Stored Accounts:")
 for account in passwords:
 print(account)

Main Program Loop

We'll create a simple loop to present a menu to the user and allow them to

interact with the password locker. The user can choose the actions they want to

perform, such as saving, retrieving, listing, or quitting.

while True:
 print("\nPassword Locker")
 print("1. Save a password")
 print("2. Retrieve a password")
 print("3. List all accounts")
 print("4. Quit")

 choice = input("\nEnter your choice (1-4): ")

 if choice == '1':
 account = input("Enter the account name: ")
 password = input("Enter the password: ")
 save_password(account, password)
 print(f"Password for '{account}' saved.")

 elif choice == '2':
 account = input("Enter the account name: ")
 retrieve_password(account)

 elif choice == '3':
 list_accounts()

 elif choice == '4':
 break

 else:
 print("Invalid choice. Please try again.")

Python Quick Reference

Page | 236

print("Password Locker closed.")

Installing pyperclip

Install the pyperclip library to use the clipboard functionality. You can install it

using pip as follows:

pip install pyperclip

Complete Source Code

import pyperclip

passwords =
{
 'email': 'password1',
 'social_media': 'password2',
 'bank': 'password3'
}

def save_password(account, password):
 passwords[account] = password

def retrieve_password(account):
 if account in passwords:
 pyperclip.copy(passwords[account])
 print(f"Password for '{account}' copied to clipboard.")
 else:
 print(f"No password found for '{account}'.")

def list_accounts():
 print("Stored Accounts:")
 for account in passwords:
 print(account)

Main program loop
while True:
 print("\nPassword Locker")
 print("1. Save a password")
 print("2. Retrieve a password")
 print("3. List all accounts")

Python Quick Reference

Page | 237

 print("4. Quit")

 choice = input("\nEnter your choice (1-4): ")

 if choice == '1':
 account = input("Enter the account name: ")
 password = input("Enter the password: ")
 save_password(account, password)
 print(f"Password for '{account}' saved.")

 elif choice == '2':
 account = input("Enter the account name: ")
 retrieve_password(account)

 elif choice == '3':
 list_accounts()
 elif choice == '4':
 break
 else:
 print("Invalid choice. Please try again.")
print("Password Locker closed.")

Sample Output

Password Locker

1. Save a password

2. Retrieve a password

3. List all accounts

4. Quit

Enter your choice (1-4): 3

Stored Accounts:

email

social_media

bank

Password Locker

1. Save a password

2. Retrieve a password

3. List all accounts

4. Quit

Enter your choice (1-4): 1

Python Quick Reference

Page | 238

Enter the account name: email

Enter the password: 123456

Password for 'email' saved.

Password Locker

1. Save a password

2. Retrieve a password

3. List all accounts

4. Quit

Enter your choice (1-4): 4

Password Locker closed.

4. Adding Bullets to Wiki Markup

The project "Adding Bullets to Wiki Markup in Python" involves writing a

Python program that adds bullet points to lines of text in the Wiki markup

format. The program should identify lines that need bullet points and modify

them accordingly.

Here's an explanation of the steps involved in this project and an example

implementation:

Understanding Wiki Markup and Bullet Points

Wiki markup is a lightweight markup language used on wikis to format and

structure text. Bullet points in Wiki markup are typically represented using an

asterisk (*) character at the beginning of a line.

Input and Output

The program should take input in the form of plain text and output the modified

text with added bullet points.

Algorithm and Implementation

Here's a step-by-step algorithm to implement the program:

1. Read the input text.

2. Split the text into individual lines.

3. Iterate over each line of the text.

4. Check if a line does not start with an asterisk (*) character.

5. If the line does not start with an asterisk, add the asterisk at the beginning of

the line.

Python Quick Reference

Page | 239

6. Join the modified lines back together into a single string.

7. Output the modified text.

Here's an example implementation of the project:

def add_bullet_points(text):
 lines = text.split('\n')
 modified_lines = []

 for line in lines:
 if not line.startswith('*'):
 modified_lines.append('* ' + line)
 else:
 modified_lines.append(line)

 modified_text = '\n'.join(modified_lines)
 return modified_text

Example usage

input_text = """

This is a paragraph of text.

This is another line of text.

This line needs a bullet point.

Another line without a bullet point.

"""

modified_text = add_bullet_points(input_text)
print(modified_text)

In this example, the add_bullet_points() function takes the input text, splits it

into individual lines using the newline character ('\n'), and iterates over each

line. If a line does not start with an asterisk, it adds the asterisk followed by a

space ('* ') at the beginning of the line. Finally, it joins the modified lines back

together using the newline character and returns the modified text.

The example usage demonstrates how to call the add_bullet_points() function

with the input text and print the modified text.

You can customize this implementation according to your specific needs, such

as reading input from a file, applying more complex rules for bullet points, or

incorporating additional formatting features of Wiki markup.

Python Quick Reference

Page | 240

Sample Output

* This is a paragraph of text.

* This is another line of text.

* This line needs a bullet point.

* Another line without a bullet point.

*

5. Generating Random Quiz Files

import os

import random

List of quiz questions and their answers
quiz_data = [
{
 "question": "What is the capital of France?",
 "answer": "Paris"
},
{
 "question": "Which planet is known as the 'Red Planet'?",
 "answer": "Mars"
},
{
 "question": "What is the largest mammal on Earth?",
 "answer": "Blue Whale"
}
]

def generate_quiz_file(quiz_number):
 quiz_name = f"quiz_{quiz_number}.txt"

 with open(quiz_name, "w") as file:
 file.write(f"Quiz {quiz_number}\n\n")
 for i, qna in enumerate(quiz_data):
 question = qna["question"]
 answer = qna["answer"]
 file.write(f"Question {i + 1}: {question}\n")
 file.write(f"Answer: \n\n")

 print(f"Generated quiz file: {quiz_name}")

Python Quick Reference

Page | 241

if __name__ == "__main__":
 for quiz_number in range(1, 4): # Generate 3 quiz files
 generate_quiz_file(quiz_number)

Sample Output

Generated quiz file: quiz_1.txt

Generated quiz file: quiz_2.txt

Generated quiz file: quiz_3.txt

In this program, we define a list called quiz_data containing dictionaries for

each quiz question and answer. The generate_quiz_file function creates a quiz

file for each quiz number, writing the questions and leaving space for answers.

The program generates three quiz files named quiz_1.txt, quiz_2.txt, and

quiz_3.txt.

6. Multiclipboard

import shelve
import pyperclip
import sys

def copy_to_multiclipboard(shelf, key, text):
 shelf[key] = text
 print(f"Text copied to clipboard '{key}': {text}")

def paste_from_multiclipboard(shelf, key):
 if key in shelf:
 text = shelf[key]
 pyperclip.copy(text)
 print(f"Text from clipboard '{key}' pasted: {text}")
 else:
 print(f"Clipboard '{key}' is empty")

if __name__ == "__main__":
 with shelve.open("multiclipboard") as shelf:
 while True:
 print("\nOptions:")
 print("1. Copy to clipboard")
 print("2. Paste from clipboard")
 print("3. Exit")

Python Quick Reference

Page | 242

 choice = input("Enter your choice (1/2/3): ")
 if choice == "1":
 key = input("Enter a key for the clipboard entry: ")
 text = input("Enter the text to copy: ")
 copy_to_multiclipboard(shelf, key, text)
 elif choice == "2":
 key = input("Enter the key of the clipboard entry: ")
 paste_from_multiclipboard(shelf, key)
 elif choice == "3":
 print("Exiting the Multiclipboard program.")
 sys.exit()
 else:
 print("Invalid choice. Please select a valid option.")

Sample Output

Options

1. Copy to clipboard

2. Paste from clipboard

3. Exit

Enter your choice (1/2/3): 1

Enter a key for the clipboard entry: key1

Enter the text to copy: Sample text 1

Text copied to clipboard 'key1': Sample text 1

Options

1. Copy to clipboard

2. Paste from clipboard

3. Exit

Enter your choice (1/2/3): 1

Enter a key for the clipboard entry: key2

Enter the text to copy: Sample text 2

Text copied to clipboard 'key2': Sample text 2

Options

1. Copy to clipboard

2. Paste from clipboard

3. Exit

Enter your choice (1/2/3): 2

Enter the key of the clipboard entry: key1

Python Quick Reference

Page | 243

Text from clipboard 'key1' pasted: Sample text 1

Options

1. Copy to clipboard

2. Paste from clipboard

3. Exit

Enter your choice (1/2/3): 2

Enter the key of the clipboard entry: key3

Clipboard 'key3' is empty

Options

1. Copy to clipboard

2. Paste from clipboard

3. Exit

Enter your choice (1/2/3): 3

Exiting the Multiclipboard program.

7. Renaming Files with American-Style Dates to European-Style Dates

import os
import re
from datetime import datetime

def rename_files_with_dates(folder_path):
 # Get a list of all files in the folder
 file_list = os.listdir(folder_path)

 # Regular expression pattern for American-style dates (MM-DD-YYYY)
 pattern = r'(\d{2})-(\d{2})-(\d{4})'

 for old_name in file_list:
 # Check if the file name matches the pattern
 match = re.search(pattern, old_name)
 if match:
 month, day, year = match.groups()

 # Format the new name with European-style date (DD-MM-YYYY)
 new_name = f"{day}-{month}-{year}{old_name[match.end():]}"

 # Create the full paths for old and new names

Python Quick Reference

Page | 244

 old_path = os.path.join(folder_path, old_name)
 new_path = os.path.join(folder_path, new_name)

 # Rename the file
 os.rename(old_path, new_path)
 print(f"Renamed '{old_name}' to '{new_name}'")

if __name__ == "__main__":
 folder_path = "path_to_your_folder" # Update with the path to your folder
 rename_files_with_dates(folder_path)

Sample Output

Let's assume you have three files in your folder that need renaming:

file1: report-08-15-2023.txt

file2: document-05-20-2022.docx

file3: notes-10-03-2021.txt

Here's how the program's output might look after running:

Renamed 'report-08-15-2023.txt' to '15-08-2023-report.txt'

Renamed 'document-05-20-2022.docx' to '20-05-2022-document.docx'

Renamed 'notes-10-03-2021.txt' to '03-10-2021-notes.txt'

The program identifies the American-style dates in the filenames and renames

them to European-style dates. This output assumes that the program ran

successfully without any errors. Remember to test the program on a small set of

files before applying it to a larger dataset to ensure that it behaves as expected.

8. Backing Up a Folder into a ZIP File

import zipfile, os
folder = input("Enter the folder name in the current working directory : ")
folder = os.path.abspath(folder) # make sure folder is absolute
number = 1
while True:
 zipFilename = os.path.basename(folder) + '_' + str(number) + '.zip'
 if not os.path.exists(zipFilename):
 break
 number = number + 1

Create the zip file.

print('Creating %s...' % (zipFilename))
backupZip = zipfile.ZipFile(zipFilename, 'w')

Python Quick Reference

Page | 245

Walk the entire folder tree and compress the files in each folder.

for foldername, subfolders, filenames in os.walk(folder):
 print('Adding files in %s...' % (foldername))
 # Add the current folder to the ZIP file.
 backupZip.write(foldername)
 # Add all the files in this folder to the ZIP file.
 for filename in filenames:
 if filename.startswith(os.path.basename(folder) + '_') and
filename.endswith('.zip'):
 continue # don't backup the backup ZIP files
 backupZip.write(os.path.join(foldername, filename))
backupZip.close()

print('Done.')

Sample Output

Enter the folder name in the current working directory: cats

Creating cats_1.zip...

Adding files in C:\Users\thyagu\18CS55\cats...

Done.

Compressed file in a given directory

9. Using Data Structures to Model Chess

In the realm of algebraic chess notation, the squares on the chessboard are

denoted by a combination of numerical and alphabetical coordinates,

exemplified in the diagram below:

Python Quick Reference

Page | 246

Image Source : [1] https://automatetheboringstuff.com/

Chess pieces are designated by specific letters: K for king, Q for queen, R for

rook, B for bishop, and N for knight. Describing a move involves utilizing the

letter of the piece along with the destination coordinates. A sequence of these

moves portrays the events of a single turn (initiated by the white player). For

example, annotation 2. Nf3 Nc6 signifies that, on the second turn of the game,

the white player advanced a knight to f3 and the black player moved a knight to

c6.

Algebraic chess notation serves as a standardized system for documenting chess

movements. This system empowers players to articulate their moves using a

blend of letters and numbers that symbolize the squares on the chessboard.

The fundamental components of algebraic chess notation encompass:

K: King

Q: Queen

R: Rook

B: Bishop

N: Knight

No abbreviation for pawns

Square Designation

Each square on the chessboard is designated by a combination of a letter

(column) and a number (row). The letters a-h represent the columns from left

to right, and the numbers 1-8 represent the rows from bottom to top.

https://automatetheboringstuff.com/

Python Quick Reference

Page | 247

Move Representation

A move in algebraic notation typically consists of the piece abbreviation (if

applicable), the destination square, and additional symbols to indicate the move

type:

Pawn moves: Only the destination square is mentioned. If it's a capture,

the source file is indicated as well.

Example: e4, exd5 (e4 pawn moves to e5, capturing d5 pawn)

Other pieces: The piece abbreviation is followed by the destination

square. If multiple pieces of the same type can move to the same square,

the source file or rank is mentioned to disambiguate.

Example: Nf3 (Knight moves to f3), R1e5 (Rook on the first rank

moves to e5)

Special Moves

Castling: O-O for kingside castling and O-O-O for queenside castling.

En Passant: If a pawn captures en passant, the destination square is

indicated and "e.p." is added.

Example: exd6 e.p. (e5 pawn captures d6 pawn en passant)

Check and Checkmate

"+" is added after a move to indicate a check.

"#" is added after a move to indicate a checkmate.

Example: Qh5+ (Queen moves to h5, giving a check), Qh5# (Queen

moves to h5, giving a checkmate)

Other Symbols

―=‖ is used to indicate pawn promotion. It is followed by the piece

abbreviation to which the pawn promotes.

Example: e8=Q (Pawn on e8 promotes to a Queen)

By using algebraic chess notation, players can easily record and communicate

their moves. It is also commonly used in chess literature, annotations, and

online platforms for game analysis.

10. Using Data Structures to Model Tic-Tac-Toe

The configuration of a tic-tac-toe board resembles a sizable hash symbol (#),

featuring nine compartments, each capable of holding an X, an O, or remaining

Python Quick Reference

Page | 248

unoccupied. When portraying the board utilizing a dictionary, a feasible

approach involves assigning a unique string-based key to each slot, as depicted

in the illustration below:

Image Source: [1] https://automatetheboringstuff.com/

Utilizing string representations, you can symbolize the contents of each slot on

the board using 'X', 'O', or ' ' (a space character). Consequently, you will need

to retain nine distinct strings. To achieve this, a suitable approach is to employ a

dictionary comprising these string values. For instance, the string associated

with the key 'top-R' could indicate the top-right corner, the string linked to

'low-L' could stand for the bottom-left corner, and similarly, the string

correlated with 'mid-M' could represent the middle section, and so forth. This

dictionary constitutes a data structure that embodies the layout of a tic-tac-toe

board. You can save this board-as-a-dictionary within a variable named

theBoard.

theBoard =
{

'top-L': ' ', 'top-M': ' ', 'top-R': ' ',
'mid-L': ' ', 'mid-M': ' ', 'mid-R': ' ',
'low-L': ' ', 'low-M': ' ', 'low-R': ' '

}

The tic-tac-toe board depicted in the illustration below is represented by the data

structure stored within the variable named theBoard:

Figure 69.1 : Empty Tic Tac Toe Board

https://automatetheboringstuff.com/

Python Quick Reference

Page | 249

Given that each key's value within theBoard variable is a single-space string,

this dictionary delineates an entirely vacant board. In a scenario where player X

takes the initiative and selects the middle space as their move, you can use this

dictionary to represent the resulting board configuration:

theBoard =
{

'top-L': ' ', 'top-M': ' ', 'top-R': ' ',
'mid-L': ' ', 'mid-M': 'X', 'mid-R': ' ',
 'low-L': ' ', 'low-M': ' ', 'low-R': ' '

}

The data structure contained within the theBoard variable now corresponds to

the tic-tac-toe board illustrated in the figure below:

Figure 69.2: The First Move

An example of a board where player O emerges victorious by strategically

placing Os across the top could resemble the following depiction:

theBoard =

{
'top-L': 'O', 'top-M': 'O', 'top-R': 'O',
'mid-L': 'X', 'mid-M': 'X', 'mid-R': ' ',

 'low-L': ' ', 'low-M': ' ', 'low-R': 'X'
}

The data structure stored in the theBoard variable currently reflects the tic-tac-

toe board illustrated in the figure below:

Figure 69.3: Player O wins

Python Quick Reference

Page | 250

Python Program to simulate the working of Tic-Tac-Toe:

theBoard = {'top-L': ' ', 'top-M': ' ', 'top-R': ' ',
 'mid-L': ' ', 'mid-M': ' ', 'mid-R': ' ',
 'low-L': ' ', 'low-M': ' ', 'low-R': ' '}

def printBoard(board):
 print(board['top-L'] + '|' + board['top-M'] + '|' + board['top-R'])
 print('-+-+-')
 print(board['mid-L'] + '|' + board['mid-M'] + '|' + board['mid-R'])
 print('-+-+-')
 print(board['low-L'] + '|' + board['low-M'] + '|' + board['low-R'])

turn = 'X'

for i in range(9):
 printBoard(theBoard)
 print('Turn for ' + turn + '. Move on which space?')
 move = input()
 theBoard[move] = turn
 if turn == 'X':
 turn = 'O'
 else:
 turn = 'X'
printBoard(theBoard)

OutPut

| |

-+-+-

| |

-+-+-

| |

Turn for X. Move on which space?

mid-M

| |

-+-+-

|X|

-+-+-

| |

Turn for O. Move on which space?

low-L

Python Quick Reference

Page | 251

| |

-+-+-

|X|

-+-+-

O| |

--snip--

O|O|X

-+-+-

X|X|O

-+-+-

O| |X

Turn for X. Move on which space?

low-M

O|O|X

-+-+-

X|X|O

-+-+-

O|X|X

This isn‘t a complete tic-tac-toe game—for instance, it doesn‘t ever check

whether a player has won—but it‘s enough to see how data structures can be

used in programs.

Page | 252

70

References

1. www.python.org

2. https://chat.openai.com/

3. https://www.edureka.co/blog/python-programs/

4. Dr.Thyagaraju G S, ―Introduction to Python Programming‖, IIP Publishers,

2023

5. Al Sweigart, ―Automate the Boring Stuff with Python‖,1stEdition, No

Starch Press, 2015. (Available under CC-BY-NC-SA license at

https://automatetheboringstuff.com/)

6. https://www.learnbyexample.org/python-lambda-function/

7. Allen B. Downey, ―Think Python: How to Think Like a Computer

Scientist‖, 2nd Edition, Green Tea Press, 2015. (Available under CC-BY-

NC license at http://greenteapress.com/thinkpython2/thinkpython2.pdf

8. https://www.learnbyexample.org/python/

9. https://www.learnpython.org/

10. https://pythontutor.com/visualize.html#mode=edit

11. https://www.learnbyexample.org/python/

12. https://www.learnpython.org/

13. https://pythontutor.com/visualize.html#mode=edit

14. https://github.com/sushantkhara/Data-Structures-And-Algorithms-with-

Python/raw/main/Python%203%20_%20400%20exercises%20and%20solut

ions%20for%20beginners.pdf

15. https://www.anaconda.com/

Book Resources

For more supplementary concepts, programs, question bank, old question papers

(VTU), quiz, recent trends in Python and educational resources, kindly visit the

author's website at:

https://tocxten.com/

http://www.python.org/
https://chat.openai.com/
https://www.edureka.co/blog/python-programs/
https://automatetheboringstuff.com/
https://www.learnbyexample.org/python-lambda-function/
http://greenteapress.com/thinkpython2/thinkpython2.pdf
https://www.learnbyexample.org/python/
https://www.learnpython.org/
https://pythontutor.com/visualize.html#mode=edit
https://www.learnbyexample.org/python/
https://www.learnpython.org/
https://pythontutor.com/visualize.html#mode=edit
https://github.com/sushantkhara/Data-Structures-And-Algorithms-with-Python/raw/main/Python%203%20_%20400%20exercises%20and%20solutions%20for%20beginners.pdf
https://github.com/sushantkhara/Data-Structures-And-Algorithms-with-Python/raw/main/Python%203%20_%20400%20exercises%20and%20solutions%20for%20beginners.pdf
https://github.com/sushantkhara/Data-Structures-And-Algorithms-with-Python/raw/main/Python%203%20_%20400%20exercises%20and%20solutions%20for%20beginners.pdf
https://www.anaconda.com/
https://tocxten.com/

