Module3

Machine Learning



Syllabus

1. Similarity-based Learning: Nearest-Neighbor Learning, Weighted K-
Nearest-Neighbor Algorithm, Nearest Centroid Classifier, Locally
Weighted Regression (LWR).

2. Regression Analysis: Introduction to Regression, Introduction to
Linear Regression, Multiple Linear Regression, Polynomial
Regression, Logistic Regression.

3. Decision Tree Learning: Introduction to Decision Tree Learning
Model, Decision Tree Induction Algorithms.



Regression Analysis

* Introduction to Regression,

* Introduction to Linear Regression,
* Multiple Linear Regression,

* Polynomial Regression,

* Logistic Regression.



Regression Analysis

* Regression analysis is one of the most widely used and oldest
supervised learning techniques.

* Regression analysis is a supervised learning technique used to predict
continuous variables.

* Unlike classification methods that work with categorical data,
regression focuses on estimating numerical values.

* It helps identify linear and non-linear relationships between
variables within a dataset.



Regression Analysis

* It is primarily employed to model relationships between variables
and make predictions.

* Given a training dataset D consisting of N data points (xi,yi), where
i=1,2,...,N, regression helps establish a mathematical relationship
between one or more independent variables xi and a dependent

variable vi.
* This relationship is generally expressed as: y=f(x)

* Here, the independent variable x is also referred to as an explanatory
variable, predictor variable, covariate, or domain point. The dependent

variable y is often called a label, target variable, or response variable.



Regression Analysis

* Regression analysis measures how the dependent variable changes
when an independent variable is altered while keeping other factors
constant.

* This method helps in understanding the effect of exploratory
variables, making regression essential for prediction and forecasting.



Key Objectives of Regression Analysis

Regression is used to predict continuous or quantitative variables such
as price and revenue. The main goals of regression analysis include
answering the following questions:

1. What is the relationship between the variables?
How strong is this relationship?

Is the relationship linear or non-linear?

What is the significance of each variable?

A

How much does each variable contribute to the outcome?



Applications of Regression Analysis

Regression is widely applied across various industries. Some common
use cases include:

Predicting sales of goods or services.

Estimating the value of bonds in portfolio management.
Determining insurance premiums for companies.
Forecasting agricultural crop yields.

Al S

Evaluating real estate prices.



Introduction to Linearity, Correlation, and
Causation

* The accuracy of regression analysis depends on factors such as
correlation and causation.



Regression and Correlation

* Correlation describes the relationship between two variables, such as
X and y, regression focuses on predicting one variable based on
another.

* To measure correlation strength, the Pearson correlation coefficient
(r) is commonly used.

* This coefficient determines the degree of association between two
variables:
* Positive correlation: As one variable increases, the other also increases.
* Negative correlation: As one variable increases, the other decreases.

* No correlation (random points): There is no observable relationship between
variables.



Regression and Correlation

* Correlation between two variables can be effectively visualized using
a scatter plot, which is a 2D graph representing the relationship
between explanatory (independent) variables and response
(dependent) variables.

* In a scatter plot:
* The x-axis represents the independent or predictor variables.
* The y-axis represents the dependent or predicted variables.

 Scatter plots help in data exploration by identifying patterns between
variables.
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Regression and Causation

» Causation refers to a direct cause-and-effect relationship between
variables, where x causes y to occur or vice versa.

* It is often represented as x = .

* However, correlation and regression do not necessarily imply
causation.



Regression and Causation

* For instance, a correlation between economic background and exam
scores does not mean that a better economic background directly
causes higher marks.

 Similarly, an increase in cool drink sales due to rising temperatures
does not establish a direct causal link—other factors may also

influence sales.

* While high temperature contributes to increased demand, it is not
the sole cause.



Linearity and Non-Linearity Relationships

* A linear relationship between variables means that the dependent
and independent variables are related in a way that can be
represented by a straight line.

* This relationship is expressed using the equation: y=ax+b where a and
b are constants.

* In a linear relationship, as one variable increases, the corresponding
variable also changes in a predictable linear manner.



Linearity and Non-Linearity Relationships

* On the other hand, non-linear relationships exist in cases where the
data does not follow a straight-line pattern.

* These relationships are often found in exponential and power
functions.

* In these cases, the x-axis represents the independent variable, while
the y-axis represents the dependent variable.



Linearity and Non-Linearity Relationships

* Figure provides three graphical examples:

* (a) Linear Relationship: Represented by the equation y = ax + b, which forms a straight line.

* (b) Non-Linear Relationship (Power Function): Represented by y = az’, showing an exponential

CUrve,
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— which forms a

* (c) Non-Linear Relationship (Fractional Function): Represented by y =

curved graph.



Linearity and Non-Linearity Relationships
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What is Regression?

* In machine learning, regression is a type of supervised learning
technique used to predict a continuous target variable (also known
as the dependent variable) based on one or more input features
(independent variables).

* The main goal of regression is to model the relationship between the
input variables and the target variable so that you can make
predictions on new, unseen data.

* Continuous Output: Unlike classification, where the output is a
category (e.g., yes/no or class labels), regression deals with
continuous outputs (e.g., price, temperature, sales figures).



Types of Regression Methods
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Types of Regression Methods

Linear Regression : Linear regression fits a straight line to the given data to determine
the relationship between one independent variable and one dependent variable. This
method is useful for identifying and describing linear relationships.

Multiple Regression : Multiple regression extends linear regression by considering two
or more independent variables to predict a single dependent variable. It helps in
analyzing relationships among multiple variables.

Polynomial Regression : Polynomial regression is a type of non-linear regression
where an Nth-degree polynomial is used to model the relationship between the
independent and dependent variables. This method is particularly useful when data
patterns exhibit curvature rather than a straight-line trend. Polynomial multiple
regression extends this approach to cases with multiple independent variables.

Logistic Regression: Logistic regression is used for classifying categorical variables. It
models the relationship between one or more independent variables and a dependent
variable that falls into categories, such as "yes/no" or "pass/fail." It is also known as a
binary classifier in cases where there are only two possible outcomes.

Lasso and Rid%e Regression: Lasso and Ridge regression methods appgl regularization
techniques to limit the size and number of coefficients of the independent variables.
These methods help in preventing overfitting and improving model performance.



1. Linear Regression
y=po+ bz +e
Example: Predicting house price (y) based on square footage ():

Price = 3y + £, x SquareFootage + €

2. Multiple Regression
y=Py+ Bz + Poza + -+ -+ Buxy, + €

Example: Predicting house price (y) based on square footage (1) and number of bedrooms (z5):

Price = [y + B x SquareFootage + [ x Bedrooms -+ €



3. Polynomial Regression

y =B+ Bix+ Pox’ + -+ Bpa” + e
Example: Predicting house price (y) using a quadratic relationship with square footage (x):
Price = B + B; x SquareFootage + 3, x SquareFootage® + €

4. Logistic Regression

1
P(y — 1) — l I' E—I{ﬁn+31$1+‘"+Hn:rre]

Example: Predicting whether a customer will buy a product (y) based on income (x1) and age (x3):

1
1+ e (By+5 xIncome+ 3, x Age)

P(Buy =1) =



a.k.a. Log Odds Intercept

or Logit P /
log (——)|= Bo + BiX




5. Lasso Regression
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Example: Predicting house price while reducing unimportant features using L1 regularization.



6. Ridge Regression
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Example: Predicting house price while penalizing large coefficients using L2 regularization.



Regularization in Regression

* Regularization is a technique used in regression models to prevent
overfitting by adding a penalty to the model’s complexity.

* [t introduces a regularization term (also called a penalty term) to the
loss function, which helps in controlling the magnitude of regression
coefficients (B).



Why is Regularization Needed?

* In high-dimensional datasets, models may fit the training data too
well, capturing noise rather than true patterns (overfitting).

* Regularization reduces the effect of less important features by
shrinking coefficients toward zero.

* It helps in improving the model’s generalization ability on unseen
data.



Types of Regularization in Regression

1. Lasso Regression (L1 Regularization)

¢ Uses the L1 norm penalty, adding the absolute values of the coefficients to the loss function.

* Some coefficients can become exactly zero, leading to feature selection.
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Types of Regularization in Regression

2. Ridge Regression (L2 Regularization)
+ Uses the L2 norm penalty, adding the squared values of the coefficients to the loss function.
¢ Shrinks coefficients but does not make them exactly zero.
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Types of Regularization in Regression

3. Elastic Net (Combination of L1 & L2)

A hybrid approach that combines Lasso and Ridge regression.

e Helps when features are highly correlated.
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Choosing the Right Regularization

e Use Lasso if feature selection is needed.
* Use Ridge when all features contribute but should be regularized.
e Use Elastic Net when features are correlated.



Limitations of Regression Methods

* Outliers — Abnormal data points can distort the regression model by
shifting the regression line toward them, leading to biased results.

 Sample Size — The ratio of independent to dependent variables should be
at least 20:1. Each explanatory variable should have at least 20 samples,
with a minimum of five samples required in extreme cases.

* Missing Data — Incomplete training data can reduce the reliability and
accuracy of the model, making it unfit for predictions.

* Multicollinearity — When explanatory variables are highly correlated
(above 0.9), the model becomes biased. Perfect correlation (1.0) leads to
singularity issues. To mitigate this, highly correlated variables should be
removed. If multiple variables have the same correlation, the tolerance
measure (1 - R*2) is used to eliminate the variable with the highest value.



What is Regression?

* In machine learning, regression is a type of supervised learning
technique used to predict a continuous target variable (also known
as the dependent variable) based on one or more input features
(independent variables).

* The main goal of regression is to model the relationship between the
input variables and the target variable so that you can make
predictions on new, unseen data.

* Continuous Output: Unlike classification, where the output is a
category (e.g., yes/no or class labels), regression deals with
continuous outputs (e.g., price, temperature, sales figures).



Introduction to Linear Regression

Linear regression Is a statistical method used to model the relationship between a dependent variable

and an independent variable by fitting a straight line to the data points. The equation of the regression

line is given by:

y=ayta-zrte

where:
* ay Is the intercept, representing the bias.

* @y Is the slope, indicating the rate of change of y with respect to .

* ¢ represents the error in prediction.



Assumptions of Linear Regression

* The observations (y) are random and independent of each other.

* The error (difference between predicted and actual values) follows a
normal distribution with a zero mean and constant variance.

* The distribution of the error term is independent of the explanatory
variables.

* The parameters of the regression model (a0,al ) remain constant.



Ordinary Least Squares (OLS) Method

* Linear regression is typically implemented using the Ordinary Least
Squares (OLS) method, also known as the least squares method. This
approach finds the best-fitting line by minimizing the sum of squared
errors.

Linear regression Is solved by minimizing the sum of squared residuals:

T

J(ap,a1) = Z[’yz‘ (ap + a1z;)]°
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Estimation of Parameters

By solving the minimization problem, the coefficients ag and @, are calculated as:

Ty — (Z-7)

a)] = .
T (Z?)

{1[]=§ {Il-if

where T and ¢ are the means of & and y, respectively.



Ordinary Least Squares (OLS) Method

* Each data point has a corresponding predicted value from the
regression line.

* The vertical distance between a data point and the predicted value is
called the error (residual).

* The sum of squared residuals is computed to measure how well the
line fits the data.

* The best-fit line is the one that minimizes this sum of squared
errors.



Ordinary Least Squares (OLS) Method

X-axis

Figure 5.4: Data Points and their Errors
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1. Linear Regression
y=po+ bz +e
Example: Predicting house price (y) based on square footage ():

Price = 3y + £, x SquareFootage + €

2. Multiple Regression
y=Py+ Bz + Poza + -+ -+ Buxy, + €

Example: Predicting house price (y) based on square footage (1) and number of bedrooms (z5):

Price = [y + B x SquareFootage + [ x Bedrooms -+ €



3. Polynomial Regression

y =B+ Bix+ Pox’ + -+ Bpa” + e
Example: Predicting house price (y) using a quadratic relationship with square footage (x):
Price = B + B; x SquareFootage + 3, x SquareFootage® + €

4. Logistic Regression

1
P(y — 1) — l I' E—I{ﬁn+31$1+‘"+Hn:rre]

Example: Predicting whether a customer will buy a product (y) based on income (x1) and age (x3):

1
1+ e (By+5 xIncome+ 3, x Age)

P(Buy =1) =



a.k.a. Log Odds Intercept

or Logit P /
log (——)|= Bo + BiX




5. Lasso Regression
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Example: Predicting house price while reducing unimportant features using L1 regularization.



6. Ridge Regression
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Example: Predicting house price while penalizing large coefficients using L2 regularization.



Linear Regression : Estimation of Parameters
using OLS methods

By solving the minimization problem, the coefficients ag and @, are calculated as:

where T and ¢ are the means of & and y, respectively.



Example 5.1:

* Consider a scenario where the sales data for five weeks (in thousands) is
provided in Table 5.1. Using this dataset, apply the linear regression
technique to predict the sales for the 7th and 12th weeks.

Table 5.1: Sample Data

Week (x;) Sales (y;) (in Thousands)
1 1.2
2 1.8
3 2.6
4 3.2

5 3.8



Solution:

Since there are 5 data points (i=1,2,3,4,5), we compute the necessary statistical
values in Table 5.2.

Table 5.2: Computation Table

L Yi L Li X Yi
1 1.2 1 1.2

2 1.8 - 3.6

3 2.6 9 7.8

E 3.2 16 12.8



Table 5.2: Computation Table

i €L;
1.2 1
1.8 4
2.6 9
3.2 16
3.8 25

Step 1: Compute the Averages

Mean of ' & — l—.:? — 3

Mean of y: ¢ 1’;& = 2.92

Mean of % 2 = 5,%5 = 11

Mean of &; X y;: TY = 41{4 — 8.88

T; X Y;
1.2

3.6

7.8

12.8

19



Step 2: Compute the Slope (a;) and Intercept (ag)

Using the formula for slope:

Ty (Z-9)
] = —
x? — (%)
888 (3x252) 888756 132
4= 132  ~ 11.9 g 48

Using the formula for the intercept:

ag =Yy —a-=r

ap = 2.52 — (0.66 x 3) = 2.52 — 1.98 = 0.54



Step 3: Construct the Regression Model

The equation of the fitted line Is:

y = 0.54 + 0.662



Step 4: Predict Sales for the 7th and 12th Weeks

Using the equation:

e Forx=T:
y=0.54+0.66 x7=0.54+4.62=5.16
e Forx =12

y =0.54 + 0.66 x 12 = 0.54 4 7.92 = 8.46

Thus, the predicted sales for the 7th week are 5.16 thousand, and for the 12th week, 8.46 thousand.



Example: Finding the Inverse of a 2x2 Matrix

For a given 2 X 2 matrix:
a b
The inverse of A, denoted as A—l, Is calculated using the formula:

=@ e o)

where det(A) is the determinant of matrix A, given by:

det(A) = (ad — be)



Example Calculation

Consider the matrix:

1. Calculate the Determinant
det(A) =(4x6) — (7Tx2)=24—-14 =10

Since the determinant is non-zero (det(}l) =+ (), the matrix is invertible.



2. Apply the Inverse Formula

3. Final Result



Verification (Optional)

To verify, multiply A with A~*:

L[4 71 _[06 07
A4 _[2 6]><[ 0.2 0.4]

Perform matrix multiplication:

(4x0.6)+(7x —0.2) (4x—-0.7)+(7x04)
[@xﬂﬁ)i@x 0.2) (2 x &ﬂ+(6x&@]

2414 2.8+ 2.8
1.2 — 1.2 1.4+ 2.4

b g



Linear Regression in Matrix Form

Matrix notation can be used to represent independent and dependent variables in
regression analysis.

The equation for simple linear regression can be written in matrix form as:

Y1 1 = e,
Y2 L x| [q, €2
) = 1. ) | )
5]
_yn_ _]- ﬂf“_ _En_

This can be written compactly as:

Y = Xa | e



The equation for simple linear regression can be written in matrix form as:

Y1 1 = €1
Y2 1 @ ag €2
N B : a | :
Yn | _1 Lp | K=
This can be written compactly as:
Y = Xa + e

where:
e X isann x 2 matrix
e Y isann x 1 vector,
e aisa2 x 1 column vector of regression coefficients,

e eisann ¥ 1 column vector of residuals.



Example 5.2: Linear Regression in Matrix Form

Find the linear regression equation for the weekly product sales data (in thousands) given in Table 5.3.

Table 5.3: Sample Data for Regression

z; (Week) y; (Product Sales in Thousands)
1 1
2 3
3 4



Solution:

The independent variable X (week) and dependent variable Y (sales) are defined as:
XT =01 2 3 4]

Yr'=[1 3 4 §]

In matrix form, these are written as:

W 0 BDD =

where the first column of X is used to incorporate the bias term ay.



Regression Calculation Formula:

The equation to compute the regression coefficients a is:
a=(XTX)'XTY

The step-by-step computation of this equation follows.



Step-by-Step Computation of Linear Regression in Matrix Form

The process of computing the regression coefficients using the matrix formula a = (X 'x )X Y is

outlined below:



1. Compute X' X:

4 10
— |10 30

= L0 bo =

2. Compute the inverse of (XTX):

-1
roa [4 100" [15 05
(X7 X) " = [10 30] = [ 0.5 0.2]



2. Compute the inverse of (X' X):

-1
ron 41017 [15 05
(XX) = lm 30] _{ 0.5 0.2]

3. Compute (X7 X)) 1X7:

[1 05 0 0.5]

rowiwr |15 —05][1 1 1 1
62 = |0 2 s 4= es oo o1 od

05 021](1 2 3 4



3. Compute (X1 X) 1 x7:

(XTX)—IXT:[LEJ 0.5] [1 1 1 1]:[1 05 0 05

0.5 0.2 0.3 -0.01 0.1 0.3

4. Compute (X7 X) 1 X1Y:

1 0.5 0 0.5
0.3 -0.01 01 0.3

-2

00 W= Q2 =



4. Compute (X7 X) 1 XTY:

1
0.3

(XTX) ' xTy =
Thus, the computed regression coefficients are:
* Intercept (ap) = -1.5

* Slope (a]) = 2.2

0.5 0
0.01 0.1

0.5
0.3

|

Q0 = Qo =

1.5
2.2



Thus, the computed regression coefficients are:
* Intercept (ag) = -1.5

e Slope (a;) = 2.2

Final Regression Equation:

y=22x 1.5

This equation represents the fitted linear regression line.
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1. Linear Regression
y=po+ bz +e
Example: Predicting house price (y) based on square footage ():

Price = 3y + £, x SquareFootage + €

2. Multiple Regression
y=Py+ Bz + Poza + -+ -+ Buxy, + €

Example: Predicting house price (y) based on square footage (1) and number of bedrooms (z5):

Price = [y + B x SquareFootage + [ x Bedrooms -+ €



3. Polynomial Regression

y =B+ Bix+ Pox’ + -+ Bpa” + e
Example: Predicting house price (y) using a quadratic relationship with square footage (x):
Price = B + B; x SquareFootage + 3, x SquareFootage® + €

4. Logistic Regression

1
P(y — 1) — l I' E—I{ﬁn+31$1+‘"+Hn:rre]

Example: Predicting whether a customer will buy a product (y) based on income (x1) and age (x3):

1
1+ e (By+5 xIncome+ 3, x Age)

P(Buy =1) =



Multiple Linear Regression

e Multiple regression involves using multiple predictor (independent)
variables to estimate a dependent variable.

* This extends simple linear regression by incorporating more
explanatory factors.

The fundamental assumptions of multiple linear regression include:

* Independent variables are not highly correlated (to avoid
multicollinearity).

* Residuals follow a normal distribution.



For two predictor variables &1 and @9, the multiple regression equation is:
y = f(z1,22) = ap + ay21 + axzs
More generally, for n independent variables:
Yy = f(:rla L9, L3, -”:-irn) = ap + a1y + asxy + ... + a,xy, + €

where:
* I,T,..., I, are predictor variables,
¢ 1 Is the dependent variable,
* ag,dai,...,a, are regression coefficients,

* ¢ represents the error term.



Example 5.5:

Apply multiple regression to the data in Table 5.7, which presents weekly sales y alongside sales of

products 1 and 9. Use the matrix method for calculation.

Table 5.7: Sample Data

11 (Product One Sales) To (Product Two Sales) Yy (Output Weekly Sales in Thousands)
1 4 1

2 5 6

3 8 8

4 2 12




Solution

We represent the data in matrix form:

The regression coefficients are given by:

e e
o OO0 O =

e Q0 B =

a=(XTX)'xTy

o0 Ch =

[—
Lo




Substituting the values, we obtain:

1.69
3.48
0.05

=}
|

Thus, the final multiple regression equation is:

This equation can be used to predict weekly sales based on product sales data.



Polynomial Regression

* When the relationship between the independent and dependent
variables is non-linear, traditional linear regression is ineffective and

leads to significant errors. To address non-linear regression problems,
two methods can be used:

* Data Transformation: Converting non-linear data into a linear form,
making it suitable for linear regression techniques.

* Polynomial Regression: Fitting a polynomial equation to model the
non-linear relationship.



Transformations

The first approach involves transforming non-linear data into a linear form, allowing the use of standard

linear regression techniques. For instance, consider the exponential function:
Yy = ae
Applying the natural logarithm to both sides results in:
Iny =bz +Ina

This transformation converts the exponential equation into a linear form.



Similarly, a power function:
Y= ar
can be transformed using the logarithmic function:
logyyy = blog;y z + logya

Once transformed, linear regression techniques can be applied to estimate the parameters. The inverse

transformation can then be used to obtain the final results.



Polynomial Regression

* Polynomial regression directly models non-linear relationships by
using an nth-degree polynomial.

* Unlike data transformation, this approach fits polynomial curves to
capture different levels of curvature.



Polynomial regression generates non-linear curves such as quadratic and cubic functions. A second-

degree polynomial (quadratic transformation) takes the form:

)
y=ay+az+ ap

while a third-degree polynomial (cubic transformation) is given as:

) 3
y=ayt+mlt el + a2

Polynomials of degree 4 and higher are generally avoided due to their tendency to overfit, resulting in

unnecessarily complex curves.



Fitting a Second-Degree Polynomial
Given data points (ml,yl), (:rg, yg), ey (mﬂ, yﬂ], the objective Is to fit a quadratic function:

y=ay+ a1 [12332

The error function to minimize 1s:

n
E:Z[y-i (ﬂﬂ Fa1T; '—'123712)]2
i=1



Error Function (Least Squares Method)

To find the best-fit polynomial, the error function (also called the residual sum of squares, RSS) Is

minimized:
B = Z(yf (a9 + a2; 4 '-'121’?))2
1=1

This function measures the difference between the predicted values from the polynomial model and the

actual observed values 1;. The objective Is to determine ay, a1, ag such that this error is minimized.



E = Z(y: (ag + arz; + asz;))’

Deriving the Normal Equations

To minimize the error function, we take the partial derivatives of E with respect to each coefficient

ag, 41, ay and set them to zero:

0B

.

0F  OF

0, — =0, —=
8&1 31‘.’12

0



Partial Derivative with Respect to q

OFE
day — Z;?(y-e (ao + a1z + azz;)) - (—1) =0
Simplifying:
1
Z(yi ap — a1z; — azzx;) =0
i=1
Rearrange:

T TL TL T

_ 2
E Yi = E ap E a;T; 4 E A T;
i—1

i=1 i=1 i=1

Since ag, a1, and as are constants, they can be factored out:

nag (Z m.i-) ay - (Z m?) o = Zy.ﬁ-

This is the first normal equation.



To determine the coefficients ag, a1, and a9, we take the partial derivatives with respect to each

coefficient, set them to zero, and solve the resulting system of equations:

nag - (Z m.t-) a (Z mf) ay = ny
(Z :m) ap (Z mf) ai (Z mf) as = Zm.ﬁ-y.ﬁ-
5 )o0s (o) (S or- o

Matrix Form Representation

Rewriting the above equations in matrix form:

n Z XL Z mf- ayg Z Yi
2. Ti Eﬂf‘? > e = | (i)
DIEAEDIE DI Il ] I DI




Matrix Form Representation

Rewriting the above equations in matrix form:

Yo, a2 Sab| fa| = | X
i Yap Y 2

This equation is in the form:

Solving for a:
a=X "B

Thus, polynomial regression enables accurate modeling of non-linear relationships by fitting a

polynomial curve that minimizes errors while avoiding excessive complexity.



Example: Consider the data provided in the
following Table

Table 5.8: Sample Data

1
4
9
15

WO =




Table 5.8: Sample Data

1 1
2 4
3 9
4 15

Solution: For applying polynomial regression, computation is done as shown in Table 5.9.
Here, the order is 2 and the sample i ranges from 1 to 4.
Table 5.9: Computation Table

-y
[—
-

1 1 1 1

2 4 8 4 16 8 16

3 9 27 9 81 27 81

4 15 60 16 240 64 256
2x,=10 | 3y;=29 | Txy,=9 |Sx* =30| a2y =338 | Tx® =100 | Tx! = 354




1 1 L —t

It can be noted that, N = 4, 2Y.=29, Xx Y. =96, Lx?y = 338. When the order is 2, the matrix
using Eq. (5.28) is given as follows: -

4 10 30"a0” (29"
10 30 100(|a |=| 96
30 100 354 a, | |338

21 L )

Therefore, using Eq. (5.29), one can get coefficients as:

— —

aj| ([4 10 30 [20] (-075)
a |=]10 30 100| x| 9% |=| 095/.
30 100 354| [338] | 075,

— J

L.Z.J

This leads to the regression equation using Eq. (5.26) as:
y=-0.75+0.95 x + 0.75 x?



Logistic Regression and Its Functionality

Logistic regression Is a classification technique that predicts the probability of a categorical variable. It
takes one or more input features () and estimates the response variable (y). If a probability were

predicted using linear regression, it would be represented as:
p(z) = ag + a1z

However, logistic regression aims to model probability values that must range between 0 and 1. For
Instance, In an emall classification problem (spam vs. normal mall), if the probability of an email being

normal s 0.7, then there is a 70% chance that it is not spam.



The Logit Function in Logistic Regression

Linear regression can output values from —00 to 400, whereas probability values must be constrained
between 0 and 1. To achieve this, a mapping function is required. The core mapping function in logistic

regression Is the sigmoid function, also known as the logit function, which is expressed as:

1

l14e*

logit(z) =

where Z Is the independent variable, and e Is Euler's number. The purpose of the logit function is to

ensure that any real number is mapped within the probability range of 0 to 1.



Probability and Odds

Logistic regression extends linear regression by transforming the output so that it lies in the 0-1 range.

This transformation involves odds and log-odds.
Odds represent the likelihood of an event occurring compared to it not occurring:

odds — probability of an event ~  p
- probability of a non-event 1 -—p

Taking the logarithm of the odds results in the logit function:

log (1 p(g()m)) = a9 + a1z




Solving for p(), we obtain:

explap + a1
p(z) = ( )
1+ exp(ag + a1z)

This function always produces values within the 0-1 range. By manipulating the numerator and

denominator, It can be rewritten as:




Threshold Function

To make a classification decision, logistic regression applies a threshold function:

(1, ifp(z) > 0.5

0, otherwise

e
1

\



Example 5.7: Application of Logistic Regression

* Consider a binary logistic regression problem where the goal is to
classify students as "pass" or "fail" based on their entrance exam
scores. Historical data is used to determine the regression coefficients.

Given:
* a0=1
*al=8
e x=60 (student's marks)



We calculate z as:
z=ayt+aqr= 1 8(60) = 481

Applying the logistic function:

1
1+ exp(—481)

p(z)
Since exp(—481) is an extremely small number, the probability approximates to:
p(z) ~ 0.4

Given the threshold of 0.5, and since 0.44 < (.5, the student with marks 60 is not selected.



Understanding Logistic Regression and
Parameter Estimation

* In logistic regression, the relationship between dependent and
independent variables is determined by estimating model
parameters. These parameters are obtained using the maximum
likelihood estimation (MLE) method, which uses training data to find
the best values that minimize errors in predicted probabilities.

 Since multiple sets of coefficients can exist, the optimal set is chosen
using the MLE function, which identifies the coefficients that
maximize the probability of obtaining the observed data.



Likelihood Function in Logistic Regression

If  represents the probability of a successful outcome and 1 — 7 represents the probability of failure,

then the likelihood function is given by:

L(a:y)=f[(1 ) (1-m)

=1

To estimate the parameters, the log-likelihood function is taken, and optimization techniques like the

Newton-Raphson method can be used to maximize it.



Multinomial Logistic Regression

Logistic regression is mainly used for binary classification. However, it can be extended for multiple

classes through multinomial logistic regression.

For example, if there are three classes: Class 1, Class 2, and Class 3, multinomial logistic regression

creates three binary classification problems:
1. Class 1 vs. Not Class 1
2. Class 2 vs. Not Class 2

3. Class 3 vs. Not Class 3

These three classification models run simultaneously to determine the most probable class for a given

Input.



Advantages and Disadvantages of Logistic Regression
Advantages:
* Logistic regression is a simple and efficient method for binary classification.

o The model is easy to interpret.

X Disadvantages:
* Multinomial logistic regression struggles with a large number of attributes.
¢ |t can only handle linear relationships between variables.

o If attributes exhibit multicollinearity (high correlation among independent variables), the logistic

regression model may perform poorly.



