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Machine Learning



Syllabus

1. Similarity-based Learning: Nearest-Neighbor Learning, Weighted K-
Nearest-Neighbor Algorithm, Nearest Centroid Classifier, Locally 
Weighted Regression (LWR).

2. Regression Analysis: Introduction to Regression, Introduction to 
Linear Regression, Multiple Linear Regression, Polynomial 
Regression, Logistic Regression.

3. Decision Tree Learning: Introduction to Decision Tree Learning 
Model, Decision Tree Induction Algorithms.



Regression Analysis

• Introduction to Regression, 

• Introduction to Linear Regression, 

• Multiple Linear Regression, 

• Polynomial Regression, 

• Logistic Regression.



Regression Analysis

• Regression analysis is one of the most widely used and oldest 
supervised learning techniques. 

• Regression analysis is a supervised learning technique used to predict 
continuous variables. 

• Unlike classification methods that work with categorical data, 
regression focuses on estimating numerical values. 

• It helps identify linear and non-linear relationships between 
variables within a dataset. 



• It is primarily employed to model relationships between variables 
and make predictions. 

• Given a training dataset D consisting of N data points (xi,yi), where 
i=1,2,...,N, regression helps establish a mathematical relationship 
between one or more independent variables xi and a dependent 
variable yi. 

• This relationship is generally expressed as: y=f(x)
• Here, the independent variable x is also referred to as an explanatory 

variable, predictor variable, covariate, or domain point. The dependent 

variable y is often called a label, target variable, or response variable.

Regression Analysis



• Regression analysis measures how the dependent variable changes 
when an independent variable is altered while keeping other factors 
constant. 

• This method helps in understanding the effect of exploratory 
variables, making regression essential for prediction and forecasting.

Regression Analysis



Key Objectives of Regression Analysis

Regression is used to predict continuous or quantitative variables such 
as price and revenue. The main goals of regression analysis include 
answering the following questions:

1. What is the relationship between the variables?

2. How strong is this relationship?

3. Is the relationship linear or non-linear?

4. What is the significance of each variable?

5. How much does each variable contribute to the outcome?



Applications of Regression Analysis

Regression is widely applied across various industries. Some common 
use cases include:

1. Predicting sales of goods or services.

2. Estimating the value of bonds in portfolio management.

3. Determining insurance premiums for companies.

4. Forecasting agricultural crop yields.

5. Evaluating real estate prices.



Introduction to Linearity, Correlation, and 
Causation
• The accuracy of regression analysis depends on factors such as 

correlation and causation.



Regression and Correlation

• Correlation describes the relationship between two variables, such as 
x and y, regression focuses on predicting one variable based on 
another.

• To measure correlation strength, the Pearson correlation coefficient 
(r) is commonly used. 

• This coefficient determines the degree of association between two 
variables:
• Positive correlation: As one variable increases, the other also increases.

• Negative correlation: As one variable increases, the other decreases.

• No correlation (random points): There is no observable relationship between 
variables.



Regression and Correlation

• Correlation between two variables can be effectively visualized using 
a scatter plot, which is a 2D graph representing the relationship 
between explanatory (independent) variables and response 
(dependent) variables. 

• In a scatter plot:
• The x-axis represents the independent or predictor variables.

• The y-axis represents the dependent or predicted variables.

• Scatter plots help in data exploration by identifying patterns between 
variables. 



Types of Correlations (+ve, -ve and No)



Regression and Causation

• Causation refers to a direct cause-and-effect relationship between 
variables, where x causes y to occur or vice versa. 

• It is often represented as x → y. 

• However, correlation and regression do not necessarily imply 
causation.



Regression and Causation

• For instance, a correlation between economic background and exam 
scores does not mean that a better economic background directly 
causes higher marks. 

• Similarly, an increase in cool drink sales due to rising temperatures 
does not establish a direct causal link—other factors may also 
influence sales. 

• While high temperature contributes to increased demand, it is not 
the sole cause.



Linearity and Non-Linearity Relationships

• A linear relationship between variables means that the dependent 
and independent variables are related in a way that can be 
represented by a straight line. 

• This relationship is expressed using the equation: y=ax+b where a and 
b are constants. 

• In a linear relationship, as one variable increases, the corresponding 
variable also changes in a predictable linear manner. 



Linearity and Non-Linearity Relationships

• On the other hand, non-linear relationships exist in cases where the 
data does not follow a straight-line pattern. 

• These relationships are often found in exponential and power 
functions. 

• In these cases, the x-axis represents the independent variable, while 
the y-axis represents the dependent variable.



Linearity and Non-Linearity Relationships

• Figure provides three graphical examples:



Linearity and Non-Linearity Relationships



What is Regression?

• In machine learning, regression is a type of supervised learning 
technique used to predict a continuous target variable (also known 
as the dependent variable) based on one or more input features 
(independent variables).

• The main goal of regression is to model the relationship between the 
input variables and the target variable so that you can make 
predictions on new, unseen data.

• Continuous Output: Unlike classification, where the output is a 
category (e.g., yes/no or class labels), regression deals with 
continuous outputs (e.g., price, temperature, sales figures).



Types of Regression Methods



Types of Regression Methods

1. Linear Regression : Linear regression fits a straight line to the given data to determine 
the relationship between one independent variable and one dependent variable. This 
method is useful for identifying and describing linear relationships.

2. Multiple Regression : Multiple regression extends linear regression by considering two 
or more independent variables to predict a single dependent variable. It helps in 
analyzing relationships among multiple variables.

3. Polynomial Regression : Polynomial regression is a type of non-linear regression 
where an Nth-degree polynomial is used to model the relationship between the 
independent and dependent variables. This method is particularly useful when data 
patterns exhibit curvature rather than a straight-line trend. Polynomial multiple 
regression extends this approach to cases with multiple independent variables.

4. Logistic Regression: Logistic regression is used for classifying categorical variables. It 
models the relationship between one or more independent variables and a dependent 
variable that falls into categories, such as "yes/no" or "pass/fail." It is also known as a 
binary classifier in cases where there are only two possible outcomes.

5. Lasso and Ridge Regression: Lasso and Ridge regression methods apply regularization
techniques to limit the size and number of coefficients of the independent variables. 
These methods help in preventing overfitting and improving model performance.













Regularization in Regression

• Regularization is a technique used in regression models to prevent 
overfitting by adding a penalty to the model’s complexity. 

• It introduces a regularization term (also called a penalty term) to the 
loss function, which helps in controlling the magnitude of regression 
coefficients (β).



Why is Regularization Needed?

• In high-dimensional datasets, models may fit the training data too 
well, capturing noise rather than true patterns (overfitting).

• Regularization reduces the effect of less important features by 
shrinking coefficients toward zero.

• It helps in improving the model’s generalization ability on unseen 
data.



Types of Regularization in Regression



Types of Regularization in Regression



Types of Regularization in Regression



Choosing the Right Regularization

• Use Lasso if feature selection is needed.

• Use Ridge when all features contribute but should be regularized.

• Use Elastic Net when features are correlated.



Limitations of Regression Methods

• Outliers – Abnormal data points can distort the regression model by 
shifting the regression line toward them, leading to biased results.

• Sample Size – The ratio of independent to dependent variables should be 
at least 20:1. Each explanatory variable should have at least 20 samples, 
with a minimum of five samples required in extreme cases.

• Missing Data – Incomplete training data can reduce the reliability and 
accuracy of the model, making it unfit for predictions.

• Multicollinearity – When explanatory variables are highly correlated 
(above 0.9), the model becomes biased. Perfect correlation (1.0) leads to 
singularity issues. To mitigate this, highly correlated variables should be 
removed. If multiple variables have the same correlation, the tolerance 
measure (1 - R^2) is used to eliminate the variable with the highest value.



What is Regression?

• In machine learning, regression is a type of supervised learning 
technique used to predict a continuous target variable (also known 
as the dependent variable) based on one or more input features 
(independent variables).

• The main goal of regression is to model the relationship between the 
input variables and the target variable so that you can make 
predictions on new, unseen data.

• Continuous Output: Unlike classification, where the output is a 
category (e.g., yes/no or class labels), regression deals with 
continuous outputs (e.g., price, temperature, sales figures).



Introduction to Linear Regression



Assumptions of Linear Regression

• The observations (y) are random and independent of each other.

• The error (difference between predicted and actual values) follows a 
normal distribution with a zero mean and constant variance.

• The distribution of the error term is independent of the explanatory 
variables.

• The parameters of the regression model (𝑎0,𝑎1 ) remain constant.



Ordinary Least Squares (OLS) Method

• Linear regression is typically implemented using the Ordinary Least 
Squares (OLS) method, also known as the least squares method. This 
approach finds the best-fitting line by minimizing the sum of squared 
errors.



Estimation of Parameters



Ordinary Least Squares (OLS) Method

• Each data point has a corresponding predicted value from the 
regression line.

• The vertical distance between a data point and the predicted value is 
called the error (residual).

• The sum of squared residuals is computed to measure how well the 
line fits the data.

• The best-fit line is the one that minimizes this sum of squared 
errors.



Ordinary Least Squares (OLS) Method



Types of Regression Methods













Linear Regression : Estimation of Parameters 
using OLS methods



Example 5.1:

• Consider a scenario where the sales data for five weeks (in thousands) is 
provided in Table 5.1. Using this dataset, apply the linear regression 
technique to predict the sales for the 7th and 12th weeks.



Solution:

Since there are 5 data points (i=1,2,3,4,5), we compute the necessary statistical 
values in Table 5.2.



















Linear Regression in Matrix Form

Matrix notation can be used to represent independent and dependent variables in 
regression analysis.





Example 5.2: Linear Regression in Matrix Form



















Types of Regression Methods







Multiple Linear Regression

• Multiple regression involves using multiple predictor (independent) 
variables to estimate a dependent variable. 

• This extends simple linear regression by incorporating more 
explanatory factors. 

The fundamental assumptions of multiple linear regression include:

• Independent variables are not highly correlated (to avoid 
multicollinearity).

• Residuals follow a normal distribution.











Polynomial Regression

• When the relationship between the independent and dependent 
variables is non-linear, traditional linear regression is ineffective and 
leads to significant errors. To address non-linear regression problems, 
two methods can be used:

• Data Transformation: Converting non-linear data into a linear form, 
making it suitable for linear regression techniques.

• Polynomial Regression: Fitting a polynomial equation to model the 
non-linear relationship.



Transformations





Polynomial Regression

• Polynomial regression directly models non-linear relationships by 
using an nth-degree polynomial. 

• Unlike data transformation, this approach fits polynomial curves to 
capture different levels of curvature.

















Example: Consider the data provided in the 
following Table







Logistic Regression and Its Functionality



The Logit Function in Logistic Regression



Probability and Odds







Example 5.7: Application of Logistic Regression

• Consider a binary logistic regression problem where the goal is to 
classify students as "pass" or "fail" based on their entrance exam 
scores. Historical data is used to determine the regression coefficients. 

Given:

• a0=1

• a1=8

• x=60 (student's marks)





Understanding Logistic Regression and 
Parameter Estimation
• In logistic regression, the relationship between dependent and 

independent variables is determined by estimating model 
parameters. These parameters are obtained using the maximum 
likelihood estimation (MLE) method, which uses training data to find 
the best values that minimize errors in predicted probabilities.

• Since multiple sets of coefficients can exist, the optimal set is chosen 
using the MLE function, which identifies the coefficients that 
maximize the probability of obtaining the observed data.








