
Module3
Machine Learning



Syllabus

1. Similarity-based Learning: Nearest-Neighbor Learning, Weighted K-
Nearest-Neighbor Algorithm, Nearest Centroid Classifier, Locally 
Weighted Regression (LWR).

2. Regression Analysis: Introduction to Regression, Introduction to 
Linear Regression, Multiple Linear Regression, Polynomial 
Regression, Logistic Regression.

3. Decision Tree Learning: Introduction to Decision Tree Learning 
Model, Decision Tree Induction Algorithms.



3.1 : Similarity-based Learning

1. Nearest-Neighbor Learning, 

2. Weighted K-Nearest-Neighbor Algorithm,

3. Nearest Centroid Classifier, 

4. Locally Weighted Regression (LWR).



Similarity based Learning

“Any one who stops learning is old, whether at twenty or eight”

….Henry Ford



What is similarity based learning ?

• SBL is a supervised learning techniques that predicts the class label of 
test instance by gauging the similarity of this test instance with 
training instances.

• It is also called as Instance based learning /Just in time learning when 
classifying a new instance. Instance is an entity or an example in the 
training data set.

• It considers only the nearest instance or instances to predict the class 
of unseen instances.

• It uses distance metrics to find the similarity or dissimilarity required 
for nearest neighbor classification.



Difference between Instance based and Model 
based Learning



Examples

1. K Nearest neighbor (KNN)

2. Variants of Nearest Neighbor learning

3. Locally weighted Regression (LWR)

4. Learning Vector Quantization (LVQ)

5. Self Organization Map (SOM)

6. Radial Basis Function(RBF) networks



Nearest Neighbor Learning

• A widely used approach for similarity-based classification is k-Nearest 
Neighbors (k-NN). It is a non-parametric method applicable to both 
classification and regression tasks. This algorithm is simple yet 
powerful, predicting the category of a test instance by considering the 
'k' training samples that are closest to it. The test instance is assigned 
to the category with the highest probability based on the majority 
class among its nearest neighbors.

• A visual representation of this concept is shown in Figure 4.1. The 
figure illustrates two object classes, C₁ and C₂. Given a test instance T, 
its category is determined by analyzing the class of its k = 3 nearest 
neighbors. Based on this approach, the test instance T is classified as 
belonging to C₂.



Nearest Neighbor Learning

• A visual representation of this 
concept is shown in Figure. 

• The figure illustrates two object 
classes, C₁ and C₂. 

• Given a test instance T, its category 
is determined by analyzing the 
class of its k = 3 nearest neighbors. 

• Based on this approach, the test 
instance T is classified as belonging 
to C₂.



Algorithm : k-Nearest Neighbors (k-NN)

• Inputs:
• Training dataset T

• Distance metric d

• Test instance t

• Number of nearest neighbors k

• Output:
• Predicted class or category of t

• Prediction Process 



Prediction Process:





Example : Student Performance Classification Using k-NN

• Consider a student performance training dataset consisting of 8 data 
instances, as shown in Table. This dataset represents the academic 
performance of individual students in a course, including their CGPA, 
Assessment Scores, and Project Submissions from previous semesters.

• The independent attributes in this dataset are:
• CGPA (Cumulative Grade Point Average)
• Assessment Scores
• Project Submitted

• The target variable is "Result", a discrete-valued variable that indicates 
whether a student Passes or Fails in the course. The goal is to classify 
whether a student will pass or fail based on their performance attributes 
using a k-Nearest Neighbors (k-NN) algorithm.





Solution: k-NN Classification Using Euclidean 
Distance
• Given a test instance (6.1, 40, 5) and a set of categories (Pass, Fail), 

also referred to as classes, we need to use the training dataset to 
classify the test instance using the Euclidean distance metric.

• The goal of classification is to assign a class (Pass or Fail) to an 
unknown instance.
We set k = 3 (using the k-nearest neighbors approach).



Step 1: Compute Euclidean Distance

• We calculate the Euclidean distance between the test instance (6.1, 
40, 5) and each training instance in the dataset. The distances are 
shown in Table 4.3.





Step 2: Selecting the Nearest Neighbors

• To classify the test instance, we sort the calculated Euclidean 
distances in ascending order and select the three nearest training 
instances. The selected nearest neighbors are displayed in Table 4.4.



Step 3: Classification by Majority Voting

• The final classification decision is made using majority voting among 
the three nearest neighbors.

• All three selected neighbors belong to the Fail class.

• Therefore, the predicted class for the test instance is:

• Final Prediction: "Fail".



Data Normalization and k-NN Classifier 
Performance
• Data normalization or standardization is necessary when different 

features in a dataset have varying ranges. This is essential for 
computing distances accurately and ensuring that no single feature 
dominates the calculation. The goal is to bring all features within a 
common scale, providing equal influence.

• For instance, consider a dataset where one feature has values in the 
range [0,1], while another feature has values in the range [0,100]. In 
this case, the second feature will contribute more to the distance 
calculation, even for small variations, leading to biased results.



Factors Affecting k-NN Classifier Performance

• The k-Nearest Neighbors (k-NN) classifier is influenced by three key 
factors:

• Number of nearest neighbors (k):
• A small k may lead to overfitting or unstable predictions.

• A large k may introduce irrelevant points from other classes, reducing accuracy.

• Choice of distance metric:
• Different metrics impact classification results and depend on the dataset's features.

• Decision rule:
• The strategy used for assigning a class label based on nearest neighbors affects 

performance.



Suitability of k-NN in Different Data Spaces

• The k-NN algorithm works best in low-dimensional spaces. 

• In high-dimensional spaces, distances become less meaningful, and 
nearest neighbors may not be close to each other, reducing 
classification effectiveness.



4.3 Weighted k-Nearest Neighbor (k-NN) 
Algorithm
• The Weighted k-NN is an extension of the standard k-NN algorithm

that incorporates weighted distances when selecting neighbors. 
Traditional k-NN has limitations since its performance depends solely 
on the choice of k nearest neighbors, the distance metric, and the 
decision rule.

• The key concept behind Weighted k-NN is that closer neighbors to 
the test instance are assigned higher weights compared to those 
farther away. The weighting follows an inverse proportionality to 
distance, meaning that closer points have a stronger influence on 
classification decisions.



Weight Assignment in Weighted k-NN

• The selected k nearest neighbors can be assigned weights in two 
ways:

• Uniform Weights: All neighbors contribute equally to the 
classification decision.

• Inverse Distance Weights: Neighbors closer to the test instance have 
a greater influence, while those farther away contribute less.

• By using inverse distance weighting, Weighted k-NN improves 
accuracy by giving more importance to closer instances, reducing the 
impact of irrelevant distant points.



Algorithm : Weighted k-NN

• Inputs:
• Training dataset T

• Distance metric d

• Weighting function w(i)

• Test instance t

• Number of nearest neighbors K

• Output:
• Predicted class or category

• Prediction Process (for test instance t):



Prediction Process (for test instance ):



Prediction Process (for test instance ):



Prediction Process (for test instance ):



Example 4.2: Weighted k-NN Classification

•Problem Statement : Using the given training 
dataset from Table used for previous example, 
apply the Weighted k-NN algorithm to classify 
a test instance.



Solution: 



t= (7.6, 60, 8)









4.4 Nearest Centroid Classifier

• An alternative to k-NN classifiers for similarity-based 
classification is the Nearest Centroid Classifier. 

• Also known as the Mean Difference Classifier, this method 
assigns a test instance to the class whose centroid (mean) is 
closest to it.



Algorithm : Nearest Centroid Classifier

• Inputs:
• Training dataset T
• Distance metric d
• Test instance t

• Output:
• Predicted class or category

• Steps:
• Compute the mean (centroid) for each class.
• Calculate the distance between the test instance and the centroid of each 

class using the Euclidean Distance.
• Assign the test instance to the class with the smallest distance.



Example 4.3: Nearest Centroid Classification

• Consider the dataset 
shown in Table 4.9, which 
contains two features, x
and y, and the target 
classes labeled as 'A' or 
'B'. 

• The objective is to predict 
the class of a given test 
instance using the 
Nearest Centroid 
Classifier.



Solution:



Solution:





4.5 Locally Weighted Regression (LWR)

• Locally Weighted Regression (LWR) is a non-parametric supervised 
learning algorithm that performs local regression by incorporating 
the regression model with the nearest neighbor approach.

• It is also known as a memory-based method since it requires training 
data during prediction but only considers data points that are close 
to the test instance. 

• Using the nearest neighbors' approach, LWR selects instances closest 
to a test instance and fits a linear function to those selected 
neighbors. 



4.5 Locally Weighted Regression (LWR)

• The key idea is to approximate the linear functions of the selected 
neighbors in such a way that the error is minimized. 

• Unlike standard linear regression, where the prediction line is strictly 
linear, LWR allows the prediction to follow a curve.



Ordinary Linear Regression



Ordinary Linear Regression



Locally Weighted Linear Regression



Locally Weighted Linear Regression



Example 4.4: Locally Weighted Regression with 
a Sample Dataset



Solution





Now, we compute the weights for the closest 
instances using the Gaussian kernel:



Weight Calculation for Closest Instances

Weight of Instance 2:

Weight of Instance 3:

Weight of Instance 4:



Predicted Outputs for the Three Closest Instances

For each of the three nearest neighbors, we compute their predicted output:



Error Calculation


