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Module 2.1: Understanding Data-2

Mean, Variance and Standard Deviation

Bivariate Data and Multivariate Data

Multivariate Statistics,

Essential Mathematics for Multivariate Data,

Feature Engineering and Dimensionality Reduction Techniques.
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2.1.1: Mean, Variance and Standard Deviation

Example Dataset

e Consider the following five numbers representing the scores of five
students in a test:

* X=[10,20,30,40,50]



1. Mean (Average)

The mean is the average of all values in the dataset. It is calculated as:

X
Mean(p) = EN !

where:
e X, are the individual values,

e N is the number of values.

Calculation for our dataset:

10 + 20+ 30 +40 + 50 150
= 5 =75 %

So, the Mean is 30.
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2. Variance (crg}

The variance measures how much the data points deviate from the mean. It is calculated as:

o DX p)?
N

Calculation:

1. Find the difference from the mean for each value:
e 10— 30=—-20
e 20—-30=-10

e 30-30=0
e 40 —-30=10
e 50— 30=20
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2. Square each difference:
e (—20)* =400
e (—10)* =100

« (0)*=0
e (10)* = 100
e (20)* = 400

3. Compute the average of these squared differences:

> _ (400 + 100 g - 100 + 400) _ 10500 200

So, the Variance is 200.
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3. Standard Deviation (o)

The standard deviation is the square root of the variance:
o= vVo?
Calculation:

o= +200 = 14.14

So, the Standard Deviation is approximately 14.14.

Summary of Results

For the dataset [10, 20, 30, 40, 50:
« Mean = 30
« Variance = 200

* Standard Deviation = 14.14



Arithmetic Mean (AM):

The Arithmetic Mean is the most common type of average. It is calculated by adding up all the values in

a data set and then dividing the sum by the number of values.

Formula:

Arithmetic Mean (AM) = L2
n

Where:
e ) x;is the sum of all values

e 1 1s the number of values
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Arithmetic Mean (AM):

Example: Suppose we have the data set: 5, 10, 15, 20.
e Sum=05+ 10+ 15+ 20 = 50

¢ Number of valuesn = 4

So, the Arithmetic Mean is:

AM = — =125
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Weighted Mean

The Weighted Mean is similar to the Arithmetic Mean but is used when some values contribute more

than others. Each value in the data set has a weight, and these weights are used to calculate the mean.

Formula:

Weighted Mean = M
2. Wi
Where:
e T; are the data values
* w; are the weights associated with each value

e Y w;z; is the sum of the products of each value and its weight

e ) wjis the sum of the weights



Weighted Mean

Example: Let's say we have the data set: 5, 10, 15, 20 with corresponding weights: 1, 2, 3, 4.

 Sum of the weighted values: 5 X 1 + 10 x 2+ 15 x 3+ 20 x 4 =5+ 20 + 45 + 80 = 150
o Sum oftheweights:1+2+3+4 =10

So, the Weighted Mean is:

1
Weighted Mean = %} =15
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Geometric Mean (GM):

The Geometric Mean is used when we want to calculate the average of data that involves rates,

percentages, or values that are multiplied together. The Geometric Mean is found by multiplying all the

values together and then taking the n-th root (where n is the number of values).

Formula:

1/n
Geometric Mean (GM) = H T

Where:
e 1, are the data values
e 7 is the number of values

* H:l_l x; is the product of all the values



Geometric Mean (GM):

Example: Let's say we have the data set: 4, 16, 64.
e Multiply the values: 4 x 16 x 64 = 4096
e Take the cube root (since there are 3 values): v/4096 = 16

So, the Geometric Mean Is:

GM = 16
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Harmonic Mean (HM):

The Harmonic Mean is used when the data consists of rates or ratios. It is calculated as the reciprocal of

the Arithmetic Mean of the reciprocals of the data values.

Formula:

Harmonic Mean (HM) = Ll
Lz
Where:

o 1, are the data values

e 1 1Is the number of values
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Harmonic Mean (HM):

Example: Let's say we have the data set: 4, 6, 12.

* Reciprocal of each value: i, é, ﬁ
o Sumufreciprocals:al | é } é — é | 12—2 } 1—12 = % — 0.5

e Number of valuesnn = 3

So, the Harmonic Mean is:

HM = — =6

3
0.5

Dr.Thyagaraju G S, Professor and HoD, Department of CSE, SDM
Institute Of Technology,Ujire-574240. Source Book : S. Sridhar,
M Vijayalakshmi “Machine Learning”. Oxford, 2021



Variance (Measure of Spread)

Definition

Variance (o) measures how far individual data points deviate from the mean of a dataset. It quantifies

the spread of data.

Formula

DX — p)’

Variance(o?) = N

Where:

e X, = individual values
* [t =mean (average) of values

e N = total number of values



Covariance (Measure of Relationship)

Definition
Covariance measures the relationship between two variables—whether they increase or decrease

together.

Formula
For two variables X and Y, covariance is given by:

Y (X — px ) (Y — py)

Cov(X,Y) = ~
4

Where:
o« X, and Y] are data points of two variables
* px and py are meansof X and Y

NN is the number of data points



Interpreting Covariance

1. Positive Covariance (> 0):

* When one variable increases, the other also increases.

* Example: Hours Studied & Test Score — More studying leads to higher scores.
2. Negative Covariance (< 0):

* When one variable increases, the other decreases.

* Example: Sleep Hours & Stress Levels — More sleep reduces stress.
3. Zero Covariance (= 0):

* No relationship between the variables.

» Example: Height & Favorite Color — No connection.
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Difference Between Variance and Covariance

Feature Variance Covariance

Measures Spread of one variable Relationship between two variables

Formula WTH L(Ximur)tow

Result Always positive Can be positive, negative, or zero

Example Spread of exam scores Relationship between study hours and scores
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Bivariate Data

e Bivariate data involves two variables and is used to examine
relationships between them.

* The key focus is to see how one variable changes in response to
another.



Example of Bivariate Data

Let's consider a dataset that shows the number of hours studied and the corresponding test scores of

five students.

Hours Studied (X) Test Score (Y)
1 50
2 55
3 65
4 70
5 a0
Here:

* X (Independent Variable): Hours studied

* Y (Dependent Variable): Test scores



Multivariate Data

e Multivariate data involves more than two variables and is used when
analyzing multiple factors affecting an outcome.



Example of Multivariate Data

Let's consider a dataset that tracks three variables: hours studied, test scores, and sleep hours for five

students.
Hours Studied (X1) Test Score (Y) Sleep Hours (X2)
1 50 g
2 55 7
3 65 6
4 70 5
5 80 4
Here:

X1 (Independent Variable 1): Hours studied
* X2 (Independent Variable 2): Sleep hours

* Y (Dependent Variable): Test scores



Key Differences

Feature
Number of Variables
Example Use Case

Example Variables

Bivariate Data Multivariate Data

2 More than 2

Correlation, Simple Regression Multiple Regression, Machine Learning Models
Hours studied & test scores Hours studied, sleep hours & test scores
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2.1.2.1 Bivariate Data Analysis

* Bivariate data involves two variables Table: Temperature and Sales Data
and is used to explore relatlonshlps Temperature (°C)||Sales of Sweaters (in thousands)
between them. : 200

* The goal is to identify patterns and 10 150
causes of relationships in the data. T 120

* Consider Table , which presents 20 75
temperature data from a shop " 50
alongside sweater sales figures. > >

* To understand the relationship ”s 20

between temperature and sweater
sales, graphical visualization is useful.
One such method is the scatter plot.



Scatter Plot and Its Importance

A scatter plot visually represents bivariate data by plotting two
variables on a 2D graph.

It helps in:

* |dentifying trends or patterns.

* Observing relationships between variables.

e Detecting outliers.

* Evaluating the strength, shape, and direction of the relationship



Figure presents a scatter plot of temperature
against sweater sales

Scatter plot
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The scatter plot illustrates a negative correlation between temperature and sweater
sales—sales decline as temperature rises.
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import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

# Data
temperature = np.array([5, 10, 15, 28, 22, 23, 25])
sales = np.array([20®, 150, 140, 75, 60, 55, 20])

# Scatter Plot

plt.figure(figsize=(8,6))

plt.scatter(temperature, sales, color="blue', label="Data Points')
plt.xlabel( Temperature (°C)")

plt.ylabel( 'Sales of Sweaters (in thousands) ')

plt.title( Temperature vs Sweater Sales’)

plt.grid(True)

plt.legend()

plt.show()
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Sales of Sweaters (in thousands)
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Line Chart for Sales Data

Sales data

* Line graphs are similar to scatter plots 2 T
but connect data points with lines,
making trends more visible.

* The graph clearly demonstrates the
downward trend, confirming that
sweater sales decrease as temperature i

increases.

* By analyzmg these graphlcal "
representations, businesses can make
data-driven decisions, such as
adjusting stock based on seasonal 0
demand 5 10 15 20 22 23

Temperture

150

Sales




Bivariate Statistics

* Covariance and correlation are key concepts in bivariate statistics.

e Covariance measures the joint variability of two random variables, such as X
and Y, which are typically represented by capital letters.

e Covariance, denoted as COV(X,Y), indicates how changes in one variable
correspond to changes in another.

* Since covariance can take any value, it is often normalized to fall within the
range of -1 to +1 using the Pearson correlation coefficient.



Bivariate Statistics

The formula for calculating covariance between two data sets, « and y, is:

.th;r
1
COV(X,Y) = N Y (@i — BE(X))(yi — E(Y))
where:
e x; and y; are individual data values of X and Y,
e E(X)and E(Y) represent the mean values of X and Y, respectively,

e [N is the total number of data points.
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Example : Finding Covariance

Given two sets of data:

X =1{1,2,3,4,5}, Y ={1,4,9,16,25)

Solution:

Calculate the mean values:

14+24+3+4+5 1+44+9+416 + 25
_ 1A 15} 1 _3, E(Y)= 1 }5} 1 _

11

E(X)
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Example : Finding Covariance

Compute covariance using the formula:

(1-3)(1—11)+(2-3)(4—11) + (3 3)(9 — 11) + (4 — 3)(16 — 11) + (5 — 3)(25 — 11)

)
(1-3)(1-11)+ (2 3)(4—11)+ (3 3)(9— 11) + (4 — 3)(16 — 11) + (5 — 3)(25 — 11)

_ — 12
5

Thus, the covariance between X and Y is 12.

If normalization is required, dividing by the correlation of the variables gives the Pearson correlation

coefficient. In some cases, N — 1 is used instead of [V, yielding:

60 _

1
1 3]

This approach standardizes the covariance measure for easier interpretation.



Correlation

* The Pearson correlation coefficient is a widely used statistical
measure for determining the relationship between two variables. It
quantifies the strength and direction of a linear relationship between

X andy.

* The sign of the correlation coefficient is more significant than its
actual value, as it indicates the nature of the relationship between the

variables:
* A positive correlation means that both variables increase together.
* A negative correlation indicates that as one variable increases, the other

decreases.
* A zero correlation suggests that the two variables are independent of each

other.



Correlation

If two dimensions are highly correlated, one of them may be redundant and can be removed in certain

applications.

For given datasets:
X = (;El}:tg,...,mﬁr), Y = (ylz-yiﬁ"'!yﬁ)

the Pearson correlation coefficient, denoted as r, is calculated as:

~ COV(X,Y)
- Oxoy

?I

where oy and oy represent the standard deviations of X and Y, respectively.
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Example: Finding the Correlation Coefficient

Given the data sets:
X = {1,2,3,4,5}, Y = {1}4}9, 16,25}

Solution:

The mean values of X and Y are:
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Example: Finding the Correlation Coefficient

The standard deviations of X and Y are 1.41 and 8.6486, respectively. The correlation coefficient is

calculated using the formula:

~ COV(X,Y)
N ox0y

r

Substituting the covariance (12) and standard deviations:

12

= ~ ().984
N TETI R
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2.1.3 Multivariate Statistics

* In machine learning, most datasets are multivariable, meaning they
contain multiple observable variables. These datasets often involve
thousands of measurements for one or more subjects.

* Multivariate data are similar to bivariate data but may include more
than two dependent variables.

* Some common multivariate analyses include:
* Regression analysis
* Principal component analysis (PCA)
e Path analysis



Regression Analysis

* Regression analysis is a statistical method used to model the
relationship between a dependent variable and one or more
independent variables.

* It helps predict outcomes and determine the influence of predictor
variables.



Example of Regression Analysis with Dataset

* Let's consider a simple Linear Regression example where we predict a
student's exam score based on the number of study hours.

Step 1: Original Dataset (Before Applying Regression)

Student Study Hours (X) Exam Score (Y)
1 2 50
2 4 60
3 6 70
4 8 80
5 10 90

Here, we assume there is a linear relationship between the number of study hours and the exam score.



import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import linregress

# Gliven dataset
study_hours = np.array([2, 4, 6, 8, 10])
exam_scores = np.array([50, 68, 70, 80, 90])

# Perform Linear regression
slope, intercept, r_value, p _value, std err = linregress(study hours, exam_scores)

# Define the regression equation
def regression_line(x):
return slope ¥ x + intercept
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# Generate predictions
Xx_values = np.linspace(@, 12, 109)
y_values = regression_line(x_values)

# Plot the data points
plt.scatter(study hours, exam scores, color='blue', label='Data Points')

# Plot the regression Line
plt.plot(x_values, y values, color='red', label=f'Line: y = {slope:.2f}x + {intercept:.2f}")

# Labels and title
plt.xlabel('Study Hours')
plt.ylabel('Exam Score')

plt.title('Linear Regression: Study Hours vs Exam Score')
plt.legend()

plt.grid()

# Show the plot
plt.show()

# Print the equation of the regression Line
print(f"Linear Regression Equation: y = {slope:.2f}x + {intercept:.2f}")
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Linear Regression: Study Hours vs Exam Score

100 1 @ Data Points
—— Line: y = 5.00x + 40.00

80 -
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Exam Score

60 -
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I ) I

0 2 - (5] 8 10
Study Hours

Linear Regression Equation: y = 5.80x + 40.00



Step 2: Applying Simple Linear Regression

The general formula for linear regression is:

Y = Bop + 81 X

where:
e Y is the dependent variable (Exam Score)
e X is the independent variable (Study Hours)
e g is the intercept
e 3, is the slope (coefficient)

- £ is the error term

Using regression analysis, we get the best-fit equation:

Y =5X +40

where:
* Intercept (Bo) = 40

* Slope (B4) =5



Step 3: Predictions (After Applying Regression)

If we use this equation, we can predict exam scores for new study hours:

Study Hours (X) Predicted Exam Score (Y)
3 (5 x 3) +40 =55
7 (5xT7)+40=175
9 (5 x 9) + 40 = 85

Thus, if a student studies 7 hours, their predicted exam score is 75.

Step 4: Regression Interpretation
* The slope (5) means that for every 1 additional study hour, the exam score increases by 5 points.

* The intercept (40) means that if a student studies 0 hours, the predicted score is 40.

Visualization
» |f we plot Study Hours (X) vs. Exam Score (Y), a straight-line trend appears.

* This confirms a positive correlation (more study leads to higher scores).
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Types of Regression:

* Linear Regression: Relationship between dependent (Y) and
independent (X) variables using a straight line (Y = Bo + B1X + €).

* Multiple Regression: Extends linear regression to multiple
independent variables (Y = Bo + B1Xq1 + B2X2 + ... + BnXn + €).

* Logistic Regression: Used for binary outcomes (e.g., Yes/No, 0/1).

* Polynomial Regression: Models nonlinear relationships using higher-
degree terms.

* Ridge and Lasso Regression: Regularized regression techniques to
prevent overfitting.



Applications:

* Predicting sales, stock prices, or medical conditions.
* Analyzing customer behavior.
* Forecasting trends based on past data.



Principal Component Analysis (PCA)

* PCA is a dimensionality reduction technique that transforms
correlated variables into a smaller set of uncorrelated variables
(principal components) while retaining most of the data’s variance.



Steps in PCA:

1. Standardize the data: Ensure all variables are on the same scale.

Compute the covariance matrix: Understand relationships among
variables.

3. Calculate eigenvalues and eigenvectors: Identify the directions of
maximum variance.

4. Select principal components: Choose components that explain the
most variance.

5. Transform the data: Project the original data onto the new principal
components.



Example of Principal Component Analysis (PCA) with Dataset

Step 1: Original Dataset (Before Applying PCA)

Consider a dataset with three features: Height (cm), Weight (kg), and Age (years) of individuals.

Person Height (cm) Weight (kg) Age (years)
1 170 70 25
2 160 65 30
3 175 80 35
4 180 85 28
5 165 12 40

Here, the dataset has three correlated variables (Height, Weight, and Age). PCA will reduce

dimensionality while preserving most of the variance.



Step 2: After Applying PCA
PCA transforms the original dataset into a new set of Principal Components (PCs). These PCs are

uncorrelated and capture the maximum variance in the data.

Person PC1 PC2
1 1.2 04
2 0.8 -0.2
3 1.5 0.5
4 1.8 0.6
5 0.9 -0.3

e PC1 (Principal Component 1) captures the highest variance (e.g., a mix of Height, Weight, and Age).
e PC2 (Principal Component 2) captures the second highest variance.

e The third component (PC3) might have minimal variance and can be ignored, reducing the dataset

from 3D to 2D.



Applications:

1. Reducing complexity in large datasets (e.g., image processing,
genetics).

2. ldentifying patterns in high-dimensional data.
3. Feature extraction for machine learning models.



Path Analysis

* Path analysis is an extension of multiple regression that examines
causal relationships between variables using a path diagram. It helps
understand direct and indirect effects among variables.

* Causal Relationships: A causal relationship refers to a cause-and-
effect connection between two or more variables, where one variable
(the cause) directly influences another variable (the effect). In simple
terms, if changing one variable leads to a change in another, there is a
causal relationship between them.

* Examples: Smoking causes lung cancer, Higher interest rates reduce
consumer spending, More study hours lead to better exam
performance



Example: Path Diagram

Attitude 5
1 e,
b " b
Norms “—! Intention -
b,
Control

Behavior
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Key Components:

* Exogenous Variables: Independent variables with no direct cause in
the model.

* Endogenous Variables: Dependent variables influenced by other
variables.

* Path Coefficients: Standardized regression weights indicating
relationships.

* Direct and Indirect Effects: Effects that occur directly or via other
variables.



Applications:

* Social and behavioral sciences (e.g., analyzing factors affecting
student performance).

* Economics and business research (e.g., studying relationships
between customer satisfaction and loyalty).

* Biological and medical research (e.g., examining disease risk factors).



Multivariate Statistics:

A sample dataset with multivariate data is structured as follows:

Id | Attribute 1 | Attribute 2 | Attribute 3
1 1 4 1
2 2 5 2
3 3 6 1

The mean of multivariate data is represented as a mean vector. For the dataset above, the mean values

of the three attributes are:

(2.00,5.00, 1.33)
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Multivariate Statistics:

* The variance of multivariate data forms the covariance matrix, which
is a key concept in multivariate statistics. The mean vector is also
known as the centroid, and variance is represented in a dispersion
matrix.

* Multivariate data involve three or more variables. The purpose of
multivariate analysis is broad and includes:
* Regression analysis
* Factor analysis
e Multivariate analysis of variance (MANOVA)



Factor Analysis:

e Factor analysis is a technique used to reduce the complexity of data
by identifying underlying relationships or factors that explain the
patterns of correlations among multiple observed variables.

* The goal is to identify the "latent" variables (unobserved factors) that
influence the observed variables.



Multivariate Analysis of Variance (MANOVA)

* MANOVA is an extension of Analysis of Variance (ANOVA) that allows
researchers to examine the effect of one or more independent
variables on multiple dependent variables simultaneously.

* This technique is useful when there are multiple response variables,
and you want to see if the independent variable(s) have a joint effect
on them.



Covariance Matrix (Dispersion Matrix )

* In multivariate statistics, variance and covariance play a crucial role in
understanding the relationships between multiple variables. These
concepts are represented using the covariance matrix (dispersion

matrix).
* The covariance matrix is a square matrix that contains the variances

of each variable along the diagonal and the covariances between the
variables in the off-diagonal elements.



For a dataset with p variables, the covariance matrix X is:

VHI(Xl) CDV(Xh XE) ‘e CUV(Xl.J XP)-
CDV(XQ, Xl) VEII(X;;) C e CDF(XE, XP)

Cov(X,,X;) Cov(X,,X;) ... Var(X))

* Diagonal elements represent the variance of each variable.

» Off-diagonal elements represent the covariance between pairs of variables.
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2. Example Dataset for Covariance Matrix

Let's consider three variables:
e Xy (Hours Studied)
e X5 (Test Scores)

X3 (Sleep Hours)

Student Hours Studied (X1)
1 1
2 2
3 3
4 4
5 5

Test Score (X2)
50
55
b5
70

80

Sleep Hours (X3)
8
.

6



3. Step-by-Step Calculation of the Covariance Matrix

Step 1: Compute the Mean Vector (Centroid)

The mean of each variable is:

14+2+3+4+5

i . 3
50 + 55+ 65+ 70 + 80
5
8+7+6+5+4
PI_',R — — 6
33
Thus, the mean vector (centroid) is:
g
p= |64
L 6 o




Step 2: Compute Variance and Covariance

Variance of Each Variable

Variance is calculated as:

» Variance of X (Hours Studied):

(1-3)2+(2-32+(3-3)2+(4—3)2+(5—3)

011 —

'

441404144 10
_ : - = -
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» Variance of X5 (Test Scores):

(50 — 64)2 + (55 — 64)% + (65 — 64)2 + (70 — 64)2 + (80 — 64)?
5

_196+81+1+36+256 570
_ : - -

022 =

* Variance of X3 (Sleep Hours):

(8 —6)2+(7T—6)2+(6—16)>+(5—16)+(4—6)
5

441404144 10
_ : - = =

033 =
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Covariance Between Variables

Covariance is calculated as:

1

Cov(X,Y) =~} (Xi — pux) (¥; — o)

« Covariance between X and X5:

(1—3)(50 — 64) + (2 — 3)(55 — 64) + (3 — 3)(65 — 64) + (4 — 3)(70 — 64) + (5 — 3)(80 — 64)

O12 =

5
_ (=2)(=1) + (=1)(=9) + (0){1) £ (1)(6) + (2)(16)
5
_ 28+9+04+6+ 32 :E 15
D 5
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Covariance between X and Xj5:

(1-3)(8—6)+(2—3)(7T—6)+(3—3)(6—6)+(4—3)(5—6)+(5—3)(4—6)

a1z — 5
_ (=2)(2) +(=1)@) + (0)(0) + (1)(=1) + (2)(-2)
5
_4-140-1-4 10,
_ - -—=

Covariance between X, and X;:

(50 — 64)(8 — 6) + (55 — 64)(7 — 6) + (65 — 64)(6 — 6) + (70 — 64)(5 — 6) + (80 — 64)(4 — 6)

023 = 5
_ (=14)(2) + (=9)(@) £ (1)(0) + (6)(=1) + (16)(-2)
5]
_ —28—-9+0—-6—32 _ —75 _ 15
5 5
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Step 3: Form the Covariance Matrix

2 15 -2
=15 114 -15
2 15 2

This dispersion matrix (covariance matrix) provides:
* Variances along the diagonal.

« (Covariances in the off-diagonal elements, showing relationships between variables.
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Heatmap

* A heatmap is a graphical representation of a 2D matrix, where colors
are used to represent data values.

* Darker colors indicate larger values, while lighter colors represent smaller
values.

* The advantage of heatmaps is that they allow humans to quickly visualize
data patterns.

* For example:

* |n traffic analysis, heatmaps help distinguish between high-traffic and low-
traffic areas.

* |In health data visualization, a heatmap can represent the relationship
between patients’ weight and health status (e.g., X-axis: weight, Y-axis:
patient count).
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import numpy as np

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

# Sample dataset (Hours Studied, Test Score, Sleep Hours)
data = {

"Hours Studied': [1, 2, 3, 4, 5],

"Test Score': [5@, 55, 65, 70, 80],

‘Sleep Hours': [8, 7, 6, 5, 4]

}

# Convert to DataFrame
df = pd.DataFrame(data)

# Compute the Covariance Matrix
cov_matrix = df.cov()

# Create Heatmap
plt.figure(figsize=(8,6))
sns.heatmap(cov_matrix, annot=True, cmap='coolwarm’', fmt=".2f", linewidths=2, cbar=True)

# Add Title
plt.title("Heatmap of Covarliance Matrix", fontsize=14)

# Show the heatmap
plt.show()



Covariance Matrix

Hours_Studied Test Score Sleep Hours
Hours_Studied 2.50 18.75 -2.50
Test Score 18.75 142.50 -18.75
Sleep Hours -2.50 -18.75 2.50
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Heatmap of Covariance Matrix

Hours_Studied
J

@
o
L
LV
g
H

Sleep Hours
|

] ]
Hours_Studied Test_Score Sleep_ Hours




1. sns.heatmap(cov_matrix, ...)

* sns.heatmap() is a function from the Seaborn library used to visualize 2D matrices like correlation

matrices, covariance matrices, or confusion matrices.

* Here, cov matrix isa Pandas DataFrame containing the covariance values.

2. annot=True
®* annot=True means display numeric values inside the heatmap cells.

* The values will be printed on each grid of the heatmap.

Without annot=True — Only colors appear.

With annot=True — Numbers are displayed inside the heatmap.

- = t——iii— ey =g — — - —_ et e - - . e
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3. cmap="'coolwarm'

* cmap (colormap) defines the color scheme used for the heatmap.

®* coolwarm is a diverging color palette:

* Blue (cool) — Represents lower values.
 Red (warm) — Represents higher values.

* White — Represents values near zero.

Other colormap options: 'viridis', 'Blues', 'Greens',6 'magma’, 'cividis' .
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4. fmt=".2f"

e fmt=".2f" sets the format of displayed numbers inside the heatmap.

e ".2f" means 2 decimal places.

Example:
® 12.3456 — 12.35

® 7.8912 — 7.89

5. linewidths=2
¢ Defines the thickness of lines between heatmap cells.

¢ Bigger values = More separation between grid cells.

linewidths=0 — No separation between cells.

linewidths=2 — Clear white grid lines.



6. cbar=True

* Adds a color bar (legend) to the side of the heatmap.

* The color bar helps interpret the scale of values.

With cbar=True — A side color bar is displayed.

With cbar=False — No color bar is shown.
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Pair Plot

* A pairplot, also known as a scatter matrix, is a visual technique used
to analyze multivariate data.

* It consists of multiple pairwise scatter plots that display relationships
between different variables in a dataset.

* The results are arranged in a matrix format, making it easy to identify
patterns such as correlations between variables.

* By examining the pairplot, one can quickly observe trends, clusters,
and relationships among variables.



* In the example below, a random matrix with three columns is selected, and
the relationships among these columns are visualized using a pairplot
(scatter matrix), as shown in Figure:
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Figure 2.14: Pairplot for Random Data



2.1.3 Essential Mathematics for Multivariate
Data

* Machine learning relies on several mathematical concepts, including
linear algebra, statistics, probability, and information theory.

* This section explores key aspects of linear algebra and probability
that are fundamental to understanding multivariate data.



Linear Algebra in Machine Learning

* Linear algebra is a crucial branch of mathematics widely used in
scientific applications and other mathematical fields.

* While all areas of mathematics contribute to machine learning, linear
algebra plays a fundamental role as it provides the mathematical
framework for working with linear equations, vectors, matrices,
vector spaces, and transformations.

* These structures form the foundation of machine learning, making it
impossible to develop machine learning models without them.

* Now, let’s explore some essential concepts of linear algebra.



1.Linear Systems and Gaussian Elimination for
Multivariate Data

A linear system of equations is a set of equations with unknown variables.

Given a system represented as:
Axr = vy

The solution for x is given by:

r=y/A=A"y

 This holds true if y is nonzero and A is an invertible (nonzero) matrix.



1.Linear Systems and Gaussian Elimination for
Multivariate Data

For a system with N equations and n unknown variables, if A is represented as:

ap; a2 ... din

az; daz ... Q2
A=

anl1 Ap2  -.. Opp |

And y is represented as:

Yy = (yl:v Y2y .-y yn-)
Then, the unknown variable x can be computed as:

r=y/A= A_ly



Types of Solutions in a Linear System

1. If there is a unique solution, the system is called consistent
independent.

If there are multiple solutions, the system is consistent dependent.

If there is no solution or the equations are contradictory, the
system is inconsistent.



Gaussian Elimination for Solving Large Systems of
Equations

* Gaussian elimination is an efficient method used to solve large
systems of equations.

* The step-by-step procedure is as follows:



1. Write the given matrix representing the system of equations.

2. Augment the matrix by appending vector y to A, forming an
augmented matrix.

3. Perform row operations:

o Use the first element a4 as a pivot.

* Eliminate all elements below a4 in the second row using the matrix operation:

a1
Rg — Rg — | — Rl
a1
Here, R, represents the second row, and (az1 / a11) is the multiplier. The same logic applies to

remove aiq In other rows.
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4. Reduce the matrix to row echelon form.
5. Solve for unknown variables:

e The first unknown variable is found using:

* The remaining unknowns are determined using back-substitution:

Yn—1 — an—l;n-mn

A(n-1)(n-1)

Lp-1 =

This process is known as back-substitution, and it efficiently finds solutions to systems of
linear equations.
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* To effectively apply the Gaussian elimination method, the following row
operations are used:
* Swapping rows
* Multiplying or dividing a row by a constant
* Replacing a row by adding or subtracting a multiple of another row

* These operations help reduce a system of equations to its row echelon form,
as demonstrated in the following example.



Example :
Solving a System Using Gaussian Elimination

Solve the given system of equations using Gaussian elimination:
21 +4x9 = 6

455‘1 —'—3132 =7
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Solution:

1. Convert the system into an augmented matrix:

2 4 |6
4 3 |7
2. Transform the matrix by dividing the first row by 2:
1 2 |3
4 3 |7

3. Eliminate the first column entry in the second row using row operations:
Rs +— Rs —4R;

Resulting in:

1 2 |3
0 -5 |—5



4. Divide the second row by -5:

Rg{—RQ/—E)

1 2 |3
0 1 |1

5. Use back-substitution to find the values of ; and x»:

® From the second row:
o — 1

e Substituting 2 = 1 into the first equation:
x; +2(1) =3
Thus, the final solution is:
r=1 x3=1

IVI VIjdydIdRSIITI  vidurninie Lediiingg . UXIuIu, Zusl



Matrix Decompositions

* In many cases, it is beneficial to decompose a matrix into its
fundamental components to simplify complex matrix operations.
These techniques are known as matrix factorization methods.

* One of the most widely used methods is Eigen decomposition, which
reduces a matrix into its eigenvalues and eigenvectors. This
decomposition is represented as:

A= QAQ"



Matrix Decompositions

A= QAQT
Where:
* Qs the matrix of eigenvectors

* A (Lambda) is the diagonal matrix of eigenvalues

* Q"is the transpose of matrix Q

Matrix decomposition techniques are fundamental in various applications, including machine learning,

data compression, and optimization.

VI VijdydIidRSIinn ividinirie Lediiiigg . UXIUIU, ZUsl1



LU Decomposition

One of the fundamental matrix decomposition techniques is LU decomposition, where a matrix A is

expressed as the product of two matrices:
A=LU

where:
* Lis alower triangular matrix

e U is an upper triangular matrix

LU decomposition can be performed using Gaussian elimination, as discussed earlier. The process
involves augmenting A with an identity matrix, then applying row operations to transform A into an

upper triangular matrix while keeping track of the multipliers used, which form the L matrix.



Example : Finding the LU Decomposition

Given the matrix:

W

|
SCREICRI
INGNJUN N

o

Find its LU decomposition.
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\ J
Solution: First, augment an identity matrix and apply Gaussian elimination. The steps are as
shown in:

-

100|124
010/[332 Initial Matrix

001)342
tool1 2 47
310]|[0 -3 -10 R =R -3R
0013 4 2

‘100l 2 4
310/0 -3 -10 R, =R, -3R
3010 -2 -10

-“r B

100[f12 4
310[0-3-10f (R =R-ZR,
2 -10

3—1J|0 0 —
. 3 1 3




Now, it can be observed that the first matrix is L as it is the lower triangular matrix whose
values are the determiners used in the reduction of equations above such as 3, 3 and 2/3.
The second matrix is U, the upper triangular matrix whose values are the values of the reduced

matrix because of Gaussian elimination.

4 3\ ( \
100 ; ) 4
L=|3 10|landU =|0 -3 -10].
331 oo_E
o \ 3
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Verification: Compute LU and Check if LU = A

1 0 0 1 2 4
LxU=13 1 0] x (0 3 10
3 2 '

Performing matrix multiplication:

(1-140-04+0-0) (L-240-(-3)+0-0) (1-4+0-(-10)+0-(—-10/3))
(3-1+1-0+0-0) (3-2+1-(-3)+0-0) (3-4+1-(-10)+0-(-10/3))
3-1+2-0+1-0) (3-2+2-(-3)+1-0) (3-4+32-(-10)+1-(-10/3))

Since LU = A, the decomposition is verified as correct.
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Conclusion

* Through Gaussian elimination, we decomposed matrix A into L and
U, where L contains the multipliers used in elimination, and U is the
transformed upper triangular matrix.

* LU yield original Matrix A

* LU decomposition is widely used in solving linear systems, inverting
matrices, and numerical computations.



Feature Engineering and Dimensionality Reduction
Techniques

* Feature engineering involves selecting important attributes (features)
that enhance model performance in machine learning. It includes two
main tasks:

* Feature Transformation — Creating new features from existing ones to

improve performance (e.g., height and weight forming Body Mass
Index - BMI).

* Feature Selection — Choosing the most relevant features while
minimizing dataset size without compromising reliability.



Feature Removal and Selection Techniques

Feature removal is based on two key aspects:

* Feature Relevancy — Some features contribute more to classification
than others. Relevant features are determined using statistical
measures like mutual information, correlation coefficients, and
distance measures.

* Feature Redundancy — Redundant features provide duplicate
information. For example, if a dataset includes "Date of Birth," the
"Age" field becomes unnecessary since it can be derived, reducing
dimensionality.



Feature Selection Techniques

Stepwise Forward Selection
Stepwise Backward Elimination
Combined Approach

W NPE

Principal Component Analysis (PCA)



1. Stepwise Forward Selection

* Starts with an empty set of attributes.
* |teratively adds attributes that improve statistical significance.
* Process continues until an optimal subset of features is selected.



. Stepwise Backward Elimination

1. Starts with a full set of attributes.

2. Iteratively removes the least significant attribute.

3. Process continues until an optimal subset is reached.



. Combined Approach

1. Uses both forward selection and backward elimination together.

. Adds the best attribute while removing the worst attribute at each
step.



4. Principal Component Analysis (PCA)

1. Transforms the dataset into a new set of compact and informative
features.

Reduces dimensionality by eliminating redundant information.

Ensures new features contain maximum variance from the original
data.

E x (2.53)

M
2xxT —mmT (2.54)




Let the data points be (:) and (;) Apply PCA and find the transformed data.

Again, apply the inverse and prove that PCA works.
Solution: One can combine two vectors into a matrix as follows:
The mean vector can be computed as Eq. (2.53) as follows:

.49

3 2 i
H=l6+7| |65

K. 2 J
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As part of PCA, the mean must be subtracted from the data to get the adjusted data:

X

(2-15) [ 05) I 05
1 "le-65)7(-05)  xTm=EbkA=| 0 00

(1-15) (-05

X = =

2~ (7-65)"| 05,

One can find the covariance for these data vectors. The covariance can be obtdined using
Eq. (2.54):

[ 0.5) [ 0.25 0.25)
m =\ |05 -05)=
(05, 025 0.25,
e f -0.5\( i i (025 -0.25)
 los) e 025 025, ] ¥
L \ =—Yxa -mm
~ The final covariance matrix is obtained by adding these two matrices as: Mia Kk xx

05 =05
C=
-05 0.5
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- L d

The eigen values and eigen vectors of matrix C can be obtained (left as an exercise) as 4, =1,
A, = 0. The eigen vectors are (—3 and (1) The matrix A can be obtained by packing the

. -11
eigen vector of these eigen values (after sorting it) of matrix C. For this problem, A =( 1 1).
The transpose of A, A" = [-i ﬂ is also the same matrix as it is an orthogonal matrix. The matrix

can be normalized by diving each elements of the vector, by the norm of the vector to get:
T

AzJ_J—
ff}
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One can check that the PCA matrix A is orthogonal. A matrix is orthogonal is A™ = A and

AA =1

\( 3

/

AAT

- s
ol o
- ol

e .0

- O,&Io—d &IH

1
0

The transformed matrix y using Eq. (2.55) is given as:
y=Ax(x-m)
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Recollect that (x-m) is the adjusted matrix.

y=A(x-m)=

- &
2 2

1 1
L2 2,
Fr )

11
\ ‘& 2

1
£ & ( for convenience 0.5 = —)

0.5 -0.5
-05 05

2
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One can check the original matrix can be retrieved from this matrix as:
((A)"x y} +m

P T 1]

x=ATy+m= \/15 \/15 [--\7_2_ EJ

¢ 32 42

i e | R

5 T3] (15) (21)

- —
1 1|65 67/
N D By
Therefore, one can infer the original is obtained without any loss of information.
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Determining Eigen Values and Eigen Vectors.

The given matrix is:

0.5 0.5
©= [ 0.5 0.5}

Step 1: Find the Eigenvalues

The eigenvalues A satisfy the characteristic equation:
det(C — AI) =10

where [ is the identity matrix:

0.5 — A 0.5
¢ ”_[ 0.5 0.5 }J
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Taking the determinant:

0.5 A 0.5
05 05-A

‘:(0.5 A) (0.5~ A) — (—0.5)(—0.5)

= (0.5 - X\)* — 0.25
=0.25 - A+ X —0.25
— 22\
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Setting the determinant to zero:

M -A=0

M) —1) =0

Thus, the eigenvalues are:

/\1:0.‘. )\2:1
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Principal Component Analysis (PCA)

Concept of PCA

* PCA is used to transform a dataset into a lower-dimensional
representation while preserving the most important variance.

* It relies on the mean vector and covariance matrix to determine
principal components.



Principal Component Analysis (PCA) and Transformation
of Random Vectors

Consider a set of random vectors represented as:

The mean vector of these random vectors is defined as:
m, = Ex]

where I represents the expected value of the population, computed using probability density functions

(PDFs) of the elements of x and joint PDFs between elements x; and x ;. The covariance matrix is given

by:

C = E[(z — m)(z — m)T]



For a large enough number M of random vectors, the mean vector and covariance matrix can be

approximated as:

1 M
m., — —— x;
M <
= |
M

1
A= M Z(mi m,)(z; — my)"

i=1

This covariance matrix is real and symmetric, making it possible to compute its eigenvalues and
eigenvectors. The eigenvalues (\;) are arranged in descending order (A = Ay = - -+ > A,), and the

corresponding eigenvectors are calculated to construct a transform kernel (A). The transform of the

original data is then performed using:

y= A(x — m)

This transformation is also known as Karhunen-Loeve (KL) transform or Hotelling transform. The

original data can be reconstructed as:

=AYy + m



Goal and Algorithm of PCA

PCA reduces the set of attributes into a smaller, meaningful subset that captures most of the data
variance. Instead of using all eigenvectors of the covariance matrix, PCA selects only a small subset with
the highest variance, optimizing information compression. If K largest eigenvalues are used, the

recovered information is given by:

r=Aky+m

where A is the matrix containing the selected eigenvectors.
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Steps in the PCA Algorithm:

1. Compute the mean vector (m).

2. Subtract the mean from the dataset to obtain a dataset centered at zero.

3. Compute the covariance matrix ().

4. Calculate eigenvalues and eigenvectors of C.

5. Select the eigenvectors corresponding to the largest eigenvalues (principal components).
6. Form a feature vector matrix from these selected eigenvectors.

7. Apply the PCA transformation using:
y=A(z — m)
where A is the transpose of the feature vector matrix.

The original data can be reconstructed as:

z=Aly +m



Importance of PCA and Scree Plot

* PCA effectively eliminates irrelevant attributes while preserving data
structure. If required, the original data can be reconstructed without
loss.

* A Scree Plot is a visualization technique used to identify important
components. It displays eigenvalues against their corresponding
principal components to determine which components contribute
most to variance.

* From the example scree plot (Figure ), it is evident that only 6 out of
246 attributes are significant, with the first attribute being the most
Important.



Scree plot
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Let the data points be (2] and ( ;J Apply PCA and find the transformed data.

Again, apply the inverse and prove that PCA works.
Solution: One can combine two vectors into a matrix as follows:
The mean vector can be computed as Eq. (2.53) as follows:

19,597
3 2 5 1.5
#*16+7 |"les5

. 2 ./
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As part of PCA, the mean must be subtracted from the data to get the adjusted data:

. _[2-15)_( 05)
' "16-65) |05,
. [1-15)_(-05)
2 \7"6.5J \0.5)

One can find the covariance for these data vectors. The covariance can be obtdined using
By @4 (05) (025 -025)

05, e 025 05,

b -o.s\( 05 05) (1025 -025)
L 05) 7 (-025 025

L

m,

 The final covariance matrix is obtained by adding these two matrices as:

0.5 -0.5 L XM
C = m, = — x;
(-o.s o.s) 2 2
1 M

- T
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-~ L d

The eigen values and eigen vectors of matrix C can be obtained (left as an exercise) as 4, =1,
A, = 0. The eigen vectors are (—;) and (1) The matrix A can be obtained by packing the

. -11
eigen vector of these eigen values (after sorting it) of matrix C. For this problem, A =( 1 IJ'
The transpose of A, AT = (-i i) is also the same matrix as it is an orthogonal matrix. The matrix

can be normalized by diving each elements of the vector, by the norm of the vector to get:
(

|v—s s‘l“
e

ol 5
&
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~ o b AAERDY” /£

One can check that the PCA matrix A is orthogonal. A matrix is orthogonal is A™ = A and

AA =1

\( 3

/

AAT

- s
ol o
- ol

e .0

- O,&Io—d &IH

1
0

The transformed matrix y using Eq. (2.55) is given as:
y=Ax(x-m)
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Recollect that (x-m) is the adjusted matrix.

y=A(x-m)=

- &
2 2

1 1
L2 2,
Fr )

11
\ ‘& 2

1
£ & ( for convenience 0.5 = —)

0.5 -0.5
-05 05

2
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One can check the original matrix can be retrieved from this matrix as:
((A)"x y} +m

P T 1]

x=ATy+m= \/15 \/15 [--\7_2_ EJ

¢ 32 42

i e | R

5 T3] (15) (21)

- —
1 1|65 67/
N D By
Therefore, one can infer the original is obtained without any loss of information.
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Machine Learning and the Importance of
Probability and Statistics

* Machine learning is deeply connected to statistics and probability.
Statistics is the heart of data analysis and it is used for,
understanding and interpreting data.

* Probability plays a crucial role in machine learning as well. Any
dataset can be assumed to be generated using appropriate single or
multiple probability distributions.



The Role of Probability and Statistics in
Machine Learning

* Hypothesis testing
* Model building and Model Evaluation

 Sampling theory is crucial for creating datasets and ensuring robust
model performance.



Probability Distributions and its Types

* A probability distribution describes the likelihood of different
outcomes for a given random variable (e.g., X).

Probability distributions are classified into two main types:
1. Continuous Probability Distribution
2. Discrete Probability Distribution



PDF and CDF

Continuous Probability Distribution is characterized by:

* Probability Density Function (PDF): Determines the probability of a
specific outcome occurring.

e Cumulative Distribution Function (CDF): Computes the probability
that a variable takes on a value less than or equal to a given point.



Common Continuous Probability Distributions
in Machine Learning

1. Normal Distribution (Gaussian)
2. Rectangular Distribution (Uniform)
3. Exponential Distribution



Common Continuous Probability Distributions

Type PDF
Normal

- - - -'}
Distribution 1 ~(2-p)*

(Gaussian) f(:]g:| I_L?U'E) _ e 22 E

Rectangular ) ]
Distribution | s 1
(Uniform) P(X _ 1‘_) — h—a) fﬂrﬂ gi S b

0, otherwise

\

Exponential x
Distribution e M, 2 >20,A>0
flz,A) = |
0, x <0

11 IlLuLe Ui 1eCiNVIVEY,VUJITE-O /444U, JUUIL (9]0

u € D K. J.Jl1Ull
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Common Discrete Probability Distributions

Type PDF
Binomia |
ny g n—k
P(X =k)= (k)p (1-p)
Poisson o ANE s Poisson Distribution
P(X = =x) = o :
Bernoulli
=1-p, ifk=0
P(X=k=31"""F"
D, ifk=1




1. Normal Distribution

 The normal distribution, also
known as the Gaussian
distribution or bell-shaped
curve, is a widely used
continuous probability
distribution.

* Many real-world phenomena,
such as heights of individuals,
blood pressure, and exam
scores, follow a normal - . _ _ |
distribution. 3 2 0 1

Cbserved Value

0.3 04

Probability Density
0.2

0.1

0.0



1. Normal Distribution

The Probability Density Function (PDF) of a normal distribution is given by:

1 ~(z—p)?
€ 2l

2
L, L, T )= +
flamo) = 7=

where:

* pisthe mean (central value).
* ¢ isthe standard deviation, representing the spread of data.

e ¢’ is the variance.

The normal distribution is often standardized to have p = 0 and @ = 1, which simplifies calculations and

comparisons. In this case, mean, median, and mode are the same.



Z-Score and Normalization

Z-Score and Normalization

A key concept related to the normal distribution is the z-score, which helps standardize values for

comparison. It is calculated as:

¢ Whenpu=0andao =1, the z-score is simply x.

* The z-score helps normalize data for analysis.
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Checking for Normality

* Many statistical tests assume that data follows a normal distribution.
To verify this, normality tests such as the Q-Q plot can be used.

* In a Q-Q plot, if data follows a normal distribution, the plot will align
closely with a straight diagonal line.



2. Rectangular Distribution (Uniform
Distribution)

The rectangular distribution, also known as the uniform distribution, is characterized by equal

probabilties for all values within a given range |a, b].

1]
b-a

The Probability Distribution Function (PDF) is:

f

|

—, fora<r<h

— o

. otherwise 3

\,

This distribution is commonly used when all outcomes in a given interval are equally likely.
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3. Exponential Distribution

* The exponential distribution is a continuous
probability distribution used to model the time
between events in a Poisson process and
special case of the Gamma distribution with a
shape parameter of 1.

* This distribution is widely applied in fields such
as queueing theory, reliability analysis, and
survival modeling.

* The exponential distribution is particularly
useful in modeling waiting times or time until
an event occurs.
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3. Exponential Distribution

The Probability Density Function (PDF) is:

e Mz >0,0>0

- 2

where:

* Xisarandom variable.

* \is the rate parameter.

The mean and standard deviation of the exponential distribution are both given by B, where:
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Discrete Distributions

1. Binomial,
2. Poisson, and
3. Bernoulli distributions



1. Binomial Distribution

* The binomial distribution is frequently encountered in machine
learning. It represents experiments with only two possible outcomes:
success or failure. This distribution is also known as the Bernoulli

trial.

* The purpose of the binomial distribution is to determine the
probability of obtaining exactly k successes in n trials. The probability
of achieving k successes from n trials is given by the binomial
coefficient:




The probability distribution function for a binomially distributed random variable is given by:
pﬁc(l o p)n—k or pkqn—k

where p is the probability of success, and g = 1 - p is the probability of failure.
Combining both, the probability density function (PDF) of the binomial distribution is:

T

P(X =k) = (k)pk(l —p)" "

where:
* pis the probability of success per trial,
e kisthe number of successes, and

®* nis the total number of trials.
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The mean of a binomial distribution is:
H—Tn X p
The variance is given by:
o” =np(l — p)

Hence, the standard deviation is:

o = v/np(1 - p)
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2. Poisson Distribution

* The Poisson distribution is another important probability
distribution. It models the probability of a given number of events
occurring within a fixed time interval.

* The key parameter, A (lambda), represents the mean number of
occurrences over the interval.



Some practical applications of the Poisson
distribution include:

* Modeling the number of emails received per hour,
e Estimating customer arrivals at a shop,
* Counting the number of phone calls received at an office.

The probability density function (PDF) of a Poisson-distributed variable is:

e M\

P(X =x) = "

where:
e xis the number of events occurring, and

® Ais the expected number of occurrences over a given period.

The mean of a Poisson distribution is A, and its standard deviation is VA.



3. Bernoulli Distribution

* The Bernoulli distribution models experiments with a binary
outcome (i.e., either success or failure).

* The probability of success is p, while the probability of failure is 1 - p.



3. Bernoulli Distribution

The Probability Mass Function (PMF) of a Bernoulli-distributed random variable is:

g=1—p, ifk=0

P(X =k) = ol
p, itk =1

The mean of a Bernoulli distribution is:

The variance is:

o’ =p(l—p)=gq
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Density Estimation

* Density estimation involves determining the probability distribution
of a dataset based on observed values. Given a set of observed values
X1, X2, ..., Xn from a larger dataset with an unknown distribution,
density estimation aims to approximate the underlying distribution.

* The estimated density function, denoted as p(x), can be used to
evaluate the probability of any unknown data point x.

* If p(x) is lower than a predefined threshold g, then x is likely an
anomaly or outlier.

* Otherwise, x is considered normal. This concept is often used in
anomaly detection.



There are two primary methods for density
estimation:

* Parametric Density Estimation

* Non-Parametric Density Estimation



Parametric Density Estimation

* This method assumes that the data follows a known probability
distribution.

* The density function can be expressed as p(x | @), where ©
represents the parameters of the distribution.

* A widely used parametric method is Maximum Likelihood Estimation
(MLE).



Maximum Likelihood Estimation (MLE)

 Maximum Likelihood Estimation (MLE) is a probabilistic framework
used for density estimation. It involves defining a likelihood function,
which represents the probability of observing the given data under a
particular distribution with specific parameters.

* For instance, if we have a set of observations X = {x1, X2, ..., Xn},
density estimation involves selecting a probability density function
(PDF) with suitable parameters to model the data. MLE formulates
this as an optimization problem, aiming to maximize the likelihood of
observing X given the parameters O.



Maximum Likelihood Estimation (MLE)

* Mathematically, the likelihood function is expressed as:

L(X;0) = P(X|©)

where L(X; ©) represents the probability of observing X given the parameters ©. The goal of MLE is to
find © such that L(X; ©) is maximized.

The joint probability of observing all data points can be written as:
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Maximum Likelihood Estimation (MLE)

Since direct computation of this formula can be unstable, the problem is typically restated as the

maximum log-likelihood function:
n
> logp(z:; ©)
i=1
Rather than maximizing, one can equivalently minimize the negative log-likelihood function:
n
— logp(:; ©)
i=1

Minimization is often preferred in optimization problems.
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Relevance of MILE in Machine Learning

* MLE plays a crucial role in predictive modeling within machine
learning. It is particularly relevant to regression problems, which are
often solved using the least-squares approach.

* From the MLE perspective, if a regression model is framed as
predicting y given X, then the MLE framework can be applied as:

max » _log g(y|z, )

* where g(y | x, h) represents the conditional probability of y given x
with model parameters h.
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Module 2.2: Basic Learning Theory

1. Design of Learning System,
2. Introduction to Concept of Learning,
3. Modelling in Machine Learning.



End of Module2
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