
Overview

This chapter describes the fundamentals of Matplotlib and teaches you
how to create visualizations using the built-in plots that are provided by
the library. Specifically, you will create various visualizations such as bar
plots, pie charts, radar plots, histograms, and scatter plots through various
exercises and activities. You will also learn basic skills such as loading,
saving, plotting, and manipulating the color scale of images. You will
also be able to customize your visualization plots and write mathematical
expressions using TeX.

A Deep Dive into Matplotlib

3

138 | A Deep Dive into Matplotlib

Introduction
In the previous chapter, we focused on various visualizations and identified which
visualization is best suited to show certain information for a given dataset. We
learned about the features, uses, and best practices for following various plots
such as comparison plots, relation plots, composition plots, distribution plots,
and geoplots.

Matplotlib is probably the most popular plotting library for Python. It is used for data
science and machine learning visualizations all around the world. John Hunter was
an American neurobiologist who began developing Matplotlib in 2003. It aimed to
emulate the commands of the MATLAB software, which was the scientific standard
back then. Several features, such as the global style of MATLAB, were introduced into
Matplotlib to make the transition to Matplotlib easier for MATLAB users. This chapter
teaches you how to best utilize the various functions and methods of Matplotlib to
create insightful visualizations.

Before we start working with Matplotlib to create our first visualizations, we will need
to understand the hierarchical structure of plots in Matplotlib. We will then cover the
basic functionality, such as creating, displaying, and saving Figures. Before covering
the most common visualizations, text and legend functions will be introduced.
After that, layouts will be covered, which enable multiple plots to be combined
into one. We will end the chapter by explaining how to plot images and how to use
mathematical expressions.

Overview of Plots in Matplotlib
Plots in Matplotlib have a hierarchical structure that nests Python objects to create a
tree-like structure. Each plot is encapsulated in a Figure object. This Figure is the
top-level container of the visualization. It can have multiple axes, which are basically
individual plots inside this top-level container.

Figure 3.1: A Figure contains at least one axes object

Overview of Plots in Matplotlib | 139

Furthermore, we again find Python objects that control axes, tick marks, legends,
titles, text boxes, the grid, and many other objects. All of these objects can
be customized.

The two main components of a plot are as follows:

• Figure

The Figure is an outermost container that allows you to draw multiple plots
within it. It not only holds the Axes object but also has the ability to configure
the Title.

• Axes

The axes are an actual plot, or subplot, depending on whether you want to plot
single or multiple visualizations. Its sub-objects include the x-axis, y-axis, spines,
and legends.

Observing this design, we can see that this hierarchical structure allows us to create a
complex and customizable visualization.

When looking at the "anatomy" of a Figure (shown in the following diagram), we get
an idea about the complexity of a visualization. Matplotlib gives us the ability not only
to display data, but also design the whole Figure around it by adjusting the Grid, X
and Y ticks, tick labels, and the Legend.

140 | A Deep Dive into Matplotlib

This implies that we can modify every single bit of a plot, starting from the Title and
Legend, right down to the major and minor ticks on the spines:

Figure 3.2: Anatomy of a Matplotlib Figure

Taking a deeper look into the anatomy of a Figure object, we can observe the
following components:

• Spines: Lines connecting the axis tick marks

• Title: Text label of the whole Figure object

• Legend: Describes the content of the plot

• Grid: Vertical and horizontal lines used as an extension of the tick marks

• X/Y axis label: Text labels for the X and Y axes below the spines

• Minor tick: Small value indicators between the major tick marks

• Minor tick label: Text label that will be displayed at the minor ticks

Pyplot Basics | 141

• Major tick: Major value indicators on the spines

• Major tick label: Text label that will be displayed at the major ticks

• Line: Plotting type that connects data points with a line

• Markers: Plotting type that plots every data point with a defined marker

In this book, we will focus on Matplotlib's submodule, pyplot, which provides
MATLAB-like plotting.

Pyplot Basics
pyplot contains a simpler interface for creating visualizations that allow the users to
plot the data without explicitly configuring the Figure and Axes themselves. They are
automatically configured to achieve the desired output. It is handy to use the alias
plt to reference the imported submodule, as follows:

import matplotlib.pyplot as plt

The following sections describe some of the common operations that are performed
when using pyplot.

Creating Figures

You can use plt.figure() to create a new Figure. This function returns a
Figure instance, but it is also passed to the backend. Every Figure-related command
that follows is applied to the current Figure and does not need to know the
Figure instance.

By default, the Figure has a width of 6.4 inches and a height of 4.8 inches with a dpi
(dots per inch) of 100. To change the default values of the Figure, we can use the
parameters figsize and dpi.

The following code snippet shows how we can manipulate a Figure:

#To change the width and the height

plt.figure(figsize=(10, 5))

#To change the dpi

plt.figure(dpi=300)

Even though it is not necessary to explicitly create a Figure, this is a good practice if
you want to create multiple Figures at the same time.

142 | A Deep Dive into Matplotlib

Closing Figures

Figures that are no longer used should be closed by explicitly calling plt.close(),
which also cleans up memory efficiently.

If nothing is specified, the plt.close() command will close the current Figure.
To close a specific Figure, you can either provide a reference to a Figure instance or
provide the Figure number. To find the number of a Figure object, we can make use
of the number attribute, as follows:

plt.gcf().number

The plt.close('all') command is used to close all active Figures. The following
example shows how a Figure can be created and closed:

#Create Figure with Figure number 10

plt.figure(num=10)

#Close Figure with Figure number 10

plt.close(10)

For a small Python script that only creates a visualization, explicitly closing a Figure
isn't required, since the memory will be cleaned in any case once the program
terminates. But if you create lots of Figures, it might make sense to close Figures in
between so as to save memory.

Format Strings

Before we actually plot something, let's quickly discuss format strings. They are a
neat way to specify colors, marker types, and line styles. A format string is specified
as [color][marker][line], where each item is optional. If the color argument
is the only argument of the format string, you can use matplotlib.colors.
Matplotlib recognizes the following formats, among others:

• RGB or RGBA float tuples (for example, (0.2, 0.4, 0.3) or (0.2, 0.4, 0.3, 0.5))

• RGB or RGBA hex strings (for example, '#0F0F0F' or '#0F0F0F0F')

The following table is an example of how a color can be represented in one
particular format:

Pyplot Basics | 143

Figure 3.3: Color specified in string format

All the available marker options are illustrated in the following figure:

Figure 3.4: Markers in format strings

144 | A Deep Dive into Matplotlib

All the available line styles are illustrated in the following diagram. In general, solid
lines should be used. We recommend restricting the use of dashed and dotted lines
to either visualize some bounds/targets/goals or to depict uncertainty, for example, in
a forecast:

Figure 3.5: Line styles

To conclude, format strings are a handy way to quickly customize colors, marker
types, and line styles. It is also possible to use arguments, such as color, marker,
and linestyle.

Plotting

With plt.plot([x], y, [fmt]), you can plot data points as lines and/or
markers. The function returns a list of Line2D objects representing the plotted
data. By default, if you do not provide a format string (fmt), the data points will be
connected with straight, solid lines. plt.plot([0, 1, 2, 3], [2, 4, 6,
8]) produces a plot, as shown in the following diagram. Since x is optional and the
default values are [0, …, N-1], plt.plot([2, 4, 6, 8]) results in the
same plot:

Pyplot Basics | 145

Figure 3.6: Plotting data points as a line

If you want to plot markers instead of lines, you can just specify a format string with
any marker type. For example, plt.plot([0, 1, 2, 3], [2, 4, 6, 8],
'o') displays data points as circles, as shown in the following diagram:

Figure 3.7: Plotting data points with markers (circles)

146 | A Deep Dive into Matplotlib

To plot multiple data pairs, the syntax plt.plot([x], y, [fmt], [x], y2,
[fmt2], …) can be used. plt.plot([2, 4, 6, 8], 'o', [1, 5, 9,
13], 's') results in the following diagram. Similarly, you can use plt.plot
multiple times, since we are working on the same Figure and Axes:

Figure 3.8: Plotting data points with multiple markers

Any Line2D properties can be used instead of format strings to further customize
the plot. For example, the following code snippet shows how we can additionally
specify the linewidth and markersize arguments:

plt.plot([2, 4, 6, 8], color='blue', marker='o', \

 linestyle='dashed', linewidth=2, markersize=12)

Besides providing data using lists or NumPy arrays, it might be handy to use pandas
DataFrames, as explained in the next section.

Plotting Using pandas DataFrames

It is pretty straightforward to use pandas.DataFrame as a data source. Instead
of providing x and y values, you can provide the pandas.DataFrame in the data
parameter and give keys for x and y, as follows:

plt.plot('x_key', 'y_key', data=df)

If your data is already a pandas DataFrame, this is the preferred way.

Pyplot Basics | 147

Ticks

Tick locations and labels can be set manually if Matplotlib's default isn't sufficient.
Considering the previous plot, it might be preferable to only have ticks at multiples of
ones at the x-axis. One way to accomplish this is to use plt.xticks() and plt.
yticks() to either get or set the ticks manually.

plt.xticks(ticks, [labels], [**kwargs]) sets the current tick locations
and labels of the x-axis.

Parameters:

• ticks: List of tick locations; if an empty list is passed, ticks will be disabled.

• labels (optional): You can optionally pass a list of labels for the
specified locations.

• **kwargs (optional): matplotlib.text.Text() properties can be used
to customize the appearance of the tick labels. A quite useful property is
rotation; this allows you to rotate the tick labels to use space more efficiently.

Example:

Consider the following code to plot a graph with custom ticks:

import numpy as np

plt.figure(figsize=(6, 3))

plt.plot([2, 4, 6, 8], 'o', [1, 5, 9, 13], 's')

plt.xticks(ticks=np.arange(4))

This will result in the following plot:

Figure 3.9: Plot with custom ticks

148 | A Deep Dive into Matplotlib

It's also possible to specify tick labels, as follows:

plt.figure(figsize=(6, 3))

plt.plot([2, 4, 6, 8], 'o', [1, 5, 9, 13], 's')

plt.xticks(ticks=np.arange(4), \

 labels=['January', 'February', 'March', 'April'], \

 rotation=20)

This will result in the following plot:

Figure 3.10: Plot with custom tick labels

If you want to do even more sophisticated things with ticks, you should look into tick
locators and formatters. For example, ax.xaxis.set_major_locator(plt.
NullLocator()) would remove the major ticks of the x-axis, and ax.xaxis.
set_major_formatter(plt.NullFormatter()) would remove the major
tick labels, but not the tick locations of the x-axis.

Displaying Figures

plt.show() is used to display a Figure or multiple Figures. To display Figures
within a Jupyter Notebook, simply set the %matplotlib inline command at the
beginning of the code.

If you forget to use plt.show(), the plot won't show up. We will learn how to save
the Figure in the next section.

Pyplot Basics | 149

Saving Figures

The plt.savefig(fname) saves the current Figure. There are some useful
optional parameters you can specify, such as dpi, format, or transparent. The
following code snippet gives an example of how you can save a Figure:

plt.figure()

plt.plot([1, 2, 4, 5], [1, 3, 4, 3], '-o')

#bbox_inches='tight' removes the outer white margins

plt.savefig('lineplot.png', dpi=300, bbox_inches='tight')

The following is the output of the code:

Figure 3.11: Saved Figure

Note

All exercises and activities will be developed in Jupyter Notebook. Please
download the GitHub repository with all the prepared templates from
https://packt.live/2HkTW1m. The datasets used in this chapter can be
downloaded from https://packt.live/3bzApYN.

https://packt.live/2HkTW1m
https://packt.live/3bzApYN

150 | A Deep Dive into Matplotlib

Let's create a simple visualization in our next exercise.

Exercise 3.01: Creating a Simple Visualization

In this exercise, we will create our first simple plot using Matplotlib. The purpose of
this exercise is for you to create your first simple line plot using Matplotlib, including
the customization of the plot with format strings.

1. Create a new Exercise3.01.ipynb Jupyter Notebook in the Chapter03/
Exercise3.01 folder to implement this exercise.

2. Import the necessary modules and enable plotting within the Jupyter Notebook:

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

3. Explicitly create a Figure and set the dpi to 200:

plt.figure(dpi=200)

4. Plot the following data pairs (x, y) as circles, which are connected via line
segments: (1, 1), (2, 3), (4, 4), and (5, 3). Then, visualize the plot:

plt.plot([1, 2, 4, 5], [1, 3, 4, 3], '-o')

plt.show()

Your output should look similar to this:

Pyplot Basics | 151

Figure 3.12: A simple visualization created with the help of given data pairs and connected
via line segments

5. Save the plot using the plt.savefig() method. Here, we can either provide a
filename within the method or specify the full path:

plt.savefig('Exercise3.01.png', bbox_inches='tight')

Note

To access the source code for this specific section, please refer to
https://packt.live/2URkzlE.

You can also run this example online at https://packt.live/2YI3A6t.

This exercise showed you how to create a line plot in Matplotlib and how to use
format strings to quickly customize the appearance of the specified data points. Don't
forget to use bbox_inches='tight' to remove the outer white margins. In the
following section, we will cover how to further customize plots by adding text and
a legend.

https://packt.live/2URkzlE
https://packt.live/2YI3A6t

152 | A Deep Dive into Matplotlib

Basic Text and Legend Functions
All of the functions we discuss in this topic, except for the legend, create and return a
matplotlib.text.Text() instance. We are mentioning it here so that you know
that all of the properties discussed can be used for the other functions as well. All text
functions are illustrated in Figure 3.13.

Labels

Matplotlib provides a few label functions that we can use for setting labels to the x-
and y-axes. The plt.xlabel() and plt.ylabel() functions are used to set the
label for the current axes. The set_xlabel() and set_ylabel() functions are
used to set the label for specified axes.

Example:

ax.set_xlabel('X Label')

ax.set_ylabel('Y Label')

You should (always) add labels to make a visualization more self-explanatory. The
same is valid for titles, which will be discussed now.

Titles

A title describes a particular chart/graph. The titles are placed above the axes in the
center, left edge, or right edge. There are two options for titles – you can either set
the Figure title or the title of an Axes. The suptitle() function sets the title for
the current and specified Figure. The title() function helps in setting the title for
the current and specified axes.

Example:

fig = plt.figure()

fig.suptitle('Suptitle', fontsize=10, fontweight='bold')

This creates a bold Figure title with a text subtitle and a font size of 10:

plt.title('Title', fontsize=16)

The plt.title function will add a title to the Figure with text as Title and font
size of 16 in this case.

Basic Text and Legend Functions | 153

Text

There are two options for text – you can either add text to a Figure or text to an Axes.
The figtext(x, y, text) and text(x, y, text) functions add text at
locations x or y for a Figure.

Example:

ax.text(4, 6, 'Text in Data Coords', \

 bbox={'facecolor': 'yellow', 'alpha':0.5, 'pad':10})

This creates a yellow text box with the text Text in Data Coords.

Text can be used to provide additional textual information to a visualization. To
annotate something, Matplotlib offers annotations.

Annotations

Compared to text that is placed at an arbitrary position on the Axes, annotations are
used to annotate some features of the plot. In annotations, there are two locations
to consider: the annotated location, xy, and the location of the annotation, text
xytext. It is useful to specify the parameter arrowprops, which results in an
arrow pointing to the annotated location.

Example:

ax.annotate('Example of Annotate', xy=(4,2), \

 xytext=(8,4), \

 arrowprops=dict(facecolor='green', shrink=0.05))

154 | A Deep Dive into Matplotlib

This creates a green arrow pointing to the data coordinates (4, 2) with the text
Example of Annotate at data coordinates (8, 4):

Figure 3.13: Implementation of text commands

Legends

Legend describes the content of the plot. To add a legend to your Axes, we have to
specify the label parameter at the time of plot creation. Calling plt.legend() for
the current Axes or Axes.legend() for a specific Axes will add the legend. The loc
parameter specifies the location of the legend.

Example:

plt.plot([1, 2, 3], label='Label 1')

plt.plot([2, 4, 3], label='Label 2')

plt.legend()

Basic Text and Legend Functions | 155

This example is illustrated in the following diagram:

Figure 3.14: Legend example

Labels, titles, text, annotations, and a legend are great ways to add textual
information to visualization and therefore make it more understandable and self-
explanatory. But don't overdo it. Too much text can be overwhelming. The following
activity gives you the opportunity to consolidate the theoretical foundations learned
in this section.

Activity 3.01: Visualizing Stock Trends by Using a Line Plot

In this activity, we will create a line plot to show stock trends. The aim of this activity
is to not just visualize the data but to use labels, a title, and a legend to make the
visualization self-explanatory and "complete."

Let's look at the following scenario: you are interested in investing in stocks. You
downloaded the stock prices for the "big five": Amazon, Google, Apple, Facebook, and
Microsoft. You want to visualize the closing prices in dollars to identify trends. This
dataset is available in the Datasets folder that you had downloaded initially. The
following are the steps to perform:

156 | A Deep Dive into Matplotlib

1. Import the necessary modules and enable plotting within a Jupyter Notebook.

2. Use pandas to read the datasets (GOOGL_data.csv, FB_data.csv,
AAPL_data.csv, AMZN_data.csv, and MSFT_data.csv) located in
the Datasets folder. The read_csv() function reads a .csv file into
a DataFrame.

3. Use Matplotlib to create a line chart visualizing the closing prices for the past
5 years (whole data sequence) for all five companies. Add labels, titles, and a
legend to make the visualization self-explanatory. Use plt.grid() to add a
grid to your plot. If necessary, adjust the ticks in order to make them readable.

After executing the preceding steps, the expected output should be as follows:

Figure 3.15: Visualization of stock trends of five companies

Note

The solution for this activity can be found via this link.

This covers the most important things about pyplot. In the following section, we will
talk about how to create various plots in Matplotlib.

Basic Plots | 157

Basic Plots
In this section, we are going to go through the different types of simple plots. This
includes bar charts, pie charts, stacked bar, and area charts, histograms, box plots,
scatter plots and bubble plots. Please refer to the previous chapter to get more
details about these plots. More sophisticated plots, such as violin plots, will be
covered in the next chapter, using Seaborn instead of Matplotlib.

Bar Chart

The plt.bar(x, height, [width]) creates a vertical bar plot. For horizontal
bars, use the plt.barh() function.

Important parameters:

• x: Specifies the x coordinates of the bars

• height: Specifies the height of the bars

• width (optional): Specifies the width of all bars; the default is 0.8

Example:

plt.bar(['A', 'B', 'C', 'D'], [20, 25, 40, 10])

The preceding code creates a bar plot, as shown in the following diagram:

Figure 3.16: A simple bar chart

158 | A Deep Dive into Matplotlib

If you want to have subcategories, you have to use the plt.bar() function
multiple times with shifted x-coordinates. This is done in the following example and
illustrated in the figure that follows. The arange() function is a method in the
NumPy package that returns evenly spaced values within a given interval. The gca()
function helps in getting the instance of current axes on any current Figure. The
set_xticklabels() function is used to set the x-tick labels with the list of given
string labels.

Example:

labels = ['A', 'B', 'C', 'D']

x = np.arange(len(labels))

width = 0.4

plt.bar(x - width / 2, [20, 25, 40, 10], width=width)

plt.bar(x + width / 2, [30, 15, 30, 20], width=width)

Ticks and tick labels must be set manually

plt.xticks(x)

ax = plt.gca()

ax.set_xticklabels(labels)

This creates a bar chart as shown in the following diagram:

Figure 3.17: Bar chart with subcategories

Basic Plots | 159

After providing the theoretical foundation for creating bar charts in Matplotlib, you
can apply your acquired knowledge in practice with the following activity.

Activity 3.02: Creating a Bar Plot for Movie Comparison

In this activity, we will create visually appealing bar plots. We will use a bar plot to
compare movie scores. You are given five movies with scores from Rotten Tomatoes.
The Tomatometer is the percentage of approved Tomatometer critics who have given
a positive review for the movie. The Audience Score is the percentage of users who
have given a score of 3.5 or higher out of 5. Compare these two scores among the
five movies.

The following are the steps to perform:

1. Import the necessary modules and enable plotting within a Jupyter Notebook.

2. Use pandas to read the data located in the Datasets subfolder.

3. Use Matplotlib to create a visually appealing bar plot comparing the two scores
for all five movies.

4. Use the movie titles as labels for the x-axis. Use percentages at intervals of 20
for the y-axis and minor ticks at intervals of 5. Add a legend and a suitable title to
the plot.

5. Use functions that are required to explicitly specify the axes. To get the reference
to the current axes, use ax = plt.gca(). To add minor y-ticks, use Axes.
set_yticks([ticks], minor=True). To add a horizontal grid for major
ticks, use Axes.yaxis.grid(which='major'), and to add a dashed
horizontal grid for minor ticks, use Axes.yaxis.grid(which='minor',
linestyle='--').

160 | A Deep Dive into Matplotlib

The expected output is as follows:

Figure 3.18: Bar plot comparing scores of five movies

Note

The solution for this activity can be found via this link.

After practicing the creation of bar plots, we will discuss how to create pie charts in
Matplotlib in the following section.

Pie Chart

The plt.pie(x, [explode], [labels], [autopct]) function creates a
pie chart.

Important parameters:

• x: Specifies the slice sizes.

• explode (optional): Specifies the fraction of the radius offset for each slice. The
explode-array must have the same length as the x-array.

Basic Plots | 161

• labels (optional): Specifies the labels for each slice.

• autopct (optional): Shows percentages inside the slices according to the
specified format string. Example: '%1.1f%%'.

Example:

plt.pie([0.4, 0.3, 0.2, 0.1], explode=(0.1, 0, 0, 0), \

 labels=['A', 'B', 'C', 'D'])

The result of the preceding code is visualized in the following diagram:

Figure 3.19: Basic pie chart

After this short introduction to pie charts, we will create a more sophisticated
pie chart that visualizes the water usage in a common household in the
following exercise.

162 | A Deep Dive into Matplotlib

Exercise 3.02: Creating a Pie Chart for Water Usage

In this exercise, we will use a pie chart to visualize water usage. There has been a
shortage of water in your locality in the past few weeks. To understand the reason
behind it, generate a visual representation of water usage using pie charts.

The following are the steps to perform:

1. Create an Exercise3.02.ipynb Jupyter Notebook in the Chapter03/
Exercise3.02 folder to implement this exercise.

2. Import the necessary modules and enable plotting within the Jupyter Notebook:

Import statements

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

3. Use pandas to read the data located in the Datasets subfolder:

Load dataset

data = pd.read_csv('../../Datasets/water_usage.csv')

4. Use a pie chart to visualize water usage. Highlight one usage of your choice using
the explode parameter. Show the percentages for each slice and add a title:

Create figure

plt.figure(figsize=(8, 8), dpi=300)

Create pie plot

plt.pie('Percentage', explode=(0, 0, 0.1, 0, 0, 0), \

 labels='Usage', data=data, autopct='%.0f%%')

Add title

plt.title('Water usage')

Show plot

plt.show()

The output is as follows:

Basic Plots | 163

Figure 3.20: Pie chart for water usage

Pie charts are a common way to show part-of-a-whole relationships, as you've
seen in the previous exercise. Another visualization that falls into this category
are stacked bar charts.

Note

To access the source code for this specific section, please refer to
https://packt.live/3frXRrZ.

You can also run this example online at https://packt.live/2Y4D1cd.

In the next section, we will learn how to generate a stacked bar chart and implement
an activity on it.

https://packt.live/3frXRrZ
https://packt.live/2Y4D1cd

164 | A Deep Dive into Matplotlib

Stacked Bar Chart

A stacked bar chart uses the same plt.bar function as bar charts. For each
stacked bar, the plt.bar function must be called, and the bottom parameter must
be specified, starting with the second stacked bar. This will become clear with the
following example:

plt.bar(x, bars1)

plt.bar(x, bars2, bottom=bars1)

plt.bar(x, bars3, bottom=np.add(bars1, bars2))

The result of the preceding code is visualized in the following diagram:

Figure 3.21: A stacked bar chart

Let's get some more practice with stacked bar charts in the following activity.

Basic Plots | 165

Activity 3.03: Creating a Stacked Bar Plot to Visualize Restaurant Performance

In this activity, we will use a stacked bar plot to visualize the performance of a
restaurant. Let's look at the following scenario: you are the owner of a restaurant and,
due to a new law, you have to introduce a No Smoking Day. To make as few losses as
possible, you want to visualize how many sales are made every day, categorized by
smokers and non-smokers.

Use the dataset tips from Seaborn, which contains multiple entries of restaurant bills,
and create a matrix where the elements contain the sum of the total bills for each day
and smokers/non-smokers:

Note

For this exercise, we will import the Seaborn library as import seaborn
as sns. The dataset can be loaded using this code: bills = sns.
load_dataset('tips').

We will learn in detail about this in Chapter 4, Simplifying Visualizations
Using Seaborn.

1. Import all the necessary dependencies and load the tips dataset. Note that we
have to import the Seaborn library to load the dataset.

2. Use the given dataset and create a matrix where the elements contain the sum
of the total bills for each day and split according to smokers/non-smokers.

3. Create a stacked bar plot, stacking the summed total bills separated according to
smoker and non-smoker for each day.

4. Add a legend, labels, and a title.

After executing the preceding steps, the expected output should be as follows:

166 | A Deep Dive into Matplotlib

Figure 3.22: Stacked bar chart showing the performance
of a restaurant on different days

Note

The solution for this activity can be found via this link.

In the following section, stacked area charts will be covered, which, in comparison
to stacked bar charts, are suited to visualizing part-of-a-whole relationships for time
series data.

Basic Plots | 167

Stacked Area Chart

plt.stackplot(x, y) creates a stacked area plot.

Important parameters:

• x: Specifies the x-values of the data series.

• y: Specifies the y-values of the data series. For multiple series, either as
a 2D array or any number of 1D arrays, call the following function: plt.
stackplot(x, y1, y2, y3, …).

• labels (optional): Specifies the labels as a list or tuple for each data series.

Example:

plt.stackplot([1, 2, 3, 4], [2, 4, 5, 8], [1, 5, 4, 2])

The result of the preceding code is shown in the following diagram:

Figure 3.23: Stacked area chart

168 | A Deep Dive into Matplotlib

Let's get some more practice regarding stacked area charts in the following activity.

Activity 3.04: Comparing Smartphone Sales Units Using a Stacked Area Chart

In this activity, we will compare smartphone sales units using a stacked area chart.
Let's look at the following scenario: you want to invest in one of the five biggest
smartphone manufacturers. Looking at the quarterly sales units as part of a whole
may be a good indicator of which company to invest in:

1. Import the necessary modules and enable plotting within a Jupyter Notebook.

2. Use pandas to read the smartphone_sales.csv dataset located in the
Datasets subfolder.

3. Create a visually appealing stacked area chart. Add a legend, labels, and a title.

After executing the preceding steps, the expected output should be as follows:

Figure 3.24: Stacked area chart comparing sales units of different smartphone
manufacturers

Note

The solution for this activity can be found via this link.

Basic Plots | 169

In the following section, the histogram will be covered, which helps to visualize the
distribution of a single numerical variable.

Histogram

A histogram visualizes the distribution of a single numerical variable. Each bar
represents the frequency for a certain interval. The plt.hist(x) function creates a
histogram.

Important parameters:

• x: Specifies the input values.

• bins: (optional): Specifies the number of bins as an integer or specifies the bin
edges as a list.

• range: (optional): Specifies the lower and upper range of the bins as a tuple.

• density: (optional): If true, the histogram represents a probability density.

Example:

plt.hist(x, bins=30, density=True)

The result of the preceding code is shown in the following diagram:

Figure 3.25: Histogram

170 | A Deep Dive into Matplotlib

plt.hist2d(x, y) creates a 2D histogram. 2D histograms can be used to
visualize the frequency of two-dimensional data. The data is plotted on the xy-plane
and the frequency is indicated by the color. An example of a 2D histogram is shown in
the following diagram:

Figure 3.26: 2D histogram with color bar

Histograms are a good way to visualize an estimated density of your data. If you're
only interested in summary statistics, such as central tendency or dispersion, the
following covered box plots are more interesting.

Box Plot

The box plot shows multiple statistical measurements. The box extends from the
lower to the upper quartile values of the data, thereby allowing us to visualize the
interquartile range. For more details regarding the plot, refer to the previous chapter.
The plt.boxplot(x) function creates a box plot.

Basic Plots | 171

Important parameters:

• x: Specifies the input data. It specifies either a 1D array for a single box, or a
sequence of arrays for multiple boxes.

• notch: (optional) If true, notches will be added to the plot to indicate the
confidence interval around the median.

• labels: (optional) Specifies the labels as a sequence.

• showfliers: (optional) By default, it is true, and outliers are plotted beyond
the caps.

• showmeans: (optional) If true, arithmetic means are shown.

Example:

plt.boxplot([x1, x2], labels=['A', 'B'])

The result of the preceding code is shown in the following diagram:

Figure 3.27: Box plot

Now that we've introduced histograms and box plots in Matplotlib, our theoretical
knowledge can be practiced in the following activity, where both charts are used to
visualize data regarding the intelligence quotient.

172 | A Deep Dive into Matplotlib

Activity 3.05: Using a Histogram and a Box Plot to Visualize Intelligence

Quotient

In this activity, we will visualize the intelligence quotient (IQ) of 100 applicants using
histogram and box plots. 100 people have come for an interview in a company. To
place an individual applicant in the overall group, a histogram and a box plot shall
be used.

Note

The plt.axvline(x, [color=…], [linestyle=…]) function
draws a vertical line at position x.

1. Import the necessary modules and enable plotting within a Jupyter Notebook.

2. Use the following IQ scores to create the plots:

IQ samples

iq_scores = [126, 89, 90, 101, 102, 74, 93, 101, 66, \

 120, 108, 97, 98, 105, 119, 92, 113, 81, \

 104, 108, 83, 102, 105, 111, 102, 107, 103, \

 89, 89, 110, 71, 110, 120, 85, 111, 83, 122, \

 120, 102, 84, 118, 100, 100, 114, 81, 109, 69, \

 97, 95, 106, 116, 109, 114, 98, 90, 92, 98, \

 91, 81, 85, 86, 102, 93, 112, 76, 89, 110, \

 75, 100, 90, 96, 94, 107, 108, 95, 96, 96, \

 114, 93, 95, 117, 141, 115, 95, 86, 100, 121, \

 103, 66, 99, 96, 111, 110, 105, 110, 91, 112, \

 102, 112, 75]

3. Plot a histogram with 10 bins for the given IQ scores. IQ scores are normally
distributed with a mean of 100 and a standard deviation of 15. Visualize the
mean as a vertical solid red line, and the standard deviation using dashed
vertical lines. Add labels and a title. The expected output is as follows:

Basic Plots | 173

Figure 3.28: Histogram for an IQ test

4. Create a box plot to visualize the same IQ scores. Add labels and a title. The
expected output is as follows:

Figure 3.29: Box plot for IQ scores

174 | A Deep Dive into Matplotlib

5. Create a box plot for each of the IQ scores of the different test groups. Add
labels and a title. The following are IQ scores for different test groups that we
can use as data:

group_a = [118, 103, 125, 107, 111, 96, 104, 97, 96, \

 114, 96, 75, 114, 107, 87, 117, 117, 114, \

 117, 112, 107, 133, 94, 91, 118, 110, 117, \

 86, 143, 83, 106, 86, 98, 126, 109, 91, 112, \

 120, 108, 111, 107, 98, 89, 113, 117, 81, 113, \

 112, 84, 115, 96, 93, 128, 115, 138, 121, 87, \

 112, 110, 79, 100, 84, 115, 93, 108, 130, 107, \

 106, 106, 101, 117, 93, 94, 103, 112, 98, 103, \

 70, 139, 94, 110, 105, 122, 94, 94, 105, 129, \

 110, 112, 97, 109, 121, 106, 118, 131, 88, 122, \

 125, 93, 78]

group_b = [126, 89, 90, 101, 102, 74, 93, 101, 66, \

 120, 108, 97, 98, 105, 119, 92, 113, 81, \

 104, 108, 83, 102, 105, 111, 102, 107, 103, \

 89, 89, 110, 71, 110, 120, 85, 111, 83, \

 122, 120, 102, 84, 118, 100, 100, 114, 81, \

 109, 69, 97, 95, 106, 116, 109, 114, 98, \

 90, 92, 98, 91, 81, 85, 86, 102, 93, 112, \

 76, 89, 110, 75, 100, 90, 96, 94, 107, 108, \

 95, 96, 96, 114, 93, 95, 117, 141, 115, 95, \

 86, 100, 121, 103, 66, 99, 96, 111, 110, 105, \

 110, 91, 112, 102, 112, 75]

group_c = [108, 89, 114, 116, 126, 104, 113, 96, 69, 121, \

 109, 102, 107, 122, 104, 107, 108, 137, 107, 116, \

 98, 132, 108, 114, 82, 93, 89, 90, 86, 91, \

 99, 98, 83, 93, 114, 96, 95, 113, 103, 81, \

 107, 85, 116, 85, 107, 125, 126, 123, 122, 124, \

 115, 114, 93, 93, 114, 107, 107, 84, 131, 91, \

 108, 127, 112, 106, 115, 82, 90, 117, 108, 115, \

 113, 108, 104, 103, 90, 110, 114, 92, 101, 72, \

 109, 94, 122, 90, 102, 86, 119, 103, 110, 96, \

Basic Plots | 175

 90, 110, 96, 69, 85, 102, 69, 96, 101, 90]

group_d = [93, 99, 91, 110, 80, 113, 111, 115, 98, 74, \

 96, 80, 83, 102, 60, 91, 82, 90, 97, 101, \

 89, 89, 117, 91, 104, 104, 102, 128, 106, 111, \

 79, 92, 97, 101, 106, 110, 93, 93, 106, 108, \

 85, 83, 108, 94, 79, 87, 113, 112, 111, 111, \

 79, 116, 104, 84, 116, 111, 103, 103, 112, 68, \

 54, 80, 86, 119, 81, 84, 91, 96, 116, 125, \

 99, 58, 102, 77, 98, 100, 90, 106, 109, 114, \

 102, 102, 112, 103, 98, 96, 85, 97, 110, 131, \

 92, 79, 115, 122, 95, 105, 74, 85, 85, 95]

The expected output is as follows:

Figure 3.30: Box plot for IQ scores of different test groups

Note

The solution for this activity can be found via this link.

In the next section, we will learn how to generate a scatter plot.

176 | A Deep Dive into Matplotlib

Scatter Plot

Scatter plots show data points for two numerical variables, displaying a variable
on both axes. plt.scatter(x, y) creates a scatter plot of y versus x, with
optionally varying marker size and/or color.

Important parameters:

• x, y: Specifies the data positions.

• s: (optional) Specifies the marker size in points squared.

• c: (optional) Specifies the marker color. If a sequence of numbers is specified,
the numbers will be mapped to the colors of the color map.

Example:

plt.scatter(x, y)

The result of the preceding code is shown in the following diagram:

Figure 3.31: Scatter plot

Let's implement a scatter plot in the following exercise.

Basic Plots | 177

Exercise 3.03: Using a Scatter Plot to Visualize Correlation between Various

Animals

In this exercise, we will use a scatter plot to show correlation within a dataset. Let's
look at the following scenario: You are given a dataset containing information about
various animals. Visualize the correlation between the various animal attributes such
as Maximum longevity in years and Body mass in grams.

Note

The Axes.set_xscale('log') and the Axes.set_
yscale('log') change the scale of the x-axis and y-axis to a
logarithmic scale, respectively.

Let's visualize the correlation between various animals with the help of a scatter plot:

1. Create an Exercise3.03.ipynb Jupyter Notebook in the Chapter03/
Exercise3.03 folder to implement this exercise.

2. Import the necessary modules and enable plotting within the Jupyter Notebook:

Import statements

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

3. Use pandas to read the data located in the Datasets folder:

Load dataset

data = pd.read_csv('../../Datasets/anage_data.csv')

4. The given dataset is not complete. Filter the data so that you end up with
samples containing a body mass and a maximum longevity. Sort the data
according to the animal class; here, the isfinite() function (to check whether
the number is finite or not) checks for the finiteness of the given element:

Preprocessing

longevity = 'Maximum longevity (yrs)'

mass = 'Body mass (g)'

data = data[np.isfinite(data[longevity]) \

 & np.isfinite(data[mass])]

178 | A Deep Dive into Matplotlib

Sort according to class

amphibia = data[data['Class'] == 'Amphibia']

aves = data[data['Class'] == 'Aves']

mammalia = data[data['Class'] == 'Mammalia']

reptilia = data[data['Class'] == 'Reptilia']

5. Create a scatter plot visualizing the correlation between the body mass and the
maximum longevity. Use different colors to group data samples according to
their class. Add a legend, labels, and a title. Use a log scale for both the x-axis
and y-axis:

Create figure

plt.figure(figsize=(10, 6), dpi=300)

Create scatter plot

plt.scatter(amphibia[mass], amphibia[longevity], \

 label='Amphibia')

plt.scatter(aves[mass], aves[longevity], \

 label='Aves')

plt.scatter(mammalia[mass], mammalia[longevity], \

 label='Mammalia')

plt.scatter(reptilia[mass], reptilia[longevity], \

 label='Reptilia')

Add legend

plt.legend()

Log scale

ax = plt.gca()

ax.set_xscale('log')

ax.set_yscale('log')

Add labels

plt.xlabel('Body mass in grams')

plt.ylabel('Maximum longevity in years')

Show plot

plt.show()

The following is the output of the code:

Basic Plots | 179

Figure 3.32: Scatter plot on animal statistics

From the preceding output, we can visualize the correlation between various
animals based on the maximum longevity in years and body mass in grams.

Note

To access the source code for this specific section, please refer to
https://packt.live/3fsozRf.

You can also run this example online at https://packt.live/37yk0C7.

Next, we will learn how to generate a bubble plot.

Bubble Plot

The plt.scatter function is used to create a bubble plot. To visualize a third or
fourth variable, the parameters s (scale) and c (color) can be used.

Example:

plt.scatter(x, y, s=z*500, c=c, alpha=0.5)

plt.colorbar()

https://packt.live/3fsozRf
https://packt.live/37yk0C7

180 | A Deep Dive into Matplotlib

The colorbar function adds a colorbar to the plot, which indicates the value of the
color. The result is shown in the following diagram:

Figure 3.33: Bubble plot with color bar

Layouts
There are multiple ways to define a visualization layout in Matplotlib. By layout, we
mean the arrangement of multiple Axes within a Figure. We will start with subplots
and how to use the tight layout to create visually appealing plots and then cover
GridSpec, which offers a more flexible way to create multi-plots.

Layouts | 181

Subplots

It is often useful to display several plots next to one another. Matplotlib offers the
concept of subplots, which are multiple Axes within a Figure. These plots can be grids
of plots, nested plots, and so on.

Explore the following options to create subplots:

• The plt.subplots(, ncols) function creates a Figure and a set of
subplots. nrows, ncols define the number of rows and columns of the
subplots, respectively.

• The plt.subplot(nrows, ncols, index) function or, equivalently,
plt.subplot(pos) adds a subplot to the current Figure. The index
starts at 1. The plt.subplot(2, 2, 1) function is equivalent to plt.
subplot(221).

• The Figure.subplots(nrows, ncols) function adds a set of subplots to
the specified Figure.

• The Figure.add_subplot(nrows, ncols, index) function
or, equivalently, Figure.add_subplot(pos), adds a subplot to the
specified Figure.

To share the x-axis or y-axis, the parameters sharex and sharey must be set,
respectively. The axis will have the same limits, ticks, and scale.

plt.subplot and Figure.add_subplot have the option to set a projection.
For a polar projection, either set the projection='polar' parameter or the
parameter polar=True parameter.

Example 1:

fig, axes = plt.subplots(2, 2)

axes = axes.ravel()

for i, ax in enumerate(axes):

 ax.plot(series[i])

[...]

for i in range(4):

 plt.subplot(2, 2, i+1)

 plt.plot(series[i])

182 | A Deep Dive into Matplotlib

Both examples yield the same result, as shown in the following diagram:

Figure 3.34: Subplots

Example 2:

fig, axes = plt.subplots(2, 2, sharex=True, sharey=True)

axes = axes.ravel()

for i, ax in enumerate(axes):

 ax.plot(series[i])

Setting sharex and sharey to True results in the following diagram. This allows
for a better comparison:

Layouts | 183

Figure 3.35: Subplots with a shared x- and y-axis

Subplots are an easy way to create a Figure with multiple plots of the same size
placed in a grid. They are not really suited for more sophisticated layouts.

Tight Layout

The plt.tight_layout() adjusts subplot parameters (primarily padding
between the Figure edge and the edges of subplots, and padding between the edges
of adjacent subplots) so that the subplots fit well in the Figure.

Examples:

If you do not use plt.tight_layout(), subplots might overlap:

fig, axes = plt.subplots(2, 2)

axes = axes.ravel()

for i, ax in enumerate(axes):

 ax.plot(series[i])

 ax.set_title('Subplot ' + str(i))

184 | A Deep Dive into Matplotlib

The result of the preceding code is shown in the following diagram:

Figure 3.36: Subplots with no layout option

Using plt.tight_layout() results in no overlapping of the subplots:

fig, axes = plt.subplots(2, 2)

axes = axes.ravel()

for i, ax in enumerate(axes):

 ax.plot(series[i])

 ax.set_title('Subplot ' + str(i))

plt.tight_layout()

Layouts | 185

The result of the preceding code is shown in the following diagram:

Figure 3.37: Subplots with a tight layout

Radar Charts

Radar charts, also known as spider or web charts, visualize multiple variables, with
each variable plotted on its own axis, resulting in a polygon. All axes are arranged
radially, starting at the center with equal distance between each other, and have the
same scale.

186 | A Deep Dive into Matplotlib

Exercise 3.04: Working on Radar Charts

As a manager of a team, you have to award a "Star Performer" trophy to an
employee for the month of December. You come to the conclusion that the best
way to understad the performance of your team members would be to visualize
the performance of your team members in a radar chart. Thus, in this exercise, we
will show you how to create a radar chart. The following are the steps to perform
this exercise:

1. Create an Exercise3.04.ipynb Jupyter Notebook in the Chapter03/
Exercise3.04 folder to implement this exercise.

2. Import the necessary modules and enable plotting within a Jupyter Notebook:

Import settings

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

3. The following dataset contains ratings of five different attributes for
four employees:

"""

Sample data

Attributes: Efficiency, Quality, Commitment, Responsible Conduct,
Cooperation
"""

data = \

pd.DataFrame({'Employee': ['Alex', 'Alice', \

 'Chris', 'Jennifer'], \

 'Efficiency': [5, 4, 4, 3,],

 'Quality': [5, 5, 3, 3],

 'Commitment': [5, 4, 4, 4],

 'Responsible Conduct': [4, 4, 4, 3],

 'Cooperation': [4, 3, 4, 5]})

Layouts | 187

4. Create angle values and close the plot:

attributes = list(data.columns[1:])

values = list(data.values[:, 1:])

employees = list(data.values[:, 0])

angles = [n / float(len(attributes)) * 2 \

 * np.pi for n in range(len(attributes))]

Close the plot

angles += angles[:1]

values = np.asarray(values)

values = np.concatenate([values, values[:, 0:1]], axis=1)

5. Create subplots with the polar projection. Set a tight layout so that
nothing overlaps:

Create figure

plt.figure(figsize=(8, 8), dpi=150)

Create subplots

for i in range(4):

 ax = plt.subplot(2, 2, i + 1, polar=True)

 ax.plot(angles, values[i])

 ax.set_yticks([1, 2, 3, 4, 5])

 ax.set_xticks(angles)

 ax.set_xticklabels(attributes)

 ax.set_title(employees[i], fontsize=14, color='r')

Set tight layout

plt.tight_layout()

Show plot

plt.show()

188 | A Deep Dive into Matplotlib

The following diagram shows the output of the preceding code:

Figure 3.38: Radar charts

From the preceding output, we can clearly see how the various team members have
performed in terms of metrics such as Quality, Efficiency, Cooperation, Responsible
Conduct, and Commitment. You can easily draw the conclusion that Alex outperforms
his collegues when all metrics are considered. In the next section, we will learn how to
use the GridSpec function.

Layouts | 189

Note

To access the source code for this specific section, please refer to
https://packt.live/3e6is4X.

You can also run this example online at https://packt.live/3hxeFjf.

GridSpec

The matplotlib.gridspec.GridSpec(nrows, ncols) function specifies the
geometry of the grid in which a subplot will be placed. For example, you can specify
a grid with three rows and four columns. As a next step, you have to define which
elements of the gridspec are used by a subplot; elements of a gridspec are accessed
in the same way as NumPy arrays. You could, for example, only use a single element
of a gridspec for a subplot and therefore end up with 12 subplots in total. Another
possibility, as shown in the following example, is to create a bigger subplot using 3x3
elements of the gridspec and another three subplots with a single element each.

Example:

gs = matplotlib.gridspec.GridSpec(3, 4)

ax1 = plt.subplot(gs[:3, :3])

ax2 = plt.subplot(gs[0, 3])

ax3 = plt.subplot(gs[1, 3])

ax4 = plt.subplot(gs[2, 3])

ax1.plot(series[0])

ax2.plot(series[1])

ax3.plot(series[2])

ax4.plot(series[3])

plt.tight_layout()

https://packt.live/3e6is4X
https://packt.live/3hxeFjf

190 | A Deep Dive into Matplotlib

The result of the preceding code is shown in the following diagram:

Figure 3.39: GridSpec

Next, we will implement an activity to implement GridSpec.

Activity 3.06: Creating a Scatter Plot with Marginal Histograms

In this activity, we will make use of GridSpec to visualize a scatter plot with marginal
histograms. Let's look at the following scenario: you are given a dataset containing
information about various animals. Visualize the correlation between the various
animal attributes using scatter plots and marginal histograms.

The following are the steps to perform:

1. Import the necessary modules and enable plotting within a Jupyter Notebook.

2. Filter the data so that you end up with samples containing a body mass and
maximum longevity as the given dataset, AnAge, which was used in the previous
exercise, is not complete. Select all of the samples of the Aves class with a body
mass of less than 20,000.

Layouts | 191

3. Create a Figure with a constrained layout. Create a gridspec of size 4x4. Create a
scatter plot of size 3x3 and marginal histograms of size 1x3 and 3x1. Add labels
and a Figure title.

After executing the preceding steps, the expected output should be as follows:

Figure 3.40: Scatter plots with marginal histograms

Note

The solution for this activity can be found via this link.

192 | A Deep Dive into Matplotlib

Next, we will learn how to work with image data in our visualizations.

Images
If you want to include images in your visualizations or work with image data,
Matplotlib offers several functions for you. In this section, we will show you how to
load, save, and plot images with Matplotlib.

Note

The images that are used in this section are sourced from https://unsplash.
com/.

Basic Image Operations

The following are the basic operations for designing an image.

Loading Images

If you encounter image formats that are not supported by Matplotlib, we recommend
using the Pillow library to load the image. In Matplotlib, loading images is part of the
image submodule. We use the alias mpimg for the submodule, as follows:

import matplotlib.image as mpimg

The mpimg.imread(fname) reads an image and returns it as a numpy.array
object. For grayscale images, the returned array has a shape (height, width), for RGB
images (height, width, 3), and for RGBA images (height, width, 4). The array values
range from 0 to 255.

We can also load the image in the following manner:

img_filenames = os.listdir('../../Datasets/images')

imgs = \

[mpimg.imread(os.path.join('../../Datasets/images', \

 img_filename)) \

 for img_filename in img_filenames]

The os.listdir() method in Python is used to get the list of all files and
directories in the specified directory and then the os.path.join() function is
used to join one or more path components intelligently.

https://unsplash.com/
https://unsplash.com/

Images | 193

Saving Images

The mpimg.imsave(fname, array) saves a numpy.array object as an image
file. If the format parameter is not given, the format is deduced from the filename
extension. With the optional parameters vmin and vmax, the color limits can be set
manually. For a grayscale image, the default for the optional parameter, cmap, is
'viridis'; you might want to change it to 'gray'.

Plotting a Single Image

The plt.imshow(img) displays an image and returns an AxesImage object.
For grayscale images with shape (height, width), the image array is visualized using
a colormap. The default colormap is 'viridis', as illustrated in Figure 3.41. To
actually visualize a grayscale image, the colormap has to be set to 'gray' (that is,
plt.imshow(img, cmap='gray'), which is illustrated in Figure 3.42. Values
for grayscale, RGB, and RGBA images can be either float or uint8, and range
from [0…1] or [0…255], respectively. To manually define the value range, the
parameters vmin and vmax must be specified. A visualization of an RGB image is
shown in the following figures:

Figure 3.41: Grayscale image with a default viridis colormap

194 | A Deep Dive into Matplotlib

The following figure shows a grayscale image with a gray colormap:

Figure 3.42: Grayscale image with a gray colormap

The following figure shows an RGB image:

Figure 3.43: RGB image

Images | 195

Sometimes, it might be helpful to get an insight into the color values. We can simply
add a color bar to the image plot. It is recommended to use a colormap with high
contrast—for example, jet:

plt.imshow(img, cmap='jet')

plt.colorbar()

The preceding example is illustrated in the following figure:

Figure 3.44: Image with a jet colormap and color bar

196 | A Deep Dive into Matplotlib

Another way to get insight into the image values is to plot a histogram, as shown in
the following diagram. To plot the histogram for an image array, the array has to be
flattened using numpy.ravel:

plt.hist(img.ravel(), bins=256, range=(0, 1))

The following diagram shows the output of the preceding code:

Figure 3.45: Histogram of image values

Plotting Multiple Images in a Grid

To plot multiple images in a grid, we can simply use plt.subplots and plot an
image per Axes:

fig, axes = plt.subplots(1, 2)

for i in range(2):

 axes[i].imshow(imgs[i])

Images | 197

The result of the preceding code is shown in the following diagram:

Figure 3.46: Multiple images within a grid

In some situations, it would be neat to remove the ticks and add labels. axes.set_
xticks([]) and axes.set_yticks([]) remove x-ticks and y-ticks, respectively.
axes.set_xlabel('label') adds a label:

fig, axes = plt.subplots(1, 2)

labels = ['coast', 'beach']

for i in range(2):

 axes[i].imshow(imgs[i])

 axes[i].set_xticks([])

 axes[i].set_yticks([])

 axes[i].set_xlabel(labels[i])

The result of the preceding code is shown in the following diagram:

Figure 3.47: Multiple images with labels

Let's go through an activity for grid images.

198 | A Deep Dive into Matplotlib

Activity 3.07: Plotting Multiple Images in a Grid

In this activity, we will plot images in a grid. You are a developer in a social media
company. Management has decided to add a feature that helps the customer to
upload images in a 2x2 grid format. Develop some standard code to generate grid-
formatted images and add this new feature to your company's website.

The following are the steps to perform:

1. Import the necessary modules and enable plotting within a Jupyter Notebook.

2. Load all four images from the Datasets subfolder.

3. Visualize the images in a 2x2 grid. Remove the axes and give each image a label.

After executing the preceding steps, the expected output should be as follows:

Figure 3.48: Visualizing images in a 2x2 grid

Note

The solution for this activity can be found via this link.

Writing Mathematical Expressions | 199

In this activity, we have plotted images in a 2x2 grid. In the next section, we will learn
the basics of how to write and plot a mathematical expression.

Writing Mathematical Expressions
In case you need to write mathematical expressions within the code, Matplotlib
supports TeX, one of the most popular typesetting systems, especially for typesetting
mathematical formulas. You can use it in any text by placing your mathematical
expression in a pair of dollar signs. There is no need to have TeX installed since
Matplotlib comes with its own parser.

An example of this is given in the following code:

plt.xlabel(‚x')

plt.ylabel(‚$\cos(x)$')

The following diagram shows the output of the preceding code:

Figure 3.49: Diagram demonstrating mathematical expressions

200 | A Deep Dive into Matplotlib

TeX examples:

• '$\alpha_i>\beta_i$' produces .

• '$\sum_{i=0}^\infty x_i$' produces .

• '$\sqrt[3]{8}$' produces .

• '$\frac{3 - \frac{x}{2}}{5}$' produces .

In this section, we learned how to write a basic mathematical expression and
generate a plot using it.

Summary
In this chapter, we provided a detailed introduction to Matplotlib, one of the most
popular visualization libraries for Python. We started off with the basics of pyplot
and its operations, and then followed up with a deep insight into the numerous
possibilities that help to enrich visualizations with text. Using practical examples, this
chapter covered the most popular plotting functions that Matplotlib offers, including
comparison charts, and composition and distribution plots. It concluded with how to
visualize images and write mathematical expressions.

In the next chapter, we will learn about the Seaborn library. Seaborn is built on top
of Matplotlib and provides a higher-level abstraction to create visualizations in an
easier way. One neat feature of Seaborn is the easy integration of DataFrames from
the pandas library. Furthermore, Seaborn offers a few more plots out of the box,
including more advanced visualizations, such as violin plots.

	Chapter 3: A Deep Dive into Matplotlib
	Introduction
	Overview of Plots in Matplotlib
	Pyplot Basics
	Creating Figures
	Closing Figures
	Format Strings
	Plotting
	Plotting Using pandas DataFrames
	Ticks
	Displaying Figures
	Saving Figures
	Exercise 3.01: Creating a Simple Visualization

	Basic Text and Legend Functions
	Labels
	Titles
	Text
	Annotations
	Legends
	Activity 3.01: Visualizing Stock Trends by Using a Line Plot

	Basic Plots
	Bar Chart
	Activity 3.02: Creating a Bar Plot for Movie Comparison
	Pie Chart
	Exercise 3.02: Creating a Pie Chart for Water Usage
	Stacked Bar Chart
	Activity 3.03: Creating a Stacked Bar Plot to Visualize Restaurant Performance
	Stacked Area Chart
	Activity 3.04: Comparing Smartphone Sales Units Using a Stacked Area Chart
	Histogram
	Box Plot
	Activity 3.05: Using a Histogram and a Box Plot to Visualize Intelligence Quotient
	Scatter Plot
	Exercise 3.03: Using a Scatter Plot to Visualize Correlation between Various Animals
	Bubble Plot

	Layouts
	Subplots
	Tight Layout
	Radar Charts
	Exercise 3.04: Working on Radar Charts
	GridSpec
	Activity 3.06: Creating a Scatter Plot with Marginal Histograms

	Images
	Basic Image Operations
	Activity 3.07: Plotting Multiple Images in a Grid

	Writing Mathematical Expressions
	Summary

