
how it works, but you don’t have to code this part yourself—it underlies
the R or Python functions.

Overfitting
Throughout the book you will be cautioned repeatedly about overfit‐
ting, possibly to the point you will have nightmares about it. Overfit‐
ting is the term used to mean that you used a dataset to estimate the
parameters of your model, but your model isn’t that good at capturing
reality beyond your sampled data.

You might know this because you have tried to use it to predict labels
for another set of data that you didn’t use to fit the model, and it doesn’t
do a good job, as measured by an evaluation metric such as accuracy.

Exploratory Data Analysis
“Exploratory data analysis” is an attitude, a state of flexibility, a will‐
ingness to look for those things that we believe are not there, as well
as those we believe to be there.

— John Tukey

Earlier we mentioned exploratory data analysis (EDA) as the first step
toward building a model. EDA is often relegated to chapter 1 (by which
we mean the “easiest” and lowest level) of standard introductory sta‐
tistics textbooks and then forgotten about for the rest of the book.

It’s traditionally presented as a bunch of histograms and stem-and-leaf
plots. They teach that stuff to kids in fifth grade so it seems trivial,
right? No wonder no one thinks much of it.

But EDA is a critical part of the data science process, and also repre‐
sents a philosophy or way of doing statistics practiced by a strain of
statisticians coming from the Bell Labs tradition.

John Tukey, a mathematician at Bell Labs, developed exploratory data
analysis in contrast to confirmatory data analysis, which concerns it‐
self with modeling and hypotheses as described in the previous section.
In EDA, there is no hypothesis and there is no model. The “explora‐
tory” aspect means that your understanding of the problem you are
solving, or might solve, is changing as you go.

34 | Chapter 2: Statistical Inference, Exploratory Data Analysis, and the Data Science Process

Historical Perspective: Bell Labs
Bell Labs is a research lab going back to the 1920s that has made
innovations in physics, computer science, statistics, and math, pro‐
ducing languages like C++, and many Nobel Prize winners as well.
There was a very successful and productive statistics group there, and
among its many notable members was John Tukey, a mathematician
who worked on a lot of statistical problems. He is considered the
father of EDA and R (which started as the S language at Bell Labs; R
is the open source version), and he was interested in trying to visualize
high-dimensional data.

We think of Bell Labs as one of the places where data science was
“born” because of the collaboration between disciplines, and the mas‐
sive amounts of complex data available to people working there. It
was a virtual playground for statisticians and computer scientists,
much like Google is today.

In fact, in 2001, Bill Cleveland wrote “Data Science: An Action Plan
for expanding the technical areas of the field of statistics,” which de‐
scribed multidisciplinary investigation, models, and methods for data
(traditional applied stats), computing with data (hardware, software,
algorithms, coding), pedagogy, tool evaluation (staying on top of cur‐
rent trends in technology), and theory (the math behind the data).

You can read more about Bell Labs in the book The Idea Factory by
Jon Gertner (Penguin Books).

The basic tools of EDA are plots, graphs and summary statistics. Gen‐
erally speaking, it’s a method of systematically going through the data,
plotting distributions of all variables (using box plots), plotting time
series of data, transforming variables, looking at all pairwise relation‐
ships between variables using scatterplot matrices, and generating
summary statistics for all of them. At the very least that would mean
computing their mean, minimum, maximum, the upper and lower
quartiles, and identifying outliers.

But as much as EDA is a set of tools, it’s also a mindset. And that
mindset is about your relationship with the data. You want to under‐
stand the data—gain intuition, understand the shape of it, and try to
connect your understanding of the process that generated the data to

Exploratory Data Analysis | 35

the data itself. EDA happens between you and the data and isn’t about
proving anything to anyone else yet.

Philosophy of Exploratory Data Analysis
Long before worrying about how to convince others, you first have
to understand what’s happening yourself.

— Andrew Gelman

While at Google, Rachel was fortunate to work alongside two former
Bell Labs/AT&T statisticians—Daryl Pregibon and Diane Lambert,
who also work in this vein of applied statistics—and learned from them
to make EDA a part of her best practices.

Yes, even with very large Google-scale data, they did EDA. In the con‐
text of data in an Internet/engineering company, EDA is done for some
of the same reasons it’s done with smaller datasets, but there are ad‐
ditional reasons to do it with data that has been generated from logs.

There are important reasons anyone working with data should do
EDA. Namely, to gain intuition about the data; to make comparisons
between distributions; for sanity checking (making sure the data is on
the scale you expect, in the format you thought it should be); to find
out where data is missing or if there are outliers; and to summarize
the data.

In the context of data generated from logs, EDA also helps with de‐
bugging the logging process. For example, “patterns” you find in the
data could actually be something wrong in the logging process that
needs to be fixed. If you never go to the trouble of debugging, you’ll
continue to think your patterns are real. The engineers we’ve worked
with are always grateful for help in this area.

In the end, EDA helps you make sure the product is performing as
intended.

Although there’s lots of visualization involved in EDA, we distinguish
between EDA and data visualization in that EDA is done toward the
beginning of analysis, and data visualization (which we’ll get to in
Chapter 9), as it’s used in our vernacular, is done toward the end to
communicate one’s findings. With EDA, the graphics are solely done
for you to understand what’s going on.

With EDA, you can also use the understanding you get to inform and
improve the development of algorithms. For example, suppose you

36 | Chapter 2: Statistical Inference, Exploratory Data Analysis, and the Data Science Process

are trying to develop a ranking algorithm that ranks content that you
are showing to users. To do this you might want to develop a notion
of “popular.”

Before you decide how to quantify popularity (which could be, for
example, highest frequency of clicks, or the post with the most number
of comments, or comments above some threshold, or some weighted
average of many metrics), you need to understand how the data is
behaving, and the best way to do that is looking at it and getting your
hands dirty.

Plotting data and making comparisons can get you extremely far, and
is far better to do than getting a dataset and immediately running a
regression just because you know how. It’s been a disservice to analysts
and data scientists that EDA has not been enforced as a critical part of
the process of working with data. Take this opportunity to make it part
of your process!

Here are some references to help you understand best practices and
historical context:

1. Exploratory Data Analysis by John Tukey (Pearson)
2. The Visual Display of Quantitative Information by Edward Tufte

(Graphics Press)
3. The Elements of Graphing Data by William S. Cleveland (Hobart

Press)
4. Statistical Graphics for Visualizing Multivariate Data by William

G. Jacoby (Sage)
5. “Exploratory Data Analysis for Complex Models” by Andrew

Gelman (American Statistical Association)
6. The Future of Data Analysis by John Tukey. Annals of Mathemat‐

ical Statistics, Volume 33, Number 1 (1962), 1-67.
7. Data Analysis, Exploratory by David Brillinger [8-page excerpt

from International Encyclopedia of Political Science (Sage)]

Exercise: EDA
There are 31 datasets named nyt1.csv, nyt2.csv,…,nyt31.csv, which you
can find here: https://github.com/oreillymedia/doing_data_science.

Exploratory Data Analysis | 37

http://stanford.io/1c4C0DP
https://github.com/oreillymedia/doing_data_science

Each one represents one (simulated) day’s worth of ads shown and
clicks recorded on the New York Times home page in May 2012. Each
row represents a single user. There are five columns: age, gender
(0=female, 1=male), number impressions, number clicks, and logged-
in.

You’ll be using R to handle these data. It’s a programming language
designed specifically for data analysis, and it’s pretty intuitive to start
using. You can download it here. Once you have it installed, you can
load a single file into R with this command:

data1 <- read.csv(url("http://stat.columbia.edu/~rachel/
 datasets/nyt1.csv"))

Once you have the data loaded, it’s time for some EDA:

1. Create a new variable, age_group, that categorizes users as "<18",
"18-24", "25-34", "35-44", "45-54", "55-64", and "65+".

2. For a single day:

• Plot the distributions of number impressions and click-
through-rate (CTR=# clicks/# impressions) for these six age
categories.

• Define a new variable to segment or categorize users based on
their click behavior.

• Explore the data and make visual and quantitative comparisons
across user segments/demographics (<18-year-old males ver‐
sus < 18-year-old females or logged-in versus not, for example).

• Create metrics/measurements/statistics that summarize the da‐
ta. Examples of potential metrics include CTR, quantiles, mean,
median, variance, and max, and these can be calculated across
the various user segments. Be selective. Think about what will
be important to track over time—what will compress the data,
but still capture user behavior.

3. Now extend your analysis across days. Visualize some metrics and
distributions over time.

4. Describe and interpret any patterns you find.

Sample code
Here we’ll give you the beginning of a sample solution for this exercise.
The reality is that we can’t teach you about data science and teach you

38 | Chapter 2: Statistical Inference, Exploratory Data Analysis, and the Data Science Process

http://www.r-project.org

how to code all in the same book. Learning to code in a new language
requires a lot of trial and error as well as going online and searching
on Google or stackoverflow.

Chances are, if you’re trying to figure out how to plot something or
build a model in R, other people have tried as well, so rather than
banging your head against the wall, look online. [Ed note: There might
also be some books available to help you out on this front as well.] We
suggest not looking at this code until you’ve struggled along a bit:

Author: Maura Fitzgerald
data1 <- read.csv(url("http://stat.columbia.edu/~rachel/
 datasets/nyt1.csv"))

categorize
head(data1)
data1$agecat <-cut(data1$Age,c(-Inf,0,18,24,34,44,54,64,Inf))

view
summary(data1)

brackets
install.packages("doBy")
library("doBy")
siterange <- function(x){c(length(x), min(x), mean(x), max(x))}
summaryBy(Age~agecat, data =data1, FUN=siterange)

so only signed in users have ages and genders
summaryBy(Gender+Signed_In+Impressions+Clicks~agecat,
 data =data1)

plot
install.packages("ggplot2")
library(ggplot2)
ggplot(data1, aes(x=Impressions, fill=agecat))
 +geom_histogram(binwidth=1)
ggplot(data1, aes(x=agecat, y=Impressions, fill=agecat))
 +geom_boxplot()

create click thru rate
we don't care about clicks if there are no impressions
if there are clicks with no imps my assumptions about
this data are wrong
data1$hasimps <-cut(data1$Impressions,c(-Inf,0,Inf))
summaryBy(Clicks~hasimps, data =data1, FUN=siterange)
ggplot(subset(data1, Impressions>0), aes(x=Clicks/Impressions,
 colour=agecat)) + geom_density()
ggplot(subset(data1, Clicks>0), aes(x=Clicks/Impressions,
 colour=agecat)) + geom_density()
ggplot(subset(data1, Clicks>0), aes(x=agecat, y=Clicks,

Exploratory Data Analysis | 39

http://www.oreilly.com

 fill=agecat)) + geom_boxplot()
ggplot(subset(data1, Clicks>0), aes(x=Clicks, colour=agecat))
 + geom_density()

create categories
data1$scode[data1$Impressions==0] <- "NoImps"
data1$scode[data1$Impressions >0] <- "Imps"
data1$scode[data1$Clicks >0] <- "Clicks"

Convert the column to a factor
data1$scode <- factor(data1$scode)
head(data1)

#look at levels
clen <- function(x){c(length(x))}
etable<-summaryBy(Impressions~scode+Gender+agecat,
 data = data1, FUN=clen)

Hint for doing the rest: don’t read all the datasets into memory. Once
you’ve perfected your code for one day, read the datasets in one at a
time, process them, output any relevant metrics and variables, and
store them in a dataframe; then remove the dataset before reading in
the next one. This is to get you thinking about how to handle data
sharded across multiple machines.

On Coding
In a May 2013 op-ed piece, “How to be a Woman Programmer,” Ellen
Ullman describes quite well what it takes to be a programmer (setting
aside for now the woman part):

“The first requirement for programming is a passion for the work, a
deep need to probe the mysterious space between human thoughts
and what a machine can understand; between human desires and how
machines might satisfy them.

The second requirement is a high tolerance for failure. Programming
is the art of algorithm design and the craft of debugging errant code.
In the words of the great John Backus, inventor of the Fortran pro‐
gramming language: You need the willingness to fail all the time. You
have to generate many ideas and then you have to work very hard only
to discover that they don’t work. And you keep doing that over and over
until you find one that does work.”

40 | Chapter 2: Statistical Inference, Exploratory Data Analysis, and the Data Science Process

The Data Science Process
Let’s put it all together into what we define as the data science process.
The more examples you see of people doing data science, the more
you’ll find that they fit into the general framework shown in
Figure 2-2. As we go through the book, we’ll revisit stages of this pro‐
cess and examples of it in different ways.

Figure 2-2. The data science process

First we have the Real World. Inside the Real World are lots of people
busy at various activities. Some people are using Google+, others are
competing in the Olympics; there are spammers sending spam, and
there are people getting their blood drawn. Say we have data on one
of these things.

Specifically, we’ll start with raw data—logs, Olympics records, Enron
employee emails, or recorded genetic material (note there are lots of
aspects to these activities already lost even when we have that raw
data). We want to process this to make it clean for analysis. So we build
and use pipelines of data munging: joining, scraping, wrangling, or
whatever you want to call it. To do this we use tools such as Python,
shell scripts, R, or SQL, or all of the above.

Eventually we get the data down to a nice format, like something with
columns:

name | event | year | gender | event time

The Data Science Process | 41

This is where you typically start in a standard statistics class,
with a clean, orderly dataset. But it’s not where you typically
start in the real world.

Once we have this clean dataset, we should be doing some kind of
EDA. In the course of doing EDA, we may realize that it isn’t actually
clean because of duplicates, missing values, absurd outliers, and data
that wasn’t actually logged or incorrectly logged. If that’s the case, we
may have to go back to collect more data, or spend more time cleaning
the dataset.

Next, we design our model to use some algorithm like k-nearest
neighbor (k-NN), linear regression, Naive Bayes, or something else.
The model we choose depends on the type of problem we’re trying to
solve, of course, which could be a classification problem, a prediction
problem, or a basic description problem.

We then can interpret, visualize, report, or communicate our results.
This could take the form of reporting the results up to our boss or
coworkers, or publishing a paper in a journal and going out and giving
academic talks about it.

Alternatively, our goal may be to build or prototype a “data product”;
e.g., a spam classifier, or a search ranking algorithm, or a recommen‐
dation system. Now the key here that makes data science special and
distinct from statistics is that this data product then gets incorporated
back into the real world, and users interact with that product, and that
generates more data, which creates a feedback loop.

This is very different from predicting the weather, say, where your
model doesn’t influence the outcome at all. For example, you might
predict it will rain next week, and unless you have some powers we
don’t know about, you’re not going to cause it to rain. But if you instead
build a recommendation system that generates evidence that “lots of
people love this book,” say, then you will know that you caused that
feedback loop.

Take this loop into account in any analysis you do by adjusting for any
biases your model caused. Your models are not just predicting the
future, but causing it!

A data product that is productionized and that users interact with is
at one extreme and the weather is at the other, but regardless of the

42 | Chapter 2: Statistical Inference, Exploratory Data Analysis, and the Data Science Process

type of data you work with and the “data product” that gets built on
top of it—be it public policy determined by a statistical model, health
insurance, or election polls that get widely reported and perhaps in‐
fluence viewer opinions—you should consider the extent to which
your model is influencing the very phenomenon that you are trying
to observe and understand.

A Data Scientist’s Role in This Process
This model so far seems to suggest this will all magically happen
without human intervention. By “human” here, we mean “data scien‐
tist.” Someone has to make the decisions about what data to collect,
and why. That person needs to be formulating questions and hypoth‐
eses and making a plan for how the problem will be attacked. And that
someone is the data scientist or our beloved data science team.

Let’s revise or at least add an overlay to make clear that the data scientist
needs to be involved in this process throughout, meaning they are
involved in the actual coding as well as in the higher-level process, as
shown in Figure 2-3.

Figure 2-3. The data scientist is involved in every part of this process

The Data Science Process | 43

Connection to the Scientific Method
We can think of the data science process as an extension of or variation
of the scientific method:

• Ask a question.
• Do background research.
• Construct a hypothesis.
• Test your hypothesis by doing an experiment.
• Analyze your data and draw a conclusion.
• Communicate your results.

In both the data science process and the scientific method, not every
problem requires one to go through all the steps, but almost all prob‐
lems can be solved with some combination of the stages. For example,
if your end goal is a data visualization (which itself could be thought
of as a data product), it’s possible you might not do any machine
learning or statistical modeling, but you’d want to get all the way to a
clean dataset, do some exploratory analysis, and then create the
visualization.

Thought Experiment: How Would You
Simulate Chaos?
Most data problems start out with a certain amount of dirty data, ill-
defined questions, and urgency. As data scientists we are, in a sense,
attempting to create order from chaos. The class took a break from the
lecture to discuss how they’d simulate chaos. Here are some ideas from
the discussion:

• A Lorenzian water wheel, which is a Ferris wheel-type contraption
with equally spaced buckets of water that rotate around in a circle.
Now imagine water being dripped into the system at the very top.
Each bucket has a leak, so some water escapes into whatever buck‐
et is directly below the drip. Depending on the rate of the water
coming in, this system exhibits a chaotic process that depends on
molecular-level interactions of water molecules on the sides of the
buckets. Read more about it in this associated Wikipedia article.

44 | Chapter 2: Statistical Inference, Exploratory Data Analysis, and the Data Science Process

http://goo.gl/SjcJ64

• Many systems can exhibit inherent chaos. Philippe M. Binder and
Roderick V. Jensen have written a paper entitled “Simulating cha‐
otic behavior with finite-state machines”, which is about digital
computer simulations of chaos.

• An interdisciplinary program involving M.I.T., Harvard, and
Tufts involved teaching a technique that was entitled “Simulating
chaos to teach order”. They simulated an emergency on the border
between Chad and Sudan’s troubled Darfur region, with students
acting as members of Doctors Without Borders, International
Medical Corps, and other humanitarian agencies.

• See also Joel Gascoigne’s related essay, “Creating order from chaos
in a startup”.

Instructor Notes

1. Being a data scientist in an organization is often a chaotic expe‐
rience, and it’s the data scientist’s job to try to create order from
that chaos. So I wanted to simulate that chaotic experience for
my students throughout the semester. But I also wanted them to
know that things were going to be slightly chaotic for a peda‐
gogical reason, and not due to my ineptitude!

2. I wanted to draw out different interpretations of the word “chaos”
as a means to think about the importance of vocabulary, and the
difficulties caused in communication when people either don’t
know what a word means, or have different ideas of what the
word means. Data scientists might be communicating with do‐
main experts who don’t really understand what “logistic regres‐
sion” means, say, but will pretend to know because they don’t
want to appear stupid, or because they think they ought to know,
and therefore don’t ask. But then the whole conversation is not
really a successful communication if the two people talking don’t
really understand what they’re talking about. Similarly, the data
scientists ought to be asking questions to make sure they under‐
stand the terminology the domain expert is using (be it an as‐
trophysicist, a social networking expert, or a climatologist).
There’s nothing wrong with not knowing what a word means,
but there is something wrong with not asking! You will likely find
that asking clarifying questions about vocabulary gets you even
more insight into the underlying data problem.

Thought Experiment: How Would You Simulate Chaos? | 45

http://goo.gl/0LoaHw
http://goo.gl/0LoaHw
http://hvrd.me/1g3zzBz
http://hvrd.me/1g3zzBz
http://goo.gl/v43tZt
http://goo.gl/v43tZt

3. Simulation is a useful technique in data science. It can be useful
practice to simulate fake datasets from a model to understand the
generative process better, for example, and also to debug code.

Case Study: RealDirect
Doug Perlson, the CEO of RealDirect, has a background in real estate
law, startups, and online advertising. His goal with RealDirect is to use
all the data he can access about real estate to improve the way people
sell and buy houses.

Normally, people sell their homes about once every seven years, and
they do so with the help of professional brokers and current data. But
there’s a problem both with the broker system and the data quality.
RealDirect addresses both of them.

First, the brokers. They are typically “free agents” operating on their
own—think of them as home sales consultants. This means that they
guard their data aggressively, and the really good ones have lots of
experience. But in the grand scheme of things, that really means they
have only slightly more data than the inexperienced brokers.

RealDirect is addressing this problem by hiring a team of licensed real-
estate agents who work together and pool their knowledge. To
accomplish this, it built an interface for sellers, giving them useful data-
driven tips on how to sell their house. It also uses interaction data to
give real-time recommendations on what to do next.

The team of brokers also become data experts, learning to use
information-collecting tools to keep tabs on new and relevant data or
to access publicly available information. For example, you can now get
data on co-op (a certain kind of apartment in NYC) sales, but that’s a
relatively recent change.

One problem with publicly available data is that it’s old news—there’s
a three-month lag between a sale and when the data about that sale is
available. RealDirect is working on real-time feeds on things like when
people start searching for a home, what the initial offer is, the time
between offer and close, and how people search for a home online.

Ultimately, good information helps both the buyer and the seller. At
least if they’re honest.

46 | Chapter 2: Statistical Inference, Exploratory Data Analysis, and the Data Science Process

http://www.realdirect.com/

How Does RealDirect Make Money?
First, it offers a subscription to sellers—about $395 a month—to access
the selling tools. Second, it allows sellers to use RealDirect’s agents at
a reduced commission, typically 2% of the sale instead of the usual
2.5% or 3%. This is where the magic of data pooling comes in: it allows
RealDirect to take a smaller commission because it’s more optimized,
and therefore gets more volume.

The site itself is best thought of as a platform for buyers and sellers to
manage their sale or purchase process. There are statuses for each
person on site: active, offer made, offer rejected, showing, in contract,
etc. Based on your status, different actions are suggested by the
software.

There are some challenges they have to deal with as well, of course.
First off, there’s a law in New York that says you can’t show all the
current housing listings unless those listings reside behind a registra‐
tion wall, so RealDirect requires registration. On the one hand, this is
an obstacle for buyers, but serious buyers are likely willing to do it.
Moreover, places that don’t require registration, like Zillow, aren’t true
competitors to RealDirect because they are merely showing listings
without providing any additional service. Doug pointed out that you
also need to register to use Pinterest, and it has tons of users in spite
of this.

RealDirect comprises licensed brokers in various established realtor
associations, but even so it has had its share of hate mail from realtors
who don’t appreciate its approach to cutting commission costs. In this
sense, RealDirect is breaking directly into a guild. On the other hand,
if a realtor refused to show houses because they are being sold on
RealDirect, the potential buyers would see those listings elsewhere and
complain. So the traditional brokers have little choice but to deal with
RealDirect even if they don’t like it. In other words, the listings them‐
selves are sufficiently transparent so that the traditional brokers can’t
get away with keeping their buyers away from these houses.

Doug talked about key issues that a buyer might care about—nearby
parks, subway, and schools, as well as the comparison of prices per
square foot of apartments sold in the same building or block. This is
the kind of data they want to increasingly cover as part of the service
of RealDirect.

Case Study: RealDirect | 47

http://www.zillow.com/
http://pinterest.com/

Exercise: RealDirect Data Strategy
You have been hired as chief data scientist at realdirect.com, and report
directly to the CEO. The company (hypothetically) does not yet have
its data plan in place. It’s looking to you to come up with a data strategy.
Here are a couple ways you could begin to approach this problem:

1. Explore its existing website, thinking about how buyers and sellers
would navigate through it, and how the website is structured/
organized. Try to understand the existing business model, and
think about how analysis of RealDirect user-behavior data could
be used to inform decision-making and product development.
Come up with a list of research questions you think could be an‐
swered by data:

• What data would you advise the engineers log and what would
your ideal datasets look like?

• How would data be used for reporting and monitoring product
usage?

• How would data be built back into the product/website?

2. Because there is no data yet for you to analyze (typical in a start-
up when its still building its product), you should get some aux‐
iliary data to help gain intuition about this market. For example,
go to https://github.com/oreillymedia/doing_data_science. Click
on Rolling Sales Update (after the fifth paragraph).
You can use any or all of the datasets here—start with Manhattan
August, 2012–August 2013.

• First challenge: load in and clean up the data. Next, conduct
exploratory data analysis in order to find out where there are
outliers or missing values, decide how you will treat them, make
sure the dates are formatted correctly, make sure values you
think are numerical are being treated as such, etc.

• Once the data is in good shape, conduct exploratory data anal‐
ysis to visualize and make comparisons (i) across neighbor‐
hoods, and (ii) across time. If you have time, start looking for
meaningful patterns in this dataset.

3. Summarize your findings in a brief report aimed at the CEO.

48 | Chapter 2: Statistical Inference, Exploratory Data Analysis, and the Data Science Process

https://github.com/oreillymedia/doing_data_science

4. Being the “data scientist” often involves speaking to people who
aren’t also data scientists, so it would be ideal to have a set of com‐
munication strategies for getting to the information you need
about the data. Can you think of any other people you should talk
to?

5. Most of you are not “domain experts” in real estate or online
businesses.

• Does stepping out of your comfort zone and figuring out how
you would go about “collecting data” in a different setting give
you insight into how you do it in your own field?

• Sometimes “domain experts” have their own set of vocabulary.
Did Doug use vocabulary specific to his domain that you didn’t
understand (“comps,” “open houses,” “CPC”)? Sometimes if you
don’t understand vocabulary that an expert is using, it can pre‐
vent you from understanding the problem. It’s good to get in
the habit of asking questions because eventually you will get to
something you do understand. This involves persistence and is
a habit to cultivate.

6. Doug mentioned the company didn’t necessarily have a data strat‐
egy. There is no industry standard for creating one. As you work
through this assignment, think about whether there is a set of best
practices you would recommend with respect to developing a data
strategy for an online business, or in your own domain.

Sample R code
Here’s some sample R code that takes the Brooklyn housing data in
the preceding exercise, and cleans and explores it a bit. (The exercise
asks you to do this for Manhattan.)

Author: Benjamin Reddy

require(gdata)
bk <- read.xls("rollingsales_brooklyn.xls",pattern="BOROUGH")
head(bk)
summary(bk)

bk$SALE.PRICE.N <- as.numeric(gsub("[^[:digit:]]","",
 bk$SALE.PRICE))
count(is.na(bk$SALE.PRICE.N))

names(bk) <- tolower(names(bk))

Case Study: RealDirect | 49

clean/format the data with regular expressions
bk$gross.sqft <- as.numeric(gsub("[^[:digit:]]","",
 bk$gross.square.feet))
bk$land.sqft <- as.numeric(gsub("[^[:digit:]]","",
 bk$land.square.feet))

bk$sale.date <- as.Date(bk$sale.date)
bk$year.built <- as.numeric(as.character(bk$year.built))

do a bit of exploration to make sure there's not anything
weird going on with sale prices
attach(bk)

hist(sale.price.n)
hist(sale.price.n[sale.price.n>0])
hist(gross.sqft[sale.price.n==0])

detach(bk)

keep only the actual sales
bk.sale <- bk[bk$sale.price.n!=0,]

plot(bk.sale$gross.sqft,bk.sale$sale.price.n)
plot(log(bk.sale$gross.sqft),log(bk.sale$sale.price.n))

for now, let's look at 1-, 2-, and 3-family homes
bk.homes <- bk.sale[which(grepl("FAMILY",
 bk.sale$building.class.category)),]
plot(log(bk.homes$gross.sqft),log(bk.homes$sale.price.n))

bk.homes[which(bk.homes$sale.price.n<100000),]
 [order(bk.homes[which(bk.homes$sale.price.n<100000),]
 $sale.price.n),]

remove outliers that seem like they weren't actual sales
bk.homes$outliers <- (log(bk.homes$sale.price.n) <=5) + 0
bk.homes <- bk.homes[which(bk.homes$outliers==0),]

plot(log(bk.homes$gross.sqft),log(bk.homes$sale.price.n))

50 | Chapter 2: Statistical Inference, Exploratory Data Analysis, and the Data Science Process

CHAPTER 3

Algorithms

In the previous chapter we discussed in general how models are used
in data science. In this chapter, we’re going to be diving into
algorithms.

An algorithm is a procedure or set of steps or rules to accomplish a
task. Algorithms are one of the fundamental concepts in, or building
blocks of, computer science: the basis of the design of elegant and
efficient code, data preparation and processing, and software engi‐
neering.

Some of the basic types of tasks that algorithms can solve are sorting,
searching, and graph-based computational problems. Although a giv‐
en task such as sorting a list of objects could be handled by multiple
possible algorithms, there is some notion of “best” as measured by
efficiency and computational time, which matters especially when
you’re dealing with massive amounts of data and building consumer-
facing products.

Efficient algorithms that work sequentially or in parallel are the basis
of pipelines to process and prepare data. With respect to data science,
there are at least three classes of algorithms one should be aware of:

1. Data munging, preparation, and processing algorithms, such as
sorting, MapReduce, or Pregel.
We would characterize these types of algorithms as data engi‐
neering, and while we devote a chapter to this, it’s not the emphasis
of this book. This is not to say that you won’t be doing data wran‐
gling and munging—just that we don’t emphasize the algorithmic
aspect of it.

51

2. Optimization algorithms for parameter estimation, including
Stochastic Gradient Descent, Newton’s Method, and Least
Squares. We mention these types of algorithms throughout the
book, and they underlie many R functions.

3. Machine learning algorithms are a large part of this book, and we
discuss these more next.

Machine Learning Algorithms
Machine learning algorithms are largely used to predict, classify, or
cluster.

Wait! Back in the previous chapter, didn’t we already say modeling
could be used to predict or classify? Yes. Here’s where some lines have
been drawn that can make things a bit confusing, and it’s worth un‐
derstanding who drew those lines.

Statistical modeling came out of statistics departments, and machine
learning algorithms came out of computer science departments. Cer‐
tain methods and techniques are considered to be part of both, and
you’ll see that we often use the words somewhat interchangeably.

You’ll find some of the methods in this book, such as linear regression,
in machine learning books as well as intro to statistics books. It’s not
necessarily useful to argue over who the rightful owner is of these
methods, but it’s worth pointing out here that it can get a little vague
or ambiguous about what the actual difference is.

In general, machine learning algorithms that are the basis of artificial
intelligence (AI) such as image recognition, speech recognition, rec‐
ommendation systems, ranking and personalization of content—
often the basis of data products—are not usually part of a core statistics
curriculum or department. They aren’t generally designed to infer the
underlying generative process (e.g., to model something), but rather to
predict or classify with the most accuracy.

These differences in methods reflect in cultural differences in the ap‐
proaches of machine learners and statisticians that Rachel observed at
Google, and at industry conferences. Of course, data scientists can and
should use both approaches.

52 | Chapter 3: Algorithms

There are some broad generalizations to consider:
Interpreting parameters

Statisticians think of the parameters in their linear regression
models as having real-world interpretations, and typically want
to be able to find meaning in behavior or describe the real-world
phenomenon corresponding to those parameters. Whereas a soft‐
ware engineer or computer scientist might be wanting to build
their linear regression algorithm into production-level code, and
the predictive model is what is known as a black box algorithm,
they don’t generally focus on the interpretation of the parameters.
If they do, it is with the goal of handtuning them in order to op‐
timize predictive power.

Confidence intervals
Statisticians provide confidence intervals and posterior distribu‐
tions for parameters and estimators, and are interested in captur‐
ing the variability or uncertainty of the parameters. Many
machine learning algorithms, such as k-means or k-nearest neigh‐
bors (which we cover a bit later in this chapter), don’t have a notion
of confidence intervals or uncertainty.

The role of explicit assumptions
Statistical models make explicit assumptions about data-
generating processes and distributions, and you use the data to
estimate parameters. Nonparametric solutions, like we’ll see later
in this chapter, don’t make any assumptions about probability
distributions, or they are implicit.

We say the following lovingly and with respect: statisticians have chos‐
en to spend their lives investigating uncertainty, and they’re never
100% confident about anything. Software engineers like to build
things. They want to build models that predict the best they can, but
there are no concerns about uncertainty—just build it! At companies
like Facebook or Google, the philosophy is to build and iterate often.
If something breaks, it can be fixed. A data scientist who somehow
manages to find a balance between the statistical and computer science
approaches, and to find value in both these ways of being, can thrive.
Data scientists are the multicultural statistician-computer scientist
hybrid, so we’re not tied to any one way of thinking over another; they
both have value. We’ll sum up our take on this with guest speaker Josh
Wills’ (Chapter 13) well-tweeted quote:

Machine Learning Algorithms | 53

Data scientist (noun): Person who is better at statistics than any soft‐
ware engineer and better at software engineering than any statistician.

— Josh Wills

Three Basic Algorithms
Many business or real-world problems that can be solved with data
can be thought of as classification and prediction problems when we
express them mathematically. Happily, a whole host of models and
algorithms can be used to classify and predict.

Your real challenge as a data scientist, once you’ve become familiar
with how to implement them, is understanding which ones to use
depending on the context of the problem and the underlying assump‐
tions. This partially comes with experience—you start seeing enough
problems that you start thinking, “Ah, this is a classification problem
with a binary outcome” or, “This is a classification problem, but oddly
I don’t even have any labels” and you know what to do. (In the first
case, you could use logistic regression or Naive Bayes, and in the sec‐
ond you could start with k-means—more on all these shortly!)

Initially, though, when you hear about these methods in isolation, it
takes some effort on your part as a student or learner to think, “In the
real world, how do I know that this algorithm is the solution to the
problem I’m trying to solve?”

It’s a real mistake to be the type of person walking around with a ham‐
mer looking for a nail to bang: “I know linear regression, so I’m going
to try to solve every problem I encounter with it.” Don’t do that. In‐
stead, try to understand the context of the problem, and the attributes
it has as a problem. Think of those in mathematical terms, and then
think about the algorithms you know and how they map to this type
of problem.

If you’re not sure, it’s good to talk it through with someone who does.
So ask a coworker, head to a meetup group, or start one in your area!
Also, maintain the attitude that it’s not obvious what to do and that’s
what makes it a problem, and so you’re going to approach it circum‐
spectly and methodically. You don’t have to be the know-it-all in the
room who says, “Well, obviously we should use linear regression with
a penalty function for regularization,” even if that seems to you the
right approach.

54 | Chapter 3: Algorithms

We’re saying all this because one of the unfortunate aspects of text‐
books is they often give you a bunch of techniques and then problems
that tell you which method to use that solves the problem (e.g., use
linear regression to predict height from weight). Yes, implementing
and understanding linear regression the first few times is not obvious,
so you need practice with that, but it needs to be addressed that the
real challenge once you have mastery over technique is knowing when
to use linear regression in the first place.

We’re not going to give a comprehensive overview of all possible ma‐
chine learning algorithms, because that would make this a machine
learning book, and there are already plenty of those.

Having said that, in this chapter we’ll introduce three basic algorithms
now and introduce others throughout the book in context. By the end
of the book, you should feel more confident about your ability to learn
new algorithms so that you can pick them up along the way as prob‐
lems require them.

We’ll also do our best to demonstrate the thought processes of data
scientists who had to figure out which algorithm to use in context and
why, but it’s also upon you as a student and learner to force yourself to
think about what the attributes of the problem were that made a given
algorithm the right algorithm to use.

With that said, we still need to give you some basic tools to use, so we’ll
start with linear regression, k-nearest neighbors (k-NN), and k-means.
In addition to what was just said about trying to understand the at‐
tributes of problems that could use these as solutions, look at these
three algorithms from the perspective of: what patterns can we as hu‐
mans see in the data with our eyes that we’d like to be able to automate
with a machine, especially taking into account that as the data gets
more complex, we can’t see these patterns?

Linear Regression
One of the most common statistical methods is linear regression. At
its most basic, it’s used when you want to express the mathematical
relationship between two variables or attributes. When you use it, you
are making the assumption that there is a linear relationship between
an outcome variable (sometimes also called the response variable, de‐
pendent variable, or label) and a predictor (sometimes also called an
independent variable, explanatory variable, or feature); or between

Three Basic Algorithms | 55

one variable and several other variables, in which case you’re modeling
the relationship as having a linear structure.

WTF. So Is It an Algorithm or a Model?
While we tried to make a distinction between the two earlier, we admit
the colloquial use of the words “model” and “algorithm” gets confus‐
ing because the two words seem to be used interchangeably when
their actual definitions are not the same thing at all. In the purest
sense, an algorithm is a set of rules or steps to follow to accomplish
some task, and a model is an attempt to describe or capture the world.
These two seem obviously different, so it seems the distinction should
should be obvious. Unfortunately, it isn’t. For example, regression can
be described as a statistical model as well as a machine learning al‐
gorithm. You’ll waste your time trying to get people to discuss this
with any precision.

In some ways this is a historical artifact of statistics and computer
science communities developing methods and techniques in parallel
and using different words for the same methods. The consequence of
this is that the distinction between machine learning and statistical
modeling is muddy. Some methods (for example, k-means, discussed
in the next section) we might call an algorithm because it’s a series of
computational steps used to cluster or classify objects—on the other
hand, k-means can be reinterpreted as a special case of a Gaussian
mixture model. The net result is that colloquially, people use the terms
algorithm and model interchangeably when it comes to a lot of these
methods, so try not to let it worry you. (Though it bothers us, too.)

Assuming that there is a linear relationship between an outcome vari‐
able and a predictor is a big assumption, but it’s also the simplest one
you can make—linear functions are more basic than nonlinear ones
in a mathematical sense—so in that sense it’s a good starting point.

In some cases, it makes sense that changes in one variable correlate
linearly with changes in another variable. For example, it makes sense
that the more umbrellas you sell, the more money you make. In those
cases you can feel good about the linearity assumption. Other times,
it’s harder to justify the assumption of linearity except locally: in the
spirit of calculus, everything can be approximated by line segments as
long as functions are continuous.

56 | Chapter 3: Algorithms

Let’s back up. Why would you even want to build a linear model in the
first place? You might want to use this relationship to predict future
outcomes, or you might want to understand or describe the relation‐
ship to get a grasp on the situation. Let’s say you’re studying the rela‐
tionship between a company’s sales and how much that company
spends on advertising, or the number of friends someone has on a
social networking site and the time that person spends on that site
daily. These are all numerical outcomes, which mean linear regression
would be a wise choice, at least for a first pass at your problem.

One entry point for thinking about linear regression is to think about
deterministic lines first. We learned back in grade school that we could
describe a line with a slope and an intercept, y = f x = β0 + β1 *x. But
the setting there was always deterministic.

Even for the most mathematically sophisticated among us, if you ha‐
ven’t done it before, it’s a new mindset to start thinking about stochastic
functions. We still have the same components: points listed out ex‐
plicitly in a table (or as tuples), and functions represented in equation
form or plotted on a graph. So let’s build up to linear regression starting
from a deterministic function.

Example 1. Overly simplistic example to start. Suppose you run a
social networking site that charges a monthly subscription fee of $25,
and that this is your only source of revenue. Each month you collect
data and count your number of users and total revenue. You’ve done
this daily over the course of two years, recording it all in a spreadsheet.
You could express this data as a series of points. Here are the first four:

S = x, y = 1,25 , 10,250 , 100,2500 , 200,5000

If you showed this to someone else who didn’t even know how much
you charged or anything about your business model (what kind of
friend wasn’t paying attention to your business model?!), they might
notice that there’s a clear relationship enjoyed by all of these points,
namely y = 25x. They likely could do this in their head, in which case
they figured out that:

• There’s a linear pattern.
• The coefficient relating x and y is 25.
• It seems deterministic.

Three Basic Algorithms | 57

You can even plot it as in Figure 3-1 to verify they were right (even
though you knew they were because you made the business model in
the first place). It’s a line!

Figure 3-1. An obvious linear pattern

Example 2. Looking at data at the user level. Say you have a dataset
keyed by user (meaning each row contains data for a single user), and
the columns represent user behavior on a social networking site over
a period of a week. Let’s say you feel comfortable that the data is clean
at this stage and that you have on the order of hundreds of thousands
of users. The names of the columns are total_num_friends,
total_new_friends_this_week, num_visits, time_spent, num‐
ber_apps_downloaded, number_ads_shown, gender, age, and so on.
During the course of your exploratory data analysis, you’ve randomly
sampled 100 users to keep it simple, and you plot pairs of these vari‐
ables, for example, x = total_new_friends and y = time_spent (in sec‐
onds). The business context might be that eventually you want to be
able to promise advertisers who bid for space on your website in ad‐
vance a certain number of users, so you want to be able to forecast

58 | Chapter 3: Algorithms

number of users several days or weeks in advance. But for now, you
are simply trying to build intuition and understand your dataset.

You eyeball the first few rows and see:

7 276

3 43

4 82

6 136

10 417

9 269

Now, your brain can’t figure out what’s going on by just looking at them
(and your friend’s brain probably can’t, either). They’re in no obvious
particular order, and there are a lot of them. So you try to plot it as in
Figure 3-2.

Figure 3-2. Looking kind of linear

Three Basic Algorithms | 59

It looks like there’s kind of a linear relationship here, and it makes sense;
the more new friends you have, the more time you might spend on the
site. But how can you figure out how to describe that relationship?
Let’s also point out that there is no perfectly deterministic relationship
between number of new friends and time spent on the site, but it makes
sense that there is an association between these two variables.

Start by writing something down
There are two things you want to capture in the model. The first is the
trend and the second is the variation. We’ll start first with the trend.

First, let’s start by assuming there actually is a relationship and that it’s
linear. It’s the best you can do at this point.

There are many lines that look more or less like they might work, as
shown in Figure 3-3.

Figure 3-3. Which line is the best fit?

60 | Chapter 3: Algorithms

So how do you pick which one?

Because you’re assuming a linear relationship, start your model by
assuming the functional form to be:

y = β0 + β1x

Now your job is to find the best choices for β0 and β1 using the ob‐
served data to estimate them: x1, y1 , x2, y2 , . . . xn, yn .

Writing this with matrix notation results in this:

y = x · β

There you go: you’ve written down your model. Now the rest is fitting
the model.

Fitting the model
So, how do you calculate β? The intuition behind linear regression is
that you want to find the line that minimizes the distance between all
the points and the line.

Many lines look approximately correct, but your goal is to find the
optimal one. Optimal could mean different things, but let’s start with
optimal to mean the line that, on average, is closest to all the points.
But what does closest mean here?

Look at Figure 3-4. Linear regression seeks to find the line that mini‐
mizes the sum of the squares of the vertical distances between the
approximated or predicted yis and the observed yis. You do this be‐
cause you want to minimize your prediction errors. This method is
called least squares estimation.

Three Basic Algorithms | 61

Figure 3-4. The line closest to all the points

To find this line, you’ll define the “residual sum of squares” (RSS),
denoted RSS β , to be:

RSS β = ∑i yi − βxi
2

where i ranges over the various data points. It is the sum of all the
squared vertical distances between the observed points and any given
line. Note this is a function of β and you want to optimize with respect
to β to find the optimal line.

To minimize RSS β = y − βx t y − βx , differentiate it with respect to
β and set it equal to zero, then solve for β . This results in:

β = xt x −1xt y

62 | Chapter 3: Algorithms

Here the little “hat” symbol on top of the β is there to indicate that it’s
the estimator for β. You don’t know the true value of β; all you have is
the observed data, which you plug into the estimator to get an estimate.

To actually fit this, to get the βs, all you need is one line of R code where
you’ve got a column of y’s and a (single) column of x’s:

model <- lm(y ~ x)

So for the example where the first few rows of the data were:

x y

7 276

3 43

4 82

6 136

10 417

9 269

The R code for this would be:

> model <- lm (y~x)
> model

Call:
lm(formula = y ~ x)

Coefficients:
(Intercept) x
 -32.08 45.92

> coefs <- coef(model)
> plot(x, y, pch=20,col="red", xlab="Number new friends",
 ylab="Time spent (seconds)")
> abline(coefs[1],coefs[2])

And the estimated line is y = −32.08+45.92x, which you’re welcome
to round to y = −32+46x, and the corresponding plot looks like the
lefthand side of Figure 3-5.

Three Basic Algorithms | 63

Figure 3-5. On the left is the fitted line. We can see that for any fixed
value, say 5, the values for y vary. For people with 5 new friends, we
display their time spent in the plot on the right.

But it’s up to you, the data scientist, whether you think you’d actually
want to use this linear model to describe the relationship or predict
new outcomes. If a new x-value of 5 came in, meaning the user had
five new friends, how confident are you in the output value of –32.08
+ 45.92*5 = 195.7 seconds?

In order to get at this question of confidence, you need to extend your
model. You know there’s variation among time spent on the site by
people with five new friends, meaning you certainly wouldn’t make
the claim that everyone with five new friends is guaranteed to spend
195.7 seconds on the site. So while you’ve so far modeled the trend,
you haven’t yet modeled the variation.

Extending beyond least squares
Now that you have a simple linear regression model down (one output,
one predictor) using least squares estimation to estimate your βs, you
can build upon that model in three primary ways, described in the
upcoming sections:

1. Adding in modeling assumptions about the errors
2. Adding in more predictors
3. Transforming the predictors

Adding in modeling assumptions about the errors. If you use your model
to predict y for a given value of x, your prediction is deterministic and
doesn’t capture the variablility in the observed data. See on the

64 | Chapter 3: Algorithms

righthand side of Figure 3-5 that for a fixed value of x = 5, there is
variability among the time spent on the site. You want to capture this
variability in your model, so you extend your model to:

y = β0 + β1x +ϵ

where the new term ϵ is referred to as noise, which is the stuff that you
haven’t accounted for by the relationships you’ve figured out so far. It’s
also called the error term—ϵ represents the actual error, the difference
between the observations and the true regression line, which you’ll
never know and can only estimate with your βs.

One often makes the modeling assumption that the noise is normally
distributed, which is denoted:

ϵ∼N 0,σ2

Note this is sometimes not a reasonable assumption. If you
are dealing with a known fat-tailed distribution, and if your
linear model is picking up only a small part of the value of
the variable y, then the error terms are likely also fat-tailed.
This is the most common situation in financial modeling.
That’s not to say we don’t use linear regression in finance,
though. We just don’t attach the “noise is normal” assumption
to it.

With the preceding assumption on the distribution of noise, this mod‐
el is saying that, for any given value of x, the conditional distribution
of y given x is p y x ∼N β0 + β1x,σ2 .

So, for example, among the set of people who had five new friends this
week, the amount of the time they spent on the website had a normal
distribution with a mean of β0 + β1 *5 and a variance of σ2, and you’re
going to estimate your parameters β0,β1,σ from the data.

How do you fit this model? How do you get the parameters β0,β1,σ
from the data?

Three Basic Algorithms | 65

Turns out that no matter how the ϵs are distributed, the least
squares estimates that you already derived are the optimal
estimators for βs because they have the property of being un‐
biased and of being the minimum variance estimators. If you
want to know more about these properties and see a proof
for this, we refer you to any good book on statistical inference
(for example, Statistical Inference by Casella and Berger).

So what can you do with your observed data to estimate the variance
of the errors? Now that you have the estimated line, you can see how
far away the observed data points are from the line itself, and you can
treat these differences, also known as observed errors or residuals ,as
observations themselves, or estimates of the actual errors, the ϵs.
Define ei = yi − yi = yi − β0 + β1xi for i = 1, . . . ,n.

Then you estimate the variance (σ2) of ϵ, as:

∑ i ei
2

n−2

Why are we dividing by n–2? A natural question. Dividing
by n–2, rather than just n, produces an unbiased estimator.
The 2 corresponds to the number of model parameters. Here
again, Casella and Berger’s book is an excellent resource for
more background information.

This is called the mean squared error and captures how much the pre‐
dicted value varies from the observed. Mean squared error is a useful
quantity for any prediction problem. In regression in particular, it’s
also an estimator for your variance, but it can’t always be used or in‐
terpreted that way. It appears in the evaluation metrics in the following
section.

Evaluation metrics

We asked earlier how confident you would be in these estimates and
in your model. You have a couple values in the output of the R function
that help you get at the issue of how confident you can be in the esti‐
mates: p-values and R-squared. Going back to our model in R, if we

66 | Chapter 3: Algorithms

type in summary(model), which is the name we gave to this model, the
output would be:

summary (model)
Call:
lm(formula = y ~ x)

Residuals:
 Min 1Q Median 3Q Max
-121.17 -52.63 -9.72 41.54 356.27

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -32.083 16.623 -1.93 0.0565 .
x 45.918 2.141 21.45 <2e-16 ***
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 77.47 on 98 degrees of freedom
Multiple R-squared: 0.8244, Adjusted R-squared: 0.8226
F-statistic: 460 on 1 and 98 DF, p-value: < 2.2e-16

R-squared

R2 = 1−
∑i yi − yi

2

∑i yi − y 2 . This can be interpreted as the proportion of

variance explained by our model. Note that mean squared error
is in there getting divided by total error, which is the proportion
of variance unexplained by our model and we calculate 1 minus
that.

p-values
Looking at the output, the estimated βs are in the column marked
Estimate. To see the p-values, look at Pr > t . We can interpret
the values in this column as follows: We are making a null hy‐
pothesis that the βs are zero. For any given β, the p-value captures
the probability of observing the data that we observed, and ob‐
taining the test-statistic that we obtained under the null hypothe‐
sis. This means that if we have a low p-value, it is highly unlikely
to observe such a test-statistic under the null hypothesis, and the
coefficient is highly likely to be nonzero and therefore significant.

Cross-validation
Another approach to evaluating the model is as follows. Divide
our data up into a training set and a test set: 80% in the training
and 20% in the test. Fit the model on the training set, then look at
the mean squared error on the test set and compare it to that on
the training set. Make this comparison across sample size as well.

Three Basic Algorithms | 67

If the mean squared errors are approximately the same, then our
model generalizes well and we’re not in danger of overfitting. See
Figure 3-6 to see what this might look like. This approach is highly
recommended.

Figure 3-6. Comparing mean squared error in training and test set,
taken from a slide of Professor Nando de Freitas; here, the ground
truth is known because it came from a dataset with data simulated
from a known distribution

Other models for error terms

The mean squared error is an example of what is called a loss func‐
tion. This is the standard one to use in linear regression because it gives
us a pretty nice measure of closeness of fit. It has the additional de‐
sirable property that by assuming that εs are normally distributed, we
can rely on the maximum likelihood principle. There are other loss
functions such as one that relies on absolute value rather than squar‐
ing. It’s also possible to build custom loss functions specific to your
particular problem or context, but for now, you’re safe with using mean
square error.

68 | Chapter 3: Algorithms

Adding other predictors. What we just looked at was simple linear re‐
gression—one outcome or dependent variable and one predictor. But
we can extend this model by building in other predictors, which is
called multiple linear regression:

y = β0 + β1x1 + β2x2 + β3x3 +ϵ .

All the math that we did before holds because we had expressed it in
matrix notation, so it was already generalized to give the appropriate
estimators for the β. In the example we gave of predicting time spent
on the website, the other predictors could be the user’s age and gender,
for example. We’ll explore feature selection more in Chapter 7, which
means figuring out which additional predictors you’d want to put in
your model. The R code will just be:

model <- lm(y ~ x_1 + x_2 + x_3)

Or to add in interactions between variables:

model <- lm(y ~ x_1 + x_2 + x_3 + x2_*x_3)

One key here is to make scatterplots of y against each of the predictors
as well as between the predictors, and histograms of y x for various
values of each of the predictors to help build intuition. As with simple
linear regression, you can use the same methods to evaluate your
model as described earlier: looking at R2, p-values, and using training
and testing sets.

Transformations. Going back to one x predicting one y, why did we
assume a linear relationship? Instead, maybe, a better model would be
a polynomial relationship like this:

y = β0 + β1x + β2x2 + β3x3

Wait, but isn’t this linear regression? Last time we checked, polyno‐
mials weren’t linear. To think of it as linear, you transform or create
new variables—for example, z = x2—and build a regression model
based on z. Other common transformations are to take the log or to
pick a threshold and turn it into a binary predictor instead.

If you look at the plot of time spent versus number friends, the shape
looks a little bit curvy. You could potentially explore this further
by building up a model and checking to see whether this yields an
improvement.

Three Basic Algorithms | 69

What you’re facing here, though, is one of the biggest challenges for a
modeler: you never know the truth. It’s possible that the true model is
quadratic, but you’re assuming linearity or vice versa. You do your best
to evaluate the model as discussed earlier, but you’ll never really know
if you’re right. More and more data can sometimes help in this regard
as well.

Review
Let’s review the assumptions we made when we built and fit our model:

• Linearity
• Error terms normally distributed with mean 0
• Error terms independent of each other
• Error terms have constant variance across values of x
• The predictors we’re using are the right predictors

When and why do we perform linear regression? Mostly for two
reasons:

• If we want to predict one variable knowing others
• If we want to explain or understand the relationship between two

or more things

Exercise
To help understand and explore new concepts, you can simulate fake
datasets in R. The advantage of this is that you “play God” because you
actually know the underlying truth, and you get to see how good your
model is at recovering the truth.

Once you’ve better understood what’s going on with your fake dataset,
you can then transfer your understanding to a real one. We’ll show
you how to simulate a fake dataset here, then we’ll give you some ideas
for how to explore it further:

Simulating fake data
x_1 <- rnorm(1000,5,7) # from a normal distribution simulate
 # 1000 values with a mean of 5 and
 # standard deviation of 7
hist(x_1, col="grey") # plot p(x)
true_error <- rnorm(1000,0,2)
true_beta_0 <- 1.1
true_beta_1 <- -8.2

70 | Chapter 3: Algorithms

y <- true_beta_0 + true_beta_1*x_1 + true_error
hist(y) # plot p(y)
plot(x_1,y, pch=20,col="red") # plot p(x,y)

1. Build a regression model and see that it recovers the true values
of the βs.

2. Simulate another fake variable x2 that has a Gamma distribution
with parameters you pick. Now make the truth be that y is a linear
combination of both x1 and x2. Fit a model that only depends on
x1. Fit a model that only depends on x2. Fit a model that uses both.
Vary the sample size and make a plot of mean square error of the
training set and of the test set versus sample size.

3. Create a new variable, z, that is equal to x1
2. Include this as one of

the predictors in your model. See what happens when you fit a
model that depends on x1 only and then also on z. Vary the sample
size and make a plot of mean square error of the training set and
of the test set versus sample size.

4. Play around more by (a) changing parameter values (the true βs),
(b) changing the distribution of the true error, and (c) including
more predictors in the model with other kinds of probability dis‐
tributions. (rnorm() means randomly generate values from a nor‐
mal distribution. rbinom() does the same for binomial. So look
up these functions online and try to find more.)

5. Create scatterplots of all pairs of variables and histograms of single
variables.

k-Nearest Neighbors (k-NN)
K-NN is an algorithm that can be used when you have a bunch of
objects that have been classified or labeled in some way, and other
similar objects that haven’t gotten classified or labeled yet, and you
want a way to automatically label them.

The objects could be data scientists who have been classified as “sexy”
or “not sexy”; or people who have been labeled as “high credit” or “low
credit”; or restaurants that have been labeled “five star,” “four star,”
“three star,” “two star,” “one star,” or if they really suck, “zero stars.”
More seriously, it could be patients who have been classified as “high
cancer risk” or “low cancer risk.”

Three Basic Algorithms | 71

Take a second and think whether or not linear regression would work
to solve problems of this type.

OK, so the answer is: it depends. When you use linear regression, the
output is a continuous variable. Here the output of your algorithm is
going to be a categorical label, so linear regression wouldn’t solve the
problem as it’s described.

However, it’s not impossible to solve it with linear regression plus the
concept of a “threshold.” For example, if you’re trying to predict peo‐
ple’s credit scores from their ages and incomes, and then picked a
threshold such as 700 such that if your prediction for a given person
whose age and income you observed was above 700, you’d label their
predicted credit as “high,” or toss them into a bin labeled “high.”
Otherwise, you’d throw them into the bin labeled “low.” With more
thresholds, you could also have more fine-grained categories like “very
low,” “low,” “medium,” “high,” and “very high.”

In order to do it this way, with linear regression you’d have establish
the bins as ranges of a continuous outcome. But not everything is on
a continuous scale like a credit score. For example, what if your labels
are “likely Democrat,” “likely Republican,” and “likely independent”?
What do you do now?

The intution behind k-NN is to consider the most similar other items
defined in terms of their attributes, look at their labels, and give the
unassigned item the majority vote. If there’s a tie, you randomly select
among the labels that have tied for first.

So, for example, if you had a bunch of movies that were labeled
“thumbs up” or “thumbs down,” and you had a movie called “Data
Gone Wild” that hadn’t been rated yet—you could look at its attributes:
length of movie, genre, number of sex scenes, number of Oscar-
winning actors in it, and budget. You could then find other movies
with similar attributes, look at their ratings, and then give “Data Gone
Wild” a rating without ever having to watch it.

To automate it, two decisions must be made: first, how do you define
similarity or closeness? Once you define it, for a given unrated item,
you can say how similar all the labeled items are to it, and you can take
the most similar items and call them neighbors, who each have a “vote.”

This brings you to the second decision: how many neighbors should
you look at or “let vote”? This value is k, which ultimately you’ll choose
as the data scientist, and we’ll tell you how.

72 | Chapter 3: Algorithms

Make sense? Let’s try it out with a more realistic example.

Example with credit scores
Say you have the age, income, and a credit category of high or low for
a bunch of people and you want to use the age and income to predict
the credit label of “high” or “low” for a new person.

For example, here are the first few rows of a dataset, with income rep‐
resented in thousands:

age income credit
69 3 low
66 57 low
49 79 low
49 17 low
58 26 high
44 71 high

You can plot people as points on the plane and label people with an
empty circle if they have low credit ratings, as shown in Figure 3-7.

Figure 3-7. Credit rating as a function of age and income

Three Basic Algorithms | 73

What if a new guy comes in who is 57 years old and who makes
$37,000? What’s his likely credit rating label? Look at Figure 3-8. Based
on the other people near him, what credit score label do you think he
should be given? Let’s use k-NN to do it automatically.

Figure 3-8. What about that guy?

Here’s an overview of the process:

1. Decide on your similarity or distance metric.
2. Split the original labeled dataset into training and test data.
3. Pick an evaluation metric. (Misclassification rate is a good one.

We’ll explain this more in a bit.)
4. Run k-NN a few times, changing k and checking the evaluation

measure.
5. Optimize k by picking the one with the best evaluation measure.
6. Once you’ve chosen k, use the same training set and now create a

new test set with the people’s ages and incomes that you have no

74 | Chapter 3: Algorithms

labels for, and want to predict. In this case, your new test set only
has one lonely row, for the 57-year-old.

Similarity or distance metrics
Definitions of “closeness” and similarity vary depending on the con‐
text: closeness in social networks could be defined as the number of
overlapping friends, for example.

For the sake of our problem of what a neighbor is, we can use Euclidean
distance on the plane if the variables are on the same scale. And that
can sometimes be a big IF.

Caution: Modeling Danger Ahead!
The scalings question is a really big deal, and if you do it wrong, your
model could just suck.

Let’s consider an example: Say you measure age in years, income in
dollars, and credit rating as credit scores normally are given—some‐
thing like SAT scores. Then two people would be represented by trip‐
lets such as 25,54000,700 and 35,76000,730 . In particular, their
“distance” would be completely dominated by the difference in their
salaries.

On the other hand, if you instead measured salary in thousands of
dollars, they’d be represented by the triplets 25,54,700 and
35,76,730 , which would give all three variables similar kinds of in‐

fluence.

Ultimately the way you scale your variables, or equivalently in this
situation the way you define your concept of distance, has a potentially
enormous effect on the output. In statistics it is called your “prior.”

Euclidean distance is a good go-to distance metric for attributes that
are real-valued and can be plotted on a plane or in multidimensional
space. Some others are:
Cosine Similarity

Also can be used between two real-valued vectors, x and y , and
will yield a value between –1 (exact opposite) and 1 (exactly the
same) with 0 in between meaning independent. Recall the defi‐
nition cos x , y = x · y

x y
.

Three Basic Algorithms | 75

Jaccard Distance or Similarity
This gives the distance between a set of objects—for example, a
list of Cathy’s friends A = Kahn,Mark,Laura, . . . and a list of
Rachel’s friends B = Mladen,Kahn,Mark, . . . —and says how
similar those two sets are: J A,B = A⋂B

A⋃B .

Mahalanobis Distance
Also can be used between two real-valued vectors and has the
advantage over Euclidean distance that it takes into account cor‐

relation and is scale-invariant. d x , y = x − y T S−1 x − y ,
where S is the covariance matrix.

Hamming Distance
Can be used to find the distance between two strings or pairs of
words or DNA sequences of the same length. The distance be‐
tween olive and ocean is 4 because aside from the “o” the other 4
letters are different. The distance between shoe and hose is 3 be‐
cause aside from the “e” the other 3 letters are different. You just
go through each position and check whether the letters the same
in that position, and if not, increment your count by 1.

Manhattan
This is also a distance between two real-valued k-dimensional
vectors. The image to have in mind is that of a taxi having to travel
the city streets of Manhattan, which is laid out in a grid-like fash‐
ion (you can’t cut diagonally across buildings). The distance is
therefore defined as d x , y = ∑i

k xi − yi , where i is the ith ele‐
ment of each of the vectors.

There are many more distance metrics available to you depending on
your type of data. We start with a Google search when we’re not sure
where to start.

What if your attributes are a mixture of kinds of data? This happens
in the case of the movie ratings example: some were numerical at‐
tributes, such as budget and number of actors, and one was categorical,
genre. But you can always define your own custom distance metric.

For example, you can say if movies are the same genre, that will con‐
tribute “0” to their distance. But if they’re of a different genre, that will
contribute “10,” where you picked the value 10 based on the fact that
this was on the same scale as budget (millions of dollars), which is in

76 | Chapter 3: Algorithms

the range of 0 and 100. You could do the same with number of actors.
You could play around with the 10; maybe 50 is better.

You’ll want to justify why you’re making these choices. The justifica‐
tion could be that you tried different values and when you tested the
algorithm, this gave the best evaluation metric. Essentially this 10 is
either a second tuning parameter that you’ve introduced into the al‐
gorithm on top of the k, or a prior you’ve put on the model, depending
on your point of view and how it’s used.

Training and test sets
For any machine learning algorithm, the general approach is to have
a training phase, during which you create a model and “train it”; and
then you have a testing phase, where you use new data to test how good
the model is.

For k-NN, the training phase is straightforward: it’s just reading in
your data with the “high” or “low” credit data points marked. In testing,
you pretend you don’t know the true label and see how good you are
at guessing using the k-NN algorithm.

To do this, you’ll need to save some clean data from the overall data
for the testing phase. Usually you want to save randomly selected data,
let’s say 20%.

Your R console might look like this:

> head(data)
 age income credit
1 69 3 low
2 66 57 low
3 49 79 low
4 49 17 low
5 58 26 high
6 44 71 high

n.points <- 1000 # number of rows in the dataset
sampling.rate <- 0.8

we need the number of points in the test set to calculate
the misclassification rate
num.test.set.labels <- n.points * (1 - sampling.rate)

randomly sample which rows will go in the training set
training <- sample(1:n.points, sampling.rate * n.points,
 replace=FALSE)
train <- subset(data[training,], select = c(Age, Income))
define the training set to be those rows

Three Basic Algorithms | 77

the other rows are going into the test set
testing <- setdiff(1:n.points, training)
define the test set to be the other rows
test <- subset(data[testing,], select = c(Age, Income))

cl <- data$Credit[training]
this is the subset of labels for the training set
true.labels <- data$Credit[testing]
subset of labels for the test set, we're withholding these

Pick an evaluation metric
How do you evaluate whether your model did a good job?

This isn’t easy or universal—you may decide you want to penalize cer‐
tain kinds of misclassification more than others. False negatives may
be way worse than false positives. Coming up with the evaluation
metric could be something you work on with a domain expert.

For example, if you were using a classification algorithm to predict
whether someone had cancer or not, you would want to minimize false
negatives (misdiagnosing someone as not having cancer when they
actually do), so you could work with a doctor to tune your evaluation
metric.

Note you want to be careful because if you really wanted to have no
false negatives, you could just tell everyone they have cancer. So it’s a
trade-off between sensitivity and specificity, where sensitivity is here
defined as the probability of correctly diagnosing an ill patient as ill;
specificity is here defined as the probability of correctly diagnosing a
well patient as well.

Other Terms for Sensitivity and Specificity
Sensitivity is also called the true positive rate or recall and
varies based on what academic field you come from, but they
all mean the same thing. And specificity is also called the true
negative rate. There is also the false positive rate and the false
negative rate, and these don’t get other special names.

Another evaluation metric you could use is precision, defined in
Chapter 5. The fact that some of the same formulas have different
names is due to the fact that different academic disciplines have de‐
veloped these ideas separately. So precision and recall are the quantities

78 | Chapter 3: Algorithms

used in the field of information retrieval. Note that precision is not the
same thing as specificity.

Finally, we have accuracy, which is the ratio of the number of correct
labels to the total number of labels, and the misclassification rate,
which is just 1–accuracy. Minimizing the misclassification rate then
just amounts to maximizing accuracy.

Putting it all together
Now that you have a distance measure and an evaluation metric, you’re
ready to roll.

For each person in your test set, you’ll pretend you don’t know his
label. Look at the labels of his three nearest neighbors, say, and use the
label of the majority vote to label him. You’ll label all the members of
the test set and then use the misclassification rate to see how well you
did. All this is done automatically in R, with just this single line of R
code:

knn (train, test, cl, k=3)

Choosing k
How do you choose k? This is a parameter you have control over. You
might need to understand your data pretty well to get a good guess,
and then you can try a few different k’s and see how your evaluation
changes. So you’ll run k-nn a few times, changing k, and checking the
evaluation metric each time.

Binary Classes
When you have binary classes like “high credit” or “low
credit,” picking k to be an odd number can be a good idea
because there will always be a majority vote, no ties. If there
is a tie, the algorithm just randomly picks.

we'll loop through and see what the misclassification rate
is for different values of k
for (k in 1:20) {
 print(k)
 predicted.labels <- knn(train, test, cl, k)
 # We're using the R function knn()
 num.incorrect.labels <- sum(predicted.labels != true.labels)
 misclassification.rate <- num.incorrect.labels /
 num.test.set.labels

Three Basic Algorithms | 79

 print(misclassification.rate)
}

Here’s the output in the form (k, misclassification rate):

k misclassification.rate
1, 0.28
2, 0.315
3, 0.26
4, 0.255
5, 0.23
6, 0.26
7, 0.25
8, 0.25
9, 0.235
10, 0.24

So let’s go with k = 5 because it has the lowest misclassification rate,
and now you can apply it to your guy who is 57 with a $37,000 salary.
In the R console, it looks like:

> test <- c(57,37)
> knn(train,test,cl, k = 5)
[1] low

The output by majority vote is a low credit score when k = 5.

Test Set in k-NN
Notice we used the function knn() twice and used it in dif‐
ferent ways. In the first way, the test set was some data we
were using to evaluate how good the model was. In the second
way, the “test” set was actually a new data point that we
wanted a prediction for. We could also have given it many
rows of people who we wanted predictions for. But notice
that R doesn’t know the difference whether what you’re
putting in for the test set is truly a “test” set where you know
the real labels, or a test set where you don’t know and want
predictions.

What are the modeling assumptions?
In the previous chapter we discussed modeling and modeling as‐
sumptions. So what were the modeling assumptions here?

The k-NN algorithm is an example of a nonparametric approach. You
had no modeling assumptions about the underlying data-generating
distributions, and you weren’t attempting to estimate any parameters.
But you still made some assumptions, which were:

80 | Chapter 3: Algorithms

• Data is in some feature space where a notion of “distance” makes
sense.

• Training data has been labeled or classified into two or more
classes.

• You pick the number of neighbors to use, k.
• You’re assuming that the observed features and the labels are

somehow associated. They may not be, but ultimately your eval‐
uation metric will help you determine how good the algorithm is
at labeling. You might want to add more features and check how
that alters the evaluation metric. You’d then be tuning both which
features you were using and k. But as always, you’re in danger here
of overfitting.

Both linear regression and k-NN are examples of “supervised learn‐
ing,” where you’ve observed both x and y, and you want to know the
function that brings x to y. Next up, we’ll look at an algorithm you can
use when you don’t know what the right answer is.

k-means
So far we’ve only seen supervised learning, where we know beforehand
what label (aka the “right answer”) is and we’re trying to get our model
to be as accurate as possible, defined by our chosen evaluation metric.

k-means is the first unsupervised learning technique we’ll look into,
where the goal of the algorithm is to determine the definition of the
right answer by finding clusters of data for you.

Let’s say you have some kind of data at the user level, e.g., Google+
data, survey data, medical data, or SAT scores.

Start by adding structure to your data. Namely, assume each row of
your dataset corresponds to a user as follows:

age gender income state household size

Your goal is to segment the users. This process is known by various
names: besides being called segmenting, you could say that you’re go‐
ing to stratify, group, or cluster the data. They all mean finding similar
types of users and bunching them together.

Why would you want to do this? Here are a few examples:

Three Basic Algorithms | 81

• You might want to give different users different experiences. Mar‐
keting often does this; for example, to offer toner to people who
are known to own printers.

• You might have a model that works better for specific groups. Or
you might have different models for different groups.

• Hierarchical modeling in statistics does something like this; for
example, to separately model geographical effects from household
effects in survey results.

To see why an algorithm like this might be useful, let’s first try to con‐
struct something by hand. That might mean you’d bucket users using
handmade thresholds.

So for an attribute like age, you’d create bins: 20–24, 25–30, etc. The
same technique could be used for other attributes like income. States
or cities are in some sense their own buckets, but you might want fewer
buckets, depending on your model and the number of data points. In
that case, you could bucket the buckets and think of “East Coast” and
“Midwest” or something like that.

Say you’ve done that for each attribute. You may have 10 age buckets,
2 gender buckets, and so on, which would result in 10 × 2 × 50 × 10 ×
3 = 30,000 possible bins, which is big.

Imagine this data existing in a five-dimensional space where each axis
corresponds to one attribute. So there’s a gender axis, an income axis,
and so on. You can also label the various possible buckets along the
corresponding axes, and if you did so, the resulting grid would consist
of every possible bin—a bin for each possible combination of at‐
tributes.

Each user would then live in one of those 30,000 five-dimensional cells.
But wait, it’s highly unlikely you’d want to build a different marketing
campaign for each bin. So you’d have to bin the bins…

Now you likely see the utility of having an algorithm to do this for you,
especially if you could choose beforehand how many bins you want.
That’s exactly what k-means is: a clustering algorithm where k is the
number of bins.

2D version
Let’s back up to a simpler example than the five-dimensional one we
just discussed. Let’s say you have users where you know how many ads

82 | Chapter 3: Algorithms

http://www.stat.columbia.edu/~gelman/research/published/multi2.pdf

have been shown to each user (the number of impressions) and how
many times each has clicked on an ad (number of clicks).

Figure 3-9 shows a simplistic picture that illustrates what this might
look like.

Figure 3-9. Clustering in two dimensions; look at the panels in the left
column from top to bottom, and then the right column from top to
bottom

Visually you can see in the top-left that the data naturally falls into
clusters. This may be easy for you to do with your eyes when it’s only
in two dimensions and there aren’t that many points, but when you
get to higher dimensions and more data, you need an algorithm to
help with this pattern-finding process. k-means algorithm looks for
clusters in d dimensions, where d is the number of features for each
data point.

Three Basic Algorithms | 83

Here’s how the algorithm illustrated in Figure 3-9 works:

1. Initially, you randomly pick k centroids (or points that will be the
center of your clusters) in d-space. Try to make them near the data
but different from one another.

2. Then assign each data point to the closest centroid.
3. Move the centroids to the average location of the data points

(which correspond to users in this example) assigned to it.
4. Repeat the preceding two steps until the assignments don’t change,

or change very little.

It’s up to you to interpret if there’s a natural way to describe these
groups once the algorithm’s done. Sometimes you’ll need to jiggle
around k a few times before you get natural groupings.

This is an example of unsupervised learning because the labels are not
known and are instead discovered by the algorithm.

k-means has some known issues:

• Choosing k is more an art than a science, although there are
bounds: 1 ≤ k ≤ n, where n is number of data points.

• There are convergence issues—the solution can fail to exist, if the
algorithm falls into a loop, for example, and keeps going back and
forth between two possible solutions, or in other words, there isn’t
a single unique solution.

• Interpretability can be a problem—sometimes the answer isn’t at
all useful. Indeed that’s often the biggest problem.

In spite of these issues, it’s pretty fast (compared to other clustering
algorithms), and there are broad applications in marketing, computer
vision (partitioning an image), or as a starting point for other models.

In practice, this is just one line of code in R:

kmeans(x, centers, iter.max = 10, nstart = 1,
 algorithm = c("Hartigan-Wong", "Lloyd", "Forgy",
 "MacQueen"))

Your dataset needs to be a matrix, x, each column of which is one of
your features. You specify k by selecting centers. It defaults to a certain
number of iterations, which is an argument you can change. You can
also select the specific algorithm it uses to discover the clusters.

84 | Chapter 3: Algorithms

Historical Perspective: k-means
Wait, didn’t we just describe the algorithm? It turns out there’s more
than one way to go after k-means clustering.

The standard k-means algorithm is attributed to separate work by
Hugo Steinhaus and Stuart Lloyd in 1957, but it wasn’t called “k-
means” then. The first person to use that term was James MacQueen
in 1967. It wasn’t published outside Bell Labs until 1982.

Newer versions of the algorithm are Hartigan-Wong and Lloyd and
Forgy, named for their inventors and developed throughout the ’60s
and ’70s. The algorithm we described is the default, Hartigan-Wong.
It’s fine to use the default.

As history keeps marching on, it’s worth checking out the more recent
k-means++ developed in 2007 by David Arthur and Sergei Vassilvit‐
skii (now at Google), which helps avoid convergence issues with
k-means by optimizing the initial seeds.

Exercise: Basic Machine Learning Algorithms
Continue with the NYC (Manhattan) Housing dataset you worked
with in the preceding chapter: http://abt.cm/1g3A12P.

• Analyze sales using regression with any predictors you feel are
relevant. Justify why regression was appropriate to use.

• Visualize the coefficients and fitted model.
• Predict the neighborhood using a k-NN classifier. Be sure to with‐

hold a subset of the data for testing. Find the variables and the k
that give you the lowest prediction error.

• Report and visualize your findings.
• Describe any decisions that could be made or actions that could

be taken from this analysis.

Solutions
In the preceding chapter, we showed how explore and clean this da‐
taset, so you’ll want to do that first before you build your regression
model. Following are two pieces of R code. The first shows how you

Exercise: Basic Machine Learning Algorithms | 85

http://abt.cm/1g3A12P

might go about building your regression models, and the second
shows how you might clean and prepare your data and then build a
k-NN classifier.

Sample R code: Linear regression on the housing dataset
Author: Ben Reddy

model1 <- lm(log(sale.price.n) ~ log(gross.sqft),data=bk.homes)
what's going on here?

bk.homes[which(bk.homes$gross.sqft==0),]

bk.homes <- bk.homes[which(bk.homes$gross.sqft>0 &
 bk.homes$land.sqft>0),]
model1 <- lm(log(sale.price.n) ~ log(gross.sqft),data=bk.homes)
summary(model1)

plot(log(bk.homes$gross.sqft),log(bk.homes$sale.price.n))
abline(model1,col="red",lwd=2)
plot(resid(model1))

model2 <- lm(log(sale.price.n) ~ log(gross.sqft) +
 log(land.sqft) + factor(neighborhood),data=bk.homes)
summary(model2)
plot(resid(model2))

leave out intercept for ease of interpretability
model2a <- lm(log(sale.price.n) ~ 0 + log(gross.sqft) +
 log(land.sqft) + factor(neighborhood),data=bk.homes)
summary(model2a)
plot(resid(model2a))

add building type
model3 <- lm(log(sale.price.n) ~ log(gross.sqft) +
 log(land.sqft) + factor(neighborhood) +
 factor(building.class.category),data=bk.homes)
summary(model3)
plot(resid(model3))

interact neighborhood and building type
model4 <- lm(log(sale.price.n) ~ log(gross.sqft) +
 log(land.sqft) + factor(neighborhood)*
 factor(building.class.category),data=bk.homes)
summary(model4)
plot(resid(model4))

Sample R code: K-NN on the housing dataset
Author: Ben Reddy
require(gdata)
require(geoPlot)

86 | Chapter 3: Algorithms

require(class)

setwd("~/Documents/Teaching/Stat 4242 Fall 2012/Homework 2")

mt <- read.xls("rollingsales_manhattan.xls",
 pattern="BOROUGH",stringsAsFactors=FALSE)
head(mt)
summary(mt)

names(mt) <- tolower(names(mt))

mt$sale.price.n <- as.numeric(gsub("[^[:digit:]]","",
 mt$sale.price))
sum(is.na(mt$sale.price.n))
sum(mt$sale.price.n==0)

names(mt) <- tolower(names(mt))

clean/format the data with regular expressions
mt$gross.sqft <- as.numeric(gsub("[^[:digit:]]","",
 mt$gross.square.feet))
mt$land.sqft <- as.numeric(gsub("[^[:digit:]]","",
 mt$land.square.feet))

mt$sale.date <- as.Date(mt$sale.date)
mt$year.built <- as.numeric(as.character(mt$year.built))
mt$zip.code <- as.character(mt$zip.code)

- standardize data (set year built start to 0; land and
gross sq ft; sale price (exclude $0 and possibly others); possi
bly tax block; outside dataset for coords of tax block/lot?)
min_price <- 10000
mt <- mt[which(mt$sale.price.n>=min_price),]

n_obs <- dim(mt)[1]

mt$address.noapt <- gsub("[,][[:print:]]*","",
 gsub("[]+"," ",trim(mt$address)))

mt_add <- unique(data.frame(mt$address.noapt,mt$zip.code,
 stringsAsFactors=FALSE))
names(mt_add) <- c("address.noapt","zip.code")
mt_add <- mt_add[order(mt_add$address.noapt),]

#find duplicate addresses with different zip codes
dup <- duplicated(mt_add$address.noapt)
remove them
dup_add <- mt_add[mt_add$dup,1]
mt_add <- mt_add[(mt_add$address.noapt != dup_add[1] &
 mt_add$address.noapt != dup_add[2]),]

Exercise: Basic Machine Learning Algorithms | 87

n_add <- dim(mt_add)[1]

sample 500 addresses so we don't run over our Google Maps
API daily limit (and so we're not waiting forever)
n_sample <- 500
add_sample <- mt_add[sample.int(n_add,size=n_sample),]

first, try a query with the addresses we have
query_list <- addrListLookup(data.frame(1:n_sample,
 add_sample$address.noapt,rep("NEW YORK",times=n_sample),
 rep("NY",times=n_sample),add_sample$zip.code,
 rep("US",times=n_sample)))[,1:4]

query_list$matched <- (query_list$latitude != 0)

unmatched_inds <- which(!query_list$matched)
unmatched <- length(unmatched_inds)

try changing EAST/WEST to E/W
query_list[unmatched_inds,1:4] <- addrListLookup
 (data.frame(1:unmatched,gsub(" WEST "," W ",
 gsub(" EAST "," E ",add_sample[unmatched_inds,1])),
 rep("NEW YORK",times=unmatched), rep("NY",times=unmatched),
 add_sample[unmatched_inds,2],rep("US",times=unmatched)))[,
1:4]

query_list$matched <- (query_list$latitude != 0)
unmatched_inds <- which(!query_list$matched)
unmatched <- length(unmatched_inds)

try changing STREET/AVENUE to ST/AVE
query_list[unmatched_inds,1:4] <- addrListLookup
 (data.frame(1:unmatched,gsub(" WEST "," W ",
 gsub(" EAST "," E ",gsub(" STREET"," ST",
 gsub(" AVENUE"," AVE",add_sample[unmatched_inds,1])))),
 rep("NEW YORK",times=unmatched), rep("NY",times=unmatched),
 add_sample[unmatched_inds,2],rep("US",times=unmatched)))[,
1:4]

query_list$matched <- (query_list$latitude != 0)
unmatched_inds <- which(!query_list$matched)
unmatched <- length(unmatched_inds)

have to be satisfied for now
add_sample <- cbind(add_sample,query_list$latitude,
 query_list$longitude)
names(add_sample)[3:4] <- c("latitude","longitude")

add_sample <- add_sample[add_sample$latitude!=0,]

add_use <- merge(mt,add_sample)

88 | Chapter 3: Algorithms

add_use <- add_use[!is.na(add_use$latitude),]

map coordinates
map_coords <- add_use[,c(2,4,26,27)]
table(map_coords$neighborhood)
map_coords$neighborhood <- as.factor(map_coords$neighborhood)

geoPlot(map_coords,zoom=12,color=map_coords$neighborhood)

- knn function
- there are more efficient ways of doing this,
but oh well...

map_coords$class <- as.numeric(map_coords$neighborhood)
n_cases <- dim(map_coords)[1]
split <- 0.8

train_inds <- sample.int(n_cases,floor(split*n_cases))
test_inds <- (1:n_cases)[-train_inds]

k_max <- 10
knn_pred <- matrix(NA,ncol=k_max,nrow=length(test_inds))
knn_test_error <- rep(NA,times=k_max)

for (i in 1:k_max) {
 knn_pred[,i] <- knn(map_coords[train_inds,3:4],
 map_coords[test_inds,3:4],cl=map_coords[train_inds,5],k=i)
 knn_test_error[i] <- sum(knn_pred[,i]!=
 map_coords[test_inds,5])/length(test_inds)
}

plot(1:k_max,knn_test_error)

Modeling and Algorithms at Scale
The data you’ve been dealing with so far in this chapter has been pretty
small on the Big Data spectrum. What happens to these models and
algorithms when you have to scale up to massive datasets?

In some cases, it’s entirely appropriate to sample and work with a
smaller dataset, or to run the same model across multiple sharded
datasets. (Sharding is where the data is broken up into pieces and
divided among diffrent machines, and then you look at the empirical
distribution of the estimators across models.) In other words, there
are statistical solutions to these engineering challenges.

However, in some cases we want to fit these models at scale, and the
challenge of scaling up models generally translates to the challenge of

Exercise: Basic Machine Learning Algorithms | 89

creating parallelized versions or approximations of the optimization
methods. Linear regression at scale, for example, relies on matrix in‐
versions or approximations of matrix inversions.

Optimization with Big Data calls for new approaches and theory—
this is the frontier! From a 2013 talk by Peter Richtarik from the Uni‐
versity of Edinburugh: “In the Big Data domain classical approaches
that rely on optimization methods with multiple iterations are not
applicable as the computational cost of even a single iteration is often
too excessive; these methods were developed in the past when prob‐
lems of huge sizes were rare to find. We thus need new methods which
would be simple, gentle with data handling and memory require‐
ments, and scalable. Our ability to solve truly huge scale problems
goes hand in hand with our ability to utilize modern parallel com‐
puting architectures such as multicore processors, graphical process‐
ing units, and computer clusters.”

Much of this is outside the scope of the book, but a data scientist needs
to be aware of these issues, and some of this is discussed in Chapter 14.

Summing It All Up
We’ve now introduced you to three algorithms that are the basis for
the solutions to many real-world problems. If you understand these
three, you’re already in good shape. If you don’t, don’t worry, it takes
a while to sink in.

Regression is the basis of many forecasting and classification or pre‐
diction models in a variety of contexts. We showed you how you can
predict a continuous outcome variable with one or more predictors.
We’ll revisit it again in Chapter 5, where we’ll learn logistic regression,
which can be used for classification of binary outcomes; and in Chap‐
ter 6, where we see it in the context of time series modeling. We’ll also
build up your feature selection skills in Chapter 7.

k-NN and k-means are two examples of clustering algorithms, where
we want to group together similar objects. Here the notions of distance
and evaluation measures became important, and we saw there is some
subjectivity involved in picking these. We’ll explore clustering algo‐
rithms including Naive Bayes in the next chapter, and in the context
of social networks (Chapter 10). As we’ll see, graph clustering is an
interesting area of research. Other examples of clustering algorithms

90 | Chapter 3: Algorithms

not explored in this book are hierarchical clustering and model-based
clustering.

For further reading and a more advanced treatment of this material,
we recommend the standard classic Hastie and Tibshirani book, Ele‐
ments of Statistical Learning (Springer). For an in-depth exploration
of building regression models in a Bayesian context, we highly rec‐
ommend Andrew Gelman and Jennifer Hill’s Data Analysis using Re‐
gression and Multilevel/Hierarchical Models.

Thought Experiment: Automated Statistician
Rachel attended a workshop in Big Data Mining at Imperial College
London in May 2013. One of the speakers, Professor Zoubin Ghah‐
ramani from Cambridge University, said that one of his long-term
research projects was to build an “automated statistician.” What do
you think that means? What do you think would go into building one?

Does the idea scare you? Should it?

Thought Experiment: Automated Statistician | 91

http://stanford.io/16hcTKn
http://stanford.io/16hcTKn

	Chapter 2. Statistical Inference, Exploratory Data Analysis, and the Data Science Process
	Exploratory Data Analysis
	Philosophy of Exploratory Data Analysis
	Exercise: EDA

	The Data Science Process
	A Data Scientist’s Role in This Process

	Thought Experiment: How Would You Simulate Chaos?
	Case Study: RealDirect
	How Does RealDirect Make Money?
	Exercise: RealDirect Data Strategy

	Chapter 3. Algorithms
	Machine Learning Algorithms
	Three Basic Algorithms
	Linear Regression
	k-Nearest Neighbors (k-NN)
	k-means

	Exercise: Basic Machine Learning Algorithms
	Solutions

	Summing It All Up
	Thought Experiment: Automated Statistician

