
CHAPTER 1

Introduction: What Is
Data Science?

Over the past few years, there’s been a lot of hype in the media about
“data science” and “Big Data.” A reasonable first reaction to all of this
might be some combination of skepticism and confusion; indeed we,
Cathy and Rachel, had that exact reaction.

And we let ourselves indulge in our bewilderment for a while, first
separately, and then, once we met, together over many Wednesday
morning breakfasts. But we couldn’t get rid of a nagging feeling that
there was something real there, perhaps something deep and profound
representing a paradigm shift in our culture around data. Perhaps, we
considered, it’s even a paradigm shift that plays to our strengths. In‐
stead of ignoring it, we decided to explore it more.

But before we go into that, let’s first delve into what struck us as con‐
fusing and vague—perhaps you’ve had similar inclinations. After that
we’ll explain what made us get past our own concerns, to the point
where Rachel created a course on data science at Columbia University,
Cathy blogged the course, and you’re now reading a book based on it.

Big Data and Data Science Hype
Let’s get this out of the way right off the bat, because many of you are
likely skeptical of data science already for many of the reasons we were.
We want to address this up front to let you know: we’re right there with
you. If you’re a skeptic too, it probably means you have something
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useful to contribute to making data science into a more legitimate field
that has the power to have a positive impact on society.

So, what is eyebrow-raising about Big Data and data science? Let’s
count the ways:

1. There’s a lack of definitions around the most basic terminology.
What is “Big Data” anyway? What does “data science” mean? What
is the relationship between Big Data and data science? Is data sci‐
ence the science of Big Data? Is data science only the stuff going
on in companies like Google and Facebook and tech companies?
Why do many people refer to Big Data as crossing disciplines (as‐
tronomy, finance, tech, etc.) and to data science as only taking
place in tech? Just how big is big? Or is it just a relative term? These
terms are so ambiguous, they’re well-nigh meaningless.

2. There’s a distinct lack of respect for the researchers in academia
and industry labs who have been working on this kind of stuff for
years, and whose work is based on decades (in some cases, cen‐
turies) of work by statisticians, computer scientists, mathemati‐
cians, engineers, and scientists of all types. From the way the
media describes it, machine learning algorithms were just inven‐
ted last week and data was never “big” until Google came along.
This is simply not the case. Many of the methods and techniques
we’re using—and the challenges we’re facing now—are part of the
evolution of everything that’s come before. This doesn’t mean that
there’s not new and exciting stuff going on, but we think it’s im‐
portant to show some basic respect for everything that came
before.

3. The hype is crazy—people throw around tired phrases straight
out of the height of the pre-financial crisis era like “Masters of the
Universe” to describe data scientists, and that doesn’t bode well.
In general, hype masks reality and increases the noise-to-signal
ratio. The longer the hype goes on, the more many of us will get
turned off by it, and the harder it will be to see what’s good un‐
derneath it all, if anything.

4. Statisticians already feel that they are studying and working on
the “Science of Data.” That’s their bread and butter. Maybe you,
dear reader, are not a statisitican and don’t care, but imagine that
for the statistician, this feels a little bit like how identity theft might
feel for you. Although we will make the case that data science is
not just a rebranding of statistics or machine learning but rather
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a field unto itself, the media often describes data science in a way
that makes it sound like as if it’s simply statistics or machine
learning in the context of the tech industry.

5. People have said to us, “Anything that has to call itself a science
isn’t.” Although there might be truth in there, that doesn’t mean
that the term “data science” itself represents nothing, but of course
what it represents may not be science but more of a craft.

Getting Past the Hype
Rachel’s experience going from getting a PhD in statistics to working
at Google is a great example to illustrate why we thought, in spite of
the aforementioned reasons to be dubious, there might be some meat
in the data science sandwich. In her words:

It was clear to me pretty quickly that the stuff I was working on at
Google was different than anything I had learned at school when I
got my PhD in statistics. This is not to say that my degree was useless;
far from it—what I’d learned in school provided a framework and
way of thinking that I relied on daily, and much of the actual content
provided a solid theoretical and practical foundation necessary to do
my work.
But there were also many skills I had to acquire on the job at Google
that I hadn’t learned in school. Of course, my experience is specific
to me in the sense that I had a statistics background and picked up
more computation, coding, and visualization skills, as well as domain
expertise while at Google. Another person coming in as a computer
scientist or a social scientist or a physicist would have different gaps
and would fill them in accordingly. But what is important here is that,
as individuals, we each had different strengths and gaps, yet we were
able to solve problems by putting ourselves together into a data team
well-suited to solve the data problems that came our way.

Here’s a reasonable response you might have to this story. It’s a general
truism that, whenever you go from school to a real job, you realize
there’s a gap between what you learned in school and what you do on
the job. In other words, you were simply facing the difference between
academic statistics and industry statistics.

We have a couple replies to this:

• Sure, there’s is a difference between industry and academia. But
does it really have to be that way? Why do many courses in school
have to be so intrinsically out of touch with reality?
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• Even so, the gap doesn’t represent simply a difference between
industry statistics and academic statistics. The general experience
of data scientists is that, at their job, they have access to a larger
body of knowledge and methodology, as well as a process, which
we now define as the data science process (details in Chapter 2),
that has foundations in both statistics and computer science.

Around all the hype, in other words, there is a ring of truth: this is
something new. But at the same time, it’s a fragile, nascent idea at real
risk of being rejected prematurely. For one thing, it’s being paraded
around as a magic bullet, raising unrealistic expectations that will
surely be disappointed.

Rachel gave herself the task of understanding the cultural phenom‐
enon of data science and how others were experiencing it. She started
meeting with people at Google, at startups and tech companies, and
at universities, mostly from within statistics departments.

From those meetings she started to form a clearer picture of the new
thing that’s emerging. She ultimately decided to continue the investi‐
gation by giving a course at Columbia called “Introduction to Data
Science,” which Cathy covered on her blog. We figured that by the end
of the semester, we, and hopefully the students, would know what all
this actually meant. And now, with this book, we hope to do the same
for many more people.

Why Now?
We have massive amounts of data about many aspects of our lives, and,
simultaneously, an abundance of inexpensive computing power.
Shopping, communicating, reading news, listening to music, search‐
ing for information, expressing our opinions—all this is being tracked
online, as most people know.

What people might not know is that the “datafication” of our offline
behavior has started as well, mirroring the online data collection rev‐
olution (more on this later). Put the two together, and there’s a lot to
learn about our behavior and, by extension, who we are as a species.

It’s not just Internet data, though—it’s finance, the medical industry,
pharmaceuticals, bioinformatics, social welfare, government, educa‐
tion, retail, and the list goes on. There is a growing influence of data
in most sectors and most industries. In some cases, the amount of data
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collected might be enough to be considered “big” (more on this in the
next chapter); in other cases, it’s not.

But it’s not only the massiveness that makes all this new data interesting
(or poses challenges). It’s that the data itself, often in real time, becomes
the building blocks of data products. On the Internet, this means
Amazon recommendation systems, friend recommendations on Face‐
book, film and music recommendations, and so on. In finance, this
means credit ratings, trading algorithms, and models. In education,
this is starting to mean dynamic personalized learning and assess‐
ments coming out of places like Knewton and Khan Academy. In gov‐
ernment, this means policies based on data.

We’re witnessing the beginning of a massive, culturally saturated feed‐
back loop where our behavior changes the product and the product
changes our behavior. Technology makes this possible: infrastructure
for large-scale data processing, increased memory, and bandwidth, as
well as a cultural acceptance of technology in the fabric of our lives.
This wasn’t true a decade ago.

Considering the impact of this feedback loop, we should start thinking
seriously about how it’s being conducted, along with the ethical and
technical responsibilities for the people responsible for the process.
One goal of this book is a first stab at that conversation.

Datafication
In the May/June 2013 issue of Foreign Affairs, Kenneth Neil Cukier
and Viktor Mayer-Schoenberger wrote an article called “The Rise of
Big Data”. In it they discuss the concept of datafication, and their ex‐
ample is how we quantify friendships with “likes”: it’s the way
everything we do, online or otherwise, ends up recorded for later ex‐
amination in someone’s data storage units. Or maybe multiple storage
units, and maybe also for sale.

They define datafication as a process of “taking all aspects of life and
turning them into data.” As examples, they mention that “Google’s
augmented-reality glasses datafy the gaze. Twitter datafies stray
thoughts. LinkedIn datafies professional networks.”

Datafication is an interesting concept and led us to consider its im‐
portance with respect to people’s intentions about sharing their own
data. We are being datafied, or rather our actions are, and when we
“like” someone or something online, we are intending to be datafied,
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or at least we should expect to be. But when we merely browse the
Web, we are unintentionally, or at least passively, being datafied
through cookies that we might or might not be aware of. And when
we walk around in a store, or even on the street, we are being datafied
in a completely unintentional way, via sensors, cameras, or Google
glasses.

This spectrum of intentionality ranges from us gleefully taking part in
a social media experiment we are proud of, to all-out surveillance and
stalking. But it’s all datafication. Our intentions may run the gamut,
but the results don’t.

They follow up their definition in the article with a line that speaks
volumes about their perspective:

Once we datafy things, we can transform their purpose and turn the
information into new forms of value.

Here’s an important question that we will come back to throughout
the book: who is “we” in that case? What kinds of value do they refer
to? Mostly, given their examples, the “we” is the modelers and entre‐
preneurs making money from getting people to buy stuff, and the
“value” translates into something like increased efficiency through
automation.

If we want to think bigger, if we want our “we” to refer to people in
general, we’ll be swimming against the tide.

The Current Landscape (with a Little History)
So, what is data science? Is it new, or is it just statistics or analytics
rebranded? Is it real, or is it pure hype? And if it’s new and if it’s real,
what does that mean?

This is an ongoing discussion, but one way to understand what’s going
on in this industry is to look online and see what current discussions
are taking place. This doesn’t necessarily tell us what data science is,
but it at least tells us what other people think it is, or how they’re
perceiving it. For example, on Quora there’s a discussion from 2010
about “What is Data Science?” and here’s Metamarket CEO Mike
Driscoll’s answer:
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Data science, as it’s practiced, is a blend of Red-Bull-fueled hacking
and espresso-inspired statistics.
But data science is not merely hacking—because when hackers finish
debugging their Bash one-liners and Pig scripts, few of them care
about non-Euclidean distance metrics.
And data science is not merely statistics, because when statisticians
finish theorizing the perfect model, few could read a tab-delimited
file into R if their job depended on it.
Data science is the civil engineering of data. Its acolytes possess a
practical knowledge of tools and materials, coupled with a theoretical
understanding of what’s possible.

Driscoll then refers to Drew Conway’s Venn diagram of data science
from 2010, shown in Figure 1-1.

Figure 1-1. Drew Conway’s Venn diagram of data science

He also mentions the sexy skills of data geeks from Nathan Yau’s 2009
post, “Rise of the Data Scientist”, which include:

• Statistics (traditional analysis you’re used to thinking about)
• Data munging (parsing, scraping, and formatting data)
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• Visualization (graphs, tools, etc.)

But wait, is data science just a bag of tricks? Or is it the logical extension
of other fields like statistics and machine learning?

For one argument, see Cosma Shalizi’s posts here and here, and Cathy’s
posts here and here, which constitute an ongoing discussion of the
difference between a statistician and a data scientist. Cosma basically
argues that any statistics department worth its salt does all the stuff in
the descriptions of data science that he sees, and therefore data science
is just a rebranding and unwelcome takeover of statistics.

For a slightly different perspective, see ASA President Nancy Geller’s
2011 Amstat News article, “Don’t shun the ‘S’ word”, in which she
defends statistics:

We need to tell people that Statisticians are the ones who make sense
of the data deluge occurring in science, engineering, and medicine;
that statistics provides methods for data analysis in all fields, from art
history to zoology; that it is exciting to be a Statistician in the 21st
century because of the many challenges brought about by the data
explosion in all of these fields.

Though we get her point—the phrase “art history to zoology” is sup‐
posed to represent the concept of A to Z—she’s kind of shooting herself
in the foot with these examples because they don’t correspond to the
high-tech world where much of the data explosion is coming from.
Much of the development of the field is happening in industry, not
academia. That is, there are people with the job title data scientist in
companies, but no professors of data science in academia. (Though
this may be changing.)

Not long ago, DJ Patil described how he and Jeff Hammerbacher—
then at LinkedIn and Facebook, respectively—coined the term “data
scientist” in 2008. So that is when “data scientist” emerged as a job title.
(Wikipedia finally gained an entry on data science in 2012.)

It makes sense to us that once the skill set required to thrive at Google
—working with a team on problems that required a hybrid skill set of
stats and computer science paired with personal characteristics in‐
cluding curiosity and persistence—spread to other Silicon Valley tech
companies, it required a new job title. Once it became a pattern, it
deserved a name. And once it got a name, everyone and their mother
wanted to be one. It got even worse when Harvard Business Review
declared data scientist to be the “Sexiest Job of the 21st Century”.
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The Role of the Social Scientist in Data Science
Both LinkedIn and Facebook are social network companies. Often‐
times a description or definition of data scientist includes hybrid sta‐
tistician, software engineer, and social scientist. This made sense in
the context of companies where the product was a social product and
still makes sense when we’re dealing with human or user behavior.
But if you think about Drew Conway’s Venn diagram, data science
problems cross disciplines—that’s what the substantive expertise is
referring to.

In other words, it depends on the context of the problems you’re try‐
ing to solve. If they’re social science-y problems like friend recom‐
mendations or people you know or user segmentation, then by all
means, bring on the social scientist! Social scientists also do tend to
be good question askers and have other good investigative qualities,
so a social scientist who also has the quantitative and programming
chops makes a great data scientist.

But it’s almost a “historical” (historical is in quotes because 2008 isn’t
that long ago) artifact to limit your conception of a data scientist to
someone who works only with online user behavior data. There’s an‐
other emerging field out there called computational social sciences,
which could be thought of as a subset of data science.

But we can go back even further. In 2001, William Cleveland wrote a
position paper about data science called “Data Science: An action plan
to expand the field of statistics.”

So data science existed before data scientists? Is this semantics, or does
it make sense?

This all begs a few questions: can you define data science by what data
scientists do? Who gets to define the field, anyway? There’s lots of buzz
and hype—does the media get to define it, or should we rely on the
practitioners, the self-appointed data scientists? Or is there some ac‐
tual authority? Let’s leave these as open questions for now, though we
will return to them throughout the book.

Data Science Jobs
Columbia just decided to start an Institute for Data Sciences and En‐
gineering with Bloomberg’s help. There are 465 job openings in New
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York City alone for data scientists last time we checked. That’s a lot.
So even if data science isn’t a real field, it has real jobs.

And here’s one thing we noticed about most of the job descriptions:
they ask data scientists to be experts in computer science, statistics,
communication, data visualization, and to have extensive domain ex‐
pertise. Nobody is an expert in everything, which is why it makes more
sense to create teams of people who have different profiles and differ‐
ent expertise—together, as a team, they can specialize in all those
things. We’ll talk about this more after we look at the composite set of
skills in demand for today’s data scientists.

A Data Science Profile
In the class, Rachel handed out index cards and asked everyone to
profile themselves (on a relative rather than absolute scale) with re‐
spect to their skill levels in the following domains:

• Computer science
• Math
• Statistics
• Machine learning
• Domain expertise
• Communication and presentation skills
• Data visualization

As an example, Figure 1-2 shows Rachel’s data science profile.
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Figure 1-2. Rachel’s data science profile, which she created to illus‐
trate trying to visualize oneself as a data scientist; she wanted stu‐
dents and guest lecturers to “riff” on this—to add buckets or remove
skills, use a different scale or visualization method, and think about
the drawbacks of self-reporting

We taped the index cards to the blackboard and got to see how every‐
one else thought of themselves. There was quite a bit of variation,
which is cool—lots of people in the class were coming from social
sciences, for example.

Where is your data science profile at the moment, and where would
you like it to be in a few months, or years?

As we mentioned earlier, a data science team works best when different
skills (profiles) are represented across different people, because no‐
body is good at everything. It makes us wonder if it might be more
worthwhile to define a “data science team”—as shown in Figure 1-3—
than to define a data scientist.
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Figure 1-3. Data science team profiles can be constructed from data
scientist profiles; there should be alignment between the data science
team profile and the profile of the data problems they try to solve
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Thought Experiment: Meta-Definition
Every class had at least one thought experiment that the students
discussed in groups. Most of the thought experiments were very open-
ended, and the intention was to provoke discussion about a wide va‐
riety of topics related to data science. For the first class, the initial
thought experiment was: can we use data science to define data science?

The class broke into small groups to think about and discuss this
question. Here are a few interesting things that emerged from those
conversations:
Start with a text-mining model.

We could do a Google search for “data science” and perform a text-
mining model. But that would depend on us being a usagist rather
than a prescriptionist with respect to language. A usagist would let
the masses define data science (where “the masses” refers to what‐
ever Google’s search engine finds). Would it be better to be a pre‐
scriptionist and refer to an authority such as the Oxford English
Dictionary? Unfortunately, the OED probably doesn’t have an en‐
try yet, and we don’t have time to wait for it. Let’s agree that there’s
a spectrum, that one authority doesn’t feel right, and that “the
masses” doesn’t either.

So what about a clustering algorithm?
How about we look at practitioners of data science and see how
they describe what they do (maybe in a word cloud for starters)?
Then we can look at how people who claim to be other things like
statisticians or physicists or economists describe what they do.
From there, we can try to use a clustering algorithm (which we’ll
use in Chapter 3) or some other model and see if, when it gets as
input “the stuff someone does,” it gives a good prediction on what
field that person is in.

Just for comparison, check out what Harlan Harris recently did related
to the field of data science: he took a survey and used clustering to
define subfields of data science, which gave rise to Figure 1-4.
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Figure 1-4. Harlan Harris’s clustering and visualization of subfields of
data science from Analyzing the Analyzers (O’Reilly) by Harlan Har‐
ris, Sean Murphy, and Marck Vaisman based on a survey of several
hundred data science practitioners in mid-2012

OK, So What Is a Data Scientist, Really?
Perhaps the most concrete approach is to define data science is by its
usage—e.g., what data scientists get paid to do. With that as motiva‐
tion, we’ll describe what data scientists do. And we’ll cheat a bit by
talking first about data scientists in academia.

In Academia
The reality is that currently, no one calls themselves a data scientist in
academia, except to take on a secondary title for the sake of being a
part of a “data science institute” at a university, or for applying for a
grant that supplies money for data science research.
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Instead, let’s ask a related question: who in academia plans to become
a data scientist? There were 60 students in the Intro to Data Science
class at Columbia. When Rachel proposed the course, she assumed
the makeup of the students would mainly be statisticians, applied
mathematicians, and computer scientists. Actually, though, it ended
up being those people plus sociologists, journalists, political scientists,
biomedical informatics students, students from NYC government
agencies and nonprofits related to social welfare, someone from the
architecture school, others from environmental engineering, pure
mathematicians, business marketing students, and students who al‐
ready worked as data scientists. They were all interested in figuring
out ways to solve important problems, often of social value, with data.

For the term “data science” to catch on in academia at the level of the
faculty, and as a primary title, the research area needs to be more for‐
mally defined. Note there is already a rich set of problems that could
translate into many PhD theses.

Here’s a stab at what this could look like: an academic data scientist is
a scientist, trained in anything from social science to biology, who
works with large amounts of data, and must grapple with computa‐
tional problems posed by the structure, size, messiness, and the
complexity and nature of the data, while simultaneously solving a real-
world problem.

The case for articulating it like this is as follows: across academic dis‐
ciplines, the computational and deep data problems have major com‐
monalities. If researchers across departments join forces, they can
solve multiple real-world problems from different domains.

In Industry
What do data scientists look like in industry? It depends on the level
of seniority and whether you’re talking about the Internet/online in‐
dustry in particular. The role of data scientist need not be exclusive to
the tech world, but that’s where the term originated; so for the purposes
of the conversation, let us say what it means there.

A chief data scientist should be setting the data strategy of the com‐
pany, which involves a variety of things: setting everything up from
the engineering and infrastructure for collecting data and logging, to
privacy concerns, to deciding what data will be user-facing, how data
is going to be used to make decisions, and how it’s going to be built
back into the product. She should manage a team of engineers,
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scientists, and analysts and should communicate with leadership
across the company, including the CEO, CTO, and product leadership.
She’ll also be concerned with patenting innovative solutions and set‐
ting research goals.

More generally, a data scientist is someone who knows how to extract
meaning from and interpret data, which requires both tools and meth‐
ods from statistics and machine learning, as well as being human. She
spends a lot of time in the process of collecting, cleaning, and munging
data, because data is never clean. This process requires persistence,
statistics, and software engineering skills—skills that are also neces‐
sary for understanding biases in the data, and for debugging logging
output from code.

Once she gets the data into shape, a crucial part is exploratory data
analysis, which combines visualization and data sense. She’ll find pat‐
terns, build models, and algorithms—some with the intention of un‐
derstanding product usage and the overall health of the product, and
others to serve as prototypes that ultimately get baked back into the
product. She may design experiments, and she is a critical part of data-
driven decision making. She’ll communicate with team members, en‐
gineers, and leadership in clear language and with data visualizations
so that even if her colleagues are not immersed in the data themselves,
they will understand the implications.

That’s the high-level picture, and this book is about helping you un‐
derstand the vast majority of it. We’re done with talking about data
science; let’s go ahead and do some!
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CHAPTER 2

Statistical Inference, Exploratory
Data Analysis, and the Data

Science Process

We begin this chapter with a discussion of statistical inference and
statistical thinking. Next we explore what we feel every data scientist
should do once they’ve gotten data in hand for any data-related project:
exploratory data analysis (EDA).

From there, we move into looking at what we’re defining as the data
science process in a little more detail. We’ll end with a thought ex‐
periment and a case study.

Statistical Thinking in the Age of Big Data
Big Data is a vague term, used loosely, if often, these days. But put
simply, the catchall phrase means three things. First, it is a bundle of
technologies. Second, it is a potential revolution in measurement.
And third, it is a point of view, or philosophy, about how decisions
will be—and perhaps should be—made in the future.

— Steve Lohr
 The New York Times

When you’re developing your skill set as a data scientist, certain foun‐
dational pieces need to be in place first—statistics, linear algebra, some
programming. Even once you have those pieces, part of the challenge
is that you will be developing several skill sets in parallel simultane‐
ously—data preparation and munging, modeling, coding, visualiza‐
tion, and communication—that are interdependent. As we progress
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through the book, these threads will be intertwined. That said, we need
to start somewhere, and will begin by getting grounded in statistical
inference.

We expect the readers of this book to have diverse backgrounds. For
example, some of you might already be awesome software engineers
who can build data pipelines and code with the best of them but don’t
know much about statistics; others might be marketing analysts who
don’t really know how to code at all yet; and others might be curious,
smart people who want to know what this data science thing is all
about.

So while we’re asking that readers already have certain prerequisites
down, we can’t come to your house and look at your transcript to make
sure you actually have taken a statistics course, or have read a statistics
book before. And even if you have taken Introduction to Statistics—a
course we know from many awkward cocktail party conversations that
99% of people dreaded and wish they’d never had to take—this likely
gave you no flavor for the depth and beauty of statistical inference.

But even if it did, and maybe you’re a PhD-level statistician, it’s always
helpful to go back to fundamentals and remind ourselves of what stat‐
istical inference and thinking is all about. And further still, in the age
of Big Data, classical statistics methods need to be revisited and re-
imagined in new contexts.

Statistical Inference
The world we live in is complex, random, and uncertain. At the same
time, it’s one big data-generating machine.

As we commute to work on subways and in cars, as our blood moves
through our bodies, as we’re shopping, emailing, procrastinating at
work by browsing the Internet and watching the stock market, as we’re
building things, eating things, talking to our friends and family about
things, while factories are producing products, this all at least poten‐
tially produces data.

Imagine spending 24 hours looking out the window, and for every
minute, counting and recording the number of people who pass by.
Or gathering up everyone who lives within a mile of your house and
making them tell you how many email messages they receive every
day for the next year. Imagine heading over to your local hospital and
rummaging around in the blood samples looking for patterns in the
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DNA. That all sounded creepy, but it wasn’t supposed to. The point
here is that the processes in our lives are actually data-generating
processes.

We’d like ways to describe, understand, and make sense of these pro‐
cesses, in part because as scientists we just want to understand the
world better, but many times, understanding these processes is part of
the solution to problems we’re trying to solve.

Data represents the traces of the real-world processes, and exactly
which traces we gather are decided by our data collection or sampling
method. You, the data scientist, the observer, are turning the world
into data, and this is an utterly subjective, not objective, process.

After separating the process from the data collection, we can see clearly
that there are two sources of randomness and uncertainty. Namely, the
randomness and uncertainty underlying the process itself, and the
uncertainty associated with your underlying data collection methods.

Once you have all this data, you have somehow captured the world,
or certain traces of the world. But you can’t go walking around with a
huge Excel spreadsheet or database of millions of transactions and
look at it and, with a snap of a finger, understand the world and process
that generated it.

So you need a new idea, and that’s to simplify those captured traces
into something more comprehensible, to something that somehow
captures it all in a much more concise way, and that something could
be mathematical models or functions of the data, known as statistical
estimators.

This overall process of going from the world to the data, and then from
the data back to the world, is the field of statistical inference.

More precisely, statistical inference is the discipline that concerns itself
with the development of procedures, methods, and theorems that al‐
low us to extract meaning and information from data that has been
generated by stochastic (random) processes.

Populations and Samples
Let’s get some terminology and concepts in place to make sure we’re
all talking about the same thing.

In classical statistical literature, a distinction is made between the
population and the sample. The word population immediately makes
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us think of the entire US population of 300 million people, or the entire
world’s population of 7 billion people. But put that image out of your
head, because in statistical inference population isn’t used to simply
describe only people. It could be any set of objects or units, such as
tweets or photographs or stars.

If we could measure the characteristics or extract characteristics of all
those objects, we’d have a complete set of observations, and the con‐
vention is to use N to represent the total number of observations in
the population.

Suppose your population was all emails sent last year by employees at
a huge corporation, BigCorp. Then a single observation could be a list
of things: the sender’s name, the list of recipients, date sent, text of
email, number of characters in the email, number of sentences in the
email, number of verbs in the email, and the length of time until first
reply.

When we take a sample, we take a subset of the units of size n in order
to examine the observations to draw conclusions and make inferences
about the population. There are different ways you might go about
getting this subset of data, and you want to be aware of this sampling
mechanism because it can introduce biases into the data, and distort
it, so that the subset is not a “mini-me” shrunk-down version of the
population. Once that happens, any conclusions you draw will simply
be wrong and distorted.

In the BigCorp email example, you could make a list of all the em‐
ployees and select 1/10th of those people at random and take all the
email they ever sent, and that would be your sample. Alternatively, you
could sample 1/10th of all email sent each day at random, and that
would be your sample. Both these methods are reasonable, and both
methods yield the same sample size. But if you took them and counted
how many email messages each person sent, and used that to estimate
the underlying distribution of emails sent by all indiviuals at BigCorp,
you might get entirely different answers.

So if even getting a basic thing down like counting can get distorted
when you’re using a reasonable-sounding sampling method, imagine
what can happen to more complicated algorithms and models if you
haven’t taken into account the process that got the data into your
hands.
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Populations and Samples of Big Data
But, wait! In the age of Big Data, where we can record all users’ actions
all the time, don’t we observe everything? Is there really still this notion
of population and sample? If we had all the email in the first place,
why would we need to take a sample?

With these questions, we’ve gotten to the heart of the matter. There
are multiple aspects of this that need to be addressed.
Sampling solves some engineering challenges

In the current popular discussion of Big Data, the focus on en‐
terprise solutions such as Hadoop to handle engineering and
computational challenges caused by too much data overlooks
sampling as a legitimate solution. At Google, for example, soft‐
ware engineers, data scientists, and statisticians sample all the
time.

How much data you need at hand really depends on what your goal
is: for analysis or inference purposes, you typically don’t need to store
all the data all the time. On the other hand, for serving purposes you
might: in order to render the correct information in a UI for a user,
you need to have all the information for that particular user, for
example.
Bias

Even if we have access to all of Facebook’s or Google’s or Twitter’s
data corpus, any inferences we make from that data should not be
extended to draw conclusions about humans beyond those sets of
users, or even those users for any particular day.

Kate Crawford, a principal scientist at Microsoft Research, describes
in her Strata talk, “Hidden Biases of Big Data,” how if you analyzed
tweets immediately before and after Hurricane Sandy, you would think
that most people were supermarket shopping pre-Sandy and partying
post-Sandy. However, most of those tweets came from New Yorkers.
First of all, they’re heavier Twitter users than, say, the coastal New
Jerseyans, and second of all, the coastal New Jerseyans were worrying
about other stuff like their house falling down and didn’t have time to
tweet.

In other words, you would think that Hurricane Sandy wasn’t all that
bad if you used tweet data to understand it. The only conclusion you
can actually draw is that this is what Hurricane Sandy was like for the
subset of Twitter users (who themselves are not representative of the
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general US population), whose situation was not so bad that they didn’t
have time to tweet.

Note, too, that in this case, if you didn’t have context and know about
Hurricane Sandy, you wouldn’t know enough to interpret this data
properly.
Sampling

Let’s rethink what the population and the sample are in various
contexts.

In statistics we often model the relationship between a population and
a sample with an underlying mathematical process. So we make sim‐
plifying assumptions about the underlying truth, the mathematical
structure, and shape of the underlying generative process that created
the data. We observe only one particular realization of that generative
process, which is that sample.

So if we think of all the emails at BigCorp as the population, and if we
randomly sample from that population by reading some but not all
emails, then that sampling process would create one particular sample.
However, if we resampled we’d get a different set of observations.

The uncertainty created by such a sampling process has a name: the
sampling distribution. But like that 2010 movie Inception with Leo‐
nardo DiCaprio, where he’s in a dream within a dream within a dream,
it’s possible to instead think of the complete corpus of emails at Big‐
Corp as not the population but as a sample.

This set of emails (and here is where we’re getting philosophical, but
that’s what this is all about) could actually be only one single realization
from some larger super-population, and if the Great Coin Tosser in the
sky had spun again that day, a different set of emails would have been
observed.

In this interpretation, we treat this set of emails as a sample that we
are using to make inferences about the underlying generative process
that is the email writing habits of all the employees at BigCorp.
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New kinds of data
Gone are the days when data is just a bunch of numbers and cat‐
egorical variables. A strong data scientist needs to be versatile and
comfortable with dealing a variety of types of data, including:

• Traditional: numerical, categorical, or binary
• Text: emails, tweets, New York Times articles (see Chapter 4

or Chapter 7)
• Records: user-level data, timestamped event data, json-

formatted log files (see Chapter 6 or Chapter 8)
• Geo-based location data: briefly touched on in this chapter

with NYC housing data
• Network (see Chapter 10)
• Sensor data (not covered in this book)
• Images (not covered in this book)

These new kinds of data require us to think more carefully about what
sampling means in these contexts.

For example, with the firehose of real-time streaming data, if you an‐
alyze a Facebook user-level dataset for a week of activity that you ag‐
gregated from timestamped event logs, will any conclusions you draw
from this dataset be relevant next week or next year?

How do you sample from a network and preserve the complex network
structure?

Many of these questions represent open research questions for the
statistical and computer science communities. This is the frontier!
Given that some of these are open research problems, in practice, data
scientists do the best they can, and often are inventing novel methods
as part of their jobs.
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Terminology: Big Data
We’ve been throwing around “Big Data” quite a lot already and are
guilty of barely defining it beyond raising some big questions in the
previous chapter.

A few ways to think about Big Data:

“Big” is a moving target. Constructing a threshold for Big Data such
as 1 petabyte is meaningless because it makes it sound absolute. Only
when the size becomes a challenge is it worth referring to it as “Big.”
So it’s a relative term referring to when the size of the data outstrips
the state-of-the-art current computational solutions (in terms of
memory, storage, complexity, and processing speed) available to han‐
dle it. So in the 1970s this meant something different than it does
today.

“Big” is when you can’t fit it on one machine. Different individuals
and companies have different computational resources available to
them, so for a single scientist data is big if she can’t fit it on one machine
because she has to learn a whole new host of tools and methods once
that happens.

Big Data is a cultural phenomenon. It describes how much data is
part of our lives, precipitated by accelerated advances in technology.

The 4 Vs: Volume, variety, velocity, and value. Many people are cir‐
culating this as a way to characterize Big Data. Take from it what you
will.

Big Data Can Mean Big Assumptions
In Chapter 1, we mentioned the Cukier and Mayer-Schoenberger ar‐
ticle “The Rise of Big Data.” In it, they argue that the Big Data revo‐
lution consists of three things:

• Collecting and using a lot of data rather than small samples
• Accepting messiness in your data
• Giving up on knowing the causes

They describe these steps in a rather grand fashion by claiming that
Big Data doesn’t need to understand cause given that the data is so
enormous. It doesn’t need to worry about sampling error because it is
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literally keeping track of the truth. The way the article frames this is by
claiming that the new approach of Big Data is letting “N=ALL.”

Can N=ALL?
Here’s the thing: it’s pretty much never all. And we are very often
missing the very things we should care about most.

So, for example, as this InfoWorld post explains, Internet surveillance
will never really work, because the very clever and tech-savvy criminals
that we most want to catch are the very ones we will never be able to
catch, because they’re always a step ahead.

An example from that very article—election night polls—is in itself a
great counter-example: even if we poll absolutely everyone who leaves
the polling stations, we still don’t count people who decided not to vote
in the first place. And those might be the very people we’d need to talk
to to understand our country’s voting problems.

Indeed, we’d argue that the assumption we make that N=ALL is one
of the biggest problems we face in the age of Big Data. It is, above all,
a way of excluding the voices of people who don’t have the time, energy,
or access to cast their vote in all sorts of informal, possibly unan‐
nounced, elections.

Those people, busy working two jobs and spending time waiting for
buses, become invisible when we tally up the votes without them. To
you this might just mean that the recommendations you receive on
Netflix don’t seem very good because most of the people who bother
to rate things on Netflix are young and might have different tastes than
you, which skews the recommendation engine toward them. But there
are plenty of much more insidious consequences stemming from this
basic idea.

Data is not objective
Another way in which the assumption that N=ALL can matter is that
it often gets translated into the idea that data is objective. It is wrong
to believe either that data is objective or that “data speaks,” and beware
of people who say otherwise.

We were recently reminded of it in a terrifying way by this New York
Times article on Big Data and recruiter hiring practices. At one point,
a data scientist is quoted as saying, “Let’s put everything in and let the
data speak for itself.”
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If you read the whole article, you’ll learn that this algorithm tries to
find “diamond in the rough” types of people to hire. A worthy effort,
but one that you have to think through.

Say you decided to compare women and men with the exact same
qualifications that have been hired in the past, but then, looking into
what happened next you learn that those women have tended to leave
more often, get promoted less often, and give more negative feedback
on their environments when compared to the men.

Your model might be likely to hire the man over the woman next time
the two similar candidates showed up, rather than looking into the
possibility that the company doesn’t treat female employees well.

In other words, ignoring causation can be a flaw, rather than a feature.
Models that ignore causation can add to historical problems instead
of addressing them (we’ll explore this more in Chapter 11). And data
doesn’t speak for itself. Data is just a quantitative, pale echo of the
events of our society.

n = 1
At the other end of the spectrum from N=ALL, we have n = 1, by which
we mean a sample size of 1. In the old days a sample size of 1 would
be ridiculous; you would never want to draw inferences about an en‐
tire population by looking at a single individual. And don’t worry,
that’s still ridiculous. But the concept of n = 1 takes on new meaning
in the age of Big Data, where for a single person, we actually can record
tons of information about them, and in fact we might even sample
from all the events or actions they took (for example, phone calls or
keystrokes) in order to make inferences about them. This is what user-
level modeling is about.

Modeling
In the next chapter, we’ll look at how we build models from the data
we collect, but first we want to discuss what we even mean by this term.

Rachel had a recent phone conversation with someone about a mod‐
eling workshop, and several minutes into it she realized the word
“model” meant completely different things to them. He was using it
to mean data models—the representation one is choosing to store one’s
data, which is the realm of database managers—whereas she was
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talking about statistical models, which is what much of this book is
about. One of Andrew Gelman’s blog posts on modeling was recently
tweeted by people in the fashion industry, but that’s a different issue.

Even if you’ve used the terms statistical model or mathematical model
for years, is it even clear to yourself and to the people you’re talking to
what you mean? What makes a model a model? Also, while we’re asking
fundamental questions like this, what’s the difference between a stat‐
istical model and a machine learning algorithm?

Before we dive deeply into that, let’s add a bit of context with this
deliberately provocative Wired magazine piece, “The End of Theory:
The Data Deluge Makes the Scientific Method Obsolete,” published in
2008 by Chris Anderson, then editor-in-chief.

Anderson equates massive amounts of data to complete information
and argues no models are necessary and “correlation is enough”; e.g.,
that in the context of massive amounts of data, “they [Google] don’t
have to settle for models at all.”

Really? We don’t think so, and we don’t think you’ll think so either by
the end of the book. But the sentiment is similar to the Cukier and
Mayer-Schoenberger article we just discussed about N=ALL, so you
might already be getting a sense of the profound confusion we’re wit‐
nessing all around us.

To their credit, it’s the press that’s currently raising awareness of these
questions and issues, and someone has to do it. Even so, it’s hard to
take when the opinion makers are people who don’t actually work with
data. Think critically about whether you buy what Anderson is saying;
where you agree, disagree, or where you need more information to
form an opinion.

Given that this is how the popular press is currently describing and
influencing public perception of data science and modeling, it’s in‐
cumbent upon us as data scientists to be aware of it and to chime in
with informed comments.

With that context, then, what do we mean when we say models? And
how do we use them as data scientists? To get at these questions, let’s
dive in.

What is a model?
Humans try to understand the world around them by representing it
in different ways. Architects capture attributes of buildings through
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blueprints and three-dimensional, scaled-down versions. Molecular
biologists capture protein structure with three-dimensional visuali‐
zations of the connections between amino acids. Statisticians and data
scientists capture the uncertainty and randomness of data-generating
processes with mathematical functions that express the shape and
structure of the data itself.

A model is our attempt to understand and represent the nature of
reality through a particular lens, be it architectural, biological, or
mathematical.

A model is an artificial construction where all extraneous detail has
been removed or abstracted. Attention must always be paid to these
abstracted details after a model has been analyzed to see what might
have been overlooked.

In the case of proteins, a model of the protein backbone with side-
chains by itself is removed from the laws of quantum mechanics that
govern the behavior of the electrons, which ultimately dictate the
structure and actions of proteins. In the case of a statistical model, we
may have mistakenly excluded key variables, included irrelevant ones,
or assumed a mathematical structure divorced from reality.

Statistical modeling
Before you get too involved with the data and start coding, it’s useful
to draw a picture of what you think the underlying process might be
with your model. What comes first? What influences what? What
causes what? What’s a test of that?

But different people think in different ways. Some prefer to express
these kinds of relationships in terms of math. The mathematical ex‐
pressions will be general enough that they have to include parameters,
but the values of these parameters are not yet known.

In mathematical expressions, the convention is to use Greek letters for
parameters and Latin letters for data. So, for example, if you have two
columns of data, x and y, and you think there’s a linear relationship,
you’d write down y = β0 + β1x. You don’t know what β0 and β1 are in
terms of actual numbers yet, so they’re the parameters.

Other people prefer pictures and will first draw a diagram of data flow,
possibly with arrows, showing how things affect other things or what
happens over time. This gives them an abstract picture of the rela‐
tionships before choosing equations to express them.
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But how do you build a model?
How do you have any clue whatsoever what functional form the data
should take? Truth is, it’s part art and part science. And sadly, this is
where you’ll find the least guidance in textbooks, in spite of the fact
that it’s the key to the whole thing. After all, this is the part of the
modeling process where you have to make a lot of assumptions about
the underlying structure of reality, and we should have standards as
to how we make those choices and how we explain them. But we don’t
have global standards, so we make them up as we go along, and hope‐
fully in a thoughtful way.

We’re admitting this here: where to start is not obvious. If it were, we’d
know the meaning of life. However, we will do our best to demonstrate
for you throughout the book how it’s done.

One place to start is exploratory data analysis (EDA), which we will
cover in a later section. This entails making plots and building intu‐
ition for your particular dataset. EDA helps out a lot, as well as trial
and error and iteration.

To be honest, until you’ve done it a lot, it seems very mysterious. The
best thing to do is start simply and then build in complexity. Do the
dumbest thing you can think of first. It’s probably not that dumb.

For example, you can (and should) plot histograms and look at scat‐
terplots to start getting a feel for the data. Then you just try writing
something down, even if it’s wrong first (it will probably be wrong first,
but that doesn’t matter).

So try writing down a linear function (more on that in the next chap‐
ter). When you write it down, you force yourself to think: does this
make any sense? If not, why? What would make more sense? You start
simply and keep building it up in complexity, making assumptions,
and writing your assumptions down. You can use full-blown sentences
if it helps—e.g., “I assume that my users naturally cluster into about
five groups because when I hear the sales rep talk about them, she has
about five different types of people she talks about”—then taking your
words and trying to express them as equations and code.

Remember, it’s always good to start simply. There is a trade-off in
modeling between simple and accurate. Simple models may be easier
to interpret and understand. Oftentimes the crude, simple model gets
you 90% of the way there and only takes a few hours to build and fit,
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whereas getting a more complex model might take months and only
get you to 92%.

You’ll start building up your arsenal of potential models throughout
this book. Some of the building blocks of these models are probability
distributions.

Probability distributions
Probability distributions are the foundation of statistical models.
When we get to linear regression and Naive Bayes, you will see how
this happens in practice. One can take multiple semesters of courses
on probability theory, and so it’s a tall challenge to condense it down
for you in a small section.

Back in the day, before computers, scientists observed real-world phe‐
nomenon, took measurements, and noticed that certain mathematical
shapes kept reappearing. The classical example is the height of hu‐
mans, following a normal distribution—a bell-shaped curve, also
called a Gaussian distribution, named after Gauss.

Other common shapes have been named after their observers as well
(e.g., the Poisson distribution and the Weibull distribution), while
other shapes such as Gamma distributions or exponential distribu‐
tions are named after associated mathematical objects.

Natural processes tend to generate measurements whose empirical
shape could be approximated by mathematical functions with a few
parameters that could be estimated from the data.

Not all processes generate data that looks like a named distribution,
but many do. We can use these functions as building blocks of our
models. It’s beyond the scope of the book to go into each of the dis‐
tributions in detail, but we provide them in Figure 2-1 as an illustration
of the various common shapes, and to remind you that they only have
names because someone observed them enough times to think they
deserved names. There is actually an infinite number of possible dis‐
tributions.

They are to be interpreted as assigning a probability to a subset of
possible outcomes, and have corresponding functions. For example,
the normal distribution is written as:
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The parameter μ is the mean and median and controls where the dis‐
tribution is centered (because this is a symmetric distribution), and
the parameter σ controls how spread out the distribution is. This is
the general functional form, but for specific real-world phenomenon,
these parameters have actual numbers as values, which we can estimate
from the data.

Figure 2-1. A bunch of continuous density functions (aka probability
distributions)
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A random variable denoted by x or y can be assumed to have a cor‐
responding probability distribution, p x , which maps x to a positive
real number. In order to be a probability density function, we’re re‐
stricted to the set of functions such that if we integrate p x  to get the
area under the curve, it is 1, so it can be interpreted as probability.

For example, let x be the amount of time until the next bus arrives
(measured in seconds). x is a random variable because there is varia‐
tion and uncertainty in the amount of time until the next bus.

Suppose we know (for the sake of argument) that the time until the
next bus has a probability density function of p x = 2e−2x. If we want
to know the likelihood of the next bus arriving in between 12 and 13
minutes, then we find the area under the curve between 12 and 13 by
∫12

13 2e−2x.

How do we know this is the right distribution to use? Well, there are
two possible ways: we can conduct an experiment where we show up
at the bus stop at a random time, measure how much time until the
next bus, and repeat this experiment over and over again. Then we
look at the measurements, plot them, and approximate the function
as discussed. Or, because we are familiar with the fact that “waiting
time” is a common enough real-world phenomenon that a distribution
called the exponential distribution has been invented to describe it, we
know that it takes the form p x = λe−λx.

In addition to denoting distributions of single random variables with
functions of one variable, we use multivariate functions called joint
distributions to do the same thing for more than one random variable.
So in the case of two random variables, for example, we could denote
our distribution by a function p x, y , and it would take values in the
plane and give us nonnegative values. In keeping with its interpreta‐
tion as a probability, its (double) integral over the whole plane would
be 1.

We also have what is called a conditional distribution, p x y , which
is to be interpreted as the density function of x given a particular value
of y.

When we’re working with data, conditioning corresponds to subset‐
ting. So for example, suppose we have a set of user-level data for
Amazon.com that lists for each user the amount of money spent last
month on Amazon, whether the user is male or female, and how many
items they looked at before adding the first item to the shopping cart.
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If we consider X to be the random variable that represents the amount
of money spent, then we can look at the distribution of money spent
across all users, and represent it as p X .

We can then take the subset of users who looked at more than five
items before buying anything, and look at the distribution of money
spent among these users. Let Y  be the random variable that represents
number of items looked at, then p X Y > 5  would be the correspond‐
ing conditional distribution. Note a conditional distribution has the
same properties as a regular distribution in that when we integrate it,
it sums to 1 and has to take nonnegative values.

When we observe data points, i.e., x1, y1 , x2, y2 , . . . , xn, yn , we are
observing realizations of a pair of random variables. When we have
an entire dataset with n rows and k columns, we are observing n
realizations of the joint distribution of those k random variables.

For further reading on probability distributions, we recommend Shel‐
don Ross’ book, A First Course in Probability (Pearson).

Fitting a model
Fitting a model means that you estimate the parameters of the model
using the observed data. You are using your data as evidence to help
approximate the real-world mathematical process that generated the
data. Fitting the model often involves optimization methods and al‐
gorithms, such as maximum likelihood estimation, to help get the
parameters.

In fact, when you estimate the parameters, they are actually estima‐
tors, meaning they themselves are functions of the data. Once you fit
the model, you actually can write it as y = 7.2+4.5x, for example,
which means that your best guess is that this equation or functional
form expresses the relationship between your two variables, based on
your assumption that the data followed a linear pattern.

Fitting the model is when you start actually coding: your code will read
in the data, and you’ll specify the functional form that you wrote down
on the piece of paper. Then R or Python will use built-in optimization
methods to give you the most likely values of the parameters given the
data.

As you gain sophistication, or if this is one of your areas of expertise,
you’ll dig around in the optimization methods yourself. Initially you
should have an understanding that optimization is taking place and

Statistical Thinking in the Age of Big Data | 33



how it works, but you don’t have to code this part yourself—it underlies
the R or Python functions.

Overfitting
Throughout the book you will be cautioned repeatedly about overfit‐
ting, possibly to the point you will have nightmares about it. Overfit‐
ting is the term used to mean that you used a dataset to estimate the
parameters of your model, but your model isn’t that good at capturing
reality beyond your sampled data.

You might know this because you have tried to use it to predict labels
for another set of data that you didn’t use to fit the model, and it doesn’t
do a good job, as measured by an evaluation metric such as accuracy.

Exploratory Data Analysis
“Exploratory data analysis” is an attitude, a state of flexibility, a will‐
ingness to look for those things that we believe are not there, as well
as those we believe to be there.

— John Tukey

Earlier we mentioned exploratory data analysis (EDA) as the first step
toward building a model. EDA is often relegated to chapter 1 (by which
we mean the “easiest” and lowest level) of standard introductory sta‐
tistics textbooks and then forgotten about for the rest of the book.

It’s traditionally presented as a bunch of histograms and stem-and-leaf
plots. They teach that stuff to kids in fifth grade so it seems trivial,
right? No wonder no one thinks much of it.

But EDA is a critical part of the data science process, and also repre‐
sents a philosophy or way of doing statistics practiced by a strain of
statisticians coming from the Bell Labs tradition.

John Tukey, a mathematician at Bell Labs, developed exploratory data
analysis in contrast to confirmatory data analysis, which concerns it‐
self with modeling and hypotheses as described in the previous section.
In EDA, there is no hypothesis and there is no model. The “explora‐
tory” aspect means that your understanding of the problem you are
solving, or might solve, is changing as you go.
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