Introduction to Quantum
Computing

Dr. Thyagaraju G S
Professor and HoD, Department of CSE,
SDM Institute Of Technology, Ujire-574240

Topics :

1. Introduction to Quantum Computing
1. Why Quantum Computing?
2. What is Quantum Computing ?
3. Fundamental Principles of Quantum Computing

Qubits

Introduction to Python Qiskit
Quantum Gates and Quantum Circuits
Introduction to Quantum Algorithms

Sk WN

Future Directions and Research Opportunities

1.0 Why Quantum Computing?

1.1 Primary reasons

1

2.

3.

4.

5

. Enhanced Problem-Solving/Computing Capabilities

* Solving complex problems that involve numerous variables and uncertainties

Exponential Scaling
* Power of quantum computers increases exponentially with the addition of qubits

Energy Efficiency

* Lower energy consumption and reduced carbon emissions

Communication
* Provide better security and improved long-distance communications,

. Sensing
* Extremely precise measurements

1.2 Primary Applications

1. Chemistry and Materials Science
e Aiding in drug discovery and materials development

2. Logistics and Optimization
* Optimize logistics and route planning

3. Cryptography
* Quantum-resistant algorithms, secure communication networks using quantum key
distribution (QKD)

4. Artificial Intelligence
* Handling complex datasets and Models

5. Weather Forecasting and Climate Change/Disaster Management
* by simulating complex atmospheric and oceanic systems more accurately

3.0 What is Quantum Computing ?

3.1 What is Quantum ?

* The term "quantum” (plural: quanta) originates from the Latin word for
"how much.”

* Quantum refers to the smallest possible discrete unit of any physical
property, usually related to energy and matter.

 Example:
* A quantum of light is a photon, and
* A quantum of electricity is an electron

* Quantum Particles

* Fermions (Particles that make up matter): Electrons , Protons, Neutrons, Quarks,
Neutrinos

* Bosons (Force-carrying particles): Photons, Gluons, W and Z Bosons, Higgs Boson,
Gravitons (Theoretical?

 Composite Particles: Mesons, Baryons

3.2 What is Quantum Computing?

* Quantum computing is a type of computing that
leverages the principles of quantum mechanics to
process the information.

* Quantum mechanics is the theory that describes the
behavior of microscopic systems, such as photons,
electrons, atoms, molecules, etc.

AN S o

Principles of Quantum Mechanics
(Unique Characteristics of Quantum Particles)

Wave-Particle Duality
Superposition

Entanglement

Quantization

Uncertainty Principle
Probability and Wave functions

4.0 Fundamental Principles of Quantum Computing

4.1 Qubits

4.2 Superposition

4.3 Entanglement

4.4 Quantum Interference

4.5 Decoherence

4.6 Quantum Tunneling

4.7 Measurement and Collapse

4 Core Components of Quantum Computer

A quantum computer is a device that exploits qguantum mechanical
phenomena, such as superposition and entanglement, to perform
computations.

1. Qubits

Quantum Registers

Quantum Gates

Quantum Circuits

Quantum Processing Unit (QPU)

oD vk WN

Measurement Devices

1. What is a Qubit?

* A qubit, or quantum bit, is the fundamental unit of information in
guantum computing, analogous to a classical bit in traditional
computing.

BIT QUBIT

0 1 @) =al0)+B][1)

Key Characteristics of Qubits

1. Superposition: A qubit can exist in a superposition of both states
simultaneously. This means that a qubit can represent 0, 1, or any
combination of the two at the same time.

1. Mathematically, a qubit can be expressed as:|)=a|0)+B]1)
2. where a and B are complex numbers representing the probability amplitudes of
the qubit being in state |0) or | 1), respectively.

2. Entanglement: Qubits can be entangled, meaning the state of one qubit
is directly related to the state of another, regardless of the distance
separating them.

3. Measurement: When a qubit is measured, it collapses from its
superposition state to one of the basis states (either |0) or |1)). The
outcome of the measurement is probabilistic.

Type of particles used to build Qubits

Electrons are subatomic
particles with a negative
charge. An electron can
be seen as a single unit
of electricity

Atoms are the smallest
neutral building blocks
of matter

ATOMS

Photons are the single units
of light, they can be used as
single photon particles or as
larger beams (continuous
variables)

PHOTONS

OUBIT HARDWARE: ELECTRONS

Example: Superconducting circuits

Superconducting qubits: IBM creates transmon qubits using

niobium and aluminium on a silicon substrate

N

Superconduction is the phenomena of free flowing electricity,
without any resistance. When put in a circuit, superconductors can

be used to make qubits.

Google amazon

ADVANTAGES

Closest to classical computer chips, can
therefore leverage many of the existing
enabling technologies

The big number of players speeds

up the developments

Record number of qubits so far,

good initial scaling potential

=== rigetti

IOM

CHALLENGES

Relatively sensitive to errors,

short time to compute

Individual qubits differ and are
therefore more complex to control
Only nearest-neighbor connections,
therefore many components needed
Ultra low temperatures needed

Source: Quantum Computing Hardware - An Introduction (youtube.com)

https://www.youtube.com/watch?v=0xMX8mSeIKw

Source: Quantum Computing Hardware - An Introduction (youtube.com)

OUBIT HARDWARE: ATOMS

Example 2: lon Trap Qubits

Trapped —ion qubits: Quantinuum and lonQ create qubits using

\ ionized ytterbium atoms

lons are atoms where one electron is removed so that they have a positive
charge. Because of the charge, they can be trapped and controlled by a
magnetic or electric field and used as qubits

Qi 1ona

CHALLENGES

ADVANTAGES

Very uniform and stable qubits,

decreased complexity

Long coherence time — long time to compute
Each qubits can be connected to any

other, therefore the computation is fast

lane ara oacv +n antannle with the haln nf linht

Honeywell Q)

Universal
Quantum

Not clear how it scales beyond 50 qubits

lons require ultra vacuum and cooling

so quite a lot of infrastructure

Gates/ operations are relatively slow which is
problematic for very complex algorithms

https://www.youtube.com/watch?v=0xMX8mSeIKw

OUBIT HARDWARE: PHOTONS

Examp,e. Single phOtOﬂS Source: Quantum Computing Hardware - An Introduction (youtube.com)

Xanadu creates qubits by squeezing laser light using ring

\ resonators

Photonics is widely used for the control and readout of qubits. However, the
photons themselves can also be controlled, measured and entangled and
thus can be used as qubits.

P PsiQuantum)XANADU
ADVANTAGES CHALLENGES

Probabilistic character of the photons and the so far
limited quality of the single photon sources lead to
architectures with a lot of redundancy = less scalable
Photons cannot be ‘stopped’ or stored for along
term, limits the number of operation and coherence
time

Processors work at room temperature

and don't need complex infrastructure
Mostly based on existing optical components
which also enables integration into the
classical computing infrastructure.

https://www.youtube.com/watch?v=0xMX8mSeIKw

QC Hardware : Basic Requirements

—
°

A scalable physical system with well characterized qubits
- Scalable in terms of material, infrastructure and architecture
The ability to initialize the state of the qubit in a simple fiducial state
- Neutral starting position that doesn’t influence the operations
Long relevant coherence time
- Enough time to compute before significant errors arise
A “universal” set of quantum gates
- Auniversal set of operations that form the basis of computing
- Gates can also be circumvented, this for example happens in quantum annealers
A qubit-specific measurement capability
- Aclearly defined way to measure to obtain the final answer

Year Qubit Size Milestone
First demonstration of quantum error correction using 9 physical qubits to encode 1

1998 2 logical qubit.
2016 5 IBM introduces the 5-qubit IBM Q 5 Tenerife and IBM Q 5 Yorktown processors.
2017 14 IBM launches the 14-qubit IBM Q 14 Melbourne processor.
16 IBM introduces the 16-qubit IBM Q 16 Rischlikon processor.
17 IBM unveils the 17-qubit IBM Q 17 processor.
20 IBM releases the 20-qubit IBM Q 20 Tokyo processor.
2018 20 IBM releases the 20-qubit IBM Q 20 Austin processor.
50 IBM introduces the 50-qubit IBM Q 50 Prototype.
2019 53 IBM launches the 53-qubit IBM Q 53 processor.
53 Google claims quantum supremacy with its 53-qubit Sycamore processor.
2020 27 IBM achieves a Quantum Volume of 64 with a 27-qubit processor.
2021 127 IBM releases the 127-qubit IBM Quantum Eagle processor.
2022 433 IBM unveils the 433-qubit IBM Quantum Osprey processor.
2023 1,121 IBM presents the 1,121-qubit IBM Quantum Condor processor.
1305 Researchers at TU Darmstadt demonstrate a 1,305-qubit array based on optical
tweezers.
1,180 Atom Computing announces a 1,180-qubit array based on Rydberg atoms.
2024 Upto8 Researchers fuse small quantum states into states with up to eight qubits.

Challenges and Considerations

* Decoherence: Quantum systems are sensitive to their environment,
and maintaining coherence is critical for reliable computations.

* Error Correction: Quantum computations are prone to errors,
necessitating the development of quantum error correction codes
and fault-tolerant techniques.

* Scalability: As qguantum computers grow in size and complexity,
challenges related to maintaining qubit coherence and reducing noise
become increasingly significant.

2. Quantum Register

* A quantum register is a
system comprising Classical register Quantum register
multiple qubits, serving as
the quantum analogue of
the classical processor 101 — 000 001 010 011
register. 100 101 110 111

Source: Google Images

3. Quantum Gates

* Quantum gates is a mathematical operation that acts on the state of
one or more qubits, and it can be represented by a matrix.

1

Hadamard
Gate

4. Quantum Circuits

* Quantum circuits are composed

of quantum gates and are used

to perform quantum algorithms.

* A quantum circuit is a series of
guantum gates that act on one
or more qubits.

* The gates are arranged in a
specific order, and the circuit is

executed in a specific sequence.

H

| [000)+[111)

H

H

\r.'@

5. Quantum Processing Unit

A gquantum processing unit (QPU) is a computational unit that

relies on quantum principles to perform a task. The QPU includes

the:

* QRAM (register + gates)

 Quantum control unit (QCU) which drives the system to the
desired state.

e Classical controller interface which defines the interaction
between the host CPU and the QPU

6. Measurement Devices

* Quantum measurement is all about
obtaining information about the state
of a quantum system

) — A

* Quantum Sensors, Quantum qubit M
Microscopes, Quantum Clocks and e hascollapsed
Frequency Standards, Quantum

Gravimeters and Gyroscopes.

classical bit

3.3 Architecture of Quantum Computer

1. Application Layer 2. Classical Processing Layer 3. Quantum Computing Layers

«— Quantum Computing Layers —— « Classical Computing Layers —
Quantum Hardware Quantum Quantum
1 Processing Unit Programming
Qubite Environment
Quantum "
Cubit Ragisters Quaﬂtum E;EZT-,L:;E Busi
Connectors | " 4 L LUsINess
e 2 — & f— — Applications
(" Iggn::nﬂznfent h i N CIHSS|G3| Cuantum {ngh Level
ircuits: for Ciuantu Algorith
Control Lng;::nGarlT;E GGmpUter e Language)
Operations X y Interface (\
Cuantum O
Circuits o
Qu RAM ﬂhf:n'::ju,.;”

e —

Cloud Data Centre for Data Stare

Source: Overview of Quantum Computer Platform (analyticsinsight.net)

https://www.analyticsinsight.net/latest-news/overview-of-quantum-computer-platform

Quantum Computer Cooling Systems

* Quantum bits, or qubits, typically operate at extremely low
temperatures to maintain their guantum states and minimize thermal
noise.

* The operational temperature for most superconducting qubits is
around 10 to 20 milliKelvin (mK), which is just above absolute zero
(approximately -273.15°C)

* There are advancements in quantum technology that allow for
operation at higher temperatures. For instance, silicon qubits have
been shown to function at temperatures up to 10 Kelvin (K).

Quantum Computer Cooling Systems

Cooling System

Minimum Temperature
Achievable

Type of Qubits

Dilution Refrigerator

~10 mK (10 milliKelvin)

Superconducting qubits

Adiabatic Demagnetization
Refrigeration (ADR)

< 2 K (2000 milliKelvin)

Various types of qubits

Pulse Tube Refrigeration
(PTR)

< 4 K (4000 milliKelvin)

Superconducting qubits

Laser Cooling

Near absolute zero

Trapped ions, atomic qubits

2D Quantum Cooling System

100 mK (100 millikelvin)

Various types of qubits

Immersion Cooling with
Helium-3

<1 K (1000 milliKelvin)

Superconducting qubits

= p;"

/ : :
// Caliberation
v Ap electronics

"\%ﬁ 10 mK

X 2

Chip (not clearly visible here)

Source: (4) Quantum Computing 1: Breaking down the process | LinkedIn

https://www.linkedin.com/pulse/quantum-computing-1-breaking-down-process-mihir-kavishwar-xakoc/

TRl ~

ﬂ”

Superconductmg qubits @ 10 mK

Image Source: University of Glasgow - University news - Archive of news - 2021 - November - UofG lends support
to £6.5m quantum computing consortium

https://www.gla.ac.uk/news/archiveofnews/2021/november/headline_818516_en.html

Quiz 1

2. Qubit: Topics

A qubit, or qguantum bit, is the fundamental unit
of information in quantum computing, analogous
to a classical bit in traditional computing.

BIT QUBIT
p A
r 2 | f: A
1 ’
L‘
0
0 1 lp) =a|0)+B[1)

1.Qubits and States

2.Representation of Qubits :
* State Vectors
 Dirac Notation : Basic Elements
* Representing General Qubit States
e Common Qubit states
e Measurement in Qubit Notation

. Inner Product and Outer Product

. Perpendicular and Parallel Qubit Vectors

. Magnitude and Normalization of the Qubit Vector
. Angle between two Qubit vector using Dot Product
. Linear Combination of two qubit vectors

. Superposition of Qubits

. Hilbert Space

10. Basis

11. Tensor Products

12. Entanglement of Qubits in Hilbert Space

13. Bell State

14. Complex numbers in Polar Form

15. Representing Qubits states in Bloch Sphere

O 00 NO UV ~b W

N-qubit Number of states | States Examples

1 2M1 =2 |0) and |1) A single qubit can be used as a highly
sensitive quantum sensor to measure
magnetic fields, electric fields, temperature,
pressure and other quantities with extremely
high precision

2 202 =4 00), |01), |10), and |11) Used to create entangled states, such as the
Bell state 1/sqrt(2)*(100)+|11)).

3 23 =8 |000), |001), |010), |011), |100), |101), |110), | A 3-qubit quantum computer can be used to

and [111) simulate the behavior of a simple molecule
like hydrogen (H2)

4 274 =16 |0000), |0001), |0010), |0011), |0100), A 4-qubit computer can be used to

|0101), |0110), |0111), |1000), |1001), implement Grover's algorithm, which
|1010), [1011), |1100), |1101), |1110), and searches an unsorted database
|1111).

8 28 =256 An 8-qubit quantum computer can be used
to factor large numbers using Shor's
algorithm,

30 2730 = 1 billion Could be used to simulate the behavior of

complex molecules and materials, which is
crucial for developing new drugs, batteries,
and other technologies

Classical 2-Bit Example:

* In classical computing, two bits can represent four distinct states:
* 00, 01, 10, and 11 whose binary values are 0,1,2 and 3.
* Each bit is either O or 1.

* Each state represents a uniqgue combination of the two bits,
corresponding to a specific decimal value from 0 to 3.

* The system can only be in one of these states at a time.

Quantum 2-Qubit System:

* [n quantum computing, two qubits can represent a superposition of all four
states (00, 01, 10, and 11) simultaneously.

* The state of the qubits is described as a linear combination of these basis
states.

A general 2-qubit state can be written as:

State = agy|00) + agp |01) 4 a9[10) + a1 |11)

where auy, Qig1, @19, and ;g are complex numbers representing the probability amplitudes for

each state.

2.2 Representation of Qubits

State Vector : Each element in the state vector represents probability
of being in that particular state.

State vector=[HT]

If the coin is in the head’s state , state vector =[1 0]

If the coin is in the tail’s state , state vector = [0 1]

State vector is used to represent the state of quantum systems

Dirac Notation

* Dirac notation, also known as bra-ket notation, is a standard way to
represent quantum states and operations in quantum mechanics. It is
particularly useful in describing qubits and quantum systemes.

* Ket |{) : Column Vector

* Bra (Y| : Row Vector

* Bra-Ket : ({|) Inner Product
* Ket- Bra: |[{) (| Outer Product

Basic Elements of Dirac Notation

Ket |): Bra (Y | : Represents the conjugate
transpose (row vector) of the ket.

W] = (a* %)

Qo
o= (3)
where a* and B* are the complex

conjugates of a and .

* Represents a column vector (a
quantum state).

Qubit States

The general state of a qubit can be written as:

) = af0) + f|1)

where o and 3 are complex numbers. These numbers describe the probability amplitudes of the

qubit being in the states |0) and |1), respectively.

The probabilities themselves are given by the squares of the magnitudes of these amplitudes:
a* for [0) and |A* for [1), with the condition that |a|* + [B]* = 1.

Common Qubit States

1. Standard Basis States:

0): The qubit is definitely in the "0" state.

1): The qubit is definitely in the "1" state.

2. Superposition States:

+)

)

o S

(
(

0) +
0) —

1)): This is an equal superposition of |0} and |1).

1)): This is another type of superposition, with a phase difference.

Measurement in Qubit Notation %) = al0) + BI1)

* When you measure a qubit, you collapse its state to either |0) or [1).

* The probability of measuring [0) is |« 2,

2

* The probability of measuring [1) is |8

Example

If a qubit is in the state |¢)) = «/_ 0) + \/_\1 it means:

e Thereis a 3 chance of measuring it as |0).

Lolka Lol

* Thereis a % chance of measuring itas |1).

2.3 Inner Product and Outer Product

Bra-Ket: Inner Product ({{ | d))

The inner product is the product of a bra and a ket, which results in a scalar (a complex number). This

scalar represents the overlap or similarity between two quantum states.

For two qubit states [t)) and |¢@), the inner product is given by:
(Y|¢) = o™y + 70
where:
* [¥) =al0)+B[1)

* |¢) =~[0)+4d]1)

* q, (3,7, and 9 are complex numbers, and a* and 8* are the complex conjugates of a and 3.

Ket-Bra: Outer Product (|Xd|)

The outer product is the product of a ket and a bra, resulting in a matrix (also called an operator).

This matrix can be used to describe transformations in quantum mechanics.

For the same states [1) and |@), the outer product is written as:

¥)(0] = (g) (r &)= (‘f‘ji ggi)

This matrix describes how the state |¢) can be transformed by the state [1)).

Inner Product Example

Consider a qubit in the following state:

In ket notation: 3
= (1)
D

The bra for this state would be;

Inner Product Example

Let's say we have another qubit state |¢@) given by:

1 1
¢) = ﬁlfb + E'D

In ket notation:

The bra for this state would be:

Inner Product Example

Now, let's calculate the inner product (@|1)), which gives the overlap between the two states:

@) = (75) @)

Perform the multiplication:

1
(Bl) = 75

Outer Product Example

The outer product |1)) (¢| results in a matrix (operator):

4)(d] = (;)

N

.

Perform the matrix multiplication:

%) (¢

|
7N
SRR
S———

2.4 Perpendicular and Parallel Qubit Vectors

Perpendicular Qubit Vectors

Two qubit vectors are perpendicular if their inner product (dot product) is zero. For example:

* Qubit Vector 1: [¢) = ((1))

* Qubit Vector 2: |¢2) = (?)

(¢1]¢2) = (1 0) G’) —(1-0)+(0-1) =0

Since the inner product is zero, |¢1) and |¢9) are perpendicular.

Two Parallel Qubit Vectors

Two vectors are parallel if one is a scalar multiple of the other. Let's check if [19) is a scalar multiple

of [1)1).

Example:

e Qubit Vector 1: |¢1) = (é)

e Qubit Vector 2: |1)2) = (i)

) = 2-Jun) =2+ (3) = (1)

Since |1b9) is exactly 2 times |11), the vectors |101) and |1)2) are parallel.

We can express |19) as:

2.5 Magnitude and Normalization of the Qubit
Vector

Magnitude of the Qubit Vector ¥ = (i)

The magnitude (or norm) of |1) is calculated as:

%]l = Vlal* + [b]2

where |a| and |b| represent the absolute values (or moduli) of the complex numbers a and b,

respectively.

Example:

Let's say the qubit vector is:

[¥) = (

S
S—

The magnitude would be:

||¢||:\/U;

=V1=1

Normalization Process

To normalize |1), you divide each component by the norm of the vector:
1 a T
‘wnnrmalized> — T n () — HIE:H
]| \b ToT

Let's consider a qubit vector:

Example

Step 1: Calculate the norm of |1)):

l)l = V/[3[>+ |42 = V9 +16 = V25 =5

Step 2: Normalize the vector:

To normalize |¢), divide each component by the norm:

3
|¢nurma]jzed> — % (i) — (g)

So the normalized qubit vector is:

0.6
|"/Jn0rma]_ized> — (0.8)

Step 3: Verify the normalization:

Let's check the magnitude of the normalized vector:

||Qpnormalized” — ‘\/(06)2 -+ (08)2 — \/036 + 0.64 = \/I — 1
Since the magnitude is 1, the vector is properly normalized.

Normalization ensures that the qubit vector has a magnitude of 1, making it consistent with the

. . . 3 _ 0.6
principles of quantum mechanics. In this example, the vector g | was normalized to 0.8)

2.6 Angle between two Qubit vector using Dot
Product

Finding the Angle Between Two Qubit Vectors Using the Dot Product

In quantum mechanics, the angle between two qubit vectors can be found using the inner product
(dot product) of the vectors. This angle is related to the overlap of the states, and it can be calculated

using the following formula:

[{91]12)]
cos(f) =
A FA TN

Where:
e @ is the angle between the two qubit vectors.
e (1)1 |1)2) is the inner product of the two vectors.

e ||21|| and ||2)2 || are the magnitudes (norms) of the vectors |01) and |15).

Example

Let's consider two qubit vectors:

wo=("o%) o =(})

Step 1: Compute the Inner Product
(YP1|tp2) = (14+2)-0+0-1=0

The inner product is O.

Step 2: Find the Magnitudes

1]l = /|1 +i2 02 = /(12 +12) = V2

[l = VO + 1P = VI =1

Step 3: Calculate the Cosine of the Angle

Since the inner product is 0, cos(@) will also be 0:

Step 4: Find the Angle

6@ = arccos(0) = g radians = 90°

L
The angle @ between the two qubit vectors |t)1) = (?)r E) and |19) = ((1)) is 90°, meaning

they are orthogonal (perpendicular) to each other.

2.7 Linear Combination of Two Qubit Vectors

A linear combination of two qubit vectors involves creating a new qubit
vector by adding the vectors together, each multiplied by a scalar (which can

be a complex number).

Given two qubit vectors |tb1) and |1)7), a linear combination of these vectors can be expressed as:

V) = c1Yhr) + calih)

where ¢ and ¢y are complex numbers (scalars).

Example

Consider two qubit vectors:

i =(5) 1= (

These are the basis states |0) and |1), respectively.

Let’s form a linear combination:

1 1

Lyt
) = st + st = = (o) +

0
1

)

2.7 Superposition of Qubits

In general, the superposition state can have any complex coefficients ¢; and ¢s:

The state is normalized if:

1. Equal Superposition

This is a state with equal probabilities of measuring |0) and |1):

1 1

Y) = ﬁ\0> + EID
Probabilities:
¢ P(0) = %2:%:50%
e P(1) = %2:%:50%

2. Biased Towards |0)

In this state, the probability of measuring |0) is higher than that of measuring |1):

6 =0+ o
Probabilities:
. P(0) = @‘2:3:75%
e P(1)=[i=1=2%

3. Biased Towards |1)

Here, the probability of measuring |1) is higher:

1 | 24/2
¥) = 50) + =5~ 1)

Probabilities:

e P(0)=|L"=1~11.11%

— 8 ~ 88.89%

* P(1) = |57 9

4. Closer to |0)

This state has a higher probability of being in |0) but still a significant chance of being in |1):

P) = \/—\0 f
Probabilities:
o P(0) = V%2:—_80%
¢+ P(1)= V%2:-_20%

5. Very Close to |1)

This state has a high probability of being in [1):

6 =20+ Y2
Probabilities:
e P(0)=|i"=4 =6.25%
¢ P(1)=|¥5 g 15 — 93.75%

Note

* Ket notation |)): Represents the state as a column vector.

* Bra notation (Y|: Represents the conjugate transpose of the ket as a
row vector.

* Inner product {(p|y): Gives a scalar, indicating the overlap between
two quantum states.

* Outer product [Y){@|: Results in a matrix, useful for constructing
quantum operators.

2.9 Hilbert Space in Quantum Computing

* A Hilbert space in qguantum computing is a mathematical framework
used to describe the state space of quantum systems. It is a complete
inner product space where:

* Vectors represent quantum states.
* Inner product defines the overlap or similarity between states.

Norm of a vector represents the probability amplitude of finding the system
in that state.

Unitary Operators represent quantum gates.
Projection Operators represent measurements.
Probabilities are calculated based on the norms and inner products.

Hilbert Space in Quantum Computing

In quantum computing, the Hilbert space C? for a single qubit includes:

1 0
* Basis Vectors: |0) and |1), represented as (0) and (1) respectively.
» State Vectors: Any qubit state can be expressed as a superposition of the basis vectors.
* Unitary Operators: Transform the state vectors; for example, the Hadamard gate.

* Measurement: Projects the state vector onto the basis vectors and gives probabilities for

measurement outcomes.

2.10 Basis in Quantum Mechanics

* In quantum mechanics, a basis typically refers to a set of orthonormal
vectors in a Hilbert space.

* For qubits, the basis vectors are often represented as |0) and |1),
which are the standard basis vectors for a single qubit

|0>and | 1> are ortho normal basis

1. Orthogonality

To check orthogonality, we calculate the inner product (dot product) of |0) and |1):
0
(0]1) = (1 []) (1) =(1x0)+(0x1)=0

Since (0|1) = 0, the vectors |0) and |1) are orthogonal.

|0>and | 1> are ortho normal basis

2. Normalization

To check normalization, we calculate the norm of each vector:

e For |U}:

110) |—f../<o|o>—\/(1 0) G]):\/(lxl)Jr{UxU):ﬁ:l

e For |1}:

| 1) |\/<1|1>\/(o 1) (§) = VOxO T IxD = Vi1

Both |0) and |1) are normalized since their norms are equal to 1.

2.11 Tensor Products

* If we have two vector spaces V and W, their tensor product of V and
W is a new vector space formed from all possible combinations of
vectors from Vand W.

* The dimension of the tensor product space is the product of the
dimensions of the individual spaces.

* For example, if V has dimension m and W has dimension n,
then tensor product of V and W has dimension mxn.

Tensor Product Notation

The tensor product of two vectors |1;) and |1)5) is denoted as:

1) ® |¢a)

It is often written simply as |11 [1)2) or [1h1s).

Example 1 :

_D ___I___D D_

_D 1__1 H”.g__H”g H”.,_
__1 Hﬁ.”.._”___ i I
- o QO O ™
@ ___“_ _”______I_ _”__
_1 D__ _
o |
| |
| o~
.5
g
L
< ~ N~
Mt
o

Example 2:

[Fl= o]l = [6] = [F]= |§§ E - L= |é]

|t

|
——

QOO H=OQQD0

Example 3:

Consider two qubits in the states [1)1) and |1)s):
o Let|Yhy) = |0) + B11)
¢ Let|thy) = a2|0) + B2|1)

The tensor product |11) ® [1)g) is:
Y1) ® |¥2) = (1]0) + B1]1)) ® (22|0) + B2[1))

Expanding this:

Y1) ® |1h2) = a102|00) + a;182|01) + Brag|10) + 51 52|11)

Example 4:

Let's take specific qubit states:

< v =100 = ()
SISENNEN

The tensor product is:

mom-(3)e ()

This results in:

/i-[ll\ /(IJ\
e =,0l=1s]=00

Example 5:

Now, let's consider two qubits each in the state w%([ﬂ) + (1)):

b = L
Ya2) = ==

The tensor product gives:

0)+ (1))
0) + (1))
1) ® [1h2) = —=(10) + [1)) ® —=(|0) + |1))
1 2/ — \/ﬁ \/5
1
1) @ 4 = ———=(100) +[01) + 10) + [11)

1) ® [i) = 5 (100) +[01) + [10) + |11)

2.12 Entanglement of Qubits in Hilbert Space

* Entanglement is a quantum phenomenon where two or more qubits
become linked in such a way that the state of one qubit is dependent
on the state of the other, no matter the distance between them.

* This relationship persists even if the qubits are separated by large
distances, leading to correlations in their measurements.

* In guantum computing, entangled states are described using the
Hilbert space of multiple qubits.

* Entanglement involves quantum states that cannot be factored into
separate states of individual qubits:

Entanglement of Qubits in Hilbert Space

* Entanglement is a quantum phenomenon where two or more qubits
become linked in such a way that the state of one qubit is dependent
on the state of the other, no matter the distance between them.

* Entanglement involves quantum states that cannot be factored into
separate states of individual qubits.

 Example :

") = —=(|00) + [11))

1
V2

2.13 What is Bell State?

* The Bell states are specific quantum states of two qubits that are
maximally entangled.

* They are named after physicist John Bell, who studied the
implications of entanglement for quantum mechanics and classical
physics.

* There are four Bell states, each representing a different kind of
entanglement between the two qubits.

1

V2

This state represents two qubits that are perfectly correlated: if one qubit is measured in the |0)

@7) = —(|00) + [11))

state, the other will also be in the |0) state, and similarly for the |1) state.

2. |®7):
1

V2

In this state, the qubits are still correlated, but with a relative phase difference of —1 between
the |00) and [11) components.

@) = —=(/00) — [11))

3. |UT):
1

V2

This state represents two qubits that are anti-correlated: if one qubit is measured in the |0)

97) = —=(/01) + [10))

state, the other will be in the |1) state, and vice versa.

4, [¥7):

B 1
) = EUUU - [10))

Similar to [¥), this state has anti-correlated qubits, but with a relative phase difference of —1

between the [01) and [10) components.

Prove that The Bell State is entangled state

To prove that the Bell state is an entangled state, we can consider the
specific Bell state |®), defined as:

B*) = %uow +11))

A quantum state is considered entangled if it cannot be expressed as a
product of individual states of its components. Specifically, a two-qubit state
|¥) is separable (not entangled) if it can be written as:

W) = |91) ® |12)

for some states |1)1) and |1)5). Conversely, if no such factorization is
possible, the state is entangled.

Proof of Entanglement for ()

1. Assume Separability: Suppose *I>+) is separable. Then there exist
states |11) and |¢2) such that:

|27) = [91) @ [P2)

2. Form of States: Let |1/1) = a|0) + b|1) and |¢)5) = ¢|0) + d|1),
where a, b, c, d are complex coefficients satisfying normalization
conditions.

3. Tensor Product: The tensor product of these states gives:

1) ® [19) = (al0) +b|1)) ® (¢|0) + d|1)) = ac|00) + ad|01) + be|10)

4. Equating States: For |<I>+> to equal this tensor product, we must have:
1

\/§(|DD> + [11)) = ac|00) + ad|01) + be|10) + bd|11)

5. Coefficient Comparison: This leads to the following equations based
on the coefficients of |00), |01), [10), and |11):

e ac — % (coefficient of |00))
« ad = 0 (coefficient of [01))
« bc = 0 (coefficient of [10))
« bd = % (coefficient of [11))

Analyzing the Equations:

e Fromad = 0 and be = 0, we conclude that eithera = Qord = 0
and eitherb = Q0 orec = 0.

« Ifa = 0,then |¥;) = b|1) and |¥5) must yield |11), which

: 1
contradicts ac = ok

« Ifb = 0,then |1) = a|0) and |15) must yield |00), again leading
to a contradiction.

7. Conclusion: Since all scenarios lead to contradictions, |®™) cannot

be factored into a product of two states. Therefore, it is an entangled

state.

2.14 Complex Numbers in Polar Form

A complex number z can be written as:
z=x+ 1y

Where x is the real part and y is the imaginary part of the complex number, and 7 is the imaginary
unit, defined as i2 = —1.

In polar form, this complex number can also be written as:
z = |z|e™?
Where:

e |z|is the magnitude (or modulus) of the complex number.
e ¢ is the phase angle (or argument) of the complex number,

o ' represents the direction or rotation in the complex plane.

2.15 Representing QuBits states using Bloch Sphere

* The state of a qubit can be represented as
a point on the Bloch Sphere

* It is a unit sphere, where r=1.

Qubit State Representation

¥) = al0) + BJ1)

Where a and [3 are complex numbers.

Expressing o and [3:

o = |alei®, B = |Ble

The state can also be written as:

) = |ale'®|0) + |Ble'”?|1)

This can be factored as:

) = e [|al|0) + |Ble" 1)

Here, @ = ¢ — ¢q is the relative phase.

Since the global phase €' is insignificant, it can be ignored:

%) = |al[0) + [Ble™[1)

Magnitudes and Trigonometric Representation:

We know:
al? + |87 =1
Set:
la| = cos(0/2), [B|=sin(0/2)
Then:

cos?(0/2) +sin*(8/2) = 1

So, the qubit state can be written as:

) = cos(8/2)[0) + sin(8/2)e’|1)

Representing QuBits states using Bloch Sphere
z = |0)

* A Bloch sphere uses its three axes to
represent a qubit’s state. The state vector
originates in the center of the sphere and
terminates at a point with z, x, and y

coordinates.

* The z-axis represents the probability of
the qubit being measured asa0ora 1.

* The x-axis represents the real part of the
state vector.

* The y-axis represents the imaginary part
of the state vector.

Qubit State in Polar Coordinates

To represent this state in polar coordinates on the Bloch sphere, we express o and 3 using two

angles fl and ¢
1. 6: This is the polar angle (latitude) on the Bloch sphere, ranging from () to .

2. @: This is the azimuthal angle (longitude) on the Bloch sphere, ranging from 0 to 2.

Given these angles, the qubit state 1)) can be written as;

=) 0+)

%) = al0) + B[1)

) = cos (g) 0) + €% sin (g) 1)

i

* COS (5) corresponds to the probability amplitude for the qubit being in the |0) state.

0

* §in (2) corresponds to the probability amplitude for the qubit being in the [1) state.

+ ¢ introduces a phase factor for the 1) component

) = cos (3) 10+ #sin (3) 1y

" 0)

(o)

e =0

@ can be any value, but typically we take ¢ = 0.

G+ D)y

()

] 9:*}1‘

& can be any value, but typically we take ¢ = 0.

(since both |0) and |1) components have equal magnitude)

> (due to the ¢ phase factor, which corresponds to a phase of %)

—z— 1)

o =es(g) 0 etsm(5)im || o= ()

e = 5 (since both 0) and |1) components have equal magnitude)

° = — 5 (due to the —1 phase factor, which corresponds to a phase of —3).

4= 2= (1) = 50+)

(since both |0) and |1) components have equal magnitude)

- =25 (1) = 7500 -)

e 0= 5 (since both 0) and |1) components have equal magnitude)

* ¢ = 7 (due to the —1 phase factor).

Quiz 2

Open Source SDKs for Quantum Computing

* There are several open-source SDKs (Software Development Kits)
available for quantum computing, each designed to help developers
and researchers build, test, and run quantum algorithms on various
guantum hardware and simulators.

Open Source SDKs for Quantum Computing

SI.NO SDK Developer Language
1 Qiskit IBM Research and the Qiskit Python
community.

2 Cirg Google Python
3 Braket Amazon Python
4 Forest Rigetti Computing Python
5 Ocean D-Wave Systems. Python
6 ProjectQ | ETH Zurich Python
7 QDK Microsoft Q#

Others : Strawberry Fields (Xanadu)(Python), Quipper (Haskel),
PennyLane(Python),etc.

https://qiskit.org/

Qiskit Key Features

 Components: Includes
1. Terra[Earth] : circuit construction
2. Aer [Air] : simulation,
3. lgnis [Fire]: error mitigation, and
4. Aqua [Water] : application-specific algorithms.

* Ecosystem: Supports a wide range of quantum algorithms and
applications, including finance, chemistry, and machine learning.

« Community: Strong community support with extensive tutorials and
resources.

* Use Cases: Suitable for both beginners and advanced users, enabling
access to IBM's quantum hardware and simulators.

Installing Qiskit

* pip install qiskit
[This This will install the latest stable version of Qiskit, including: Qiskit Terra,
Qiskit Aer, Qiskit Ignis and Qiskit Aqua]
* Upgrading qistkit: pip install --upgrade qiskit

* Installing Individual Components
 pip install qgiskit-terra
 pip install qiskit-aer
 pip install giskit-ignis
 pip install qgiskit-aqua

Verifying the Installation

import giskit
from giskit import QuantumCircuit

Create a simple quantum circuit
gc = QuantumCircuit(2, 2)

gc.h(9)

gc.cx(0, 1)

gc.measure([0, 1], [9, 1])

Print the circuit
print(qc.draw())

Verifying the Installation

AV
=

Qiskit Python Programs to representing Single
Qubit States

* | 0) state
* |1) state
* |i) state
* |-i) state
* |+) state
* |-) state

1. Qiskit Python program to represent the |0) state vector

. i . . . Statevector([1.4+0.]j, 0.+0.7],
from qiskit import QuantumCilircuilt dims=(2,))

from giskit.quantum_info import Statevector

qubit O
10)

Create a quantum circuit with 1 qubit
gc = QuantumCircuit(l)

Qiskit by default initialises [@> state
Get the statevector

state = Statevector.from_instruction(qgc)

Print the statevector
print(state)

Optionally, visualize the statevector \
state.draw('bloch") ol

Statevector([1.+0.j, 0.+0.3],

=(2,))

dims

2. Qiskit Python program to represent the |1) state vector

|1) state:

/I) state Statevector([0.+0.j, 1.40.7],
qc_1l = QuantumCircuit(1) dims=(2,))
gc_1.x(6) qubit 0

state = Statevector.from_instruction(qgc_1)
print(f"\n|1) state:")

print(state)

state.draw('bloch')

10)

1)

3. Qiskit Python program to represent the [i) state vector

fl) state |i) state:

qc i = Quantumtir‘cuit(lj Statevector([0.70710678+0. j » B +0.707106787],
qr:_i h(@} dims=(2,))

qc_i.s(0) qubit 0

state = Statevector.from instruction(qc i)
print(f"\n|i) state:")

print(state)

state.draw('bloch")

10)

4. Qiskit Python program to represent the |-i) state vector

|-i) state:

f—i) state Statevector([0.70710678+0. j , 0. -0.7071067871,
gc minus i = QuantumCircuit(1) dims=(2,))

qc_minus_i.h(0) qubit 0

qc_minus_i.sdg(0) o

state = Statevector.from instruction(gc minus i) —

print(f"\n|-i) state:") | 3

print(state)
state.draw('bloch")

5. Qiskit Python program to represent the |+) state vector

|+) state:
/+) state Statevector([0.70710678+0.j, ©0.70710678+0.7],
dims=(2,
gc_plus = QuantumCircuit(1) ims=(2,))
gc_plus.h(0) qubit o

state = Statevector.from instruction(qc_plus)
print(f"\n|+) state:") :
print(state) 1

state.draw('bloch") |

10)

6. Qiskit Python program to represent the |-) state vector

|-) state:

f-,_} state o Statevector([0.70710678+0.j, -0.70710678+0.3],
gqc_minus = QuantumCircuit(1) dims=(2,))

qc_minus.x(0)
gc_minus.h(0) qubit 0
state = Statevector.from instruction(qc _minus) 10)
print(f"\n|-) state:")
print(state)
state.draw('bloch")

Quiz 3

Quantum Gates and
Quantum Circuits

Dr. Thyagaraju G S
Professor and HoD, Department of CSE,
SDM Institute Of Technology, Ujire-574240

Unitary Operations

A unitary operation in quantum computing is a mathematical transformation that evolves the state
of a quantum system in a way that preserves the total probability. These operations are represented

by unitary matrices, which are square matrices U that satisfy the condition:
U'U=UU"=1

where:
o U is the Hermitian adjoint (or conjugate transpose) of U.

o [is the identity matrix.

1. Quantum Gates

O 00 NO U WwbhE

Pauli Gates (X, Y, Z)
Hadamard Gate (H)

Phase Gates (S, T)
Controlled Gates(CX,XZ)
Swap Gate

Toffoli Gate (CCNOT)
Fredkin Gate (CSWAP)
ldentity Gate ()

Rotation Gates (Rx, Ry, Rz)

1.1.1 Pauli X Gate X

a) X Gate (Pauli-X)

* Operation: The X gate is analogous to the classical NOT gate. It flips the state of a qubit from

0) to |1) and vice versa.

 Matrix Representation:

e Effect on Qubits:
« XI[0)=1)
« X|[1)=10)

Pauli X Gate

The X-gate is represented by the Pauli-X matrix;

X=|) of o+ o

To see the effect a gate has on a qubit, we simply multiply the qubit's statevector by the gate. We can see that the X-gate
switches the amplitudes of the states |0) and |1):

1 —

ol =

]

1.1.2 Y Gate (Pauli-Y) Y

e Operation: The Y gate flips the qubit state and adds a phase of 7 (or 180 degrees).

* Matrix Representation:

e Effect on Qubits:
« Y|0)=1[1)
e Y1) = —i0)

1.13ZGate (Pauli-z) 7}

Operation: The Z gate flips the phase of the qubit state |1), leaving |0) unchanged. It is often
called the phase-flip gate.

Matrix Representation:

Effect on Qubits:

. Z[0)
. Z[1)

0)
—|1)

1.2 Hadamard Gate (H) H

¢ Operation: The Hadamard gate creates a superposition of states. It maps the basis states |0)

and |1) to an equal superposition of |0) and |1).

* Matrix Representation:

e Effect on Qubits:
. HI0) = 1(0) + 1))
e H1) = 2(0) — 1))
Example: Applying the Hadamard gate to |0) puts the qubit in an equal superposition of |0)

and |1):

H|0) = —=(]0) +[1))

-

2

1.3.1 S Gate (Phase Gate)

* Operation: The S gate is a phase shift gate that applies a phase of 7 /2 to the qubit.

¢ Matrix Representation:

e Effect on Qubits:
» 5]0) =10)
e S|1) =i|1)

1.3.2 T Gate (Phase Gate)

* Operation: The T gate is another phase shift gate, applying a phase of /4.

* Matrix Representation:

e Effect on Qubits:
« T10)=10)
o T|1) =e™4|1)

Note

Basis States for a Single Qubit

A single qubit has two possible basis states:

2

I
e
o =
S
=
|
o~
—_
—

Tensor Product for Two Qubits

When we combine two qubits, the possible states are the tensor products of the individual qubit

states. For example:

1- (1 1
00) = |0) ® |0) = (é) ® ([1]) _ U £11 _ g
(4 0

Similarly, for the state [11):

11) = 1) ® [1)

Computing the Tensor Product

Let's compute the tensor product of |1) ® |1):

Now, compute the tensor product:

=)+

The state [11) in matrix (vector) form is:

- O QO

(0

o

\1/

= o O O

1.4.1 CNOT Gate (Controlled-X)

The Controlled-NOT (CNOT) gate, also known as the Controlled-X gate, is a two-qubit
gate that flips the state of the target qubit if the control qubit is in the state |1>

e Operation: The CNOT gate flips the target qubit if the control qubit is |1).

e Matrix Representation:

CNQOT gate

* Controlled NOT gate
* Actson two qubits

CNOT =

oo O =
oo = O
= oo O
OO O

Matrix representation Circuit representation

e [Effect on Qubits: (1) (1) 8 8
=5 o @ 1 %
e If the control qubit is |0), the target qubit remains unchanged. 0010

e If the control qubit is |1), the target qubit is flipped.
Example: For control qubit |1) and target qubit |0):

CNOTJ10) = |11)

CNOT Gate Matrix Representation

The CNOT gate is represented by the following 4 X 4 matrix:

1 0 0 O
0 1 0 O
CNOT = 0 0 0 1
0 01 0

Basis States and Corresponding Vectors

The CNOT gate acts on two qubits, which have four possible basis states. These basis states are

represented as vectors:

00) = 01) = 10) = 1) =

o O o =
a::r::“r—ha::
o = O O
= o O

Applying CNOT to |10)

The input state |10) corresponds to the vector:

10) =

Now, apply the CNOT gate matrix to this vector:

1 0 0 0\ /0
010 0] |0
CNOT-[10)= | o o o 1 X
0 010/ \o

This corresponds to the quantum state [11).

o = o O

0-1+40-0+0-1+0-0
0-1+40-0+0-1+0-0
0-0+0-0+0-0+1-0
0-0+0-0+1-1+0-0

_c o O

1.4.2 Controlled-Z Gate (CZ)

The Controlled-Z (CZ) gate is a two-qubit quantum gate that applies a Z gate (also known as a
phase-flip gate) to the second qubit, but only if the first qubit (the control qubit) is in the state
|1) | 1\rangle|1). Otherwise, it leaves both qubits unchanged.

* Operation: The CZ gate applies a Z gate to the target qubit if the control qubit is |1).

* Matrix Representation:

1 0 0 O
0O 1 0 0
Gl = 0 0 1 O
0 0 0 -1

e Effect on Qubits:

 |If the control qubit is |1), the target qubit’s phase is flipped.

Applying the CZ Gate to Basis States

— (

The |00) state remains unchanged.

CZ|01) = (

The |01) state remains unchanged.

1. |00) state:

oo O =
o O O

o = O O
|

HDDD
‘\.,______,/
,F"—-—_--"“\‘

2. |01) state:

oo o =
o O = O

o =D O
|

P—‘GED
M""-—-_--"'/

Applying the CZ Gate to Basis States

3. |10) state:
1 0 0 O 0 0
CZ|10) = g [1] [1] g {f = ? = [10)
0 0 0 -1 0 0
The |10) state remains unchanged.
4. |11) state:
1 00 O 0 0
e |
0 0 0 -1/ \1 —1

The |11) state acquires a phase flip (multiplied by -1).

1.5 Swap Gate

e Operation: The Swap gate swaps the states of two qubits.

e Matrix Representation:

Swap =

OO =
o OO
o O =O

e Effect on Qubits:

* The states of the two qubits are exchanged.

=0 O O

Applying the Swap Gate to Basis States

1. |00) state:

o O O
O = O O
o O = O

SWAP|00) = (

The |00) state remains unchanged.

2. |01) state:

SWAP|01) = (

o O O =
o = O O
o O = O
—_—o O O
H"‘-—-—-—-"’/
o o = O
M“"-—_--"'"J
|
o = O O
H"‘-—-—-—-"’/
|
—_
=

The |01) state is swapped to |10).

3. |10) state:

1 0 0 O 0 0
0 0 1 0 0 1

SWAP[10) =10 1 o ol l1l= 10| =10D
0 0 0 1 0 0

The |10) state is swapped to [01).
4. [11) state:

1 0 0 O 0 0
0 0 1 0 0 0

SWAP|11) = 010 0 ol = |o = |11)
0 0 0 1 1 1

The |11) state remains unchanged.

1.6 Toffoli Gate (CCNOT)

e Operation: The Toffoli gate is a three-qubit gate where two qubits act as control qubits, and the

third is the target qubit. The target qubit is flipped if both control qubits are |1).

e Matrix Representation: The matrix is 8x8, but conceptually:
* If both control qubits are |1), flip the target qubit.

Example: If control qubits are |11) and target qubit is |0), the Toffoli gate gives |111).

Matrix Representation
The Toffoli gate performs the following operation on the

The Toffoli gate is represented by an 8x8 unitary matrix: computational basis states:

e |000) — |000)
e |001) — |001)
e |010) — |010)
011) — |011)
e |100) — |100)
e |101) — |101)
e |110) — [111)
e |111) — [110)

1

Toffoli =

COoOO0OO0O OO

COOO OO -=O
COOCO O =OO
COoOOOO - OOO
OO OO00OO
CO OO0 0OO0O
B = e Y o Y e Y e e
O OO0 0O0O0O0O0O

L

The target qubit (third qubit) is flipped only
when both control qubits (first and second
qubits) are |1).

State Vector [110):
The state |110) corresponds to the following column vector (indexing from 0):

T~

1110) =

OO0 00O00C

’#

Applying the Toffoli gate to |110):

|111)

]
== == e Y e (e (Y e e
.!..llll Il...l..\

]
CcCOoO OO OO - O
..l.l_lll II.I-._..\.

L il e i e B e e Pl B
COOCO OO O ™~
CoocoOooOom™-O0O
COOOOm-wO OO
COoOoOOoOo s O 000
COoO O 00 0o
O - OO0 000 o

- O OO O O oo
f k

Toffoli - |110)

1.7 Identity Gate (l)

e Operation: The Identity gate does nothing to the qubit. It is equivalent to a “do nothing”

operation.

* Matrix Representation:

()

e Effect on Qubits:

.+ 1]0) = |0)
. I1) = 1)

1.8.1 Rx Gate

* Operation: Rotates the qubit around the X-axis.

0
R.(0) = cos (5) I — isin (

* Rotates the qubit state by @ radians around the X-axis.

* Matrix Representation:

e Effect on Qubits:

The Rx gate is a single-qubit rotation gate that rotates the state of a qubit
around the X-axis of the Bloch sphere

The Rx gate is defined as:

Rx(0) - exp i2)

Where X is the Pauli-X matrix:

The exponential term can be expanded into:
e 7
Rx(#) = cos (5) I — isin (5) X

Substituting the Pauli-X matrix X:

Example 1: Rx Gate on |0)

Consider applying the Rx gate with 6 = 5 to the qubit state 0).

1. Initial State:

2. Rx Gate with @ = %:

Example 2: Rx Gate on |1)

Consider applying the Rx gate with # = 7 to the qubit state |1).

1. Initial State:

2. Rx Gate with 8 =
3. Apply Rx to |1):

So, the resulting state is:

1.8.2 Ry Gate

¢ Operation: Rotates the qubit around the Y-axis.

R,(0) = cos (g) I —isin (

* Rotates the qubit state by @ radians around the Y-axis.

¢ Matrix Representation:

e Effect on Qubits:

1.8.3 Rz Gate

Operation: Rotates the qubit around the Z-axis.

R.(6) = cos (g) I —isin (g) Z

* Rotates the qubit state by 6 radians around the Z-axis.

Matrix Representation:

Effect on Qubits:

Single-qubit gates are generally shown as squares
with a letter indicating which operation it is, like
this:

&+ & & 0 & &

Not gates (also known as X gates) are also
sometimes denoted by a circle around a plus sign:

+

Swap gates are denoted as follows:

Controlled-gates, meaning gates that describe controlled-unitary
operations, are denoted by a filled-in circle (indicating the control)
connected by a vertical line to whatever operation is being controlled.
For instance, controlled-NOT gates, controlled-controlled-NOT (or Toffoli)
gates, and controlled-swap (Fredkin) gates are denoted like this:

& ! L

Arbitrary unitary operations on multiple qubits may be viewed as gates.
They are depicted by rectangles labeled by the name of the unitary
operation. For instance, here is a depiction of an (unspecified) unitary
operation U as a gate, along with a controlled version of this gate:

Basic Structure of a Quantum Circuit

A quantum circuit typically consists of:

* Qubits: The basic unit of quantum information, analogous to bits in classical
computing. Qubits can exist in superposition states.

* Quantum Gates: Operations that change the state of qubits.
* Single-qubit gates (e.g., Hadamard, Pauli-X, Y, Z)
e Multi-qubit gates (e.g., CNOT, SWAP)

* Measurement: The final step in a quantum circuit, where the qubits are
measured to produce a classical output. The process of observing qubit states,
collapsing superpositions.

 Circuit diagram: A visual representation of qubit operations over time.
* Initialization: Setting qubits to known starting states.

* Quantum register: A collection of qubits used in the circuit.
 Classical register: Stores measurement results for further processing.

Ex1

from giskit import QuantumCircuit
circuit = QuantumCircuit(1)
circuit.x(9)

circuit.draw()

Ex2

from giskit import QuantumCircuit
circuit = QuantumCircuit(1)
circuit.y(9)

circuit.draw()

Ex3:

from giskit import QuantumCircuit
circuit = QuantumCircuit(1)
circuit.z(9)

circuit.draw()

Ex4:

from giskit import QuantumCircuit
circuit = QuantumCircuit(1)
circuit.s(9)

circuit.draw()

Ex5:

from giskit import QuantumCircuit
circuit = QuantumCircuit(1)
circuit.ss(0)

circuit.draw()

AttributeError Traceback (most recent call last)
Cell In[5], line 5

1 from giskit import QuantumCircuit

3 circuit = QuantumCircuit(1)
----> 5 circuit.ss(9)

6 circuit.draw()

AttributeError: 'QuantumCircuit’ object has no attribute 'ss’

Ex6:

from giskit import QuantumCircuit
circuit = QuantumCircuit(1)
circuit.x(0)

circuit.y(9)

circuit.draw()

Ex/:

from giskit import QuantumCircuit
circuit = QuantumCircuit(1)
circuit.h(©)

circuit.t(9)

circuit.h(@)

circuit.t(o)

circuit.z(9)

circuit.draw()

If we wish to choose our own hame we can do this using
the Quantum Register class like this:

from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit.primitives import Sampler
from qiskit.visualization import plot _histogram

X = QuantumRegister(1l, "X")
circuit = QuantumCircuit(X)

circuit.h(X)
circuit.s(X)
circuit.h(X)
circuit.t(X)

display(circuit.draw())

Program to create a new circuit with two new
qubits, then displays the circuit's qubits attribute

from giskit import QuantumCircuit
gc = QuantumCircuit(2)

qc.x(0) # Add X-gate to qubit @
gc.draw("mpl™)

Draw definition circuit of @th instruction in gc

QO _-_ qc.data[@].operation.definition.draw("mpl™)

from giskit.circuit.library import HGate

gc = QuantumCircuit(1)

qc.append(
HGate(), # New HGate instruction
[9] # Apply to qubit @

)

gc.draw("mpl")

T -

gc_a = QuantumCircuit(4) QO 'n_

qc_a.x(0)

qc_b = QuantumCircuit(2, name="qc b") q1 -n—
qc_b.y(0)

qc_b.z(1)

compose qubits (@, 1) of gc _a to qubits (1, 3) of gc b respectively Q2 —

combined = qc_a.compose(qc_b, qubits=[1, 3])

combined.draw("mpl™)

inst = gc_b.to _instruction()
gc_a.append(inst, [1, 3])
qc_a.draw("mpl™)

gate = qc_b.to gate().control()
qc_a.append(gate, [0, 1, 3])
qc_a.draw("mpl™)

qc_a.
_a.decompose().draw("mpl
pl™)

do

g1

Circuit with Hadmard and Control Gate

QuantumRegister(1l, "X")
QuantumRegister(1l, "Y")
ClassicalRegister(1, "A"
ClassicalRegister(1l, "B

X < X

circuit = QuantumCircuit(yY, X, B, A)
circuit.h(Y)

circuit.cx(Y, X)

circuit.measure(Y, B)
circuit.measure(X, A)

display(circuit.draw())

N

Types

* Quantum circuits can be categorized based on their functionality and
the types of operations they perform.

* Here are some simple types of quantum circuits:

1. Basic Quantum Circuits

* These circuits perform simple quantum operations such as initializing
qubits, applying single-qubit gates, and measuring the output.

* Example: Basic Quantum Circuit

* Circuit: Apply a Hadamard gate to a single qubit, then measure the
result.

* Operation: This circuit creates a superposition state

Basic Quantum Circuits

from giskit import QuantumCircuit, QuantumRegister, ClassicalRegister
from giskit.primitives import Sampler

from giskit.visualization import plot histogram, circuit_drawer

from IPython.display import Image

Create Quantum and Classical Registers

greg = QuantumRegister(l, 'q') # 1 qubit

creg = ClassicalRegister(l, 'c') # 1 classical bit for measurement
gc = QuantumCircuit(greg, creg)

Apply Hadamard gate to the qubit to create a superposition
qc.h(qreg[@])

Measure the qubit
gc.measure(qreg[@], creg[@])

Save and display the circuit visualization
circuit_image = circuit_drawer(qc, output="mpl")
circuit_image.savefig('basic_quantum_circuit.png')
display(Image(filename='basic_quantum_circuit.png'))

Simulate the circuit and plot the measurement result

sampler = Sampler()
job = sampler.run(circuits=qc)

result = job.result() 05
counts = result.quasi _dists[@]
plot_histogram(counts) 0.45

0.30 ~

Quasi-probability

o
—
w

0.00 -

2. Entanglement Circuits

* These circuits involve creating entangled states between two or more
qgubits, where the state of one qubit is dependent on the state of
another. The most common example is the Bell state.

* Example: Entanglement Circuit

* Circuit: Apply a Hadamard gate to the first qubit and a CNOT gate to
entangle it with the second qubit.

e Operation: This circuit creates an entangled Bell state.

Another example of a quantum circuit, this
time with two qubits

=

X

* As always, the gate labeled H refers to a Hadamard operation, while
the second gate is a two-qubit gate: it's the controlled-NOT operation,
where the solid circle represents the control qubit and the circle
resembling the symbol @ denotes the target qubit.

Another example of a quantum circuit, this
time with two qubits

1

X Lﬁ

* Above circuit describes an operation on a pair of qubits (X,Y) — and if
the input to the circuit is a quantum state |{)|d), then this means

that the lower qubit X starts in the state |{) and the upper
qubit Y starts in the state |).

The first operation is a Hadamard operation
onY:

* When applying a gate to a single qubit like this, nothing happens to
the other qubits — and nothing happening is equivalent to the
identity operation being performed.

The first operation is a Hadamard operation
onY:

* In our circuit there is just one other qubit, X, so the dotted rectangle
in the figure above represents this operation:

1 1
(5 5 0 0
1 1
—= —= 0 0
l®H = V2 . 1 1
007 7
X 1 1
\0 0 7 5/

Note that the identity matrix is on the left of the tensor product
and H is on the right, which is consistent with Qiskit's ordering
convention.

ne second operation is the controlled-NO
operation, where Y is the control and X is the
target:

The controlled-NOT gate's action on standard
basis states is as follows:

0) ¢ 0)

o) —@——la®b)

Given that we order the qubits as (XY), the matrix representation of
the controlled-NOT gate is this:

/1 0 0 0)
00 01
00 1 0
\0 1 0 0/

The unitary operation of the entire circuit, which we'll call U,U, is the composition of
the operations:

1000\ (h % 0 0\ (F FH 0 0)
U_oonlﬁfﬁﬂﬂ_oufﬁﬁ
00100 0 % = 0 0 5 5
01 00/\0O 0 - -5 %5 7% 00

In particular, recalling our notation for the Bell states,

N 1 1
[>:ﬁ|ﬂﬂ} | Eul}
-1 1
N 1 1
| >_E|01> | EUO}
- —iﬂl} i|10>
v ﬂ' V2

We get

T
< 9 =

In general, quantum circuits can contain any number of qubit wires. We
may also include classical bit wires, which are indicated by double lines
like in this example:

* Sometimes it is convenient to depict a measurement as a gate that
takes a qubit as input and outputs a classical bit (as opposed to

outputting the qubit in its post-measurement state and writing the
result to a separate classical bit).

This means the measured qubit has been discarded and can safely be
ignored thereafter.

For example, the following circuit diagram represents the same
process as the one in the previous diagram, but where we
ignore X and Y after measuring them:

Basic Bell State Circuit

from giskit import QuantumCircuit, QuantumRegister, ClassicalRegister
from giskit.primitives import Sampler

from giskit.visualization import plot histogram, circult _drawer

from IPython.display import Image

Quantum and Classical Registers
qreg = QuantumRegister(2, 'q')
creg = ClassicalRegister(2, 'c')
gc = QuantumCircuit(greg, creg)

Circuit: Create Bell State
qc.h(greg[@]) # Hadamard on q©
gc.cx(qreg[@], qreg[l]) # CNOT on gl with g@ as control

Measurement
qc.measure(qreg, creg) q
0
Save and display the circuit visualization
circuit _image = circuit_drawer(qgc, output='mpl’)
circuit_image.savefig('bell state circuit.png')
display(Image(filename="bell state circuit.png'))

Simulate and Plot
sampler = Sampler() C
job = sampler.run(circuits=qc)

result = job.result()
counts = result.quasi _dists[@]

plot_histogram(counts) 0.45 1

Quasi-probability
g

o
=
w

0.00 -

Quiz 4

Introduction to Quantum
Algorithms

Dr. Thyagaraju G S
Professor and HoD, Department of CSE,
SDM Institute Of Technology, Ujire-574240

Quantum Algorithms

* Quantum algorithms are procedures that run on quantum computers
and take advantage of quantum mechanics' principles to solve
problems more efficiently than classical algorithms.

* These algorithms utilize the unique properties of quantum bits
(qubits), such as superposition, entanglement, and interference, to
perform computations that are infeasible or extremely slow on
classical computers.

Types of Quantum Algorithms

Quantum Search Algorithms

Quantum Factoring Algorithms
Quantum Simulation Algorithms:
Quantum Optimization Algorithms
Quantum Machine Learning Algorithmes:
Quantum Fourier Transform (QFT)

N O U A WD

Quantum Cryptography Algorithms

2. Quantum Factoring Algorithms:

* Shor's Algorithm: This algorithm can factor large integers
exponentially faster than the best-known classical algorithms. It's
particularly significant because it could potentially break widely used
cryptographic systems like RSA, which relies on the difficulty of
factoring large numbers.

3. Quantum Simulation Algorithms:

* Quantum Simulations: Quantum computers can simulate quantum
systems much more efficiently than classical computers. Algorithms in
this category are used to model molecular structures, chemical
reactions, and other quantum systems, which has applications in
materials science, chemistry, and drug discovery.

4. Quantum Optimization Algorithms:

* Quantum Approximate Optimization Algorithm (QAOA): This
algorithm is used to solve combinatorial optimization problems by
finding approximate solutions more efficiently than classical methods.

 Variational Quantum Eigensolver (VQE): VQE is used to find the
ground state energy of a quantum system, which is crucial in
guantum chemistry.

5. Quantum Machine Learning Algorithms

* Quantum Support Vector Machine (QSVM): An adaptation of
classical support vector machines, QSVMs leverage quantum
computing to classify data points more efficiently.

* Quantum Neural Networks (QNNs): These networks combine
guantum computing with the principles of neural networks to
potentially outperform classical neural networks in certain tasks.

6. Quantum Fourier Transform (QFT):

 QFT is a guantum version of the discrete Fourier transform and is a
crucial component of several qguantum algorithms, including Shor's
algorithm. It is used for transforming quantum states into their
frequency components, which is essential in solving problems related
to periodicity and number theory.

7. Quantum Cryptography Algorithms:

* Quantum Key Distribution (QKD): QKD uses quantum mechanics to
create secure communication channels, ensuring that any
eavesdropping attempts can be detected. The most famous QKD
protocol is BB84.

1. Quantum Search Algorithms:

* Grover's Algorithm: One of the most famous quantum algorithms,
Grover's algorithm provides a quadratic speedup for unstructured
search problem:s.

* For example, if a classical algorithm needs N steps to search a list of N
items, Grover's algorithm can do it in sqrt(N) steps.

Grover’s Algorithm

* Grover's algorithm is a quantum algorithm that provides a significant
speedup for searching an unsorted database or solving unstructured
search problems. It is particularly known for its quadratic speedup
compared to classical algorithms.

Overview of Grover's Algorithm

Given a function f(x) that outputs O for all inputs except one, where it outputs 1, Grover's algorithm
helps find the input z for which f(z) = 1in 4/ N steps, where N is the total number of possible

iInputs.

Steps of Grover's Algorithm

1. Initialization:

* Start with m qubits in the state |0), and apply the Hadamard gate to each qubit to create a

superposition of all possible states.

e This results in an equal superposition of all 2" states, representing all possible solutions.

2. Oracle:

* The oracle is a quantum subroutine that marks the correct solution by flipping the sign of

its amplitude. It is usually represented as a black-box function f(z).

Steps of Grover's Algorithm

3. Amplitude Amplification (Grover Diffusion Operator):

* The Grover diffusion operator amplifies the amplitude of the correct state and reduces the
amplitudes of incorrect states. This step increases the probability of measuring the correct

solution.

4. Measurement:

o After repeating the Oracle and Amplitude Amplification steps v/ N times, measure the

quantum state. The result will be the correct solution with high probability.

Example: Searching a Database

* Here's an implementation of Grover's Algorithm using Qiskit to search
for a marked state in an unsorted database.

* The example circuit is designed to find the state |11) out of the four
possible states |00), |01), |10), and |11) using Grover's algorithm.

from giskit import QuantumCircuit, QuantumRegister, ClassicalRegister
from giskit.primitives import Sampler

from giskit.visualization import plot histogram, circuit drawer

from IPython.display import Image

Quantum and Classical Registers
greg = QuantumRegister(2, 'q')
creg = ClassicalRegister(2, 'c')
gc = QuantumCircuit(greg, creg)

Initialize Superposition

qc.h(greg[o])
qc.h(qreg[1])

Oracle for [11>
qc.cz(qreg[@], qreg[1])

Grover Diffusion Operator

gc
gc
gc
gc
gc
gc
gc

.h(greg[0])
.h(qreg[1])
.z(qreg[@])
.z(qreg[1])
.cz(qreg[@], qgreg[1])
.h(greg[@])

.h(qreg[1])

Measurement
gc.measure(qgreg, creg)

Save and display the circuit visualization
circuit_image = circuit _drawer(gc, output="mpl")
circuit_image.savefig('grovers algorithm circuit.png')
display(Image(filename="grovers algorithm circuit.png'))

Simulate and Plot

sampler = Sampler()

job = sampler.run(circuits=qc)
result = job.result()

counts = result.quasi dists[9]
plot histogram(counts)

o
o

1.0

1.00 v

n
~
o
v

._
o
0

lliqeqoud-isend

0.25 v

Quiz 5

Future Directions and Research
Opportunities in Quantum
Computing

Dr. Thyagaraju G S
Professor and HoD, Department of CSE,
SDM Institute Of Technology, Ujire-574240

Key areas

Quantum Algorithms

Quantum Error Correction

Quantum Hardware Development

Quantum Communication and Cryptography
Quantum Simulation

Quantum Machine Learning

Topological Quantum Computing

Quantum Metrology and Sensing

Quantum Ethics and Governance

10. Quantum Education and Workforce Development

O o0 NOUEWNRE

1. Quantum Algorithms

* New Algorithms Development
* Focus on optimization, machine learning, cryptography

* Hybrid Classical-Quantum Algorithms
* Benefits of combining classical and quantum computing

2. Quantum Error Correction

* Improving Error Correction Codes
* Importance of mitigating quantum noise

* Fault-Tolerant Quantum Computing
* Steps toward reliable quantum computation

3. Quantum Hardware Development

 Scalability of Quantum Processors

e Challenges and research focus
* Exploring Qubit Technologies

e Superconducting, trapped ions, topological qubits
* Quantum Interconnects

e Connecting multiple guantum processors

4. Quantum Communication and Cryptography

* Quantum Internet
* Secure long-distance communication

* Quantum Key Distribution (QKD)

* Integration with classical networks

5. Quantum Simulation

e Simulating Complex Systems
* Applications in materials science, chemistry, drug discovery

* Digital vs. Analog Simulations
 Comparison of approaches

6. Quantum Machine Learning

* Quantum-enhanced Machine Learning
» Advantages for large datasets, complex problems

 Variational Quantum Algorithms
* Optimization of machine learning models

/. Topological Quantum Computing

* Topological Qubits
* Error resistance and stability

* Majorana Fermions
* Research in creating protected qubits

8. Quantum Metrology and Sensing

* High-Precision Measurements
* Leveraging quantum properties for accuracy

e Applications in Medicine and Environmental Science
* Early disease detection, environmental monitoring

9. Quantum Ethics and Governance

* Ethical Considerations
* Privacy, cybersecurity, and societal impact

* Policy and Regulation
* Frameworks for responsible development

10. Quantum Education and Workforce
Development

* Expanding Educational Programs
* Preparing the next generation of quantum experts

* Interdisciplinary Research
* Collaboration across physics, computer science, and engineering

Questions?

References

* ChatGPT

* Perplexity

* Claude

e Qiskit | IBM Quantum Computing

e Qubits: What is a Qubit and How Qubits Work? - MAKB Tech
(makb183.com)

e Qubit (devopedia.org)

 Cryogenic measurements of semiconductor devices - NPL

https://chatgpt.com/
https://www.perplexity.ai/
https://claude.ai/new
https://www.ibm.com/quantum/qiskit
https://makb183.com/qubits-what-is-a-qubit-and-how-qubits-work/
https://devopedia.org/qubit
https://www.npl.co.uk/quantum-programme/capabilities/semiconductor-devices

References

e Google's Quantum Lab in California holds the future of computing (youtube.com)

e Quantum Computers, explained with MKBHD (youtube.com)

e The Map of Quantum Computing - Quantum Computing Explained (youtube.com)

e Quantum Computing Hardware - An Introduction (youtube.com)

e Decoded: How Does a Quantum Computer Work? (youtube.com)

e Quantum Computing: Algorithm, Programming and Hardware, an Introduction
(youtube.com)

e Inside a Quantum Computer! with Andrea Morello (Part 1 of 2) (youtube.com)

e | 2-1 Quantum Computing Hardware: An Overview (youtube.com)

e What Would a Quantum Internet Look Like? (youtube.com)

https://www.youtube.com/watch?v=uPOA4-Hm7og
https://www.youtube.com/watch?v=e3fz3dqhN44
https://www.youtube.com/watch?v=-UlxHPIEVqA&t=1499s
https://www.youtube.com/watch?v=0xMX8mSeIKw
https://www.youtube.com/watch?v=uLnGp1WTNFQ
https://www.youtube.com/watch?v=c0D8X4eN_Cg&list=PLnK6MrIqGXsL1KShnocSdwNSiKnBodpie
https://www.youtube.com/watch?v=k_QeSOIDiEM
https://www.youtube.com/watch?v=M93Qtu3J-5M
https://www.youtube.com/watch?v=m8fi0fODVDw

References

* Mapping the qubit state onto the Bloch Sphere (youtube.com)

 giskit-tutorials/reference/tools/getting started.ipynb at
66ab9961e5e25f8712819cd212351ee077a811ae - Qiskit/qiskit-tutorials -

GitHub

e giskit-tutorials/reference/tools/quantum gates and linear algebra.ipynb
at 66ab9961e5e25f8712819cd212351ee077a811ae - Qiskit/qiskit-tutorials

- GitHub

* textbook/notebooks/ch-states/single-qubit-gates.ipynb at main -
Qiskit/textbook - GitHub

* textbook/notebooks/ch-prerequisites at main - Qiskit/textbook - GitHub

https://www.youtube.com/watch?v=lqWSziZJsLs
https://github.com/Qiskit/qiskit-tutorials/blob/66ab9961e5e25f8712819cd212351ee077a811ae/reference/tools/getting_started.ipynb
https://github.com/Qiskit/qiskit-tutorials/blob/66ab9961e5e25f8712819cd212351ee077a811ae/reference/tools/quantum_gates_and_linear_algebra.ipynb
https://github.com/Qiskit/textbook/blob/main/notebooks/ch-states/single-qubit-gates.ipynb
https://github.com/Qiskit/textbook/tree/main/notebooks/ch-prerequisites

Thank you

