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About the Book
Do you want to transform data into captivating images? Do you want to make it easy 
for your audience to process and understand the patterns, trends, and relationships 
hidden within your data? 

The Data Visualization Workshop will guide you through the world of data visualization 
and help you to unlock simple secrets for transforming data into meaningful visuals 
with the help of exciting exercises and activities.  

Starting with an introduction to data visualization, this book shows you how to 
first prepare raw data for visualization using NumPy and pandas operations. As 
you progress, you'll use plotting techniques, such as comparison and distribution, 
to identify relationships and similarities between datasets. You'll then work 
through practical exercises to simplify the process of creating visualizations using 
Python plotting libraries such as Matplotlib, and Seaborn. If you've ever wondered 
how popular companies like Uber and Airbnb use geoplotlib for geographical 
visualizations, this book has got you covered, helping you analyze and understand 
the process effectively. Finally, you'll use the Bokeh library to create dynamic 
visualizations that can be integrated into any web page.

By the end of this workshop, you'll have learned how to present engaging  
mission-critical insights by creating impactful visualizations with real-world data. 

Audience

The Data Visualization Workshop is for beginners who want to learn data visualization, 
as well as developers and data scientists who are looking to enrich their practical data 
science skills. Prior knowledge of data analytics, data science, and visualization is not 
mandatory. Knowledge of Python basics and high-school-level math will help you 
grasp the concepts covered in this data visualization book more quickly  
and effectively. 

About the Chapters

Chapter 1, The Importance of Data Visualization and Data Exploration, will introduce 
you to the basics of statistical analysis, along with basic operations for calculating the 
mean, median, and variance of different datasets with real-world datasets.

Chapter 2, All You Need to Know about Plots, will explain the design practices for certain 
plots. You will design attractive, tangible visualizations and learn to identify the best 
plot type for a given dataset and scenario.
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Chapter 3, A Deep Dive into Matplotlib, will teach you the fundamentals of Matplotlib 
and how to create visualizations using the built-in plots that are provided by the 
library. You will also practice how to customize your visualization plots and write 
mathematical expressions using TeX.

Chapter 4, Simplifying Visualizations Using Seaborn, will extend your knowledge of 
Matplotlib by explaining the advantages of Seaborn in comparison to Matplotlib to 
show you how to design visually appealing and insightful plots efficiently.

Chapter 5, Plotting Geospatial Data, will teach you how to utilize Geoplotlib to create 
stunning geographical visualizations, identify the different types of geospatial charts, 
and create complex visualizations using tile providers and custom layers.

Chapter 6, Making Things Interactive with Bokeh, will introduce Bokeh, which is used 
to create insightful web-based visualizations that can be extended into beautiful, 
interactive visualizations that can easily be integrated into your web page.

Chapter 7, Combining What We Have Learned, will apply all the concepts that we will 
have learned in all the previous chapters, using three new datasets in combination 
with practical activities for Matplotlib, Seaborn, Geoplotlib, and Bokeh.

Conventions

Code words in text, database table names, folder names, filenames, file extensions, 
path names, dummy URLs, user input, and Twitter handles are shown as follows:

"Note that by simply passing the axis parameter in the np.mean() call, we can 
define the dimension our data will be aggregated on. axis=0 is horizontal and 
axis=1 is vertical."

Words that you see on the screen (for example, in menus or dialog boxes) appear in 
the same format.

A block of code is set as follows:

# slicing an intersection of 4 elements (2x2) of the first two rows and 
first two columns
subsection_2x2 = dataset[1:3, 1:3]

np.mean(subsection_2x2)

New terms and important words are shown like this:

"In this book, you will learn how to use Python in combination with various libraries, 
such as NumPy, pandas, Matplotlib, Seaborn, and geoplotlib, to create impactful 
data visualizations using real-world data."
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Code Presentation

Lines of code that span multiple lines are split using a backslash ( \ ). When the code 
is executed, Python will ignore the backslash, and treat the code on the next line as a 
direct continuation of the current line.

For example:

history = model.fit(X, y, epochs=100, batch_size=5, verbose=1, \

                    validation_split=0.2, shuffle=False)

Comments are added into code to help explain specific bits of logic. Single-line 
comments are denoted using the # symbol, as follows:

# Print the sizes of the dataset

print("Number of Examples in the Dataset = ", X.shape[0])

print("Number of Features for each example = ", X.shape[1])

Multi-line comments are enclosed by triple quotes, as shown below:

"""

Define a seed for the random number generator to ensure the 

result will be reproducible

"""

seed = 1

np.random.seed(seed)

random.set_seed(seed)

Setting up Your Environment

Before we explore the book in detail, we need to set up specific software and tools. In 
the following section, we shall see how to do that.

Installing Python

The following section will help you to install python in Windows, macOS and  
Linux systems.

Installing Python on Windows

Installing Python on Windows is done as follows:

1. Find your desired version of Python on the official installation page at  
https://www.anaconda.com/distribution/#windows.

2. Ensure you select Python 3.7 from the download page.

https://www.anaconda.com/distribution/#windows
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3. Ensure that you install a version relevant to the architecture of your system 
(either 32-bit or 64-bit). You can find out this information in the System 
Properties window of your OS.

4. After you download the installer, simply double-click on the file and follow the 
on-screen instructions.

Installing Python on Linux

To install Python on Linux, you have a couple of good options:

1. Open Command Prompt and verify that p\Python 3 is not already installed by 
running python3 --version.

2. To install Python 3, run this:

sudo apt-get update

sudo apt-get install python3.7

3. Alternatively, you can install Python with the Anaconda Linux distribution by 
downloading the installer from https://www.anaconda.com/distribution/#linux and 
following the instructions.

Installing Python on macOS

Similar to Linux, you have a couple of methods for installing Python on a Mac. To 
install Python on macOS X, do the following:

1. Open the Terminal for Mac by pressing CMD + Spacebar, type terminal in the 
open search box, and hit Enter.

2. Install Xcode through the command line by running  
xcode-select --install.

3. The easiest way to install Python 3 is using Homebrew, which is installed through 
the command line by running ruby -e "$(curl -fsSL https://raw.
githubusercontent.com/Homebrew/install/master/install)".

4. Add Homebrew to your $PATH environment variable. Open your profile in the 
command line by running sudo nano ~/.profile and inserting export 
PATH="/usr/local/opt/python/libexec/bin:$PATH" at the bottom.

https://www.anaconda.com/distribution/#linux
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5. The final step is to install Python. In the command line, run  
brew install python.

6. You can also install Python using the Anaconda installer, available from  
https://www.anaconda.com/distribution/#macos.

Installing Libraries

pip comes pre-installed with Anaconda. Once Anaconda is installed on your 
machine, all the required libraries can be installed using pip, for example, pip 
install numpy. Alternatively, you can install all the required libraries using pip 
install –r requirements.txt. You can find the requirements.txt file at 
https://packt.live/3dgg8Hv.

The exercises and activities will be executed in Jupyter Notebooks. Jupyter is a 
Python library and can be installed in the same way as the other Python libraries – 
that is, with pip install jupyter, but fortunately, it comes pre-installed with 
Anaconda. To open a notebook, simply run the command jupyter notebook in 
the Anaconda Prompt.

Working with JupyterLab and Jupyter Notebook

You’ll be working on different exercises and activities in JupyterLab. These exercises 
and activities can be downloaded from the associated GitHub repository.

1. Download the repository from here: https://github.com/PacktWorkshops/The-Data-
Visualization-Workshop.

2. You can either download it using GitHub Desktop or as a zipped folder by clicking 
on the green Clone or download button.

3. You can open a Jupyter Notebook using the Anaconda Navigator by clicking the 
Launch button under the Jupyter Notebook icon. 

4. You can also open a Jupyter Notebook using the Anaconda Prompt. To do this, 
open the Anaconda Prompt and run the following command: 

jupyter notebook

Jupyter Notebook will then be launched in your default browser.

5. Once you have launched Jupyter Notebook, a list of all files and folders will be 
presented.  You can open the Jupyter Notebook file you wish to work with by 
simply double clicking it. 

https://www.anaconda.com/distribution/#macos
https://packt.live/3dgg8Hv
https://github.com/PacktWorkshops/The-Data-Visualization-Workshop
https://github.com/PacktWorkshops/The-Data-Visualization-Workshop
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Importing Python Libraries

Every exercise and activity in this book will make use of various libraries. Importing 
libraries into Python is very simple, as shown in the following steps:

1. To import libraries such as NumPy and pandas, run the following code. This will 
import the whole numpy library into your current file:

import numpy            # import numpy

2. In the first cells of the exercises and activities of this book, you will see the 
following code. Use np instead of numpy in our code to call methods  
from numpy:

import numpy as np      # import numpy and assign alias np

3. Partial imports can be done as shown in the following code:

from numpy import mean   # only import the mean method of numpy

This only loads the mean method from the library.

Accessing the Code Files

You can find the complete code files of this book at https://packt.live/31USkof. You 
can also run many activities and exercises directly in your web browser by using the 
interactive lab environment at https://packt.live/37CIQ47.

We've tried to support interactive versions of all activities and exercises, but we 
recommend a local installation as well for instances where this support isn't available.

If you have any issues or questions about installation, please email us  
at workshops@packt.com.

https://packt.live/31USkof
https://packt.live/37CIQ47
mailto:workshops@packt.com




Overview

This chapter introduces you to the basics of the statistical analysis of a 
dataset. We will look at basic operations for calculating the mean, median, 
and variance of different datasets and use NumPy and pandas to filter, sort, 
and shape the datasets to our requirements. The concepts we will cover 
will serve as a base of knowledge for the upcoming visualization chapters, 
in which we will work with real-world datasets. By the end of this chapter, 
you will be able to explain the importance of data visualization and calculate 
basic statistical values (such as median, mean, and variance), and use 
NumPy and pandas for data wrangling.

1
The Importance of Data 

Visualization and Data 

Exploration
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Introduction
Unlike machines, people are usually not equipped for interpreting a large amount of 
information from a random set of numbers and messages in each piece of data. Out 
of all our logical capabilities, we understand things best through the visual processing 
of information. When data is represented visually, the probability of understanding 
complex builds and numbers increases.

Python has recently emerged as a programming language that performs well for 
data analysis. It has applications across data science pipelines that convert data into 
a usable format (such as pandas), analyzes it (such as NumPy), and extract useful 
conclusions from the data to represent it in a visually appealing manner (such as 
Matplotlib or Bokeh). Python provides data visualization libraries that can help you 
assemble graphical representations efficiently.

In this book, you will learn how to use Python in combination with various libraries, 
such as NumPy, pandas, Matplotlib, seaborn, and geoplotlib, to create impactful 
data visualizations using real-world data. Besides that, you will also learn about 
the features of different types of charts and compare their advantages and 
disadvantages. This will help you choose the chart type that's suited to visualizing 
your data.

Once we understand the basics, we can cover more advanced concepts, such 
as interactive visualizations and how Bokeh can be used to create animated 
visualizations that tell a story. Upon completing this book, you will be able 
to perform data wrangling, extract relevant information, and visualize your 
findings descriptively.

Introduction to Data Visualization

Computers and smartphones store data such as names and numbers in a digital 
format. Data representation refers to the form in which you can store, process, and 
transmit data.

Representations can narrate a story and convey fundamental discoveries to your 
audience. Without appropriately modeling your information to use it to make 
meaningful findings, its value is reduced. Creating representations helps us achieve 
a more precise, more concise, and more direct perspective of information, making it 
easier for anyone to understand the data.

Information isn't equivalent to data. Representations are a useful apparatus to derive 
insights from the data. Thus, representations transform data into useful information.
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The Importance of Data Visualization

Instead of just looking at data in the columns of an Excel spreadsheet, we get a better 
idea of what our data contains by using visualization. For instance, it's easy to see a 
pattern emerge from the numerical data that's given in the following scatter plot. It 
shows the correlation between body mass and the maximum longevity of various 
animals grouped by class. There is a positive correlation between body mass and 
maximum longevity:

Figure 1.1: A simple example of data visualization

Visualizing data has many advantages, such as the following:

• Complex data can be easily understood.

• A simple visual representation of outliers, target audiences, and futures markets 
can be created.

• Storytelling can be done using dashboards and animations.

• Data can be explored through interactive visualizations.
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Data Wrangling

Data wrangling is the process of transforming raw data into a suitable 
representation for various tasks. It is the discipline of augmenting, cleaning, filtering, 
standardizing, and enriching data in a way that allows it to be used in a downstream 
task, which in our case is data visualization.

Look at the following data wrangling process flow diagram to understand how 
accurate and actionable data can be obtained for business analysts to work on: 

Figure 1.2: Data wrangling process to measure employee engagement

In relation to the preceding figure, the following steps explain the flow of the data 
wrangling process:

1. First, the Employee Engagement data is in its raw form.

2. Then, the data gets imported as a DataFrame and is later cleaned.

3. The cleaned data is then transformed into graphs, from which findings can 
be derived.

4. Finally, we analyze this data to communicate the final results.
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For example, employee engagement can be measured based on raw data gathered 
from feedback surveys, employee tenure, exit interviews, one-on-one meetings, 
and so on. This data is cleaned and made into graphs based on parameters such 
as referrals, faith in leadership, and scope of promotions. The percentages, that is, 
information derived from the graphs, help us reach our result, which is to determine 
the measure of employee engagement.

Tools and Libraries for Visualization

There are several approaches to creating data visualizations. Depending on your 
requirements, you might want to use a non-coding tool such as Tableau, which 
allows you to get a good feel for your data. Besides Python, which will be used in this 
book, MATLAB and R are widely used in data analytics.

However, Python is the most popular language in the industry. Its ease of use and the 
speed at which you can manipulate and visualize data, combined with the availability 
of a number of libraries, make Python the best choice for data visualization.

Note

MATLAB (https://www.mathworks.com/products/matlab.html), R (https://
www.r-project.org), and Tableau (https://www.tableau.com) are not part of 
this book; we will only cover the relevant tools and libraries for Python.

Overview of Statistics
Statistics is a combination of the analysis, collection, interpretation, and 
representation of numerical data. Probability is a measure of the likelihood that an 
event will occur and is quantified as a number between 0 and 1.

A probability distribution is a function that provides the probability for every 
possible event. A probability distribution is frequently used for statistical analysis. The 
higher the probability, the more likely the event. There are two types of probability 
distributions, namely discrete and continuous.

https://www.mathworks.com/products/matlab.html
https://www.r-project.org
https://www.r-project.org
https://www.tableau.com
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A discrete probability distribution shows all the values that a random variable can 
take, together with their probability. The following diagram illustrates an example of 
a discrete probability distribution. If we have a six-sided die, we can roll each number 
between 1 and 6. We have six events that can occur based on the number that's 
rolled. There is an equal probability of rolling any of the numbers, and the individual 
probability of any of the six events occurring is 1/6:

Figure 1.3: Discrete probability distribution for die rolls

A continuous probability distribution defines the probabilities of each possible 
value of a continuous random variable. The following diagram provides an example 
of a continuous probability distribution. This example illustrates the distribution of 
the time needed to drive home. In most cases, around 60 minutes is needed, but 
sometimes, less time is needed because there is no traffic, and sometimes, much 
more time is needed if there are traffic jams:
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Figure 1.4: Continuous probability distribution for the time taken to reach home

Measures of Central Tendency

Measures of central tendency are often called averages and describe central or 
typical values for a probability distribution. We are going to discuss three kinds of 
averages in this chapter:

• Mean: The arithmetic average is computed by summing up all measurements 
and dividing the sum by the number of observations. The mean is calculated 
as follows:

Figure 1.5: Formula for mean
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• Median: This is the middle value of the ordered dataset. If there is an even 
number of observations, the median will be the average of the two middle 
values. The median is less prone to outliers compared to the mean, where 
outliers are distinct values in data.

• Mode: Our last measure of central tendency, the mode is defined as the most 
frequent value. There may be more than one mode in cases where multiple 
values are equally frequent.

For example, a die was rolled 10 times, and we got the following numbers: 4, 5, 4, 3, 4, 
2, 1, 1, 2, and 1.

The mean is calculated by summing all the events and dividing them by the number 
of observations: (4+5+4+3+4+2+1+1+2+1)/10=2.7.

To calculate the median, the die rolls have to be ordered according to their values. 
The ordered values are as follows: 1, 1, 1, 2, 2, 3, 4, 4, 4, 5. Since we have an even 
number of die rolls, we need to take the average of the two middle values. The 
average of the two middle values is (2+3)/2=2.5.

The modes are 1 and 4 since they are the two most frequent events.

Measures of Dispersion

Dispersion, also called variability, is the extent to which a probability distribution is 
stretched or squeezed.

The different measures of dispersion are as follows:

• Variance: The variance is the expected value of the squared deviation from 
the mean. It describes how far a set of numbers is spread out from their mean. 
Variance is calculated as follows:

Figure 1.6: Formula for mean
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• Standard deviation: This is the square root of the variance.

• Range: This is the difference between the largest and smallest values in 
a dataset.

• Interquartile range: Also called the midspread or middle 50%, this is the 
difference between the 75th and 25th percentiles, or between the upper and 
lower quartiles.

Correlation

The measures we have discussed so far only considered single variables. In contrast, 
correlation describes the statistical relationship between two variables:

• In a positive correlation, both variables move in the same direction.

• In a negative correlation, the variables move in opposite directions.

• In zero correlation, the variables are not related.

Note

One thing you should be aware of is that correlation does not imply 
causation. Correlation describes the relationship between two or more 
variables, while causation describes how one event is caused by another. 
For example, consider a scenario in which ice cream sales are correlated 
with the number of drowning deaths. But that doesn't mean that ice 
cream consumption causes drowning. There could be a third variable, 
say temperature, that may be responsible for this correlation. Higher 
temperatures may cause an increase in both ice cream sales and more 
people engaging in swimming, which may be the real reason for the 
increase in deaths due to drowning.
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Example

Consider you want to find a decent apartment to rent that is not too expensive 
compared to other apartments you've found. The other apartments (all belonging to 
the same locality) you found on a website are priced as follows: $700, $850, $1,500, 
and $750 per month. Let's calculate some values statistical measures to help us make 
a decision:

• The mean is ($700 + $850 + $1,500 + $750) / 4 = $950.

• The median is ($750 + $850) / 2 = $800.

• The standard deviation is .

• The range is $1,500 - $700 = $800.

As an exercise, you can try and calculate the variance as well. However, note that 
compared with all the above values, the median value ($800) is a better statistical 
measure in this case since it is less prone to outliers (the rent amount of $1,500). 
Given that all apartments belong to the same locality, you can clearly see that the 
apartment costing $1500 is definitely priced much higher as compared with other 
apartments. A simple statistical analysis helped us to narrow down our choices. 

Types of Data

It is important to understand what kind of data you are dealing with so that you can 
select both the right statistical measure and the right visualization. We categorize 
data as categorical/qualitative and numerical/quantitative. Categorical data describes 
characteristics, for example, the color of an object or a person's gender. We can 
further divide categorical data into nominal and ordinal data. In contrast to nominal 
data, ordinal data has an order.

Numerical data can be divided into discrete and continuous data. We speak of 
discrete data if the data can only have certain values, whereas continuous data can 
take any value (sometimes limited to a range).

Another aspect to consider is whether the data has a temporal domain – in other 
words, is it bound to time or does it change over time? If the data is bound to a 
location, it might be interesting to show the spatial relationship, so you should keep 
that in mind as well. The following flowchart classifies the various data types:
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Figure 1.7: Classification of types of data

Summary Statistics

In real-world applications, we often encounter enormous datasets. Therefore, 
summary statistics are used to summarize important aspects of data. They 
are necessary to communicate large amounts of information in a compact and 
simple way.

We have already covered measures of central tendency and dispersion, which are 
both summary statistics. It is important to know that measures of central tendency 
show a center point in a set of data values, whereas measures of dispersion show 
how much the data varies.

The following table gives an overview of which measure of central tendency is best 
suited to a particular type of data:

Figure 1.8: Best suited measures of central tendency for different types of data
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In the next section, we will learn about the NumPy library and implement a few 
exercises using it.

NumPy
When handling data, we often need a way to work with multidimensional arrays. 
As we discussed previously, we also have to apply some basic mathematical and 
statistical operations on that data. This is exactly where NumPy positions itself. It 
provides support for large n-dimensional arrays and has built-in support for many 
high-level mathematical and statistical operations.

Note

Before NumPy, there was a library called Numeric. However, it's no longer 
used, because NumPy's signature ndarray allows the performant handling 
of large and high-dimensional matrices.

Ndarrays are the essence of NumPy. They are what makes it faster than using 
Python's built-in lists. Other than the built-in list data type, ndarrays provide a 
stridden view of memory (for example, int[] in Java). Since they are homogeneously 
typed, meaning all the elements must be of the same type, the stride is consistent, 
which results in less memory wastage and better access times.

The stride is the number of locations between the beginnings of two adjacent 
elements in an array. They are normally measured in bytes or in units of the size of 
the array elements. A stride can be larger or equal to the size of the element, but not 
smaller; otherwise, it would intersect the memory location of the next element.

Note

Remember that NumPy arrays have a defined data type. This means you 
are not able to insert strings into an integer type array. NumPy is mostly 
used with double-precision data types.

The following are some of the built-in methods that we will use in the exercises and 
activities of this chapter.
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mean

NumPy provides implementations of all the mathematical operations we covered in 
the Overview of Statistics section of this chapter. The mean, or average, is the one we 
will look at in more detail in the upcoming exercise:

Note

The # symbol in the code snippet below denotes a code comment. 
Comments are added into code to help explain specific bits of logic.

# mean value for the whole dataset

np.mean(dataset)

# mean value of the first row

np.mean(dataset[0])

# mean value of the whole first column

np.mean(dataset[:, 0]

# mean value of the first 10 elements of the second row

np.mean(dataset[1, 0:10])

median

Several of the mathematical operations have the same interface. This makes them 
easy to interchange if necessary. The median, var, and std methods will be used in 
the upcoming exercises and activities:

# median value for the whole dataset

np.median(dataset)

# median value of the last row using reverse indexing

np.median(dataset[-1])

# median value of values of rows >5 in the first column

np.median(dataset[5:, 0])



14 | The Importance of Data Visualization and Data Exploration

Note that we can index every element from the end of our dataset as we can from 
the front by using reverse indexing. It's a simple way to get the last or several of 
the last elements of a list. Instead of [0] for the first/last element, it starts with 
dataset[-1] and then decreases until dataset[-len(dataset)], which is the 
first element in the dataset.

var

As we mentioned in the Overview of Statistics section, the variance describes how far 
a set of numbers is spread out from their mean. We can calculate the variance using 
the var method of NumPy:

# variance value for the whole dataset

np.var(dataset)

# axis used to get variance per column

np.var(dataset, axis=0)

# axis used to get variance per row

np.var(dataset, axis=1)

std

One of the advantages of the standard deviation is that it remains in the scalar 
system of the data. This means that the unit of the deviation will have the same unit 
as the data itself. The std method works just like the others:

# standard deviation for the whole dataset

np.std(dataset)

# std value of values from the 2 first rows and columns

np.std(dataset[:2, :2])

# axis used to get standard deviation per row

np.std(dataset, axis=1)
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Now we will do an exercise to load a dataset and calculate the mean using 
these methods.

Note

All the exercises and activities in this chapter will be developed in Jupyter 
Notebooks. Please download the GitHub repository with all the prepared 
templates from https://packt.live/31USkof. Make sure you have installed all 
the libraries as mentioned in the preface.

Exercise 1.01: Loading a Sample Dataset and Calculating the Mean Using NumPy

In this exercise, we will be loading the normal_distribution.csv dataset and 
calculating the mean of each row and each column in it:

1. Using the Anaconda Navigator launch either Jupyter Labs or Jupyter Notebook. In 
the directory of your choice, create a Chapter01/Exercise1.01 folder. 

2. Create a new Jupyter Notebook and save it as Exercise1.01.ipynb in the 
Chapter01/Exercise1.01 folder.

3. Now, begin writing the code for this exercise as shown in the steps below. We 
begin with the import statements. Import numpy with an alias:

import numpy as np

4. Use the genfromtxt method of NumPy to load the dataset:

Note

The code snippet shown here uses a backslash ( \ ) to split the logic 
across multiple lines. When the code is executed, Python will ignore the 
backslash, and treat the code on the next line as a direct continuation of the 
current line.

dataset = \

np.genfromtxt('../../Datasets/normal_distribution.csv', \

              delimiter=',')

https://packt.live/31USkof
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Note

In the preceding snippet, and for the rest of the book, we will be using a 
relative path to load the datasets. However, for the preceding code to work 
as intended, you need to follow the folder arrangement as present in this 
link: https://packt.live/3ftUu3P. Alternatively, you can also use the absolute 
path; for example, dataset = np.genfromtxt('C:/Datasets/
normal_distribution.csv', delimiter=','). If your 
Jupyter Notebook is saved in the same folder as the dataset, then you can 
simply use the filename: dataset = np.genfromtxt('normal_
distribution.csv', delimiter=',')

The genfromtxt method helps load the data from a given text or .csv file. If 
everything works as expected, the generation should run through without any 
error or output.

Note

The numpy.genfromtext method is less efficient than the pandas.
read_csv method. We shall refrain from going into the details of why this 
is the case as this explanation is beyond the scope of this text.

5. Check the data you just imported by simply writing the name of the ndarray in 
the next cell. Simply executing a cell that returns a value, such as an ndarray, 
will use Jupyter formatting, which looks nice and, in most cases, displays more 
information than using print:

# looking at the dataset

dataset

https://packt.live/3ftUu3P
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A section of the output resulting from the preceding code is as follows:

Figure 1.9: The first few rows of the normal_distribution.csv file

6. Print the shape using the dataset.shape command to get a quick overview of 
our dataset. This will give us output in the form (rows, columns):

dataset.shape

We can also call the rows as instances and the columns as features. This means 
that our dataset has 24 instances and 8 features. The output of the preceding 
code is as follows:

(24,8)
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7. Calculate the mean after loading and checking our dataset. The first row in 
a NumPy array can be accessed by simply indexing it with zero; for example, 
dataset[0]. As we mentioned previously, NumPy has some built-in functions 
for calculations such as the mean. Call np.mean() and pass in the dataset's 
first row to get the result:

# calculating the mean for the first row

np.mean(dataset[0])

The output of the preceding code is as follows:

100.177647525

8. Now, calculate the mean of the first column by using np.mean() in 
combination with the column indexing dataset[:, 0]:

np.mean(dataset[:, 0])

The output of the preceding code is as follows:

99.76743510416668

Whenever we want to define a range to select from a dataset, we can use a 
colon, :, to provide start and end values for the to be selected range. If we don't 
provide start and end values, the default of 0 to n is used, where n is the length 
of the current axis.

9. Calculate the mean for every single row, aggregated in a list, using the axis 
tools of NumPy. Note that by simply passing the axis parameter in the 
np.mean() call, we can define the dimension our data will be aggregated on. 
axis=0 is horizontal and axis=1 is vertical. Get the result for each row by 
using axis=1:

np.mean(dataset, axis=1)

The output of the preceding code is as follows:

Figure 1.10: Mean of the elements of each row
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Get the mean of each column by using axis=0:

np.mean(dataset, axis=0)

The output of the preceding code is as follows:

Figure 1.11: Mean of elements for each column

10. Calculate the mean of the whole matrix by summing all the values we retrieved 
in the previous steps:

np.mean(dataset)

The output of the preceding code is as follows:

100.16536917390624

Note

To access the source code for this specific section, please refer to  
https://packt.live/30IkAMp.

You can also run this example online at https://packt.live/2Y4yHK1.

You are already one step closer to using NumPy in combination with plotting libraries 
and creating impactful visualizations. Since we've now covered the very basics and 
calculated the mean, it's now up to you to solve the upcoming activity.

Activity 1.01: Using NumPy to Compute the Mean, Median, Variance, and Standard 

Deviation of a Dataset

In this activity, we will use the skills we've learned to import datasets and perform 
some basic calculations (mean, median, variance, and standard deviation) to compute 
our tasks.

Perform the following steps to implement this activity:

1. Open the Activity1.01.ipynb Jupyter Notebook from the Chapter01 
folder to do this activity. Import NumPy and give it the alias np.

2. Load the normal_distribution.csv dataset by using the genfromtxt 
method from NumPy.

https://packt.live/30IkAMp
https://packt.live/2Y4yHK1
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3. Print a subset of the first two rows of the dataset.

4. Load the dataset and calculate the mean of the third row. Access the third row 
by using index 2, dataset[2].

5. Index the last element of an ndarray in the same way a regular Python list can be 
accessed. dataset[:, -1] will give us the last column of every row.

6. Get a submatrix of the first three elements of every row of the first three 
columns by using the double-indexing mechanism of NumPy.

7. Calculate the median for the last row of the dataset.

8. Use reverse indexing to define a range to get the last three columns. We can use 
dataset[:, -3:] here.

9. Aggregate the values along an axis to calculate the rows. We can use 
axis=1 here.

10. Calculate the variance for each column using axis 0.

11. Calculate the variance of the intersection of the last two rows and the first 
two columns.

12. Calculate the standard deviation for the dataset.

Note

The solution for this activity can be found via this link.

You have now completed your first activity using NumPy. In the following activities, 
this knowledge will be consolidated further.

Basic NumPy Operations

In this section, we will learn about basic NumPy operations such as indexing, slicing, 
splitting, and iterating and implement them in an exercise.
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Indexing

Indexing elements in a NumPy array, at a high level, works the same as with built-in 
Python lists. Therefore, we can index elements in multi-dimensional matrices:

# index single element in outermost dimension

dataset[0]

# index in reversed order in outermost dimension

dataset[-1]

# index single element in two-dimensional data

dataset[1, 1]

# index in reversed order in two-dimensional data

dataset[-1, -1]

Slicing

Slicing has also been adapted from Python's lists. Being able to easily slice parts of 
lists into new ndarrays is very helpful when handling large amounts of data:

# rows 1 and 2

dataset[1:3]

# 2x2 subset of the data

dataset[:2, :2]

# last row with elements reversed

dataset[-1, ::-1]

# last 4 rows, every other element up to index 6

dataset[-5:-1, :6:2]
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Splitting

Splitting data can be helpful in many situations, from plotting only half of your time-
series data to separating test and training data for machine learning algorithms.

There are two ways of splitting your data, horizontally and vertically. Horizontal 
splitting can be done with the hsplit method. Vertical splitting can be done with the 
vsplit method:

# split horizontally in 3 equal lists

np.hsplit(dataset, (3))

# split vertically in 2 equal lists

np.vsplit(dataset, (2))

Iterating

Iterating the NumPy data structures, ndarrays, is also possible. It steps over the 
whole list of data one after another, visiting every single element in the ndarray once. 
Considering that they can have several dimensions, indexing gets very complex.

The nditer is a multi-dimensional iterator object that iterates over a given number 
of arrays:

# iterating over whole dataset (each value in each row)

for x in np.nditer(dataset):

    print(x)

The ndenumerate will give us exactly this index, thus returning (0, 1) for the second 
value in the first row:

Note

The triple-quotes ( """ ) shown in the code snippet below are used to 
denote the start and end points of a multi-line code comment. Comments 
are added into code to help explain specific bits of logic.

"""

iterating over the whole dataset with indices matching the 

position in the dataset

"""

for index, value in np.ndenumerate(dataset):

    print(index, value)
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Now, we will perform an exercise using these basic NumPy operations.

Exercise 1.02: Indexing, Slicing, Splitting, and Iterating

In this exercise, we will use the features of NumPy to index, slice, split, and iterate 
ndarrays to consolidate what we've learned. A client has provided us with a dataset, 
normal_distribution_splittable.csv, wants us to confirm that the values 
in the dataset are closely distributed around the mean value of 100.

Note

You can obviously plot a distribution and show the spread of data, but here 
we want to practice implementing the aforementioned operations using the 
NumPy library. 

Let's use the features of NumPy to index, slice, split, and iterate ndarrays.

Indexing

1. Create a new Jupyter Notebook and save it as Exercise1.02.ipynb in the 
Chapter01/Exercise1.02 folder.

2. Import the necessary libraries:

import numpy as np

3. Load the normal_distribution.csv dataset using NumPy. Have a look at 
the ndarray to verify that everything works:

dataset = np.genfromtxt('../../Datasets/'\

                        'normal_distribution_splittable.csv', \

                        delimiter=',')

Note

As mentioned in the previous exercise, here too we have used a relative 
path to load the dataset. You can change the path depending on where you 
have saved the Jupyter Notebook and the dataset.
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Remember that we need to show that our dataset is closely distributed around 
a mean of 100; that is, whatever value we wish to show/calculate should be 
around 100. For this purpose, first we will calculate the mean of the values of the 
second and the last row. 

4. Use simple indexing for the second row, as we did in our first exercise. For a 
clearer understanding, all the elements of the second row are saved to a variable 
and then we calculate the mean of these elements:

second_row = dataset[1]

np.mean(second_row)

The output of the preceding code is as follows:

96.90038836444445

5. Now, reverse index the last row and calculate the mean of that row. Always 
remember that providing a negative number as the index value will index the list 
from the end:

last_row = dataset[-1]

np.mean(last_row)

The output of the preceding code is as follows:

100.18096645222221

From the outputs obtained in step 4 and 5, we can say that these values indeed 
are close to 100. To further convince our client, we will access the first value of 
the first row and the last value of the second last row. 

6. Index the first value of the first row using the Python standard syntax of [0][0]:

first_val_first_row = dataset[0][0]

np.mean(first_val_first_row)

The output of the preceding code is as follows:

99.14931546

7. Use reverse indexing to access the last value of the second last row (we want 
to use the combined access syntax here). Remember that -1 means the 
last element:

last_val_second_last_row = dataset[-2, -1]

np.mean(last_val_second_last_row)
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The output of the preceding code is as follows:

101.2226037

Note

For steps 6 and 7, even if you had not used np.mean(), you would have 
got the same values as presently shown. This is because the mean of a 
single value will be the value itself. You can try the above steps with the 
following code: 

first_val_first_row = dataset[0][0]

first_val_first_row

last_val_second_last_row = dataset[-2, -1]

last_val_second_last_row

From all the preceding outputs, we can confidently say that the values we obtained 
hover around a mean of 100. Next, we'll use slicing, splitting, and iterating to achieve 
our goal.

Slicing

1. Create a 2x2 matrix that starts at the second row and second column using 
[1:3, 1:3]:

"""

slicing an intersection of 4 elements (2x2) of the 

first two rows and first two columns

"""

subsection_2x2 = dataset[1:3, 1:3]

np.mean(subsection_2x2)

The output of the preceding code is as follows:

95.63393608250001

2. In this task, we want to have every other element of the fifth row. Provide 
indexing of ::2 as our second element to get every second element of the 
given row:

every_other_elem = dataset[4, ::2]

np.mean(every_other_elem)
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The output of the preceding code is as follows:

98.35235805800001

Introducing the second column into the indexing allows us to add another layer 
of complexity. The third value allows us to only select certain values (such as 
every other element) by providing a value of 2. This means it skips the values 
between and only takes each second element from the used list.

3. Reverse the elements in a slice using negative numbers:

reversed_last_row = dataset[-1, ::-1]

np.mean(reversed_last_row)

The output of the preceding code is as follows:

100.18096645222222

Splitting

1. Use the hsplit method to split our dataset into three equal parts:

hor_splits = np.hsplit(dataset,(3))

Note that if the dataset can't be split with the given number of slices, it will throw 
an error.

2. Split the first third into two equal parts vertically. Use the vsplit method to 
vertically split the dataset in half. It works like hsplit:

ver_splits = np.vsplit(hor_splits[0],(2))

3. Compare the shapes. We can see that the subset has the required half of the 
rows and the third half of the columns:

print("Dataset", dataset.shape)

print("Subset", ver_splits[0].shape)

The output of the preceding code is as follows:

Dataset (24, 9)

Subset (12, 3)
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Iterating

1. Iterate over the whole dataset (each value in each row):

curr_index = 0

for x in np.nditer(dataset):

    print(x, curr_index)

    curr_index += 1

The output of the preceding code is as follows:

Figure 1.12: Iterating the entire dataset

Looking at the given piece of code, we can see that the index is simply 
incremented with each element. This only works with one-dimensional data. If 
we want to index multi-dimensional data, this won't work.

2. Use the ndenumerate method to iterate over the whole dataset. It provides 
two positional values, index and value:

for index, value in np.ndenumerate(dataset):

    print(index, value)
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The output of the preceding code is as follows:

Figure 1.13: Enumerating the dataset with multi-dimensional data

Notice that all the output values we obtained are close to our mean value of 100. 
Thus, we have successfully managed to convince our client using several NumPy 
methods that our data is closely distributed around the mean value of 100.

Note

To access the source code for this specific section, please refer to  
https://packt.live/2Neteuh.

You can also run this example online at https://packt.live/3e7K0qq.

https://packt.live/2Neteuh
https://packt.live/3e7K0qq
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We've already covered most of the basic data wrangling methods for NumPy. In the 
next section, we'll take a look at more advanced features that will give you the tools 
you need to get better at analyzing your data.

Advanced NumPy Operations

In this section, we will learn about advanced NumPy operations such as filtering, 
sorting, combining, and reshaping and then implement them in an exercise.

Filtering

Filtering is a very powerful tool that can be used to clean up your data if you want to 
avoid outlier values.

In addition to the dataset[dataset > 10] shorthand notation, we can use 
the built-in NumPy extract method, which does the same thing using a different 
notation, but gives us greater control with more complex examples.

If we only want to extract the indices of the values that match our given condition, we 
can use the built-in where method. For example, np.where(dataset > 5) will 
return a list of indices of the values from the initial dataset that is bigger than 5:

# values bigger than 10

dataset[dataset > 10]

# alternative – values smaller than 3

np.extract((dataset < 3), dataset)

# values bigger 5 and smaller 10

dataset[(dataset > 5) & (dataset < 10)]

# indices of values bigger than 5 (rows and cols)

np.where(dataset > 5)
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Sorting

Sorting each row of a dataset can be really useful. Using NumPy, we are also able to 
sort on other dimensions, such as columns.

In addition, argsort gives us the possibility to get a list of indices, which would 
result in a sorted list:

# values sorted on last axis

np.sort(dataset)

# values sorted on axis 0

np.sort(dataset, axis=0)

# indices of values in sorted list

np.argsort(dataset)

Combining

Stacking rows and columns onto an existing dataset can be helpful when you have 
two datasets of the same dimension saved to different files.

Given two datasets, we use vstack to stack dataset_1 on top of dataset_2, 
which will give us a combined dataset with all the rows from dataset_1, followed 
by all the rows from dataset_2.

If we use hstack, we stack our datasets "next to each other," meaning that the 
elements from the first row of dataset_1 will be followed by the elements of the 
first row of dataset_2. This will be applied to each row:

# combine datasets vertically

np.vstack([dataset_1, dataset_2])

# combine datasets horizontally

np.hstack([dataset_1, dataset_2])

# combine datasets on axis 0

np.stack([dataset_1, dataset_2], axis=0)
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Reshaping

Reshaping can be crucial for some algorithms. Depending on the nature of your data, 
it might help you to reduce dimensionality to make visualization easier:

# reshape dataset to two columns x rows

dataset.reshape(-1, 2)

# reshape dataset to one row x columns

np.reshape(dataset, (1, -1))

Here, -1 is an unknown dimension that NumPy identifies automatically. NumPy will 
figure out the length of any given array and the remaining dimensions and will thus 
make sure that it satisfies the required standard.

Next, we will perform an exercise using advanced NumPy operations.

Exercise 1.03: Filtering, Sorting, Combining, and Reshaping

This final exercise for NumPy provides some more complex tasks to consolidate our 
learning. It will also combine most of the previously learned methods as a recap. We'll 
use the filtering features of NumPy for sorting, stacking, combining, and reshaping 
our data:

1. Create a new Jupyter Notebook and save it as Exercise1.03.ipynb in the 
Chapter01/Exercise1.03 folder.

2. Import the necessary libraries:

import numpy as np

3. Load the normal_distribution_splittable.csv dataset using NumPy. 
Make sure that everything works by having a look at the ndarray:

dataset = np.genfromtxt('../../Datasets/'\

                        'normal_distribution_splittable.csv', \

                        delimiter=',') 

dataset
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4. You will obtain the following output:

Figure 1.14: Rows and columns of the dataset

Note

For ease of presentation, we have shown only a part of the output. 
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Filtering

1. Get values greater than 105 by supplying the condition > 105 in the brackets:

vals_greater_five = dataset[dataset > 105]

vals_greater_five

You will obtain the following output:

Figure 1.15: Filtered dataset displaying values greater than 105

You can see in the preceding figure that all the values in the output are greater 
than 105.

2. Extract the values of our dataset that are between the values 90 and 95. To 
use more complex conditions, we might want to use the extract method 
of NumPy:

vals_between_90_95 = np.extract((dataset > 90) \

                     & (dataset < 95), dataset)

vals_between_90_95
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You will obtain the following output:

Figure 1.16: Filtered dataset displaying values between 90 and 95

The preceding output clearly shows that only values lying between 90 and 95 
are printed.

3. Use the where method to get the indices of values that have a delta of less than 
1; that is, [individual value] – 100 should be less than 1. Use those indices (row, 
col) in a list comprehension and print them out:

rows, cols = np.where(abs(dataset - 100) < 1)

one_away_indices = [[rows[index], \

                     cols[index]] for (index, _) \

                     in np.ndenumerate(rows)]

one_away_indices

The where method from NumPy allows us to get indices (rows, cols) 
for each of the matching values.
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Observe the following truncated output:

Figure 1.17: Indices of the values that have a delta of less than 1

Let us confirm if we indeed obtained the right indices. The first set of indices 0,0 
refer to the very first value in the output shown in Figure 1.14. Indeed, this is the 
correct value as abs (99.14931546 – 100) < 1. We can quickly check 
this for a couple of more values and conclude that indeed the code has worked 
as intended. 

Note

List comprehensions are Python's way of mapping over data. They're a 
handy notation for creating a new list with some operation applied to every 
element of the old list.

For example, if we want to double the value of every element in this list, 
list = [1, 2, 3, 4, 5], we would use list comprehensions like 
this: doubled_list=[x*x for x in list]. This gives us the 
following list: [1, 4, 9, 16, 25]. To get a better understanding 
of list comprehensions, please visit https://docs.python.org/3/tutorial/
datastructures.html#list-comprehensions.

https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
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Sorting

1. Sort each row in our dataset by using the sort method:

row_sorted = np.sort(dataset)

row_sorted

As described before, by default, the last axis will be used. In a two-dimensional 
dataset, this is axis 1 which represents the rows. So, we can omit the axis=1 
argument in the np.sort method call. You will obtain the following output:

Figure 1.18: Dataset with sorted rows

Compare the preceding output with that in Figure 1.14. What do you observe? 
The values along the rows have been sorted in an ascending order as expected.



NumPy | 37

2. With multi-dimensional data, we can use the axis parameter to define which 
dataset should be sorted. Use the 0 axes to sort the values by column:

col_sorted = np.sort(dataset, axis=0)

col_sorted

A truncated version of the output is as follows:

Figure 1.19: Dataset with sorted columns

As expected, the values along the columns (91.37294597, 91.02628776, 
94.11176915, and so on) are now sorted in an ascending order.

3. Create a sorted index list and use fancy indexing to get access to sorted 
elements easily. To keep the order of our dataset and obtain only the values of a 
sorted dataset, we will use argsort:

index_sorted = np.argsort(dataset[0])

dataset[0][index_sorted]

The output is as follows:

Figure 1.20: First row with sorted values from argsort
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As can be seen from the preceding output, we have obtained the first row with 
sorted values.

Combining

4. Use the combining features to add the second half of the first column back 
together, add the second column to our combined dataset, and add the third 
column to our combined dataset.

thirds = np.hsplit(dataset, (3))

halfed_first = np.vsplit(thirds[0], (2))

halfed_first[0]

The output of the preceding code is as follows:

Figure 1.21: Splitting the dataset

5. Use vstack to vertically combine the halfed_first datasets:

first_col = np.vstack([halfed_first[0], halfed_first[1]])

first_col
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The output of the preceding code is as follows:

Figure 1.22: Vertically combining the dataset

After stacking the second half of our split dataset, we have one-third of our initial 
dataset stacked together again. Now, we want to add the other two remaining 
datasets to our first_col dataset.

6. Use the hstack method to combine our already combined first_col with 
the second of the three split datasets:

first_second_col = np.hstack([first_col, thirds[1]])

first_second_col
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A truncated version of the output resulting from the preceding code is as follows:

Figure 1.23: Horizontally combining the dataset

7. Use hstack to combine the last one-third column with our dataset. This is the 
same thing we did with our second-third column in the previous step:

full_data = np.hstack([first_second_col, thirds[2]])

full_data
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A truncated version of the output resulting from the preceding code is as follows:

Figure 1.24: The complete dataset
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Reshaping

1. Reshape our dataset into a single list using the reshape method:

single_list = np.reshape(dataset, (1, -1))

single_list

A truncated version of the output resulting from the preceding code is as follows:

Figure 1.25: Reshaped dataset

2. Provide a -1 for the dimension. This tells NumPy to figure the dimension 
out itself:

# reshaping to a matrix with two columns

two_col_dataset = dataset.reshape(-1, 2)

two_col_dataset
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A truncated version of the output resulting from the preceding code is as follows:

Figure 1.26: The dataset in a two-column format

Note

To access the source code for this specific section, please refer to  
https://packt.live/2YD4AZn.

You can also run this example online at https://packt.live/3e6F7Ol.

https://packt.live/2YD4AZn
https://packt.live/3e6F7Ol
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You have now used many of the basic operations that are needed so that you 
can analyze a dataset. Next, we will be learning about pandas, which will provide 
several advantages when working with data that is more complex than simple multi-
dimensional numerical data. pandas also support different data types in datasets, 
meaning that we can have columns that hold strings and others that have numbers.

NumPy, as you've seen, has some powerful tools. Some of them are even more 
powerful when combined with pandas DataFrames.

pandas
The pandas Python library provides data structures and methods for manipulating 
different types of data, such as numerical and temporal data. These operations are 
easy to use and highly optimized for performance.

Data formats, such as CSV and JSON, and databases can be used to create 
DataFrames. DataFrames are the internal representations of data and are very 
similar to tables but are more powerful since they allow you to efficiently apply 
operations such as multiplications, aggregations, and even joins. Importing and 
reading both files and in-memory data is abstracted into a user-friendly interface. 
When it comes to handling missing data, pandas provide built-in solutions to clean up 
and augment your data, meaning it fills in missing values with reasonable values.

Integrated indexing and label-based slicing in combination with fancy indexing (what 
we already saw with NumPy) make handling data simple. More complex techniques, 
such as reshaping, pivoting, and melting data, together with the possibility of easily 
joining and merging data, provide powerful tooling so that you can handle your 
data correctly.

If you're working with time-series data, operations such as date range generation, 
frequency conversion, and moving window statistics can provide an advanced 
interface for data wrangling.

Note

The installation instructions for pandas can be found here:  
https://pandas.pydata.org/. The latest version is v0.25.3  
(used in this book); however, every v0.25.x should be suitable.

https://pandas.pydata.org/
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Advantages of pandas over NumPy

The following are some of the advantages of pandas:

• High level of abstraction: pandas have a higher abstraction level than 
NumPy, which gives it a simpler interface for users to interact with. It abstracts 
away some of the more complex concepts, such as high-performance matrix 
multiplications and joining tables, and makes it easier to use and understand.

• Less intuition: Many methods, such as joining, selecting, and loading files, are 
used without much intuition and without taking away much of the powerful 
nature of pandas.

• Faster processing: The internal representation of DataFrames allows faster 
processing for some operations. Of course, this always depends on the data and 
its structure.

• Easy DataFrame design: DataFrames are designed for operations with and on 
large datasets.

Disadvantages of pandas

The following are some of the disadvantages of pandas:

• Less applicable: Due to its higher abstraction, it's generally less applicable than 
NumPy. Especially when used outside of its scope, operations can get complex.

• More disk space: Due to the internal representation of DataFrames and the way 
pandas trades disk space for a more performant execution, the memory usage 
of complex operations can spike.

• Performance problems: Especially when doing heavy joins, which is 
not recommended, memory usage can get critical and might lead to 
performance problems.
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• Hidden complexity: Less experienced users often tend to overuse methods and 
execute them several times instead of reusing what they've already calculated. 
This hidden complexity makes users think that the operations themselves are 
simple, which is not the case.

Note

Always try to think about how to design your workflows instead of 
excessively using operations.

Now, we will do an exercise to load a dataset and calculate the mean using pandas.

Exercise 1.04 Loading a Sample Dataset and Calculating the Mean using Pandas

In this exercise, we will be loading the world_population.csv dataset and 
calculating the mean of some rows and columns. Our dataset holds the yearly 
population density for every country. Let's use pandas to perform this exercise:

1. Create a new Jupyter Notebook and save it as Exercise1.04.ipynb in the 
Chapter01/Exercise1.04 folder.

2. Import the pandas libraries:

import pandas as pd

3. Use the read_csv method to load the aforementioned dataset. We want to 
use the first column, containing the country names, as our index. We will use the 
index_col parameter for that:

dataset = \

pd.read_csv('../../Datasets/world_population.csv', \

            index_col=0)

4. Now, check the data you just imported by simply writing the name of the dataset 
in the next cell. pandas uses a data structure called DataFrames. Print some of 
the rows. To avoid filling the screen, use the pandas head() method:

dataset.head()
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The output of the preceding code is as follows:

Figure 1.27: The first five rows of our dataset

Both head() and tail() let you provide a number, n, as a parameter, which 
describes how many rows should be returned.

Note

Simply executing a cell that returns a value such as a DataFrame will use 
Jupyter formatting, which looks nicer and, in most cases, displays more 
information than using print.
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5. Print out the shape of the dataset to get a quick overview using the dataset.
shape command. This works the same as it does with NumPy ndarrays. It will 
give us the output in the form (rows, columns):

dataset.shape

The output of the preceding code is as follows:

(264, 60)

6. Index the column with the year 1961. pandas DataFrames have built-in functions 
for calculations, such as the mean. This means we can simply call dataset.
mean() to get the result.

The printed output should look as follows:

dataset["1961"].mean()

The output of the preceding code is as follows:

176.91514132840555

7. Check the difference in population density over the years by repeating the 
previous step with the column for the year 2015 (the population more than 
doubled in the given time range):

# calculating the mean for 2015 column

dataset["2015"].mean()

The output of the preceding code is as follows:

368.70660104001837

8. To get the mean for every single country (row), we can make use of pandas axis 
tools. Use the mean() method on the dataset on axis=1, meaning all the rows, 
and return the first 10 rows using the head() method:

dataset.mean(axis=1).head(10)
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The output of the preceding code is as follows:

Figure 1.28: Mean of elements in the first 10 countries (rows)

9. Get the mean for each column and return the last 10 entries:

dataset.mean(axis=0).tail(10)

The output of the preceding code is as follows:

Figure 1.29: Mean of elements for the last 10 years (columns)
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10. Calculate the mean of the whole DataFrame:

# calculating the mean for the whole matrix

dataset.mean()

The output of the preceding code is as follows:

Figure 1.30: Mean of elements for each column

Since pandas DataFrames can have different data types in each column, 
aggregating this value on the whole dataset out of the box makes no sense. By 
default, axis=0 will be used, which means that this will give us the same result 
as the cell prior to this.

Note

To access the source code for this specific section, please refer to  
https://packt.live/37z3Us1.

You can also run this example online at https://packt.live/2Bb0ks8.

https://packt.live/37z3Us1
https://packt.live/2Bb0ks8
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We've now seen that the interface of pandas has some similar methods to NumPy, 
which makes it really easy to understand. We have now covered the very basics, 
which will help you solve the first exercise using pandas. In the following exercise, 
you will consolidate your basic knowledge of pandas and use the methods you just 
learned to solve several computational tasks.

Exercise 1.05: Using pandas to Compute the Mean, Median, and Variance of a 

Dataset

In this exercise, we will take the previously learned skills of importing datasets and 
basic calculations and apply them to solve the tasks of our first exercise using pandas.

Let's use pandas features such as mean, median, and variance to make some 
calculations on our data:

1. Create a new Jupyter Notebook and save it as Exercise1.05.ipynb in the 
Chapter01/Exercise1.05 folder.

2. Import the necessary libraries:

import pandas as pd

3. Use the read_csv method to load the aforementioned dataset and use the 
index_col parameter to define the first column as our index:

dataset = \

pd.read_csv('../../Datasets/world_population.csv', \

            index_col=0)

4. Print the first two rows of our dataset:

dataset[0:2]
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The output of the preceding code is as follows:

Figure 1.31: The first two rows, printed

5. Now, index the third row by using dataset.iloc[[2]]. Use the axis 
parameter to get the mean of the country rather than the yearly column:

dataset.iloc[[2]].mean(axis=1)

The output of the preceding code is as follows:

Figure 1.32: Calculating the mean of the third row

6. Index the last element of the DataFrame using -1 as the index for the 
iloc() method:

dataset.iloc[[-1]].mean(axis=1)

The output of the preceding code is as follows:

Figure 1.33: Calculating the mean of the last row
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7. Calculate the mean value of the values labeled as Germany using loc, which 
works based on the index column:

dataset.loc[["Germany"]].mean(axis=1)

The output of the preceding code is as follows:

Figure 1.34: Indexing a country and calculating the mean of Germany

8. Calculate the median value of the last row by using reverse indexing and 
axis=1 to aggregate the values in the row:

dataset.iloc[[-1]].median(axis=1)

The output of the preceding code is as follows:

Figure 1.35: Usage of the median method on the last row

9. Use reverse indexing to get the last three columns with dataset[-3:] and 
calculate the median for each of them:

dataset[-3:].median(axis=1)

The output of the preceding code is as follows:

Figure 1.36: Median of the last three columns
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10. Calculate the median population density values for the first 10 countries of the 
list using the head and median methods:

dataset.head(10).median(axis=1)

The output of the preceding code is as follows:

Figure 1.37: Usage of the axis to calculate the median of the first 10 rows

When handling larger datasets, the order in which methods are executed 
matters. Think about what head(10) does for a moment. It simply takes 
your dataset and returns the first 10 rows in it, cutting down your input to the 
mean() method drastically.

The last method we'll cover here is the variance. pandas provide a consistent API, 
which makes it easy to use.

11. Calculate the variance of the dataset and return only the last five columns:

dataset.var().tail()

The output of the preceding code is as follows:

Figure 1.38: Variance of the last five columns
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12. Calculate the mean for the year 2015 using both NumPy and pandas separately:

# NumPy pandas interoperability

import numpy as np

print("pandas", dataset["2015"].mean())

print("numpy", np.mean(dataset["2015"]))

The output of the preceding code is as follows:

Figure 1.39: Using NumPy's mean method with a pandas DataFrame

Note

To access the source code for this specific section, please refer to  
https://packt.live/2N7E2Kh.

You can also run this example online at https://packt.live/2Y3B2Fa.

This exercise of how to use NumPy's mean method with a pandas DataFrame shows 
that, in some cases, NumPy has better functionality. However, the DataFrame format 
of pandas is more applicable, so we combine both libraries to get the best out 
of both.

You've completed your first exercise with pandas, which showed you some of the 
similarities, and also differences when working with NumPy and pandas. In the 
following exercise, this knowledge will be consolidated. You'll also be introduced to 
more complex features and methods of pandas.

Basic Operations of pandas

In this section, we will learn about the basic pandas operations, such as indexing, 
slicing, and iterating, and implement them with an exercise.

https://packt.live/2N7E2Kh
https://packt.live/2Y3B2Fa
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Indexing

Indexing with pandas is a bit more complex than with NumPy. We can only access 
columns with a single bracket. To use the indices of the rows to access them, we need 
the iloc method. If we want to access them with index_col (which was set in the 
read_csv call), we need to use the loc method:

# index the 2000 col

dataset["2000"]

# index the last row

dataset.iloc[-1]

# index the row with index Germany

dataset.loc["Germany"]

# index row Germany and column 2015

dataset[["2015"]].loc[["Germany"]]

Slicing

Slicing with pandas is even more powerful. We can use the default slicing syntax 
we've already seen with NumPy or use multi-selection. If we want to slice different 
rows or columns by name, we can simply pass a list into the brackets:

# slice of the first 10 rows

dataset.iloc[0:10]

# slice of rows Germany and India

dataset.loc[["Germany", "India"]]

# subset of Germany and India with years 1970/90

dataset.loc[["Germany", "India"]][["1970", "1990"]]
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Iterating

Iterating DataFrames is also possible. Considering that they can have several 
dimensions and dtypes, the indexing is very high level and iterating over each 
row has to be done separately:

# iterating the whole dataset

for index, row in dataset.iterrows():

    print(index, row)

Series

A pandas Series is a one-dimensional labeled array that is capable of holding any 
type of data. We can create a Series by loading datasets from a .csv file, Excel 
spreadsheet, or SQL database. There are many different ways to create them, such as 
the following:

• NumPy arrays:

# import pandas

import pandas as pd

# import numpy

import numpy as np

# creating a numpy array

numarr = np.array(['p','y','t','h','o','n'])

ser = pd.Series(numarr)

print(ser)

• pandas lists:

# import pandas

import pandas as pd

# creating a pandas list

plist = ['p','y','t','h','o','n']

ser = pd.Series(plist)

print(ser)

Now, we will use basic pandas operations in an exercise.
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Exercise 1.06: Indexing, Slicing, and Iterating Using pandas

In this exercise, we will use the previously discussed pandas features to index, 
slice, and iterate DataFrames using pandas Series. To derive some insights from 
our dataset, we need to be able to explicitly index, slice, and iterate our data. For 
example, we can compare several countries in terms of population density growth.

Let's use the indexing, slicing, and iterating operations to display the population 
density of Germany, Singapore, United States, and India for years 1970, 1990, 
and 2010.

Indexing

1. Create a new Jupyter Notebook and save it as Exercise1.06.ipynb in the 
Chapter01/Exercise1.06 folder.

2. Import the necessary libraries:

import pandas as pd

3. Use the read_csv method to load the world_population.csv dataset 
and use the first column, (containing the country names) as our index using the 
index_col parameter:

dataset = \

pd.read_csv('../../Datasets/world_population.csv', \

            index_col=0)

4. Index the row with the index_col "United States" using the 
loc method:

dataset.loc[["United States"]].head()
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The output of the preceding code is as follows:

Figure 1.40: A few columns from the output showing indexing United States  
with the loc method

5. Use reverse indexing in pandas to index the second to last row using the 
iloc method:

dataset.iloc[[-2]]

The output of the preceding code is as follows:

Figure 1.41: Indexing the second to last row
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6. Columns are indexed using their header. This is the first line of the CSV file. Index 
the column with the header of 2000 as a Series:

dataset["2000"].head()

The output of the preceding code is as follows:

Figure 1.42: Indexing all 2000 columns

Remember, the head() method simply returns the first five rows.

7. First, get the data for the year 2000 as a DataFrame and then select India using 
the loc() method using chaining:

dataset[["2000"]].loc[["India"]]

The output of the preceding code is as follows:

Figure 1.43: Getting the population density of India in 2000

Since the double brackets notation returns a DataFrame once again, we can 
chain method calls to get distinct elements.

8. Use the single brackets notation to get the distinct value for the population 
density of India in 2000:

dataset["2000"].loc["India"]
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If we want to only retrieve a Series object, we must replace the double brackets 
with single ones. The output of the preceding code is as follows:

354.326858357522

Slicing

1. Create a slice with the rows 2 to 5 using the iloc() method again:

# slicing countries of rows 2 to 5

dataset.iloc[1:5]

The output of the preceding code is as follows:

Figure 1.44: The countries in rows 2 to 5
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2. Use the loc() method to access several rows in the DataFrame and use the 
nested brackets to provide a list of elements. Slice the dataset to get the rows for 
Germany, Singapore, United States, and India:

dataset.loc[["Germany", "Singapore", "United States", "India"]]

The output of the preceding code is as follows:

Figure 1.45: Slicing Germany, Singapore, United States, and India
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3. Use chaining to get the rows for Germany, Singapore, United States, and India 
and return only the values for the years 1970, 1990, and 2010. Since the double 
bracket queries return new DataFrames, we can chain methods and therefore 
access distinct subframes of our data:

country_list = ["Germany", "Singapore", "United States", "India"]

dataset.loc[country_list][["1970", "1990", "2010"]]

The output of the preceding code is as follows:

Figure 1.46: Slices some of the countries and their population density  
for 1970, 1990, and 2010

Iterating

1. Iterate our dataset and print out the countries up until Angola using the 
iterrows() method. The index will be the name of our row, and the row will 
hold all the columns:

for index, row in dataset.iterrows():

    # only printing the rows until Angola

    if index == 'Angola':

        break

    print(index, '\n', \

          row[["Country Code", "1970", "1990", "2010"]], '\n')
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The output of the preceding code is as follows:

Figure 1.47: Iterating all countries until Angola

Note

To access the source code for this specific section, please refer to  
https://packt.live/2YKqHNM.

You can also run this example online at https://packt.live/2YD56Xo.

We've already covered most of the underlying data wrangling methods using pandas. 
In the next exercise, we'll take a look at more advanced features such as filtering, 
sorting, and reshaping to prepare you for the next chapter.

https://packt.live/2YKqHNM
https://packt.live/2YD56Xo
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Advanced pandas Operations

In this section, we will learn about some advanced pandas operations such as 
filtering, sorting, and reshaping and implement them in an exercise.

Filtering

Filtering in pandas has a higher-level interface than NumPy. You can still use the 
simple brackets-based conditional filtering. However, you're also able to use more 
complex queries, for example, filter rows based on labels using likeness, which 
allows us to search for a substring using the like argument and even full regular 
expressions using regex:

# only column 1994

dataset.filter(items=["1990"])

# countries population density < 10 in 1999

dataset[(dataset["1990"] < 10)]

# years containing an 8

dataset.filter(like="8", axis=1)

# countries ending with a

dataset.filter(regex="a$", axis=0)

Sorting

Sorting each row or column based on a given row or column will help you analyze 
your data better and find the ranking of a given dataset. With pandas, we are able to 
do this pretty easily. Sorting in ascending and descending order can be done using 
the parameter known as ascending. The default sorting order is ascending. Of 
course, you can do more complex sorting by providing more than one value in the by 
= [ ] list. Those will then be used to sort values for which the first value is the same:

# values sorted by 1999

dataset.sort_values(by=["1999"])

# values sorted by 1999 descending

dataset.sort_values(by=["1994"], ascending=False)
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Reshaping

Reshaping can be crucial for easier visualization and algorithms. However, depending 
on your data, this can get really complex:

dataset.pivot(index=["1999"] * len(dataset), \

              columns="Country Code", values="1999")

Now, we will use advanced pandas operations to perform an exercise.

Exercise 1.07: Filtering, Sorting, and Reshaping

This exercise provides some more complex tasks and also combines most of the 
methods we learned about previously as a recap. After this exercise, you should be 
able to read the most basic pandas code and understand its logic.

Let's use pandas to filter, sort, and reshape our data.

Filtering

1. Create a new Jupyter Notebook and save it as Exercise1.07.ipynb in the 
Chapter01/Exercise1.07 folder.

2. Import the necessary libraries:

# importing the necessary dependencies

import pandas as pd

3. Use the read_csv method to load the dataset, again defining our first column 
as an index column:

# loading the dataset

dataset = \

pd.read_csv('../../Datasets/world_population.csv', \

            index_col=0)
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4. Use filter instead of using the bracket syntax to filter for specific items. Filter 
the dataset for columns 1961, 2000, and 2015 using the items parameter:

# filtering columns 1961, 2000, and 2015

dataset.filter(items=["1961", "2000", "2015"]).head()

The output of the preceding code is as follows:

Figure 1.48: Filtering data for 1961, 2000, and 2015

5. Use conditions to get all the countries that had a higher population density than 
500 in 2000. Simply pass this condition in brackets:

"""

filtering countries that had a greater population density 

than 500 in 2000

"""

dataset[(dataset["2000"] > 500)][["2000"]]
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The output of the preceding code is as follows:

Figure 1.49: Filtering out values that are greater than 500 in the 2000 column

6. Search for arbitrary columns or rows (depending on the index given) that match 
a certain regex. Get all the columns that start with 2 by passing ^2 (meaning 
that it starts at 2):

dataset.filter(regex="^2", axis=1).head()

The output of the preceding code is as follows:

Figure 1.50: Retrieving all columns starting with 2
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7. Filter the rows instead of the columns by passing axis=0. This will be helpful 
for situations when we want to filter all the rows that start with A:

dataset.filter(regex="^A", axis=0).head()

The output of the preceding code is as follows:

Figure 1.51: Retrieving the rows that start with A
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8. Use the like query to find only the countries that contain the word land, such 
as Switzerland:

dataset.filter(like="land", axis=0).head()

The output of the preceding code is as follows:

Figure 1.52: Retrieving all countries containing the word "land"
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Sorting

1. Use the sort_values or sort_index method to get the countries with the 
lowest population density for the year 1961:

dataset.sort_values(by=["1961"])[["1961"]].head(10)

The output of the preceding code is as follows:

Figure 1.53: Sorting by the values for the year 1961

2. Just for comparison, carry out sorting for 2015:

dataset.sort_values(by=["2015"])[["2015"]].head(10)
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The output of the preceding code is as follows:

Figure 1.54: Sorting based on the values of 2015

We can see that the order of the countries with the lowest population density 
has changed a bit, but that the first three entries remain unchanged.

3. Sort column 2015 in descending order to show the biggest values first:

dataset.sort_values(by=["2015"], \

                    ascending=False)[["2015"]].head(10)
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The output of the preceding code is as follows:

Figure 1.55: Sorting in descending order

Reshaping

1. Get a DataFrame where the columns are country codes and the only row is 
the year 2015. Since we only have one 2015 label, we need to duplicate it as 
many times as our dataset's length:

# reshaping to 2015 as row and country codes as columns

dataset_2015 = dataset[["Country Code", "2015"]]

dataset_2015.pivot(index=["2015"] * len(dataset_2015), \

                   columns="Country Code", values="2015")
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The output of the preceding code is as follows:

Figure 1.56: Reshaping the dataset into a single row for the values of 2015

Note

To access the source code for this specific section, please refer to  
https://packt.live/2N0xHQZ.

You can also run this example online at https://packt.live/30Jeziw.

You now know the basic functionality of pandas and have already applied it to a real-
world dataset. In the final activity for this chapter, we will try to analyze a forest fire 
dataset to get a feeling for mean forest fire sizes and whether the temperature of 
each month is proportional to the number of fires.

Activity 1.02: Forest Fire Size and Temperature Analysis

In this activity, we will use pandas features to derive some insights from a forest fire 
dataset. We will get the mean size of forest fires, what the largest recorded fire in 
our dataset is, and whether the amount of forest fires grows proportionally to the 
temperature in each month.

Our forest fires dataset has the following structure:

• X: X-axis spatial coordinate within the Montesinho park map: 1 to 9

• Y: Y-axis spatial coordinate within the Montesinho park map: 2 to 9

• month: Month of the year: 'jan' to 'dec'

• day: Day of the week: 'mon' to 'sun'

• FFMC: FFMC index from the FWI system: 18.7 to 96.20

• DMC: DMC index from the FWI system: 1.1 to 291.3

• DC: DC index from the FWI system: 7.9 to 860.6

https://packt.live/2N0xHQZ
https://packt.live/30Jeziw
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• ISI: ISI index from the FWI system: 0.0 to 56.10

• temp: Temperature in degrees Celsius: 2.2 to 33.30

• RH: Relative humidity in %: 15.0 to 100

• wind: Wind speed in km/h: 0.40 to 9.40

• rain: Outside rain in mm/m2: 0.0 to 6.4

• area: The burned area of the forest (in ha): 0.00 to 1090.84

Note

We will only be using the month, temp, and area columns in this activity.

The following are the steps for this activity:

1. Open the Activity1.02.ipynb Jupyter Notebook from the Chapter01 
folder to complete this activity. Import pandas using the pd alias.

2. Load the forestfires.csv dataset using pandas.

3. Print the first two rows of the dataset to get a feeling for its structure.

Derive insights from the sizes of forest fires

1. Filter the dataset so that it only contains entries that have an area larger than 0.

2. Get the mean, min, max, and std of the area column and see what information 
this gives you.

3. Sort the filtered dataset using the area column and print the last 20 entries 
using the tail method to see how many huge values it holds.

4. Then, get the median of the area column and visually compare it to the 
mean value.

Finding the month with the most forest fires

1. Get a list of unique values from the month column of the dataset.

2. Get the number of entries for the month of March using the shape member of 
our DataFrame.



76 | The Importance of Data Visualization and Data Exploration

3. Now, iterate over all the months, filter our dataset for the rows containing the 
given month, and calculate the mean temperature. Print a statement with the 
number of fires, the mean temperature, and the month.

Note

The solution for this activity can be found via this link.

You have now completed this topic all about pandas, which concludes this chapter. 
We have learned about the essential tools that help you wrangle and work with 
data. pandas is an incredibly powerful and widely used tool for wrangling and 
understanding data.

Summary
NumPy and pandas are essential tools for data wrangling. Their user-friendly 
interfaces and performant implementation make data handling easy. Even though 
they only provide a little insight into our datasets, they are valuable for wrangling, 
augmenting, and cleaning our datasets. Mastering these skills will improve the quality 
of your visualizations.

In this chapter, we learned about the basics of NumPy, pandas, and statistics. Even 
though the statistical concepts we covered are basic, they are necessary to enrich 
our visualizations with information that, in most cases, is not directly provided in 
our datasets. This hands-on experience will help you implement the exercises and 
activities in the following chapters.

In the next chapter, we will focus on the different types of visualizations and how 
to decide which visualization would be best for our use case. This will give you 
theoretical knowledge so that you know when to use a specific chart type and why. 
It will also lay down the fundamentals of the remaining chapters in this book, which 
will focus on teaching you how to use Matplotlib and seaborn to create the plots 
we have discussed here. After we have covered basic visualization techniques with 
Matplotlib and seaborn, we will dive more in-depth and explore the possibilities of 
interactive and animated charts, which will introduce an element of storytelling into 
our visualizations.







Overview

This chapter will teach you the fundamentals of the various types of plots 
such as line charts, bar charts, bubble plots, radar charts, and so on. For 
each plot type that we discuss, we will also describe best practices and 
use cases. The activities presented in this chapter will enable you to apply 
the knowledge gained. By the end of this chapter, you will be equipped 
with the important skill of identifying the best plot type for a given dataset 
and scenario. 

2
All You Need to Know about 

Plots
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Introduction
In the previous chapter, we learned how to work with new datasets and get familiar 
with their data and structure. We also got hands-on experience of how to analyze and 
transform them using different data wrangling techniques such as filtering, sorting, 
and reshaping. All of these techniques will come in handy when working with further 
real-world datasets in the coming activities.

In this chapter, we will focus on various visualizations and identify which visualization 
is best for showing certain information for a given dataset. We will describe every 
visualization in detail and give practical examples, such as comparing different stocks 
over time or comparing the ratings for different movies. Starting with comparison 
plots, which are great for comparing multiple variables over time, we will look at their 
types (such as line charts, bar charts, and radar charts).

We will then move onto relation plots, which are handy for showing relationships 
among variables. We will cover scatter plots for showing the relationship between two 
variables, bubble plots for three variables, correlograms for variable pairs, and finally, 
heatmaps for visualizing multivariate data.

The chapter will further explain composition plots (used to visualize variables that 
are part of a whole), as well as pie charts, stacked bar charts, stacked area charts, 
and Venn diagrams. To give you a deeper insight into the distribution of variables, 
we will discuss distribution plots, describing histograms, density plots, box plots, and 
violin plots.

Finally, we will talk about dot maps, connection maps, and choropleth maps, which 
can be categorized into geoplots. Geoplots are useful for visualizing geospatial data. 
Let’s start with the family of comparison plots, including line charts, bar charts, and 
radar charts.
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Note

The data used in this chapter has been provided to demonstrate the 
different types of plots available to you. In each case, the data itself will be 
revisited and explained more fully in a later chapter.

Comparison Plots
Comparison plots include charts that are ideal for comparing multiple variables 
or variables over time. Line charts are great for visualizing variables over time. For 
comparison among items, bar charts (also called column charts) are the best way 
to go. For a certain time period (say, fewer than 10-time points), vertical bar charts 
can be used as well. Radar charts or spider plots are great for visualizing multiple 
variables for multiple groups.

Line Chart

Line charts are used to display quantitative values over a continuous time period and 
show information as a series. A line chart is ideal for a time series that is connected 
by straight-line segments.

The value being measured is placed on the y-axis, while the x-axis is the timescale.

Uses

• Line charts are great for comparing multiple variables and visualizing trends for 
both single as well as multiple variables, especially if your dataset has many time 
periods (more than 10).

• For smaller time periods, vertical bar charts might be the better choice.



82 | All You Need to Know about Plots

The following diagram shows a trend of real estate prices (per million US dollars) 
across two decades. Line charts are ideal for showing data trends:

Figure 2.1: Line chart for a single variable
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Example

The following figure is a multiple-variable line chart that compares the stock-closing 
prices for Google, Facebook, Apple, Amazon, and Microsoft. A line chart is great for 
comparing values and visualizing the trend of the stock. As we can see, Amazon 
shows the highest growth:

Figure 2.2: Line chart showing stock trends for five companies
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Design Practices

• Avoid too many lines per chart.

• Adjust your scale so that the trend is clearly visible.

Note

For plots with multiple variables, a legend should be given to describe 
each variable.

Bar Chart

In a bar chart, the bar length encodes the value. There are two variants of bar charts: 
vertical bar charts and horizontal bar charts.

Use

While they are both used to compare numerical values across categories, vertical bar 
charts are sometimes used to show a single variable over time.

Don’ts of Bar Charts

• Don’t confuse vertical bar charts with histograms. Bar charts compare different 
variables or categories, while histograms show the distribution for a single 
variable. Histograms will be discussed later in this chapter.

• Another common mistake is to use bar charts to show central tendencies among 
groups or categories. Use box plots or violin plots to show statistical measures or 
distributions in these cases.
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Examples

The following diagram shows a vertical bar chart. Each bar shows the marks out of 
100 that 5 students obtained in a test:

 

Figure 2.3: Vertical bar chart using student test data



86 | All You Need to Know about Plots

The following diagram shows a horizontal bar chart. Each bar shows the marks out of 
100 that 5 students obtained in a test:

 

Figure 2.4: Horizontal bar chart using student test data

The following diagram compares movie ratings, giving two different scores. The 
Tomatometer is the percentage of approved critics who have given a positive review 
for the movie. The Audience Score is the percentage of users who have given a score 
of 3.5 or higher out of 5. As we can see, The Martian is the only movie with both a 
high Tomatometer and Audience Score. The Hobbit: An Unexpected Journey has a 
relatively high Audience Score compared to the Tomatometer score, which might be 
due to a huge fan base:
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Figure 2.5: Comparative bar chart

Design Practices

• The axis corresponding to the numerical variable should start at zero. Starting 
with another value might be misleading, as it makes a small value difference look 
like a big one.

• Use horizontal labels—that is, as long as the number of bars is small, and the 
chart doesn’t look too cluttered.

• The labels can be rotated to different angles if there isn’t enough space to 
present them horizontally. You can see this on the labels of the x-axis of the 
preceding diagram.

Radar Chart

Radar charts (also known as spider or web charts) visualize multiple variables with 
each variable plotted on its own axis, resulting in a polygon. All axes are arranged 
radially, starting at the center with equal distances between one another, and have 
the same scale.
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Uses

• Radar charts are great for comparing multiple quantitative variables for a single 
group or multiple groups.

• They are also useful for showing which variables score high or low within a 
dataset, making them ideal for visualizing performance.

Examples

The following diagram shows a radar chart for a single variable. This chart displays 
data about a student scoring marks in different subjects:

 

Figure 2.6: Radar chart for one variable (student)
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The following diagram shows a radar chart for two variables/groups. Here, the chart 
explains the marks that were scored by two students in different subjects:

Figure 2.7: Radar chart for two variables (two students)
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The following diagram shows a radar chart for multiple variables/groups. Each chart 
displays data about a student’s performance in different subjects:

Figure 2.8: Radar chart with faceting for multiple variables (multiple students)

Design Practices

• Try to display 10 factors or fewer on a single radar chart to make it easier 
to read.

• Use faceting (displaying each variable in a separate plot) for multiple variables/
groups, as shown in the preceding diagram, in order to maintain clarity.



Comparison Plots | 91

In the first section, we learned which plots are suitable for comparing items. Line 
charts are great for comparing something over time, whereas bar charts are for 
comparing different items. Last but not least, radar charts are best suited for 
visualizing multiple variables for multiple groups. In the following activity, you can 
check whether you understood which plot is best for which scenario.

Activity 2.01: Employee Skill Comparison

You are given scores of four employees (Alex, Alice, Chris, and Jennifer) for five 
attributes: efficiency, quality, commitment, responsible conduct, and cooperation. 
Your task is to compare the employees and their skills. This activity will foster your 
skills in choosing the best visualization when it comes to comparing items.

1. Which charts are suitable for this task?

2. You are given the following bar and radar charts. List the advantages and 
disadvantages of both charts. Which is the better chart for this task in your 
opinion, and why?

The following diagram shows a bar chart for the employee skills:

Figure 2.9: Employee skills comparison with a bar chart
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The following diagram shows a radar chart for the employee skills:

Figure 2.10: Employee skills comparison with a radar chart

3. What could be improved in the respective visualizations?

Note

The solution for this activity can be found via this link.
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Concluding the activity, you hopefully have a good understanding of deciding which 
comparison plots are best for the situation. In the next section, we will discuss 
different relation plots.

Relation Plots
Relation plots are perfectly suited to showing relationships among variables. A 
scatter plot visualizes the correlation between two variables for one or multiple 
groups. Bubble plots can be used to show relationships between three variables. 
The additional third variable is represented by the dot size. Heatmaps are great for 
revealing patterns or correlations between two qualitative variables. A correlogram is 
a perfect visualization for showing the correlation among multiple variables.

Scatter Plot

Scatter plots show data points for two numerical variables, displaying a variable on 
both axes.

Uses

• You can detect whether a correlation (relationship) exists between two variables.

• They allow you to plot the relationship between multiple groups or categories 
using different colors.

• A bubble plot, which is a variation of the scatter plot, is an excellent tool for 
visualizing the correlation of a third variable.
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Examples

The following diagram shows a scatter plot of height and weight of persons 
belonging to a single group:

Figure 2.11: Scatter plot with a single group
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The following diagram shows the same data as in the previous plot but differentiates 
between groups. In this case, we have different groups: A, B, and C:

Figure 2.12: Scatter plot with multiple groups
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The following diagram shows the correlation between body mass and the maximum 
longevity for various animals grouped by their classes. There is a positive correlation 
between body mass and maximum longevity:

 

Figure 2.13: Correlation between body mass and maximum longevity for animals

Design Practices

• Start both axes at zero to represent data accurately.

• Use contrasting colors for data points and avoid using symbols for scatter plots 
with multiple groups or categories.

Variants: Scatter Plots with Marginal Histograms

In addition to the scatter plot, which visualizes the correlation between two numerical 
variables, you can plot the marginal distribution for each variable in the form of 
histograms to give better insight into how each variable is distributed.

Examples

The following diagram shows the correlation between body mass and the maximum 
longevity for animals in the Aves class. The marginal histograms are also shown, 
which helps to get a better insight into both variables:
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Figure 2.14: Correlation between body mass and maximum longevity  
of the Aves class with marginal histograms

Bubble Plot

A bubble plot extends a scatter plot by introducing a third numerical variable. The 
value of the variable is represented by the size of the dots. The area of the dots is 
proportional to the value. A legend is used to link the size of the dot to an actual 
numerical value.

Use

Bubble plots help to show a correlation between three variables.
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Example

The following diagram shows a bubble plot that highlights the relationship between 
heights and age of humans to get the weight of each person, which is represented by 
the size of the bubble:

Figure 2.15: Bubble plot showing the relation between height and age of humans

Design Practices

• The design practices for the scatter plot are also applicable to the bubble plot.

• Don’t use bubble plots for very large amounts of data, since too many bubbles 
make the chart difficult to read.

Correlogram

A correlogram is a combination of scatter plots and histograms. Histograms will be 
discussed in detail later in this chapter. A correlogram or correlation matrix visualizes 
the relationship between each pair of numerical variables using a scatter plot.
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The diagonals of the correlation matrix represent the distribution of each variable in 
the form of a histogram. You can also plot the relationship between multiple groups 
or categories using different colors. A correlogram is a great chart for exploratory 
data analysis to get a feel for your data, especially the correlation between 
variable pairs.

Examples

The following diagram shows a correlogram for the height, weight, and age of 
humans. The diagonal plots show a histogram for each variable. The off-diagonal 
elements show scatter plots between variable pairs:

Figure 2.16: Correlogram with a single category
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The following diagram shows the correlogram with data samples separated by color 
into different groups:

Figure 2.17: Correlogram with multiple categories

Design Practices

• Start both axes at zero to represent data accurately.

• Use contrasting colors for data points and avoid using symbols for scatter plots 
with multiple groups or categories.

Heatmap

A heatmap is a visualization where values contained in a matrix are represented 
as colors or color saturation. Heatmaps are great for visualizing multivariate data 
(data in which analysis is based on more than two variables per observation), 
where categorical variables are placed in the rows and columns and a numerical or 
categorical variable is represented as colors or color saturation.
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Use

The visualization of multivariate data can be done using heatmaps as they are great 
for finding patterns in your data.

Examples

The following diagram shows a heatmap for the most popular products on the 
electronics category page across various e-commerce websites, where the color 
shows the number of units sold. In the following diagram, we can analyze that the 
darker colors represent more units sold, as shown in the key:

Figure 2.18: Heatmap for popular products in the electronics category
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Variants: Annotated Heatmaps

Let’s see the same example we saw previously in an annotated heatmap, where the 
color shows the number of units sold:

Figure 2.19: Annotated heatmap for popular products in the electronics category

Design Practice

• Select colors and contrasts that will be easily visible to individuals with vision 
problems so that your plots are more inclusive.

In this section, we introduced various plots for relating a variable to other variables 
and looked at their uses, and multiple examples for the different relation plots were 
given. The following activity will give you some practice in working with heatmaps.



Relation Plots | 103

Activity 2.02: Road Accidents Occurring over Two Decades

You are given a diagram that provides information about the road accidents that 
have occurred over the past two decades during the months of January, April, July, 
and October. The aim of this activity is to understand how you can use heatmaps to 
visualize multivariate data.

1. Identify the two years during which the number of road accidents occurring was 
the least.

2. For the past two decades, identify the month for which accidents showed a 
marked decrease:

Figure 2.20: Total accidents over 20 years

Note

The solution for this activity can be found via this link.
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Composition Plots
Composition plots are ideal if you think about something as a part of a whole. For 
static data, you can use pie charts, stacked bar charts, or Venn diagrams. Pie charts 
or donut charts help show proportions and percentages for groups. If you need an 
additional dimension, stacked bar charts are great. Venn diagrams are the best way 
to visualize overlapping groups, where each group is represented by a circle. For data 
that changes over time, you can use either stacked bar charts or stacked area charts.

Pie Chart

Pie charts illustrate numerical proportions by dividing a circle into slices. Each arc 
length represents a proportion of a category. The full circle equates to 100%. For 
humans, it is easier to compare bars than arc lengths; therefore, it is recommended 
to use bar charts or stacked bar charts the majority of the time.

Use

To compare items that are part of a whole.
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Examples

The following diagram shows household water usage around the world:

Figure 2.21: Pie chart for global household water usage

Design Practices

• Arrange the slices according to their size in increasing/decreasing order, either in 
a clockwise or counterclockwise manner.

• Make sure that every slice has a different color.
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Variants: Donut Chart

An alternative to a pie chart is a donut chart. In contrast to pie charts, it is easier to 
compare the size of slices, since the reader focuses more on reading the length of 
the arcs instead of the area. Donut charts are also more space-efficient because the 
center is cut out, so it can be used to display information or further divide groups 
into subgroups.

The following diagram shows a basic donut chart:

Figure 2.22: Donut chart
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The following diagram shows a donut chart with subgroups:

 

Figure 2.23: Donut chart with subgroups

Design Practice

• Use the same color that’s used for the category for the subcategories. Use 
varying brightness levels for the different subcategories.

Stacked Bar Chart

Stacked bar charts are used to show how a category is divided into subcategories 
and the proportion of the subcategory in comparison to the overall category. You can 
either compare total amounts across each bar or show a percentage of each group. 
The latter is also referred to as a 100% stacked bar chart and makes it easier to see 
relative differences between quantities in each group.
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Use

• To compare variables that can be divided into sub-variables

Examples

The following diagram shows a generic stacked bar chart with five groups:

Figure 2.24: Stacked bar chart to show sales of laptops and mobiles
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The following diagram shows a 100% stacked bar chart with the same data that was 
used in the preceding diagram:

Figure 2.25: 100% stacked bar chart to show sales of laptops, PCs, and mobiles
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The following diagram illustrates the daily total sales of a restaurant over several 
days. The daily total sales of non-smokers are stacked on top of the daily total sales 
of smokers:

Figure 2.26: Daily total restaurant sales categorized by smokers and non-smokers

Design Practices

• Use contrasting colors for stacked bars.

• Ensure that the bars are adequately spaced to eliminate visual clutter. The ideal 
space guideline between each bar is half the width of a bar.

• Categorize data alphabetically, sequentially, or by value, to uniformly order it and 
make things easier for your audience.

Stacked Area Chart

Stacked area charts show trends for part-of-a-whole relations. The values of several 
groups are illustrated by stacking individual area charts on top of one another. It 
helps to analyze both individual and overall trend information.

Use

To show trends for time series that are part of a whole.
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Examples

The following diagram shows a stacked area chart with the net profits of Google, 
Facebook, Twitter, and Snapchat over a decade:

Figure 2.27: Stacked area chart to show net profits of four companies

Design Practice

• Use transparent colors to improve information visibility. This will help you to 
analyze the overlapping data and you will also be able to see the grid lines.

In this section, we covered various composition plots and we will conclude this 
section with the following activity.
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Activity 2.03: Smartphone Sales Units

You want to compare smartphone sales units for the five biggest smartphone 
manufacturers over time and see whether there is any trend. In this activity, we also 
want to look at the advantages and disadvantages of stacked area charts compared 
to line charts:

1. Looking at the following line chart, analyze the sales of each manufacturer 
and identify the one whose fourth-quarter performance is exceptional when 
compared to the third quarter.

2. Analyze the performance of all manufacturers and make a prediction about two 
companies whose sales units will show a downward and an upward trend:

Figure 2.28: Line chart of smartphone sales units

3. What would be the advantages and disadvantages of using a stacked area chart 
instead of a line chart?

Note

The solution for this activity can be found via this link.
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Venn Diagram

Venn diagrams, also known as set diagrams, show all possible logical relations 
between a finite collection of different sets. Each set is represented by a circle. The 
circle size illustrates the importance of a group. The size of overlap represents the 
intersection between multiple groups.

Use

To show overlaps for different sets.

Example

Visualizing the intersection of the following diagram shows a Venn diagram for 
students in two groups taking the same class in a semester:

Figure 2.29: Venn diagram showing students taking the same class

From the preceding diagram, we can note that there are eight students in just group 
A, four students in just group B, and one student in both groups.
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Design Practice

• It is not recommended to use Venn diagrams if you have more than three 
groups. It would become difficult to understand.

Moving on from composition plots, we will cover distribution plots in the 
following section.

Distribution Plots
Distribution plots give a deep insight into how your data is distributed. For a single 
variable, a histogram is effective. For multiple variables, you can either use a box 
plot or a violin plot. The violin plot visualizes the densities of your variables, whereas 
the box plot just visualizes the median, the interquartile range, and the range for 
each variable.

Histogram

A histogram visualizes the distribution of a single numerical variable. Each bar 
represents the frequency for a certain interval. Histograms help get an estimate 
of statistical measures. You see where values are concentrated, and you can easily 
detect outliers. You can either plot a histogram with absolute frequency values or, 
alternatively, normalize your histogram. If you want to compare distributions of 
multiple variables, you can use different colors for the bars.

Use

Get insights into the underlying distribution for a dataset.
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Example

The following diagram shows the distribution of the Intelligence Quotient (IQ) for a 
test group. The dashed lines represent the standard deviation each side of the mean 
(the solid line):

Figure 2.30: Distribution of IQ for a test group of a hundred adults

Design Practice

• Try different numbers of bins (data intervals), since the shape of the histogram 
can vary significantly.

Density Plot

A density plot shows the distribution of a numerical variable. It is a variation of a 
histogram that uses kernel smoothing, allowing for smoother distributions. One 
advantage these have over histograms is that density plots are better at determining 
the distribution shape since the distribution shape for histograms heavily depends on 
the number of bins (data intervals).
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Use

To compare the distribution of several variables by plotting the density on the same 
axis and using different colors.

Example

The following diagram shows a basic density plot:

Figure 2.31: Density plot
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The following diagram shows a basic multi-density plot:

 

Figure 2.32: Multi-density plot

Design Practice

• Use contrasting colors to plot the density of multiple variables.

Box Plot

The box plot shows multiple statistical measurements. The box extends from the 
lower to the upper quartile values of the data, thus allowing us to visualize the 
interquartile range (IQR). The horizontal line within the box denotes the median. 
The parallel extending lines from the boxes are called whiskers; they indicate the 
variability outside the lower and upper quartiles. There is also an option to show data 
outliers, usually as circles or diamonds, past the end of the whiskers.
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Use

Compare statistical measures for multiple variables or groups.

Examples

The following diagram shows a basic box plot that shows the height of a group 
of people:

Figure 2.33: Box plot showing a single variable
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The following diagram shows a basic box plot for multiple variables. In this case, it 
shows heights for two different groups – adults and non-adults:

Figure 2.34: Box plot for multiple variables

In the next section, we will learn what the features, uses, and best practices are of the 
violin plot.

Violin Plot

Violin plots are a combination of box plots and density plots. Both the statistical 
measures and the distribution are visualized. The thick black bar in the center 
represents the interquartile range, while the thin black line corresponds to the 
whiskers in a box plot. The white dot indicates the median. On both sides of the 
centerline, the density is visualized.
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Use

Compare statistical measures and density for multiple variables or groups.

Examples

The following diagram shows a violin plot for a single variable and shows how 
students have performed in Math:

Figure 2.35: Violin plot for a single variable (Math)
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From the preceding diagram, we can analyze that most of the students have scored 
around 40-60 in the Math test.

The following diagram shows a violin plot for two variables and shows the 
performance of students in English and Math:

Figure 2.36: Violin plot for multiple variables (English and Math)

From the preceding diagram, we can say that on average, the students have scored 
more in English than in Math, but the highest score was secured in Math.
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The following diagram shows a violin plot for a single variable divided into three 
groups, and shows the performance of three divisions of students in English based 
on their score:

Figure 2.37: Violin plot with multiple categories (three groups of students)

From the preceding diagram, we can note that on average, division C has scored the 
highest, division B has scored the lowest, and division A is, on average, in between 
divisions B and C.

Design Practice

• Scale the axes accordingly so that the distribution is clearly visible and not flat.

In this section, distribution plots were introduced. In the following activity, we will 
have a closer look at histograms.
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Activity 2.04: Frequency of Trains during Different Time Intervals

You are provided with a histogram that states the number of trains arriving at 
different time intervals in the afternoon to determine the maximum number of trains 
arriving in 2-hour time intervals. The goal of this activity is to gain a deeper insight 
into histograms:

1. Looking at the following histogram, can you identify the interval during which a 
maximum number of trains arrive?

2. How would the histogram change if in the morning, the same total number of 
trains arrive as in the afternoon, and if you have the same frequencies for all 
time intervals?

Figure 2.38: Frequency of trains during different time intervals

Note

The solution for this activity can be found via this link.
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With that activity, we conclude the section about distribution plots and we will 
introduce geoplots in the next section.

Geoplots
Geological plots are a great way to visualize geospatial data. Choropleth maps can 
be used to compare quantitative values for different countries, states, and so on. If 
you want to show connections between different locations, connection maps are the 
way to go.

Dot Map

In a dot map, each dot represents a certain number of observations. Each dot has the 
same size and value (the number of observations each dot represents). The dots are 
not meant to be counted; they are only intended to give an impression of magnitude. 
The size and value are important factors for the effectiveness and impression of the 
visualization. You can use different colors or symbols for the dots to show multiple 
categories or groups.

Use

To visualize geospatial data.

Example

The following diagram shows a dot map where each dot represents a certain amount 
of bus stops throughout the world:
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Figure 2.39: Dot map showing bus stops worldwide

Design Practices

• Do not show too many locations. You should still be able to see the map to get a 
feel for the actual location.

• Choose a dot size and value so that in dense areas, the dots start to blend. The 
dot map should give a good impression of the underlying spatial distribution.

Choropleth Map

In a choropleth map, each tile is colored to encode a variable. For example, a tile 
represents a geographic region for counties and countries. Choropleth maps provide 
a good way to show how a variable varies across a geographic area. One thing to keep 
in mind for choropleth maps is that the human eye naturally gives more attention to 
larger areas, so you might want to normalize your data by dividing the map area-wise.
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Use

To visualize geospatial data grouped into geological regions—for example, states 
or countries.

Example

The following diagram shows a choropleth map of a weather forecast in the USA:

Figure 2.40: Choropleth map showing a weather forecast for the USA

Design Practices

• Use darker colors for higher values, as they are perceived as being higher in 
magnitude.

• Limit the color gradation, since the human eye is limited in how many colors it 
can easily distinguish between. Seven color gradations should be enough.

Connection Map

In a connection map, each line represents a certain number of connections between 
two locations. The link between the locations can be drawn with a straight or rounded 
line, representing the shortest distance between them.
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Each line has the same thickness and value (the number of connections each line 
represents). The lines are not meant to be counted; they are only intended to give 
an impression of magnitude. The size and value of a connection line are important 
factors for the effectiveness and impression of the visualization.

You can use different colors for the lines to show multiple categories or groups, or 
you can use a colormap to encode the length of the connection.

Use

To visualize connections.

Examples

The following diagram shows a connection map of flight connections around 
the world:

Figure 2.41: Connection map showing flight connections around the world
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Design Practices

• Do not show too many connections as it will be difficult for you to analyze the 
data. You should still see the map to get a feel for the actual locations of the start 
and end points.

• Choose a line thickness and value so that the lines start to blend in dense 
areas. The connection map should give a good impression of the underlying 
spatial distribution.

Geoplots are special plots that are great for visualizing geospatial data. In the 
following section, we want to briefly talk about what’s generally important when it 
comes to creating good visualizations.

What Makes a Good Visualization?
There are multiple aspects to what makes a good visualization:

• Most importantly, the visualization should be self-explanatory and visually 
appealing. To make it self-explanatory, use a legend, descriptive labels for your 
x-axis and y-axis, and titles.

• A visualization should tell a story and be designed for your audience. Before 
creating your visualization, think about your target audience; create simple 
visualizations for a non-specialist audience and more technical detailed 
visualizations for a specialist audience. Think about a story to tell with your 
visualization so that your visualization leaves an impression on the audience.

Common Design Practices

• Use colors to differentiate variables/subjects rather than symbols, as colors are 
more perceptible.

• To show additional variables on a 2D plot, use color, shape, and size.

• Keep it simple and don’t overload the visualization with too much information.
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Activity 2.05: Analyzing Visualizations

The following visualizations are not ideal as they do not represent data well. Answer 
the following questions for each visualization. The aim of this activity is to sharpen 
your skills with regard to choosing the best suitable plot for a scenario.

1. What are the bad aspects of these visualizations?

2. How could we improve the visualizations? Sketch the right visualization for 
both scenarios.

The first visualization is supposed to illustrate the top 30 YouTube music channels 
according to their number of subscribers:

Figure 2.42: Pie chart showing the top 30 YouTube music channels
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The second visualization is supposed to illustrate the number of people playing a 
certain game in a casino over 2 days:

Figure 2.43: Line chart displaying casino data for 2 days

Note

The solution for this activity can be found via this link.
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Activity 2.06: Choosing a Suitable Visualization

In this activity, we are using a dataset to visualize the median, the interquartile 
ranges, and the underlying density of populations from different income groups. 
Following is the link to the dataset that we have used: https://population.un.org/wpp/
Download/Files/1_Indicators%20(Standard)/EXCEL_FILES/1_Population/WPP2019_POP_
F07_1_POPULATION_BY_AGE_BOTH_SEXES.xlsx. Select the best suitable plot from the 
following plots.

The following diagram shows the population by different income groups using a 
density plot:

Figure 2.44: Density plot

https://population.un.org/wpp/Download/Files/1_Indicators%20(Standard)/EXCEL_FILES/1_Population/WPP2019_POP_F07_1_POPULATION_BY_AGE_BOTH_SEXES.xlsx
https://population.un.org/wpp/Download/Files/1_Indicators%20(Standard)/EXCEL_FILES/1_Population/WPP2019_POP_F07_1_POPULATION_BY_AGE_BOTH_SEXES.xlsx
https://population.un.org/wpp/Download/Files/1_Indicators%20(Standard)/EXCEL_FILES/1_Population/WPP2019_POP_F07_1_POPULATION_BY_AGE_BOTH_SEXES.xlsx
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The following diagram shows the population by different income groups using a 
box plot:

Figure 2.45: Box plot
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The following diagram shows the population by different income groups using a 
violin plot:

Figure 2.46: Violin plot

Note

The solution for this activity can be found via this link.
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Summary
This chapter covered the most important visualizations, categorized into comparison, 
relation, composition, distribution, and geological plots. For each plot, a description, 
practical examples, and design practices were given. Comparison plots, such as line 
charts, bar charts, and radar charts, are well suited to comparing multiple variables 
or variables over time. Relation plots are perfectly suited to show relationships 
between variables. Scatter plots, bubble plots, which are an extension of scatter plots, 
correlograms, and heatmaps were considered.

Composition plots are ideal if you need to think about something as part of a 
whole. We first covered pie charts and continued with stacked bar charts, stacked 
area charts, and Venn diagrams. For distribution plots that give a deep insight into 
how your data is distributed, histograms, density plots, box plots, and violin plots 
were considered. Regarding geospatial data, we discussed dot maps, connection 
maps, and choropleth maps. Finally, some remarks were provided on what makes a 
good visualization.

In the next chapter, we will dive into Matplotlib and create our own visualizations. We 
will start by introducing the basics, followed by talking about how you can add text 
and annotations to make your visualizations more comprehensible. We will continue 
creating simple plots and using layouts to include multiple plots within a visualization. 
At the end of the next chapter, we will explain how you can use Matplotlib to 
visualize images.







Overview

This chapter describes the fundamentals of Matplotlib and teaches you 
how to create visualizations using the built-in plots that are provided by 
the library. Specifically, you will create various visualizations such as bar 
plots, pie charts, radar plots, histograms, and scatter plots through various 
exercises and activities. You will also learn basic skills such as loading, 
saving, plotting, and manipulating the color scale of images. You will 
also be able to customize your visualization plots and write mathematical 
expressions using TeX.

A Deep Dive into Matplotlib

3
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Introduction
In the previous chapter, we focused on various visualizations and identified which 
visualization is best suited to show certain information for a given dataset. We 
learned about the features, uses, and best practices for following various plots 
such as comparison plots, relation plots, composition plots, distribution plots, 
and geoplots.

Matplotlib is probably the most popular plotting library for Python. It is used for data 
science and machine learning visualizations all around the world. John Hunter was 
an American neurobiologist who began developing Matplotlib in 2003. It aimed to 
emulate the commands of the MATLAB software, which was the scientific standard 
back then. Several features, such as the global style of MATLAB, were introduced into 
Matplotlib to make the transition to Matplotlib easier for MATLAB users. This chapter 
teaches you how to best utilize the various functions and methods of Matplotlib to 
create insightful visualizations. 

Before we start working with Matplotlib to create our first visualizations, we will need 
to understand the hierarchical structure of plots in Matplotlib. We will then cover the 
basic functionality, such as creating, displaying, and saving Figures. Before covering 
the most common visualizations, text and legend functions will be introduced. 
After that, layouts will be covered, which enable multiple plots to be combined 
into one. We will end the chapter by explaining how to plot images and how to use 
mathematical expressions.

Overview of Plots in Matplotlib
Plots in Matplotlib have a hierarchical structure that nests Python objects to create a 
tree-like structure. Each plot is encapsulated in a Figure object. This Figure is the 
top-level container of the visualization. It can have multiple axes, which are basically 
individual plots inside this top-level container.

Figure 3.1: A Figure contains at least one axes object



Overview of Plots in Matplotlib | 139

Furthermore, we again find Python objects that control axes, tick marks, legends, 
titles, text boxes, the grid, and many other objects. All of these objects can 
be customized.

The two main components of a plot are as follows:

• Figure

The Figure is an outermost container that allows you to draw multiple plots 
within it. It not only holds the Axes object but also has the ability to configure 
the Title.

• Axes

The axes are an actual plot, or subplot, depending on whether you want to plot 
single or multiple visualizations. Its sub-objects include the x-axis, y-axis, spines, 
and legends.

Observing this design, we can see that this hierarchical structure allows us to create a 
complex and customizable visualization.

When looking at the "anatomy" of a Figure (shown in the following diagram), we get 
an idea about the complexity of a visualization. Matplotlib gives us the ability not only 
to display data, but also design the whole Figure around it by adjusting the Grid, X 
and Y ticks, tick labels, and the Legend. 
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This implies that we can modify every single bit of a plot, starting from the Title and 
Legend, right down to the major and minor ticks on the spines:

Figure 3.2: Anatomy of a Matplotlib Figure

Taking a deeper look into the anatomy of a Figure object, we can observe the 
following components:

• Spines: Lines connecting the axis tick marks

• Title: Text label of the whole Figure object

• Legend: Describes the content of the plot

• Grid: Vertical and horizontal lines used as an extension of the tick marks

• X/Y axis label: Text labels for the X and Y axes below the spines

• Minor tick: Small value indicators between the major tick marks

• Minor tick label: Text label that will be displayed at the minor ticks
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• Major tick: Major value indicators on the spines

• Major tick label: Text label that will be displayed at the major ticks

• Line: Plotting type that connects data points with a line

• Markers: Plotting type that plots every data point with a defined marker

In this book, we will focus on Matplotlib's submodule, pyplot, which provides 
MATLAB-like plotting.

Pyplot Basics
pyplot contains a simpler interface for creating visualizations that allow the users to 
plot the data without explicitly configuring the Figure and Axes themselves. They are 
automatically configured to achieve the desired output. It is handy to use the alias 
plt to reference the imported submodule, as follows:

import matplotlib.pyplot as plt

The following sections describe some of the common operations that are performed 
when using pyplot.

Creating Figures

You can use plt.figure() to create a new Figure. This function returns a 
Figure instance, but it is also passed to the backend. Every Figure-related command 
that follows is applied to the current Figure and does not need to know the 
Figure instance.

By default, the Figure has a width of 6.4 inches and a height of 4.8 inches with a dpi 
(dots per inch) of 100. To change the default values of the Figure, we can use the 
parameters figsize and dpi.

The following code snippet shows how we can manipulate a Figure:

#To change the width and the height

plt.figure(figsize=(10, 5))

#To change the dpi

plt.figure(dpi=300)

Even though it is not necessary to explicitly create a Figure, this is a good practice if 
you want to create multiple Figures at the same time.
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Closing Figures

Figures that are no longer used should be closed by explicitly calling plt.close(), 
which also cleans up memory efficiently.

If nothing is specified, the plt.close() command will close the current Figure. 
To close a specific Figure, you can either provide a reference to a Figure instance or 
provide the Figure number. To find the number of a Figure object, we can make use 
of the number attribute, as follows:

plt.gcf().number

The plt.close('all') command is used to close all active Figures. The following 
example shows how a Figure can be created and closed:

#Create Figure with Figure number 10

plt.figure(num=10)

#Close Figure with Figure number 10

plt.close(10)

For a small Python script that only creates a visualization, explicitly closing a Figure 
isn't required, since the memory will be cleaned in any case once the program 
terminates. But if you create lots of Figures, it might make sense to close Figures in 
between so as to save memory.

Format Strings

Before we actually plot something, let's quickly discuss format strings. They are a 
neat way to specify colors, marker types, and line styles. A format string is specified 
as [color][marker][line], where each item is optional. If the color argument 
is the only argument of the format string, you can use matplotlib.colors. 
Matplotlib recognizes the following formats, among others:

• RGB or RGBA float tuples (for example, (0.2, 0.4, 0.3) or (0.2, 0.4, 0.3, 0.5))

• RGB or RGBA hex strings (for example, '#0F0F0F' or '#0F0F0F0F')

The following table is an example of how a color can be represented in one 
particular format:
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Figure 3.3: Color specified in string format

All the available marker options are illustrated in the following figure:

Figure 3.4: Markers in format strings
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All the available line styles are illustrated in the following diagram. In general, solid 
lines should be used. We recommend restricting the use of dashed and dotted lines 
to either visualize some bounds/targets/goals or to depict uncertainty, for example, in 
a forecast:

Figure 3.5: Line styles

To conclude, format strings are a handy way to quickly customize colors, marker 
types, and line styles. It is also possible to use arguments, such as color, marker, 
and linestyle.

Plotting

With plt.plot([x], y, [fmt]), you can plot data points as lines and/or 
markers. The function returns a list of Line2D objects representing the plotted 
data. By default, if you do not provide a format string (fmt), the data points will be 
connected with straight, solid lines. plt.plot([0, 1, 2, 3], [2, 4, 6, 
8]) produces a plot, as shown in the following diagram. Since x is optional and the 
default values are [0, …, N-1], plt.plot([2, 4, 6, 8]) results in the 
same plot:
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Figure 3.6: Plotting data points as a line

If you want to plot markers instead of lines, you can just specify a format string with 
any marker type. For example, plt.plot([0, 1, 2, 3], [2, 4, 6, 8], 
'o') displays data points as circles, as shown in the following diagram:

 

Figure 3.7: Plotting data points with markers (circles)



146 | A Deep Dive into Matplotlib

To plot multiple data pairs, the syntax plt.plot([x], y, [fmt], [x], y2, 
[fmt2], …) can be used. plt.plot([2, 4, 6, 8], 'o', [1, 5, 9, 
13], 's') results in the following diagram. Similarly, you can use plt.plot 
multiple times, since we are working on the same Figure and Axes:

 

Figure 3.8: Plotting data points with multiple markers

Any Line2D properties can be used instead of format strings to further customize 
the plot. For example, the following code snippet shows how we can additionally 
specify the linewidth and markersize arguments:

plt.plot([2, 4, 6, 8], color='blue', marker='o', \

         linestyle='dashed', linewidth=2, markersize=12)

Besides providing data using lists or NumPy arrays, it might be handy to use pandas 
DataFrames, as explained in the next section.

Plotting Using pandas DataFrames

It is pretty straightforward to use pandas.DataFrame as a data source. Instead 
of providing x and y values, you can provide the pandas.DataFrame in the data 
parameter and give keys for x and y, as follows:

plt.plot('x_key', 'y_key', data=df)

If your data is already a pandas DataFrame, this is the preferred way.
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Ticks

Tick locations and labels can be set manually if Matplotlib's default isn't sufficient. 
Considering the previous plot, it might be preferable to only have ticks at multiples of 
ones at the x-axis. One way to accomplish this is to use plt.xticks() and plt.
yticks() to either get or set the ticks manually.

plt.xticks(ticks, [labels], [**kwargs]) sets the current tick locations 
and labels of the x-axis.

Parameters:

• ticks: List of tick locations; if an empty list is passed, ticks will be disabled.

• labels (optional): You can optionally pass a list of labels for the 
specified locations.

• **kwargs (optional): matplotlib.text.Text() properties can be used 
to customize the appearance of the tick labels. A quite useful property is 
rotation; this allows you to rotate the tick labels to use space more efficiently.

Example:

Consider the following code to plot a graph with custom ticks:

import numpy as np

plt.figure(figsize=(6, 3))

plt.plot([2, 4, 6, 8], 'o', [1, 5, 9, 13], 's')

plt.xticks(ticks=np.arange(4))

This will result in the following plot:

Figure 3.9: Plot with custom ticks
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It's also possible to specify tick labels, as follows:

plt.figure(figsize=(6, 3))

plt.plot([2, 4, 6, 8], 'o', [1, 5, 9, 13], 's')

plt.xticks(ticks=np.arange(4), \

           labels=['January', 'February', 'March', 'April'], \

           rotation=20)

This will result in the following plot:

Figure 3.10: Plot with custom tick labels

If you want to do even more sophisticated things with ticks, you should look into tick 
locators and formatters. For example, ax.xaxis.set_major_locator(plt.
NullLocator()) would remove the major ticks of the x-axis, and ax.xaxis.
set_major_formatter(plt.NullFormatter()) would remove the major 
tick labels, but not the tick locations of the x-axis.

Displaying Figures

plt.show() is used to display a Figure or multiple Figures. To display Figures 
within a Jupyter Notebook, simply set the %matplotlib inline command at the 
beginning of the code.

If you forget to use plt.show(), the plot won't show up. We will learn how to save 
the Figure in the next section.
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Saving Figures

The plt.savefig(fname) saves the current Figure. There are some useful 
optional parameters you can specify, such as dpi, format, or transparent. The 
following code snippet gives an example of how you can save a Figure:

plt.figure()

plt.plot([1, 2, 4, 5], [1, 3, 4, 3], '-o')

#bbox_inches='tight' removes the outer white margins

plt.savefig('lineplot.png', dpi=300, bbox_inches='tight')

The following is the output of the code:

Figure 3.11: Saved Figure

Note

All exercises and activities will be developed in Jupyter Notebook. Please 
download the GitHub repository with all the prepared templates from  
https://packt.live/2HkTW1m. The datasets used in this chapter can be 
downloaded from https://packt.live/3bzApYN.

https://packt.live/2HkTW1m
https://packt.live/3bzApYN
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Let's create a simple visualization in our next exercise.

Exercise 3.01: Creating a Simple Visualization

In this exercise, we will create our first simple plot using Matplotlib. The purpose of 
this exercise is for you to create your first simple line plot using Matplotlib, including 
the customization of the plot with format strings.

1. Create a new  Exercise3.01.ipynb Jupyter Notebook  in the Chapter03/
Exercise3.01 folder to implement this exercise. 

2. Import the necessary modules and enable plotting within the Jupyter Notebook:

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

3. Explicitly create a Figure and set the dpi to 200:

plt.figure(dpi=200)

4. Plot the following data pairs (x, y) as circles, which are connected via line 
segments: (1, 1), (2, 3), (4, 4), and (5, 3). Then, visualize the plot:

plt.plot([1, 2, 4, 5], [1, 3, 4, 3], '-o')

plt.show()

Your output should look similar to this:
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Figure 3.12: A simple visualization created with the help of given data pairs and connected 
via line segments

5. Save the plot using the plt.savefig() method. Here, we can either provide a 
filename within the method or specify the full path:

plt.savefig('Exercise3.01.png', bbox_inches='tight')

Note

To access the source code for this specific section, please refer to  
https://packt.live/2URkzlE.

You can also run this example online at https://packt.live/2YI3A6t.

This exercise showed you how to create a line plot in Matplotlib and how to use 
format strings to quickly customize the appearance of the specified data points. Don't 
forget to use bbox_inches='tight' to remove the outer white margins. In the 
following section, we will cover how to further customize plots by adding text and 
a legend.

https://packt.live/2URkzlE
https://packt.live/2YI3A6t


152 | A Deep Dive into Matplotlib

Basic Text and Legend Functions
All of the functions we discuss in this topic, except for the legend, create and return a 
matplotlib.text.Text() instance. We are mentioning it here so that you know 
that all of the properties discussed can be used for the other functions as well. All text 
functions are illustrated in Figure 3.13.

Labels

Matplotlib provides a few label functions that we can use for setting labels to the x- 
and y-axes. The plt.xlabel() and plt.ylabel() functions are used to set the 
label for the current axes. The set_xlabel() and set_ylabel() functions are 
used to set the label for specified axes.

Example:

ax.set_xlabel('X Label')

ax.set_ylabel('Y Label')

You should (always) add labels to make a visualization more self-explanatory. The 
same is valid for titles, which will be discussed now.

Titles

A title describes a particular chart/graph. The titles are placed above the axes in the 
center, left edge, or right edge. There are two options for titles – you can either set 
the Figure title or the title of an Axes. The suptitle() function sets the title for 
the current and specified Figure. The title() function helps in setting the title for 
the current and specified axes.

Example:

fig = plt.figure()

fig.suptitle('Suptitle', fontsize=10, fontweight='bold')

This creates a bold Figure title with a text subtitle and a font size of 10:

plt.title('Title', fontsize=16)

The plt.title function will add a title to the Figure with text as Title and font 
size of 16 in this case.
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Text

There are two options for text – you can either add text to a Figure or text to an Axes. 
The figtext(x, y, text) and text(x, y, text) functions add text at 
locations x or y for a Figure.

Example:

ax.text(4, 6, 'Text in Data Coords', \

        bbox={'facecolor': 'yellow', 'alpha':0.5, 'pad':10})

This creates a yellow text box with the text Text in Data Coords.

Text can be used to provide additional textual information to a visualization. To 
annotate something, Matplotlib offers annotations.

Annotations

Compared to text that is placed at an arbitrary position on the Axes, annotations are 
used to annotate some features of the plot. In annotations, there are two locations 
to consider: the annotated location, xy, and the location of the annotation, text 
xytext. It is useful to specify the parameter arrowprops, which results in an 
arrow pointing to the annotated location.

Example:

ax.annotate('Example of Annotate', xy=(4,2), \

            xytext=(8,4), \

            arrowprops=dict(facecolor='green', shrink=0.05))
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This creates a green arrow pointing to the data coordinates (4, 2) with the text 
Example of Annotate at data coordinates (8, 4):

Figure 3.13: Implementation of text commands

Legends

Legend describes the content of the plot. To add a legend to your Axes, we have to 
specify the label parameter at the time of plot creation. Calling plt.legend() for 
the current Axes or Axes.legend() for a specific Axes will add the legend. The loc 
parameter specifies the location of the legend.

Example:

plt.plot([1, 2, 3], label='Label 1')

plt.plot([2, 4, 3], label='Label 2')

plt.legend()
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This example is illustrated in the following diagram:

Figure 3.14: Legend example

Labels, titles, text, annotations, and a legend are great ways to add textual 
information to visualization and therefore make it more understandable and self-
explanatory. But don't overdo it. Too much text can be overwhelming. The following 
activity gives you the opportunity to consolidate the theoretical foundations learned 
in this section.

Activity 3.01: Visualizing Stock Trends by Using a Line Plot

In this activity, we will create a line plot to show stock trends. The aim of this activity 
is to not just visualize the data but to use labels, a title, and a legend to make the 
visualization self-explanatory and "complete."

Let's look at the following scenario: you are interested in investing in stocks. You 
downloaded the stock prices for the "big five": Amazon, Google, Apple, Facebook, and 
Microsoft. You want to visualize the closing prices in dollars to identify trends. This 
dataset is available in the Datasets folder that you had downloaded initially. The 
following are the steps to perform:
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1. Import the necessary modules and enable plotting within a Jupyter Notebook.

2. Use pandas to read the datasets (GOOGL_data.csv, FB_data.csv,  
AAPL_data.csv, AMZN_data.csv, and MSFT_data.csv) located in  
the Datasets folder. The read_csv() function reads a .csv file into  
a DataFrame.

3. Use Matplotlib to create a line chart visualizing the closing prices for the past 
5 years (whole data sequence) for all five companies. Add labels, titles, and a 
legend to make the visualization self-explanatory. Use plt.grid() to add a 
grid to your plot. If necessary, adjust the ticks in order to make them readable.

After executing the preceding steps, the expected output should be as follows:

Figure 3.15: Visualization of stock trends of five companies

Note

The solution for this activity can be found via this link.

This covers the most important things about pyplot. In the following section, we will 
talk about how to create various plots in Matplotlib.
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Basic Plots
In this section, we are going to go through the different types of simple plots. This 
includes bar charts, pie charts, stacked bar, and area charts, histograms, box plots, 
scatter plots and bubble plots. Please refer to the previous chapter to get more 
details about these plots. More sophisticated plots, such as violin plots, will be 
covered in the next chapter, using Seaborn instead of Matplotlib.

Bar Chart

The plt.bar(x, height, [width]) creates a vertical bar plot. For horizontal 
bars, use the plt.barh() function.

Important parameters:

• x: Specifies the x coordinates of the bars

• height: Specifies the height of the bars

• width (optional): Specifies the width of all bars; the default is 0.8

Example:

plt.bar(['A', 'B', 'C', 'D'], [20, 25, 40, 10])

The preceding code creates a bar plot, as shown in the following diagram:

 

Figure 3.16: A simple bar chart
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If you want to have subcategories, you have to use the plt.bar() function 
multiple times with shifted x-coordinates. This is done in the following example and 
illustrated in the figure that follows. The arange() function is a method in the 
NumPy package that returns evenly spaced values within a given interval. The gca() 
function helps in getting the instance of current axes on any current Figure. The 
set_xticklabels() function is used to set the x-tick labels with the list of given 
string labels.

Example:

labels = ['A', 'B', 'C', 'D']

x = np.arange(len(labels))

width = 0.4

plt.bar(x - width / 2, [20, 25, 40, 10], width=width)

plt.bar(x + width / 2, [30, 15, 30, 20], width=width)

# Ticks and tick labels must be set manually

plt.xticks(x)

ax = plt.gca()

ax.set_xticklabels(labels)

This creates a bar chart as shown in the following diagram:

Figure 3.17: Bar chart with subcategories
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After providing the theoretical foundation for creating bar charts in Matplotlib, you 
can apply your acquired knowledge in practice with the following activity.

Activity 3.02: Creating a Bar Plot for Movie Comparison

In this activity, we will create visually appealing bar plots. We will use a bar plot to 
compare movie scores. You are given five movies with scores from Rotten Tomatoes. 
The Tomatometer is the percentage of approved Tomatometer critics who have given 
a positive review for the movie. The Audience Score is the percentage of users who 
have given a score of 3.5 or higher out of 5. Compare these two scores among the 
five movies.

The following are the steps to perform:

1. Import the necessary modules and enable plotting within a Jupyter Notebook.

2. Use pandas to read the data located in the Datasets subfolder.

3. Use Matplotlib to create a visually appealing bar plot comparing the two scores 
for all five movies.

4. Use the movie titles as labels for the x-axis. Use percentages at intervals of 20 
for the y-axis and minor ticks at intervals of 5. Add a legend and a suitable title to 
the plot.

5. Use functions that are required to explicitly specify the axes. To get the reference 
to the current axes, use ax = plt.gca(). To add minor y-ticks, use Axes.
set_yticks([ticks], minor=True). To add a horizontal grid for major 
ticks, use Axes.yaxis.grid(which='major'), and to add a dashed 
horizontal grid for minor ticks, use Axes.yaxis.grid(which='minor', 
linestyle='--').
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The expected output is as follows:

Figure 3.18: Bar plot comparing scores of five movies

Note

The solution for this activity can be found via this link.

After practicing the creation of bar plots, we will discuss how to create pie charts in 
Matplotlib in the following section.

Pie Chart

The plt.pie(x, [explode], [labels], [autopct]) function creates a 
pie chart.

Important parameters:

• x: Specifies the slice sizes.

• explode (optional): Specifies the fraction of the radius offset for each slice. The 
explode-array must have the same length as the x-array.
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• labels (optional): Specifies the labels for each slice.

• autopct (optional): Shows percentages inside the slices according to the 
specified format string. Example: '%1.1f%%'.

Example:

plt.pie([0.4, 0.3, 0.2, 0.1], explode=(0.1, 0, 0, 0), \

        labels=['A', 'B', 'C', 'D'])

The result of the preceding code is visualized in the following diagram:

Figure 3.19: Basic pie chart

After this short introduction to pie charts, we will create a more sophisticated 
pie chart that visualizes the water usage in a common household in the 
following exercise.
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Exercise 3.02: Creating a Pie Chart for Water Usage

In this exercise, we will use a pie chart to visualize water usage. There has been a 
shortage of water in your locality in the past few weeks. To understand the reason 
behind it, generate a visual representation of water usage using pie charts.

The following are the steps to perform:

1. Create an Exercise3.02.ipynb Jupyter Notebook in the Chapter03/
Exercise3.02 folder to implement this exercise.

2. Import the necessary modules and enable plotting within the Jupyter Notebook:

# Import statements

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

3. Use pandas to read the data located in the Datasets subfolder:

# Load dataset

data = pd.read_csv('../../Datasets/water_usage.csv')

4. Use a pie chart to visualize water usage. Highlight one usage of your choice using 
the explode parameter. Show the percentages for each slice and add a title:

# Create figure

plt.figure(figsize=(8, 8), dpi=300)

# Create pie plot

plt.pie('Percentage', explode=(0, 0, 0.1, 0, 0, 0), \

        labels='Usage', data=data, autopct='%.0f%%')

# Add title

plt.title('Water usage')

# Show plot

plt.show()

The output is as follows:
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Figure 3.20: Pie chart for water usage

Pie charts are a common way to show part-of-a-whole relationships, as you've 
seen in the previous exercise. Another visualization that falls into this category 
are stacked bar charts.

Note

To access the source code for this specific section, please refer to  
https://packt.live/3frXRrZ.

You can also run this example online at https://packt.live/2Y4D1cd.

In the next section, we will learn how to generate a stacked bar chart and implement 
an activity on it.

https://packt.live/3frXRrZ
https://packt.live/2Y4D1cd
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Stacked Bar Chart

A stacked bar chart uses the same plt.bar function as bar charts. For each 
stacked bar, the plt.bar function must be called, and the bottom parameter must 
be specified, starting with the second stacked bar. This will become clear with the 
following example:

plt.bar(x, bars1)

plt.bar(x, bars2, bottom=bars1)

plt.bar(x, bars3, bottom=np.add(bars1, bars2))

The result of the preceding code is visualized in the following diagram:

 

Figure 3.21: A stacked bar chart

Let's get some more practice with stacked bar charts in the following activity.
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Activity 3.03: Creating a Stacked Bar Plot to Visualize Restaurant Performance

In this activity, we will use a stacked bar plot to visualize the performance of a 
restaurant. Let's look at the following scenario: you are the owner of a restaurant and, 
due to a new law, you have to introduce a No Smoking Day. To make as few losses as 
possible, you want to visualize how many sales are made every day, categorized by 
smokers and non-smokers.

Use the dataset tips from Seaborn, which contains multiple entries of restaurant bills, 
and create a matrix where the elements contain the sum of the total bills for each day 
and smokers/non-smokers:

Note

For this exercise, we will import the Seaborn library as import seaborn 
as sns. The dataset can be loaded using this code: bills = sns.
load_dataset('tips').

We will learn in detail about this in Chapter 4, Simplifying Visualizations 
Using Seaborn.

1. Import all the necessary dependencies and load the tips dataset. Note that we 
have to import the Seaborn library to load the dataset.

2. Use the given dataset and create a matrix where the elements contain the sum 
of the total bills for each day and split according to smokers/non-smokers.

3. Create a stacked bar plot, stacking the summed total bills separated according to 
smoker and non-smoker for each day.

4. Add a legend, labels, and a title.

After executing the preceding steps, the expected output should be as follows:
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Figure 3.22: Stacked bar chart showing the performance  
of a restaurant on different days

Note

The solution for this activity can be found via this link.

In the following section, stacked area charts will be covered, which, in comparison 
to stacked bar charts, are suited to visualizing part-of-a-whole relationships for time 
series data.
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Stacked Area Chart

plt.stackplot(x, y) creates a stacked area plot.

Important parameters:

• x: Specifies the x-values of the data series.

• y: Specifies the y-values of the data series. For multiple series, either as 
a 2D array or any number of 1D arrays, call the following function: plt.
stackplot(x, y1, y2, y3, …).

• labels (optional): Specifies the labels as a list or tuple for each data series.

Example:

plt.stackplot([1, 2, 3, 4], [2, 4, 5, 8], [1, 5, 4, 2])

The result of the preceding code is shown in the following diagram:

 

Figure 3.23: Stacked area chart
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Let's get some more practice regarding stacked area charts in the following activity.

Activity 3.04: Comparing Smartphone Sales Units Using a Stacked Area Chart

In this activity, we will compare smartphone sales units using a stacked area chart. 
Let's look at the following scenario: you want to invest in one of the five biggest 
smartphone manufacturers. Looking at the quarterly sales units as part of a whole 
may be a good indicator of which company to invest in:

1. Import the necessary modules and enable plotting within a Jupyter Notebook.

2. Use pandas to read the smartphone_sales.csv dataset located in the 
Datasets subfolder.

3. Create a visually appealing stacked area chart. Add a legend, labels, and a title.

After executing the preceding steps, the expected output should be as follows:

Figure 3.24: Stacked area chart comparing sales units of different smartphone 
manufacturers

Note

The solution for this activity can be found via this link.
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In the following section, the histogram will be covered, which helps to visualize the 
distribution of a single numerical variable.

Histogram

A histogram visualizes the distribution of a single numerical variable. Each bar 
represents the frequency for a certain interval. The plt.hist(x) function creates a 
histogram.

Important parameters:

• x: Specifies the input values.

• bins: (optional): Specifies the number of bins as an integer or specifies the bin 
edges as a list.

• range: (optional): Specifies the lower and upper range of the bins as a tuple.

• density: (optional): If true, the histogram represents a probability density.

Example:

plt.hist(x, bins=30, density=True)

The result of the preceding code is shown in the following diagram:

 

Figure 3.25: Histogram
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plt.hist2d(x, y) creates a 2D histogram. 2D histograms can be used to 
visualize the frequency of two-dimensional data. The data is plotted on the xy-plane 
and the frequency is indicated by the color. An example of a 2D histogram is shown in 
the following diagram:

 

Figure 3.26: 2D histogram with color bar

Histograms are a good way to visualize an estimated density of your data. If you're 
only interested in summary statistics, such as central tendency or dispersion, the 
following covered box plots are more interesting.

Box Plot

The box plot shows multiple statistical measurements. The box extends from the 
lower to the upper quartile values of the data, thereby allowing us to visualize the 
interquartile range. For more details regarding the plot, refer to the previous chapter. 
The plt.boxplot(x) function creates a box plot.
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Important parameters:

• x: Specifies the input data. It specifies either a 1D array for a single box, or a 
sequence of arrays for multiple boxes.

• notch: (optional) If true, notches will be added to the plot to indicate the 
confidence interval around the median.

• labels: (optional) Specifies the labels as a sequence.

• showfliers: (optional) By default, it is true, and outliers are plotted beyond 
the caps.

• showmeans: (optional) If true, arithmetic means are shown.

Example:

plt.boxplot([x1, x2], labels=['A', 'B'])

The result of the preceding code is shown in the following diagram:

 

Figure 3.27: Box plot

Now that we've introduced histograms and box plots in Matplotlib, our theoretical 
knowledge can be practiced in the following activity, where both charts are used to 
visualize data regarding the intelligence quotient.
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Activity 3.05: Using a Histogram and a Box Plot to Visualize Intelligence 

Quotient

In this activity, we will visualize the intelligence quotient (IQ) of 100 applicants using 
histogram and box plots. 100 people have come for an interview in a company. To 
place an individual applicant in the overall group, a histogram and a box plot shall 
be used.

Note

The plt.axvline(x, [color=…], [linestyle=…]) function 
draws a vertical line at position x.

1. Import the necessary modules and enable plotting within a Jupyter Notebook.

2. Use the following IQ scores to create the plots:

# IQ samples

iq_scores = [126,  89,  90, 101, 102,  74,  93, 101,  66, \

             120, 108,  97,  98, 105, 119,  92, 113,  81, \

             104, 108,  83, 102, 105, 111, 102, 107, 103,  \

             89,  89, 110,  71, 110, 120,  85, 111,  83, 122, \

             120, 102, 84, 118, 100, 100, 114,  81, 109,  69,  \

             97,  95, 106, 116, 109, 114,  98,  90,  92,  98,  \

             91,  81,  85,  86, 102,  93, 112,  76, 89, 110,  \

             75, 100,  90,  96,  94, 107, 108,  95,  96,  96, \

             114, 93,  95, 117, 141, 115,  95,  86, 100, 121, \

             103,  66,  99,  96, 111, 110, 105, 110, 91, 112, \

             102, 112,  75]

3. Plot a histogram with 10 bins for the given IQ scores. IQ scores are normally 
distributed with a mean of 100 and a standard deviation of 15. Visualize the 
mean as a vertical solid red line, and the standard deviation using dashed 
vertical lines. Add labels and a title. The expected output is as follows:
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Figure 3.28: Histogram for an IQ test

4. Create a box plot to visualize the same IQ scores. Add labels and a title. The 
expected output is as follows:

Figure 3.29: Box plot for IQ scores
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5. Create a box plot for each of the IQ scores of the different test groups. Add 
labels and a title. The following are IQ scores for different test groups that we 
can use as data:

group_a = [118, 103, 125, 107, 111,  96, 104,  97,  96, \

           114,  96,  75, 114, 107,  87, 117, 117, 114, \

           117, 112, 107, 133,  94,  91, 118, 110, 117,  \

           86, 143,  83, 106,  86,  98, 126, 109,  91, 112, \

           120, 108, 111, 107,  98,  89, 113, 117,  81, 113, \

           112,  84, 115,  96,  93, 128, 115, 138, 121,  87, \

           112, 110,  79, 100,  84, 115,  93, 108, 130, 107, \

           106, 106, 101, 117,  93,  94, 103, 112,  98, 103,  \

           70, 139,  94, 110, 105, 122,  94,  94, 105, 129, \

           110, 112,  97, 109, 121, 106, 118, 131,  88, 122, \

           125,  93,  78]

group_b = [126,  89,  90, 101, 102,  74,  93, 101,  66, \

           120, 108,  97,  98, 105, 119,  92, 113,  81, \

           104, 108,  83, 102, 105, 111, 102, 107, 103,  \

           89,  89, 110,  71, 110, 120,  85, 111,  83, \

           122, 120, 102, 84, 118, 100, 100, 114,  81, \

           109,  69,  97,  95, 106, 116, 109, 114, 98,  \

           90,  92,  98,  91,  81,  85,  86, 102,  93, 112,  \

           76, 89, 110,  75, 100,  90,  96,  94, 107, 108,  \

           95,  96,  96, 114, 93,  95, 117, 141, 115,  95,  \

           86, 100, 121, 103,  66,  99,  96, 111, 110, 105, \

           110,  91, 112, 102, 112,  75]

group_c = [108,  89, 114, 116, 126, 104, 113,  96,  69, 121, \

           109, 102, 107, 122, 104, 107, 108, 137, 107, 116,  \

           98, 132, 108, 114,  82,  93, 89,  90,  86,  91,  \

           99,  98,  83,  93, 114,  96,  95, 113, 103, 81, \

           107,  85, 116,  85, 107, 125, 126, 123, 122, 124, \

           115, 114, 93,  93, 114, 107, 107,  84, 131,  91, \

           108, 127, 112, 106, 115, 82,  90, 117, 108, 115, \

           113, 108, 104, 103,  90, 110, 114,  92, 101,  72, \

           109,  94, 122,  90, 102,  86, 119, 103, 110,  96,  \
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           90, 110,  96,  69,  85, 102,  69,  96, 101,  90]

group_d = [93,  99,  91, 110,  80, 113, 111, 115,  98,  74,  \

           96,  80,  83, 102,  60,  91,  82,  90,  97, 101,  \

           89,  89, 117,  91, 104, 104, 102, 128, 106, 111,  \

           79,  92,  97, 101, 106, 110,  93,  93, 106, 108,  \

           85,  83, 108,  94,  79,  87, 113, 112, 111, 111,  \

           79, 116, 104,  84, 116, 111, 103, 103, 112,  68,  \

           54,  80,  86, 119,  81, 84,  91,  96, 116, 125,  \

           99,  58, 102,  77,  98, 100,  90, 106, 109, 114, \

           102, 102, 112, 103,  98,  96,  85,  97, 110, 131,  \

           92, 79, 115, 122,  95, 105,  74,  85,  85,  95]

The expected output is as follows:

Figure 3.30: Box plot for IQ scores of different test groups

Note

The solution for this activity can be found via this link.

In the next section, we will learn how to generate a scatter plot.
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Scatter Plot

Scatter plots show data points for two numerical variables, displaying a variable 
on both axes. plt.scatter(x, y) creates a scatter plot of y versus x, with 
optionally varying marker size and/or color.

Important parameters:

• x, y: Specifies the data positions.

• s: (optional) Specifies the marker size in points squared.

• c: (optional) Specifies the marker color. If a sequence of numbers is specified, 
the numbers will be mapped to the colors of the color map.

Example:

plt.scatter(x, y)

The result of the preceding code is shown in the following diagram:

 

Figure 3.31: Scatter plot

Let's implement a scatter plot in the following exercise.
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Exercise 3.03: Using a Scatter Plot to Visualize Correlation between Various 

Animals

In this exercise, we will use a scatter plot to show correlation within a dataset. Let's 
look at the following scenario: You are given a dataset containing information about 
various animals. Visualize the correlation between the various animal attributes such 
as Maximum longevity in years and Body mass in grams.

Note

The Axes.set_xscale('log') and the Axes.set_
yscale('log') change the scale of the x-axis and y-axis to a 
logarithmic scale, respectively.

Let's visualize the correlation between various animals with the help of a scatter plot:

1. Create an Exercise3.03.ipynb Jupyter Notebook in the Chapter03/
Exercise3.03 folder to implement this exercise.

2. Import the necessary modules and enable plotting within the Jupyter Notebook:

# Import statements

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

3. Use pandas to read the data located in the Datasets folder:

# Load dataset

data = pd.read_csv('../../Datasets/anage_data.csv')

4. The given dataset is not complete. Filter the data so that you end up with 
samples containing a body mass and a maximum longevity. Sort the data 
according to the animal class; here, the isfinite() function (to check whether 
the number is finite or not) checks for the finiteness of the given element:

# Preprocessing

longevity = 'Maximum longevity (yrs)'

mass = 'Body mass (g)'

data = data[np.isfinite(data[longevity]) \

       & np.isfinite(data[mass])]
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# Sort according to class

amphibia = data[data['Class'] == 'Amphibia']

aves = data[data['Class'] == 'Aves']

mammalia = data[data['Class'] == 'Mammalia']

reptilia = data[data['Class'] == 'Reptilia']

5. Create a scatter plot visualizing the correlation between the body mass and the 
maximum longevity. Use different colors to group data samples according to 
their class. Add a legend, labels, and a title. Use a log scale for both the x-axis 
and y-axis:

# Create figure

plt.figure(figsize=(10, 6), dpi=300)

# Create scatter plot

plt.scatter(amphibia[mass], amphibia[longevity], \

            label='Amphibia')

plt.scatter(aves[mass], aves[longevity], \

            label='Aves')

plt.scatter(mammalia[mass], mammalia[longevity], \

            label='Mammalia')

plt.scatter(reptilia[mass], reptilia[longevity], \

            label='Reptilia')

# Add legend

plt.legend()

# Log scale

ax = plt.gca()

ax.set_xscale('log')

ax.set_yscale('log')

# Add labels

plt.xlabel('Body mass in grams')

plt.ylabel('Maximum longevity in years')

# Show plot

plt.show()

The following is the output of the code:
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Figure 3.32: Scatter plot on animal statistics

From the preceding output, we can visualize the correlation between various 
animals based on the maximum longevity in years and body mass in grams.

Note

To access the source code for this specific section, please refer to  
https://packt.live/3fsozRf.

You can also run this example online at https://packt.live/37yk0C7.

Next, we will learn how to generate a bubble plot.

Bubble Plot

The plt.scatter function is used to create a bubble plot. To visualize a third or 
fourth variable, the parameters s (scale) and c (color) can be used.

Example:

plt.scatter(x, y, s=z*500, c=c, alpha=0.5)

plt.colorbar()

https://packt.live/3fsozRf
https://packt.live/37yk0C7
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The colorbar function adds a colorbar to the plot, which indicates the value of the 
color. The result is shown in the following diagram:

Figure 3.33: Bubble plot with color bar

Layouts
There are multiple ways to define a visualization layout in Matplotlib. By layout, we 
mean the arrangement of multiple Axes within a Figure. We will start with subplots 
and how to use the tight layout to create visually appealing plots and then cover 
GridSpec, which offers a more flexible way to create multi-plots.
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Subplots

It is often useful to display several plots next to one another. Matplotlib offers the 
concept of subplots, which are multiple Axes within a Figure. These plots can be grids 
of plots, nested plots, and so on.

Explore the following options to create subplots:

• The plt.subplots(, ncols) function creates a Figure and a set of 
subplots. nrows, ncols define the number of rows and columns of the 
subplots, respectively.

• The plt.subplot(nrows, ncols, index) function or, equivalently, 
plt.subplot(pos) adds a subplot to the current Figure. The index 
starts at 1. The plt.subplot(2, 2, 1) function is equivalent to plt.
subplot(221).

• The Figure.subplots(nrows, ncols) function adds a set of subplots to 
the specified Figure.

• The Figure.add_subplot(nrows, ncols, index) function 
or, equivalently, Figure.add_subplot(pos), adds a subplot to the 
specified Figure.

To share the x-axis or y-axis, the parameters sharex and sharey must be set, 
respectively. The axis will have the same limits, ticks, and scale.

plt.subplot and Figure.add_subplot have the option to set a projection. 
For a polar projection, either set the projection='polar' parameter or the 
parameter polar=True parameter.

Example 1:

fig, axes = plt.subplots(2, 2)

axes = axes.ravel()

for i, ax in enumerate(axes):

    ax.plot(series[i])

# [...]

for i in range(4):

    plt.subplot(2, 2, i+1)

    plt.plot(series[i])
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Both examples yield the same result, as shown in the following diagram:

 

Figure 3.34: Subplots

Example 2:

fig, axes = plt.subplots(2, 2, sharex=True, sharey=True)

axes = axes.ravel()

for i, ax in enumerate(axes):

    ax.plot(series[i])

Setting sharex and sharey to True results in the following diagram. This allows 
for a better comparison:
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Figure 3.35: Subplots with a shared x- and y-axis

Subplots are an easy way to create a Figure with multiple plots of the same size 
placed in a grid. They are not really suited for more sophisticated layouts.

Tight Layout

The plt.tight_layout() adjusts subplot parameters (primarily padding 
between the Figure edge and the edges of subplots, and padding between the edges 
of adjacent subplots) so that the subplots fit well in the Figure.

Examples:

If you do not use plt.tight_layout(), subplots might overlap:

fig, axes = plt.subplots(2, 2)

axes = axes.ravel()

for i, ax in enumerate(axes):

    ax.plot(series[i])

    ax.set_title('Subplot ' + str(i))
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The result of the preceding code is shown in the following diagram:

 

Figure 3.36: Subplots with no layout option

Using plt.tight_layout() results in no overlapping of the subplots:

fig, axes = plt.subplots(2, 2)

axes = axes.ravel()

for i, ax in enumerate(axes):

    ax.plot(series[i])

    ax.set_title('Subplot ' + str(i))

plt.tight_layout()
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The result of the preceding code is shown in the following diagram:

 

Figure 3.37: Subplots with a tight layout

Radar Charts

Radar charts, also known as spider or web charts, visualize multiple variables, with 
each variable plotted on its own axis, resulting in a polygon. All axes are arranged 
radially, starting at the center with equal distance between each other, and have the 
same scale.



186 | A Deep Dive into Matplotlib

Exercise 3.04: Working on Radar Charts

As a manager of a team, you have to award a "Star Performer" trophy to an 
employee for the month of December. You come to the conclusion that the best 
way to understad the performance of your team members would be to visualize 
the performance of your team members in a radar chart. Thus, in this exercise, we 
will show you how to create a radar chart. The following are the steps to perform 
this exercise:

1. Create an Exercise3.04.ipynb Jupyter Notebook in the Chapter03/
Exercise3.04 folder to implement this exercise.

2. Import the necessary modules and enable plotting within a Jupyter Notebook:

# Import settings

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

3. The following dataset contains ratings of five different attributes for 
four employees:

"""

Sample data

Attributes: Efficiency, Quality, Commitment, Responsible Conduct, 
Cooperation
"""

data = \

pd.DataFrame({'Employee': ['Alex', 'Alice', \

                           'Chris', 'Jennifer'], \

              'Efficiency': [5, 4, 4, 3,],

              'Quality': [5, 5, 3, 3],

              'Commitment': [5, 4, 4, 4],

              'Responsible Conduct': [4, 4, 4, 3],

              'Cooperation': [4, 3, 4, 5]})
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4. Create angle values and close the plot:

attributes = list(data.columns[1:])

values = list(data.values[:, 1:])

employees = list(data.values[:, 0])

angles = [n / float(len(attributes)) * 2 \

          * np.pi for n in range(len(attributes))]

# Close the plot

angles += angles[:1]

values = np.asarray(values)

values = np.concatenate([values, values[:, 0:1]], axis=1)

5. Create subplots with the polar projection. Set a tight layout so that 
nothing overlaps:

# Create figure

plt.figure(figsize=(8, 8), dpi=150)

# Create subplots

for i in range(4):

    ax = plt.subplot(2, 2, i + 1, polar=True)

    ax.plot(angles, values[i])

    ax.set_yticks([1, 2, 3, 4, 5])

    ax.set_xticks(angles)

    ax.set_xticklabels(attributes)

    ax.set_title(employees[i], fontsize=14, color='r')

# Set tight layout

plt.tight_layout()

# Show plot

plt.show()
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The following diagram shows the output of the preceding code:

Figure 3.38: Radar charts

From the preceding output, we can clearly see how the various team members have 
performed in terms of metrics such as Quality, Efficiency, Cooperation, Responsible 
Conduct, and Commitment. You can easily draw the conclusion that Alex outperforms 
his collegues when all metrics are considered. In the next section, we will learn how to 
use the GridSpec function.



Layouts | 189

Note

To access the source code for this specific section, please refer to  
https://packt.live/3e6is4X.

You can also run this example online at https://packt.live/3hxeFjf.

GridSpec

The matplotlib.gridspec.GridSpec(nrows, ncols) function specifies the 
geometry of the grid in which a subplot will be placed. For example, you can specify 
a grid with three rows and four columns. As a next step, you have to define which 
elements of the gridspec are used by a subplot; elements of a gridspec are accessed 
in the same way as NumPy arrays. You could, for example, only use a single element 
of a gridspec for a subplot and therefore end up with 12 subplots in total. Another 
possibility, as shown in the following example, is to create a bigger subplot using 3x3 
elements of the gridspec and another three subplots with a single element each.

Example:

gs = matplotlib.gridspec.GridSpec(3, 4)

ax1 = plt.subplot(gs[:3, :3])

ax2 = plt.subplot(gs[0, 3])

ax3 = plt.subplot(gs[1, 3])

ax4 = plt.subplot(gs[2, 3])

ax1.plot(series[0])

ax2.plot(series[1])

ax3.plot(series[2])

ax4.plot(series[3])

plt.tight_layout()

https://packt.live/3e6is4X
https://packt.live/3hxeFjf
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The result of the preceding code is shown in the following diagram:

 

Figure 3.39: GridSpec

Next, we will implement an activity to implement GridSpec.

Activity 3.06: Creating a Scatter Plot with Marginal Histograms

In this activity, we will make use of GridSpec to visualize a scatter plot with marginal 
histograms. Let's look at the following scenario: you are given a dataset containing 
information about various animals. Visualize the correlation between the various 
animal attributes using scatter plots and marginal histograms.

The following are the steps to perform:

1. Import the necessary modules and enable plotting within a Jupyter Notebook.

2. Filter the data so that you end up with samples containing a body mass and 
maximum longevity as the given dataset, AnAge, which was used in the previous 
exercise, is not complete. Select all of the samples of the Aves class with a body 
mass of less than 20,000.
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3. Create a Figure with a constrained layout. Create a gridspec of size 4x4. Create a 
scatter plot of size 3x3 and marginal histograms of size 1x3 and 3x1. Add labels 
and a Figure title.

After executing the preceding steps, the expected output should be as follows:

Figure 3.40: Scatter plots with marginal histograms

Note

The solution for this activity can be found via this link.
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Next, we will learn how to work with image data in our visualizations.

Images
If you want to include images in your visualizations or work with image data, 
Matplotlib offers several functions for you. In this section, we will show you how to 
load, save, and plot images with Matplotlib.

Note

The images that are used in this section are sourced from https://unsplash.
com/.

Basic Image Operations

The following are the basic operations for designing an image.

Loading Images

If you encounter image formats that are not supported by Matplotlib, we recommend 
using the Pillow library to load the image. In Matplotlib, loading images is part of the 
image submodule. We use the alias mpimg for the submodule, as follows:

import matplotlib.image as mpimg

The mpimg.imread(fname) reads an image and returns it as a numpy.array 
object. For grayscale images, the returned array has a shape (height, width), for RGB 
images (height, width, 3), and for RGBA images (height, width, 4). The array values 
range from 0 to 255.

We can also load the image in the following manner:

img_filenames = os.listdir('../../Datasets/images')

imgs = \

[mpimg.imread(os.path.join('../../Datasets/images', \

                           img_filename)) \

                           for img_filename in img_filenames]

The os.listdir() method in Python is used to get the list of all files and 
directories in the specified directory and then the os.path.join() function is 
used to join one or more path components intelligently.

https://unsplash.com/
https://unsplash.com/
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Saving Images

The mpimg.imsave(fname, array) saves a numpy.array object as an image 
file. If the format parameter is not given, the format is deduced from the filename 
extension. With the optional parameters vmin and vmax, the color limits can be set 
manually. For a grayscale image, the default for the optional parameter, cmap, is 
'viridis'; you might want to change it to 'gray'.

Plotting a Single Image

The plt.imshow(img) displays an image and returns an AxesImage object. 
For grayscale images with shape (height, width), the image array is visualized using 
a colormap. The default colormap is 'viridis', as illustrated in Figure 3.41. To 
actually visualize a grayscale image, the colormap has to be set to 'gray' (that is, 
plt.imshow(img, cmap='gray'), which is illustrated in Figure 3.42. Values 
for grayscale, RGB, and RGBA images can be either float or uint8, and range 
from [0…1] or [0…255], respectively. To manually define the value range, the 
parameters vmin and vmax must be specified. A visualization of an RGB image is 
shown in the following figures:

 

Figure 3.41: Grayscale image with a default viridis colormap
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The following figure shows a grayscale image with a gray colormap:

 

Figure 3.42: Grayscale image with a gray colormap

The following figure shows an RGB image:

 

Figure 3.43: RGB image
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Sometimes, it might be helpful to get an insight into the color values. We can simply 
add a color bar to the image plot. It is recommended to use a colormap with high 
contrast—for example, jet:

plt.imshow(img, cmap='jet')

plt.colorbar()

The preceding example is illustrated in the following figure:

 

Figure 3.44: Image with a jet colormap and color bar
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Another way to get insight into the image values is to plot a histogram, as shown in 
the following diagram. To plot the histogram for an image array, the array has to be 
flattened using numpy.ravel:

plt.hist(img.ravel(), bins=256, range=(0, 1))

The following diagram shows the output of the preceding code:

 

Figure 3.45: Histogram of image values

Plotting Multiple Images in a Grid

To plot multiple images in a grid, we can simply use plt.subplots and plot an 
image per Axes:

fig, axes = plt.subplots(1, 2)

for i in range(2):

    axes[i].imshow(imgs[i])
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The result of the preceding code is shown in the following diagram:

 

Figure 3.46: Multiple images within a grid

In some situations, it would be neat to remove the ticks and add labels. axes.set_
xticks([]) and axes.set_yticks([]) remove x-ticks and y-ticks, respectively. 
axes.set_xlabel('label') adds a label:

fig, axes = plt.subplots(1, 2)

labels = ['coast', 'beach']

for i in range(2):

    axes[i].imshow(imgs[i])

    axes[i].set_xticks([])

    axes[i].set_yticks([])

    axes[i].set_xlabel(labels[i])

The result of the preceding code is shown in the following diagram:

 

Figure 3.47: Multiple images with labels

Let's go through an activity for grid images.
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Activity 3.07: Plotting Multiple Images in a Grid

In this activity, we will plot images in a grid. You are a developer in a social media 
company. Management has decided to add a feature that helps the customer to 
upload images in a 2x2 grid format. Develop some standard code to generate grid-
formatted images and add this new feature to your company's website.

The following are the steps to perform:

1. Import the necessary modules and enable plotting within a Jupyter Notebook.

2. Load all four images from the Datasets subfolder.

3. Visualize the images in a 2x2 grid. Remove the axes and give each image a label.

After executing the preceding steps, the expected output should be as follows:

Figure 3.48: Visualizing images in a 2x2 grid

Note

The solution for this activity can be found via this link.
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In this activity, we have plotted images in a 2x2 grid. In the next section, we will learn 
the basics of how to write and plot a mathematical expression.

Writing Mathematical Expressions
In case you need to write mathematical expressions within the code, Matplotlib 
supports TeX, one of the most popular typesetting systems, especially for typesetting 
mathematical formulas. You can use it in any text by placing your mathematical 
expression in a pair of dollar signs. There is no need to have TeX installed since 
Matplotlib comes with its own parser.

An example of this is given in the following code:

plt.xlabel(‚$x$')

plt.ylabel(‚$\cos(x)$')

The following diagram shows the output of the preceding code:

 

Figure 3.49: Diagram demonstrating mathematical expressions
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TeX examples:

• '$\alpha_i>\beta_i$' produces .

• '$\sum_{i=0}^\infty x_i$' produces .

• '$\sqrt[3]{8}$' produces .

• '$\frac{3 - \frac{x}{2}}{5}$' produces .

In this section, we learned how to write a basic mathematical expression and 
generate a plot using it.

Summary
In this chapter, we provided a detailed introduction to Matplotlib, one of the most 
popular visualization libraries for Python. We started off with the basics of pyplot 
and its operations, and then followed up with a deep insight into the numerous 
possibilities that help to enrich visualizations with text. Using practical examples, this 
chapter covered the most popular plotting functions that Matplotlib offers, including 
comparison charts, and composition and distribution plots. It concluded with how to 
visualize images and write mathematical expressions.

In the next chapter, we will learn about the Seaborn library. Seaborn is built on top 
of Matplotlib and provides a higher-level abstraction to create visualizations in an 
easier way. One neat feature of Seaborn is the easy integration of DataFrames from 
the pandas library. Furthermore, Seaborn offers a few more plots out of the box, 
including more advanced visualizations, such as violin plots.







Overview

In this chapter, we will see how Seaborn differs from Matplotlib and 
construct effective plots leveraging the advantages of Seaborn. Specifically, 
you will use Seaborn to plot bivariate distributions, heatmaps, pairwise 
relationships, and so on. This chapter also teaches you how to use 
FacetGrid for visualizing plots for multiple variables separately. By the end 
of this chapter, you will be able to explain the advantages Seaborn has 
compared to Matplotlib and design visually appealing and insightful  
plots efficiently.

Simplifying Visualizations 

Using Seaborn

4
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Introduction
In the previous chapter, we took an in-depth look at Matplotlib, one of the most 
popular plotting libraries for Python. Various plot types were covered, and we looked 
into customizing plots to create aesthetic plots.

Unlike Matplotlib, Seaborn is not a standalone Python library. It is built on top 
of Matplotlib and provides a higher-level abstraction to make visually appealing 
statistical visualizations. A neat feature of Seaborn is the ability to integrate with 
DataFrames from the pandas library.

With Seaborn, we attempt to make visualization a central part of data exploration and 
understanding. Internally, Seaborn operates on DataFrames and arrays that contain 
the complete dataset. This enables it to perform semantic mappings and statistical 
aggregations that are essential for displaying informative visualizations. Seaborn can 
also be used to simply change the style and appearance of Matplotlib visualizations.

The most prominent features of Seaborn are as follows:

• Beautiful out-of-the-box plots with different themes

• Built-in color palettes that can be used to reveal patterns in the dataset

• A dataset-oriented interface

• A high-level abstraction that still allows for complex visualizations

Advantages of Seaborn

Working with DataFrames using Matplotlib adds some inconvenient overhead. For 
example, simply exploring your dataset can take up a lot of time, since you require 
some additional data wrangling to be able to plot the data from the DataFrames  
using Matplotlib.
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Seaborn, however, is built to operate on DataFrames and full dataset arrays, which 
makes this process simpler. It internally performs the necessary semantic mappings 
and statistical aggregation to produce informative plots.

Note

The American Community Survey (ACS) Public-Use Microdata 
Samples (PUMS) dataset (one-year estimate from 2017) from https://
www.census.gov/programs-surveys/acs/technical-documentation/pums/
documentation.2017.html is used in this chapter. This dataset is later used 
in Chapter 07, Combining What We Have Learned. This dataset can also be 
downloaded from GitHub. Here is the link: https://packt.live/3bzApYN.

The following is an example of plotting using the Seaborn library:

import seaborn as sns

import pandas as pd

sns.set(style="ticks")

data = pd.read_csv("../../Datasets/salary.csv")[:1000]

sns.relplot(x="Salary", y="Age", hue="Education", \

            style="Education", col="Gender", data=data)

https://www.census.gov/programs-surveys/acs/technical-documentation/pums/documentation.2017.html
https://www.census.gov/programs-surveys/acs/technical-documentation/pums/documentation.2017.html
https://www.census.gov/programs-surveys/acs/technical-documentation/pums/documentation.2017.html
https://packt.live/3bzApYN
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This creates the following plot:

Figure 4.1: Seaborn relation plot

Seaborn uses Matplotlib to draw plots. Even though many tasks can be accomplished 
with just Seaborn, further customization might require the usage of Matplotlib. We 
only provided the names of the variables in the dataset and the roles they play in the 
plot. Unlike in Matplotlib, it is not necessary to translate the variables into parameters 
of the visualization.

Other potential obstacles are the default Matplotlib parameters and configurations. 
The default parameters in Seaborn provide better visualizations without  
additional customization. We will look at these default parameters in detail in the  
upcoming topics.

For users who are already familiar with Matplotlib, the extension with Seaborn is self-
evident, since the core concepts are mostly similar.

Controlling Figure Aesthetics
As we mentioned previously, Matplotlib is highly customizable. But it also has the 
effect that it is very inconvenient, as it can take a long time to adjust all necessary 
parameters to get your desired visualization. In Seaborn, we can use customized 
themes and a high-level interface for controlling the appearance of Matplotlib figures.
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The following code snippet creates a simple line plot in Matplotlib:

%matplotlib inline

import matplotlib.pyplot as plt

plt.figure()

x1 = [10, 20, 5, 40, 8]

x2 = [30, 43, 9, 7, 20]

plt.plot(x1, label='Group A')

plt.plot(x2, label='Group B')

plt.legend()

plt.show()

This is what the plot looks with Matplotlib's default parameters:

Figure 4.2: Matplotlib line plot
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To switch to the Seaborn defaults, simply call the set() function:

%matplotlib inline

import matplotlib.pyplot as plt

import seaborn as sns

sns.set()

plt.figure()

x1 = [10, 20, 5, 40, 8]

x2 = [30, 43, 9, 7, 20]

plt.plot(x1, label='Group A')

plt.plot(x2, label='Group B')

plt.legend()

plt.show()

Following is the output of the code:

Figure 4.3: Seaborn line plot
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Seaborn categorizes Matplotlib's parameters into two groups. The first group 
contains parameters for the aesthetics of the plot, while the second group scales 
various elements of the plot so that it can be easily used in different contexts, such as 
visualizations that are used for presentations and posters.

Seaborn Figure Styles

To control the plot style, Seaborn provides two methods: set_style(style, 
[rc]) and axes_style(style, [rc]).

seaborn.set_style(style, [rc]) sets the aesthetic style of the plots.

Parameters:

• style: A dictionary of parameters or the name of one of the following 
preconfigured sets: darkgrid, whitegrid, dark, white, or ticks

• rc (optional): Parameter mappings to override the values in the preset Seaborn-
style dictionaries

Here is an example:

%matplotlib inline

import matplotlib.pyplot as plt

import seaborn as sns

sns.set_style("whitegrid")

plt.figure()

x1 = [10, 20, 5, 40, 8]

x2 = [30, 43, 9, 7, 20]

plt.plot(x1, label='Group A')

plt.plot(x2, label='Group B')

plt.legend()

plt.show()
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This results in the following plot:

Figure 4.4: Seaborn line plot with whitegrid style

seaborn.axes_style(style, [rc]) returns a parameter dictionary for 
the aesthetic style of the plots. The function can be used in a with statement to 
temporarily change the style parameters.

Here are the parameters:

• style: A dictionary of parameters or the name of one of the following 
pre-configured sets: darkgrid, whitegrid, dark, white, or ticks

• rc (optional): Parameter mappings to override the values in the preset Seaborn-
style dictionaries

Here is an example:

%matplotlib inline

import matplotlib.pyplot as plt

import seaborn as sns

sns.set()

plt.figure()

x1 = [10, 20, 5, 40, 8]
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x2 = [30, 43, 9, 7, 20]

with sns.axes_style('dark'):

    plt.plot(x1, label='Group A')

    plt.plot(x2, label='Group B')

plt.legend()

plt.show()

The aesthetics are only changed temporarily. The result is shown in the  
following diagram:

Figure 4.5: Seaborn line plot with dark axes style

For further customization, you can pass a dictionary of parameters to the rc 
argument. You can only override parameters that are part of the style definition.

Removing Axes Spines

Sometimes, it might be desirable to remove the top and right axes spines. The 
despine() function is used to remove the top and right axes spines from the plot:

seaborn.despine(fig=None, ax=None, top=True, right=True, \

                left=False, bottom=False, \

                offset=None, trim=False)
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The following code helps to remove the axes spines:

%matplotlib inline

import matplotlib.pyplot as plt

import seaborn as sns

sns.set_style("white")

plt.figure()

x1 = [10, 20, 5, 40, 8]

x2 = [30, 43, 9, 7, 20]

plt.plot(x1, label='Group A')

plt.plot(x2, label='Group B')

sns.despine()

plt.legend()

plt.show()

This results in the following plot:

Figure 4.6: Despined Seaborn line plot

In the next section, we will learn to control the scale of plot elements.
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Controlling the Scale of Plot Elements

A separate set of parameters controls the scale of plot elements. This is a handy way 
to use the same code to create plots that are suited for use in contexts where larger 
or smaller plots are necessary. To control the context, two functions can be used.

seaborn.set_context(context, [font_scale], [rc]) sets the plotting 
context parameters. This does not change the overall style of the plot but affects 
things such as the size of the labels and lines. The base context is a notebook, and 
the other contexts are paper, talk, and poster—versions of the notebook 
parameters scaled by 0.8, 1.3, and 1.6, respectively.

Here are the parameters:

• context: A dictionary of parameters or the name of one of the following 
preconfigured sets: paper, notebook, talk, or poster

• font_scale (optional): A scaling factor to independently scale the size of  
font elements

• rc (optional): Parameter mappings to override the values in the preset Seaborn 
context dictionaries

The following code helps set the context:

%matplotlib inline

import matplotlib.pyplot as plt

import seaborn as sns

sns.set_context("poster")

plt.figure()

x1 = [10, 20, 5, 40, 8]

x2 = [30, 43, 9, 7, 20]

plt.plot(x1, label='Group A')

plt.plot(x2, label='Group B')

plt.legend()

plt.show()
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The preceding code generates the following output:

Figure 4.7: Seaborn line plot with poster context

seaborn.plotting_context(context, [font_scale], [rc]) returns a 
parameter dictionary to scale elements of the Figure. This function can be used with a 
statement to temporarily change the context parameters.

Here are the parameters:

• context: A dictionary of parameters or the name of one of the following 
pre-configured sets: paper, notebook, talk, or poster

• font_scale (optional): A scaling factor to independently scale the size of  
font elements

• rc (optional): Parameter mappings to override the values in the preset Seaborn 
context dictionaries

Contexts are an easy way to use preconfigured scales of plot elements for different 
use cases. We will apply them in the following exercise, which uses a box plot to 
compare the IQ scores of different test groups.

Note

All the exercises and activities in this chapter are developed using Jupyter 
Notebook. The files can be downloaded from the following link: https://packt.
live/2ONDmLl. All the datasets used in this chapter can be found at https://
packt.live/3bzApYN.

https://packt.live/2ONDmLl
https://packt.live/2ONDmLl
https://packt.live/3bzApYN
https://packt.live/3bzApYN
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Exercise 4.01: Comparing IQ Scores for Different Test Groups by Using a Box Plot

In this exercise, we will generate a box plot using Seaborn. We will compare IQ scores 
among different test groups using a box plot of the Seaborn library to demonstrate 
how easy and efficient it is to create plots with Seaborn provided that we have a 
proper DataFrame. This exercise also shows how to quickly change the style and 
context of a Figure using the pre-configurations supplied by Seaborn.

Let's compare IQ scores among different test groups using the Seaborn library:

1. Create an Exercise4.01.ipynb Jupyter Notebook in the Chapter04/
Exercise4.01 folder to implement this exercise. 

2. Import the necessary modules and enable plotting within the Exercise4.01.
ipynb file:

%matplotlib inline

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

3. Use the pandas read_csv() function to read the data located in the 
Datasets folder:

mydata = pd.read_csv("../../Datasets/iq_scores.csv")

4. Access the data of each test group in the column. Convert this into a list using 
the tolist() method. Once the data of each test group has been converted 
into a list, assign this list to variables of each respective test group:

group_a = mydata[mydata.columns[0]].tolist()

group_b = mydata[mydata.columns[1]].tolist()

group_c = mydata[mydata.columns[2]].tolist()

group_d = mydata[mydata.columns[3]].tolist()

5. Print the values of each group to check whether the data inside it is converted 
into a list. This can be done with the help of the print() function:

print(group_a)
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The data values of Group A are shown in the following screenshot:

Figure 4.8: Values of Group A

The following is the code for printing Group B:

print(group_b)

The data values of Group B are shown in the following screenshot:

Figure 4.9: Values of Group B

The following is the code for printing Group C:

print(group_c)

The data values of Group C are shown in the following screenshot:

Figure 4.10: Values of Group C

The following is the code for printing Group D:

print(group_d)

The data values of Group D are shown in the following screenshot:

Figure 4.11: Values of Group D
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6. Once we have the data for each test group, we need to construct a DataFrame 
from this data. This can be done with the help of the pd.DataFrame() 
function, which is provided by pandas:

data = pd.DataFrame({'Groups': ['Group A'] \

                     * len(group_a) + ['Group B'] \

                     * len(group_b) + ['Group C'] \

                     * len(group_c) + ['Group D'] \

                     * len(group_d),\

                     'IQ score': group_a + group_b \

                     + group_c + group_d})

7. If you don't create your own DataFrame, it is often helpful to print the column 
names, which is done by calling print(data.columns). The output is  
as follows:

Figure 4.12: Column labels

You can see that our DataFrame has two variables with the labels Groups and 
IQ score. This is especially interesting since we can use them to specify which 
variable to plot on the x-axis and which one on the y-axis.

8. Now, since we have the DataFrame, we need to create a box plot using the 
boxplot() function provided by Seaborn. Within this function, specify the 
variables for both the axes along with the DataFrame. Make Groups the variable 
to plot on the x-axis, and IQ score the variable for the y-axis. Pass data as 
a parameter. Here, data is the DataFrame that we obtained from the previous 
step. Moreover, use the whitegrid style, set the context to talk, and remove 
all axes spines, except the one on the bottom:

plt.figure(dpi=150)

# Set style

sns.set_style('whitegrid')

# Create boxplot

sns.boxplot('Groups', 'IQ score', data=data)

# Despine

sns.despine(left=True, right=True, top=True)

# Add title

plt.title('IQ scores for different test groups')

# Show plot

plt.show() 
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The despine() function helps in removing the top and right spines from the 
plot by default (without passing any arguments to the function). Here, we have 
also removed the left spine. Using the title() function, we have set the title 
for our plot. The show() function visualizes the plot.

After executing the preceding steps, the final output should be as follows:

Figure 4.13: IQ scores of groups

From the preceding diagram, we can conclude that Seaborn offers visually appealing 
plots out of the box and allows easy customization, such as changing the style, 
context, and spines. Once a suitable DataFrame exists, the plotting is achieved with 
a single function. Column names are automatically used for labeling the axis. Even 
categorical variables are supported out of the box. 

Note

To access the source code for this specific section, please refer to  
https://packt.live/3hwvR8m.

You can also run this example online at https://packt.live/2Y6TTPy.

Another great advantage of Seaborn is color palettes, which are introduced in the 
following section.

https://packt.live/3hwvR8m
https://packt.live/2Y6TTPy
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Color Palettes
Color is a very important factor for your visualization. Color can reveal patterns in 
data if used effectively or hide patterns if used poorly. Seaborn makes it easy to 
select and use color palettes that are suited to your task. The color_palette() 
function provides an interface for many of the possible ways to generate  
color palettes.

The seaborn.color_palette([palette], [n_colors], [desat]) 
command returns a list of colors, thus defining a color palette.

The parameters are as follows:

• palette (optional): Name of palette or None to return the current palette.

• n_colors (optional): Number of colors in the palette. If the specified number of 
colors is larger than the number of colors in the palette, the colors will be cycled.

• desat (optional): The proportion to desaturate each color by.

You can set the palette for all plots with set_palette(). This function accepts the 
same arguments as color_palette(). In the following sections, we will explain 
how color palettes are divided into different groups.

Choosing the best color palette is not straightforward and, to some extent, subjective. 
To make a good decision, you have to know the characteristics of your data. There are 
three general groups of color palettes, namely, categorical, sequential, and diverging, 
which we will break down in the following sections.

Categorical Color Palettes

Categorical palettes (or qualitative color palettes) are best suited for distinguishing 
categorical data that does not have an inherent ordering. The color palette should 
have colors as distinct from one another as possible, resulting in palettes where 
mainly the hue changes. When it comes to human perception, there is a limit to how 
many different colors are perceived. A rule of thumb is that if you have double-digit 
categories, it is advisable to divide the categories into groups. Different shades of 
color could be used for a group. Another way to keep groups apart could be to use 
hues that are close together in the color wheel within a group and hues that are far 
apart for different groups.

Some examples where it is suitable to use categorical color palettes are line charts 
showing stock trends for different companies, and a bar chart with subcategories; 
basically, any time you want to group your data.
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There are six default themes in Seaborn: deep, muted, bright, pastel, dark, 
and colorblind. The code and output for each theme are provided in the 
following diagram. Out of these color palettes, it doesn't really matter which one 
you use. Choose the one you prefer and the one that best fits the overall theme of 
the visualization. It's never a bad idea to use the colorblind palette to account for 
colorblind people. The following is the code to create a deep color palette:

import seaborn as sns

palette1 = sns.color_palette("deep")

sns.palplot(palette1)

The following diagram shows the output of the code:

Figure 4.14: Deep color palette

The following code creates a muted color palette:

palette2 = sns.color_palette("muted")

sns.palplot(palette2)

The following is the output of the code:

Figure 4.15: Muted color palette

The following code creates a bright color palette:

palette3 = sns.color_palette("bright")

sns.palplot(palette3)

The following is the output of the code:

Figure 4.16: Bright color palette
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The following code creates a pastel color palette:

palette4 = sns.color_palette("pastel")

sns.palplot(palette4)

Here is the output showing a pastel color palette:

Figure 4.17: Pastel color palette

The following code creates a dark color palette:

palette5 = sns.color_palette("dark")

sns.palplot(palette5)

The following diagram shows a dark color palette:

Figure 4.18: Dark color palette

The following code creates a colorblind palette:

palette6 = sns.color_palette("colorblind")

sns.palplot(palette6)

Here is the output of the code:

Figure 4.19: Colorblind color palette
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Sequential Color Palettes

Sequential color palettes are appropriate for sequential data ranges from low 
to high values, or vice versa. It is recommended to use bright colors for low values 
and dark ones for high values. Some examples of sequential data are absolute 
temperature, weight, height, or the number of students in a class.

One of the sequential color palettes that Seaborn offers is cubehelix palettes. They 
have a linear increase or decrease in brightness and some variation in hue, meaning 
that even when converted to black and white, the information is preserved.

The default palette returned by cubehelix_palette() is illustrated in the 
following diagram. To customize the cubehelix palette, the hue at the start of the helix 
can be set with start (a value between 0 and 3), or the number of rotations around 
the hue wheel can be set with rot:

Figure 4.20: Cubehelix palette

Creating custom sequential palettes that only produce colors that start at either light 
or dark desaturated colors and end with a specified color can be accomplished with 
light_palette() or dark_palette(). Two examples are given in  
the following:

custom_palette2 = sns.light_palette("magenta")

sns.palplot(custom_palette2)

The following diagram shows the output of the code:

Figure 4.21: Custom magenta color palette
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The preceding palette can also be reversed by setting the reverse parameter to 
True in the following code:

custom_palette3 = sns.light_palette("magenta", reverse=True)

sns.palplot(custom_palette3)

The following diagram shows the output of the code:

Figure 4.22: Custom reversed magenta color palette

By default, creating a color palette only returns a list of colors. If you want to use it as 
a colormap object, for example, in combination with a heatmap, set the  
as_cmap=True argument, as demonstrated in the following example:

x = np.arange(25).reshape(5, 5)

ax = sns.heatmap(x, cmap=sns.cubehelix_palette(as_cmap=True))

This creates the following heatmap:

Figure 4.23: Heatmap with cubehelix palette
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In the next section, we will learn about diverging color palettes.

Diverging Color Palettes

Diverging color palettes are used for data that consists of a well-defined midpoint. 
An emphasis is placed on both high and low values. For example, if you are plotting 
any population changes for a particular region from some baseline population, it is 
best to use diverging colormaps to show the relative increase and decrease in the 
population. The following code snippet and output provides a better understanding 
of diverging plots, wherein we use the coolwarm template, which is built  
into Matplotlib:

custom_palette4 = sns.color_palette("coolwarm", 7)

sns.palplot(custom_palette4)

The following diagram shows the output of the code:

Figure 4.24: Coolwarm color palette

You can use the diverging_palette() function to create custom-diverging 
palettes. We can pass two hues in degrees as parameters, along with the total 
number of palettes. The following code snippet and output provides a better insight:

custom_palette5 = sns.diverging_palette(120, 300, n=7)

sns.palplot(custom_palette5)

The following diagram shows the output of the code:

Figure 4.25: Custom diverging color palette



Color Palettes | 225

As we already mentioned, colors, when used effectively, can reveal patterns in data. 
Spend some time thinking about which color palette is best for certain data. Let's 
apply color palettes to visualize temperature changes in the following exercise.

Exercise 4.02: Surface Temperature Analysis

In this exercise, we will generate a heatmap using Seaborn. The goal of this exercise 
is to choose an appropriate color palette for the given data. You are asked to visualize 
the surface temperature change for the Northern Hemisphere for past years. Data 
from the GISS Surface Temperature Analysis is used, which contains estimates 
of global surface temperature change (in degree Celsius) for every month. The 
dataset contains temperature anomalies for every month from 1880 to the present. 
Temperature anomalies indicate how much warmer or colder it is than normal. For 
the GISS analysis, normal means the average over the 30-year period 1951-1980.

Note

The dataset used for this exercise is used from https://data.giss.nasa.gov/
gistemp/ (accessed January 7, 2020). For more details about the dataset, 
visit the website, looking at the FAQs in particular. This dataset is also 
available in your Datasets folder.

Following are the steps to perform:

1. Create an Exercise4.02.ipynb Jupyter Notebook in the  
Chapter04/Exercise4.02 folder to implement this exercise. 

2. Import the necessary modules and enable plotting:

%matplotlib inline

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

sns.set()

https://data.giss.nasa.gov/gistemp/
https://data.giss.nasa.gov/gistemp/
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3. Use the pandas read_csv() function to read the northern_surface_
temperature.csv dataset located in the Datasets folder. After successful 
loading, transpose the dataset so that it is in a suitable structure:

data = pd.read_csv("../../Datasets/"\

                   "northern_surface_temperature.csv", \

                   index_col=['Year'])

data = data.transpose()

4. Create a custom-diverging palette that diverges to blue (240 degrees on the hue 
wheel) for low values and to red (15 degrees on the hue wheel) for high values. 
Set the saturation as s=99. Make sure that the diverging_palette() 
function returns a colormap by setting as_cmap=True:

heat_colormap = sns.diverging_palette(240, 15, s=99, \

                                      as_cmap=True)

5. Plot the heatmap for every 5 years. To ensure that the neutral color corresponds 
to no temperature change (the value is zero), set center=0:

plt.figure(dpi=200)

sns.heatmap(data.iloc[:, ::5], cmap=heat_colormap, center=0)

plt.title("Temperature Changes from 1880 to 2015 " \

          "(base period 1951-1980)")

plt.savefig('temperature_change.png', dpi=300, \

            bbox_inches='tight')
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The following is the output of the preceding code:

Figure 4.26: Surface temperature changes visualized as a heatmap

The preceding diagram helps us to visualize the surface temperature change for 
the Northern Hemisphere for past years.

Note

To access the source code for this specific section, please refer to  
https://packt.live/3fracg8.

You can also run this example online at https://packt.live/3d4u5bd.

Let's now perform an activity to create a heatmap using a real-life dataset with 
various color palettes.

https://packt.live/3fracg8
https://packt.live/3d4u5bd
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Activity 4.01: Using Heatmaps to Find Patterns in Flight Passengers' Data

In this activity, we will use a heatmap to find patterns in the flight passengers' data. 
The goal of this activity is to apply your knowledge about color palettes to choose a 
suitable color palette for this data.

The following are the steps to perform:

1. Use pandas to read the flight_details.csv dataset located in the 
Datasets folder. The given dataset contains the monthly figures for flight 
passengers for the years 1949 to 1960. This dataset originates from the  
Seaborn library.

2. Use a heatmap to visualize the given data.

3. Use your own appropriate colormap. Make sure that the lowest value is the 
brightest, and the highest the darkest, color. After executing the preceding steps, 
the expected output should be as follows:

Figure 4.27: Heatmap of flight passengers' data
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Note

The solution for this activity can be found via this link.

After the in-depth discussion about various color palettes, we will introduce some 
more advanced plots that Seaborn offers in the following section.

Advanced Plots in Seaborn
In the previous chapter, we discussed various plots in Matplotlib, but there are still 
a few visualizations left that we want to discuss. First, we will revise bar plots since 
Seaborn offers some neat additional features for them. Moreover, we will cover 
kernel density estimation, correlograms, and violin plots.

Bar Plots

In the last chapter, we already explained how to create bar plots with Matplotlib. 
Creating bar plots with subgroups was quite tedious, but Seaborn offers a very 
convenient way to create various bar plots. They can also be used in Seaborn to 
represent estimates of central tendency with the height of each bar, while uncertainty 
is indicated by error bars at the top of the bar.

The following example gives you a good idea of how this works:

import pandas as pd

import seaborn as sns

data = pd.read_csv("../Datasets/salary.csv")

sns.set(style="whitegrid")

sns.barplot(x="Education", y="Salary", hue="District", data=data)
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The result is shown in the following diagram:

Figure 4.28: Seaborn bar plot

Let's get some practice with Seaborn bar plots in the following activity.

Activity 4.02: Movie Comparison Revisited

In this activity, we will generate a bar plot to compare movie scores. You will be given 
five movies with scores from Rotten Tomatoes. The Tomatometer is the percentage 
of approved Tomatometer critics who have given a positive review for a movie. The 
Audience Score is the percentage of users who have given a score of 3.5 or higher, 
out of 5. Compare these two scores among the five movies:

1. Use pandas to read the movie_scores.csv dataset located in the  
Datasets folder.

2. Transform the data into a useable format for Seaborn's barplot function.

3. Use Seaborn to create a visually appealing bar plot that compares the two scores 
for all five movies.
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After executing the preceding steps, the expected output should appear  
as follows:

Figure 4.29: Movie Scores comparison

Note

The solution for this activity can be found via this link.

Kernel Density Estimation

It is often useful to visualize how variables of a dataset are distributed. Seaborn offers 
handy functions to examine univariate and bivariate distributions. One possible way 
to look at a univariate distribution in Seaborn is by using the distplot() function. 
This will draw a histogram and fit a kernel density estimate (KDE), as illustrated in 
the following example:

%matplotlib inline

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

data = pd.read_csv('../../Datasets/age_salary_hours.csv')
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sns.distplot(data.loc[:, 'Age'])

plt.xlabel('Age')

plt.ylabel('Density')

The result is shown in the following diagram:

Figure 4.30: KDE with a histogram for a univariate distribution

To just visualize the KDE, Seaborn provides the kdeplot() function:

sns.kdeplot(data.loc[:, 'Age'], shade=True)

plt.xlabel('Age')

plt.ylabel('Density')
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The KDE plot is shown in the following diagram, along with a shaded area under  
the curve:

Figure 4.31: KDE for a univariate distribution

In the next section, we will learn how to plot bivariate distributions.

Plotting Bivariate Distributions

For visualizing bivariate distributions, we will introduce three different plots. The 
first two plots use the jointplot() function, which creates a multi-panel figure 
that shows both the joint relationship between both variables and the corresponding 
marginal distributions.
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A scatter plot shows each observation as points on the x and y axes. Additionally, a 
histogram for each variable is shown:

import pandas as pd

import seaborn as sns

data = pd.read_csv('../../Datasets/age_salary_hours.csv')

sns.set(style="white")

sns.jointplot(x="Annual Salary", y="Age", data=data))

The scatter plot with marginal histograms is shown in the following diagram:

Figure 4.32: Scatter plot with marginal histograms
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It is also possible to use the KDE procedure to visualize bivariate distributions. The 
joint distribution is shown as a contour plot, as demonstrated in the following code:

sns.jointplot('Annual Salary', 'Age', data=subdata, \

              kind='kde', xlim=(0, 500000), ylim=(0, 100))

The result is shown in the following diagram:

Figure 4.33: Contour plot

The joint distribution is shown as a contour plot in the center of the diagram. The 
darker the color, the higher the density. The marginal distributions are visualized on 
the top and on the right.



236 | Simplifying Visualizations Using Seaborn

Visualizing Pairwise Relationships

For visualizing multiple pairwise relationships in a dataset, Seaborn offers the 
pairplot() function. This function creates a matrix where off-diagonal elements 
visualize the relationship between each pair of variables and the diagonal elements 
show the marginal distributions. 

The following example gives us a better understanding of this:

%matplotlib inline

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

data = pd.read_csv('../../Datasets/age_salary_hours.csv')

sns.set(style="ticks", color_codes=True)

g = sns.pairplot(data, hue='Education')

Note

The age_salary_hours dataset is derived from https://www.census.gov/
programs-surveys/acs/technical-documentation/pums/documentation.2017.
html.

A pair plot, also called a correlogram, is shown in the following diagram. Scatter plots 
are shown for all variable pairs on the off-diagonal, while KDEs are shown on the 
diagonal. Groups are highlighted by different colors:

https://www.census.gov/programs-surveys/acs/technical-documentation/pums/documentation.2017.html
https://www.census.gov/programs-surveys/acs/technical-documentation/pums/documentation.2017.html
https://www.census.gov/programs-surveys/acs/technical-documentation/pums/documentation.2017.html
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Figure 4.34: Seaborn pair plot

Violin Plots

A different approach to visualizing statistical measures is by using violin plots. They 
combine box plots with the kernel density estimation procedure that we described 
previously. It provides a richer description of the variable's distribution. Additionally, 
the quartile and whisker values from the box plot are shown inside the violin.
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The following example demonstrates the usage of violin plots:

import pandas as pd

import seaborn as sns

data = pd.read_csv("../../Datasets/salary.csv")

sns.set(style="whitegrid")  

sns.violinplot('Education', 'Salary', hue='Gender', \

               data=data, split=True, cut=0)

The result appears as follows:

Figure 4.35: Seaborn violin plot

The violin plot shows both statistical measures and the probability distribution. The 
data is divided into education groups, which are shown on the x-axis, and gender 
groups, which are highlighted by different colors.

With the next activity, we will conclude the section about advanced plots. In this 
section, multi-plots in Seaborn are introduced.
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Activity 4.03: Comparing IQ Scores for Different Test Groups by Using  

a Violin Plot

In this activity, we will compare the IQ scores among four different test groups by 
using the violin plot that's provided by the Seaborn library. The following steps will 
help you to complete this activity:

1. Use pandas to read the iq_scores.csv dataset located in the 
Datasets folder.

2. Access the data of each group in the column, convert it into a list, and assign 
appropriate variables.

3. Create a pandas DataFrame from the data for each respective group.

4. Create a box plot for the IQ scores of the different test groups using Seaborn's 
violinplot function. 

5. Use the whitegrid style, set the context to talk, and remove all axes spines, 
except the one on the bottom. Add a title to the plot.

After executing the preceding steps, the final output should appear as follows:

Figure 4.36: Violin plot showing IQ scores of different groups
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Note

The solution for this activity can be found via this link.

In the next section, we will learn about multi-plots in Seaborn.

Multi-Plots in Seaborn
In the previous topic, we introduced a multi-plot, namely, the pair plot. In this topic, 
we want to talk about a different way to create flexible multi-plots.

FacetGrid

The FacetGrid is useful for visualizing a certain plot for multiple variables separately. 
A FacetGrid can be drawn with up to three dimensions: row, col, and hue. The first 
two have the obvious relationship with the rows and columns of an array. The hue is 
the third dimension and is shown in different colors. The FacetGrid class has to be 
initialized with a DataFrame, and the names of the variables that will form the row, 
column, or hue dimensions of the grid. These variables should be categorical  
or discrete.

The seaborn.FacetGrid(data, row, col, hue, …) command initializes a 
multi-plot grid for plotting conditional relationships.

Here are some interesting parameters:

• data: A tidy ("long-form") DataFrame where each column corresponds to a 
variable, and each row corresponds to an observation

• row, col, hue: Variables that define subsets of the given data, which will be 
drawn on separate facets in the grid

• sharex, sharey (optional): Share x/y axes across rows/columns

• height (optional): Height (in inches) of each facet

Initializing the grid does not draw anything on it yet. To visualize data on this grid, the 
FacetGrid.map() method has to be used. You can provide any plotting function 
and the name(s) of the variable(s) in the DataFrame to the plot:
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FacetGrid.map(func, *args, **kwargs) applies a plotting function to each 
facet of the grid.

Here are the parameters:

• func: A plotting function that takes data and keyword arguments.

• *args: The column names in data that identify variables to plot. The data for 
each variable is passed to func in the order in which the variables are specified.

• **kwargs: Keyword arguments that are passed to the plotting function. 

The following example visualizes FacetGrid with scatter plots:

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

data = pd.read_csv("../../Datasets/salary.csv")[:1000]

g = sns.FacetGrid(data, col='District')

g.map(plt.scatter, 'Salary', 'Age')

Figure 4.37: FacetGrid with scatter plots

We will conclude FacetGrids with the following activity.

Activity 4.04: Visualizing the Top 30 Music YouTube Channels  

Using Seaborn's FacetGrid

In this activity, we will generate a FacetGrid plot using the Seaborn library. We will 
visualize the total number of subscribers and the total number of views for the 
top 30 YouTube channels (as of January 2020) in the music category by using the 
FacetGrid() function that's provided by the Seaborn library. 
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Visualize the given data using a FacetGrid with two columns. The first column should 
show the number of subscribers for each YouTube channel, whereas the second 
column should show the number of views. The goal of this activity is to get some 
practice working with FacetGrids. The following are the steps to implement  
this activity:

1. Use pandas to read the YouTube.csv dataset located in the Datasets folder.

2. Access the data of each group in the column, convert this into a list, and assign 
this list to variables of each respective group.

3. Create a pandas DataFrame with the preceding data, using the data of each 
respective group.

4. Create a FacetGrid with two columns to visualize the data. 

After executing the preceding steps, the final output should appear as follows:

Figure 4.38: Subscribers and views of the top 30 YouTube channels

Note

The solution for this activity can be found via this link.

In the next section, we will learn how to plot a regression plot using Seaborn.



Regression Plots | 243

Regression Plots
Regression is a technique in which we estimate the relationship between a 
dependent variable (mostly plotted along the Y – axis) and an independent variable 
(mostly plotted along the X – axis). Given a dataset, we can assign independent and 
dependent variables and then use various regression methods to find out the relation 
between these variables. Here, we will only cover linear regression; however, Seaborn 
provides a wider range of regression functionality if needed.

The regplot() function offered by Seaborn helps to visualize linear  
relationships, determined through linear regression. The following code snippet gives 
a simple example:

import numpy as np

import seaborn as sns

x = np.arange(100)

# normal distribution with mean 0 and a standard deviation of 5

y = x + np.random.normal(0, 5, size=100) 

sns.regplot(x, y)

The regplot() function draws a scatter plot, a regression line, and a 95% 
confidence interval for that regression, as shown in the following diagram:

Figure 4.39: Seaborn regression plot
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Let's have a look at a more practical example in the following activity.

Activity 4.05: Linear Regression for Animal Attribute Relations

In this activity, we will generate a regression plot to visualize a real-life dataset using 
the Seaborn library. You have a dataset pertaining to various animals, including 
their body mass and maximum longevity. To discover whether there is any linear 
relationship between these two variables, a regression plot will be used.

Note

The dataset used is from http://genomics.senescence.info/download.
html#anage. The dataset can also be downloaded from GitHub. Here is the 
link to it: https://packt.live/3bzApYN.

The following are the steps to perform:

1. Use pandas to read the anage_data.csv dataset located in the  
Datasets folder.

2. Filter the data so that you end up with samples containing a body mass and 
maximum longevity. Only consider samples for the Mammalia class and a body 
mass of less than 200,000.

3. Create a regression plot to visualize the linear relationship between  
the variables.

http://genomics.senescence.info/download.html#anage
http://genomics.senescence.info/download.html#anage
https://packt.live/3bzApYN
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After executing the preceding steps, the output should appear as follows:

Figure 4.40: Linear regression for animal attribute relations

Note

The solution for this activity can be found via this link.

In the next section, we will learn how to plot Squarify using Seaborn.
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Squarify
At this point, we will briefly talk about tree maps. Tree maps display hierarchical 
data as a set of nested rectangles. Each group is represented by a rectangle, of which 
its area is proportional to its value. Using color schemes, it is possible to represent 
hierarchies (groups, subgroups, and so on). Compared to pie charts, tree maps use 
space efficiently. Matplotlib and Seaborn do not offer tree maps, and so the Squarify 
library that is built on top of Matplotlib is used. Seaborn is a great addition for 
creating color palettes.

Note

To install Squarify, first launch the command prompt from the  
Anaconda Navigator. Then, execute the following command:  
pip install squarify.

The following code snippet is a basic tree map example. It requires the  
squarify library:

%matplotlib inline

import matplotlib.pyplot as plt

import seaborn as sns

import squarify

colors = sns.light_palette("brown", 4)

squarify.plot(sizes=[50, 25, 10, 15], \

              label=["Group A", "Group B", "Group C", "Group D"], \

              color=colors)

plt.axis("off")

plt.show()
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The result is shown in the following diagram:

Figure 4.41: Tree map

Now, let's have a look at a real-world example that uses tree maps in the  
following exercise.

Exercise 4.03: Water Usage Revisited

In this exercise, we will create a tree map using the Squarify and Seaborn libraries. 
Consider the scenario where you want to save water. Therefore, you visualize your 
household's water usage by using a tree map, which can be created with the help of 
the Squarify library.

Note

Before beginning the exercise, make sure you have installed Squarify by 
executing pip install squarify on your command prompt. The 
water_usage.csv dataset used is this exercise is sourced from this 
link: https://www.epa.gov/watersense/how-we-use-water. Their data originates 
from https://www.waterrf.org/research/projects/residential-end-uses-water-
version-2. This dataset is also available in your Datasets folder.

https://www.epa.gov/watersense/how-we-use-water
https://www.waterrf.org/research/projects/residential-end-uses-water-version-2
https://www.waterrf.org/research/projects/residential-end-uses-water-version-2
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Following are the steps to perform:

1. Create an Exercise4.03.ipynb Jupyter Notebook in the Chapter04/
Exercise4.03 folder to implement this exercise. 

2. Import the necessary modules and enable plotting within the Exercise4.03.
ipynb file:

%matplotlib inline

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import squarify

3. Use the read_csv() function of pandas to read the water_usage.csv 
dataset located in the Datasets folder:

mydata = pd.read_csv("../../Datasets/water_usage.csv", \

                     index_col=0)

4. Create a list of labels by accessing each column from the preceding dataset. 
Here, the astype('str') function is used to cast the fetched data into a type 
string:

labels = mydata['Usage'] \

         + ' (' + mydata['Percentage'].astype('str') + '%)'

5. To create a tree map visualization of the given data, use the plot() function of 
the squarify library. This function takes three parameters. The first parameter 
is a list of all the percentages, and the second parameter is a list of all the labels, 
which we got in the previous step. The third parameter is the colormap that can 
be created by using the light_palette() function of the Seaborn library:

# Create figure

plt.figure(dpi=200)

# Create tree map

squarify.plot(sizes=mydata['Percentage'], \

              label=labels, \

              color=sns.light_palette('green', mydata.shape[0]))
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plt.axis('off')

# Add title

plt.title('Water usage')

# Show plot

plt.show()

Following is the output of the code:

Figure 4.42: Tree map visualizing the water usage in a household

Note

To access the source code for this specific section, please refer to  
https://packt.live/3fxRzqZ.

You can also run this example online at https://packt.live/2N0U4WD.

To conclude this exercise, you can see that tree maps are great for visualizing part-
of-a-whole relationships. We immediately see that using the toilet requires the most 
water, followed by showers.

https://packt.live/3fxRzqZ
https://packt.live/2N0U4WD
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Activity 4.06: Visualizing the Impact of Education on Annual Salary and Weekly 

Working Hours

In this activity, we will generate multiple plots using a real-life dataset. You're asked 
to get insights on whether the education of people has an influence on their annual 
salary and weekly working hours. You ask 500 people in the state of New York about 
their age, annual salary, weekly working hours, and their education. You first want 
to know the percentage for each education type, so therefore you use a tree map. 
Two violin plots will be used to visualize the annual salary and weekly working hours. 
Compare in each case to what extent education has an impact.

It should also be taken into account that all visualizations in this activity are designed 
to be suitable for colorblind people. In principle, this is always a good idea to bear  
in mind.

Note

The American Community Survey (ACS) Public-Use Microdata 
Samples (PUMS) dataset (one-year estimate from 2017) from https://
www.census.gov/programs-surveys/acs/technical-documentation/pums/
documentation.2017.html is used in this activity. This dataset is later used 
in Chapter 07, Combining What We Have Learned. This dataset can also be 
downloaded from GitHub. Here is the link: https://packt.live/3bzApYN.

https://www.census.gov/programs-surveys/acs/technical-documentation/pums/documentation.2017.html
https://www.census.gov/programs-surveys/acs/technical-documentation/pums/documentation.2017.html
https://www.census.gov/programs-surveys/acs/technical-documentation/pums/documentation.2017.html
https://packt.live/3bzApYN


Squarify | 251

The following are the steps to perform:

1. Use pandas to read the age_salary_hours.csv dataset located in the 
Datasets folder.

2. Use a tree map to visualize the percentages for each education type. After 
executing the preceding steps, the outputs should appear as follows:

Figure 4.43: Tree map
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3. Create a subplot with two rows to visualize two violin plots for the annual salary 
and weekly working hours, respectively. Compare in each case to what extent 
education has an impact. To exclude pensioners, only consider people younger 
than 65. Use a colormap that is suitable for colorblind people. subplots() 
can be used in combination with Seaborn's plot, by simply passing the ax 
argument with the respective axes. The following output will be generated after 
implementing this step:

Figure 4.44: Violin plots showing the impact of education on annual  
salary and weekly working hours
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Note

The solution for this activity can be found via this link.

Summary
In this chapter, we demonstrated how Seaborn helps to create visually appealing 
figures. We discussed various options for controlling Figure aesthetics, such as Figure 
style, controlling spines, and setting the context of visualizations. We talked about 
color palettes in detail. Further visualizations were introduced for univariate and 
bivariate distributions. Moreover, we discussed FacetGrids for creating multi-plots, 
and regression plots as a way to analyze the relationships between two variables. 
Finally, we discussed the Squarify library, which is used to create tree maps. 

In the next chapter, we will work with a different category of data, called geospatial 
data. The prominent attribute of such a dataset is the presence of geo-coordinates 
that can be used to plot elements on a given position on a map. We will visualize 
poaching points, the density of cities around the world, and create a more interactive 
visualization that only displays data points of the currently selected country.





Overview

By the end of this chapter, you will be able to utilize geoplotlib to create 
stunning geographical visualizations and identify the different types of 
geospatial charts. You will be able to demonstrate datasets containing 
geospatial data for plotting and create complex visualizations using tile 
providers and custom layers.

Plotting Geospatial Data

5
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Introduction
geoplotlib is an open-source Python library for geospatial data visualizations. It has 
a wide range of geographical visualizations and supports hardware acceleration. 
It also provides performance rendering for large datasets with millions of data 
points. As discussed in earlier chapters, Matplotlib provides various ways to visualize 
geographical data. 

However, Matplotlib is not designed for this task because its interfaces are 
complicated and inconvenient to use. Matplotlib also restricts how geographical 
data can be displayed. The Basemap and Cartopy libraries allow you to plot on 
a world map, but these packages do not support drawing on map tiles. Map tiles 
are underlying rectangular, square, or hexagonal tile slabs that are used to create 
a seamless map of the world, with lightweight, individually requested tiles that are 
currently in view.

geoplotlib, on the other hand, was designed precisely for this purpose; it not only 
provides map tiles but also allows for interactivity and simple animations. It provides 
a simple interface that allows access to compelling geospatial visualizations such 
as histograms, point-based plots, tessellations such as Voronoi or Delaunay, and 
choropleth plots.

In the exercises and activities in this chapter, we will use geoplotlib in combination 
with different real-world datasets to do the following:

• Highlight popular poaching spots in one area of Tanzania

• Discover dense areas within cities in Europe that have a high population

• Visualize values for the distinct states of the US

• Create a custom animated layer that displays the time series data of aircraft
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To understand the concepts, design, and implementation of geoplotlib, take a brief 
look at its conceptual architecture. The two inputs that are fed to geoplotlib are your 
data sources and map tiles. The map tiles, as we'll see later, can be replaced by 
different providers. The outputs describe the possibility to not only render images 
inside Jupyter Notebooks but also to work in an interactive window that allows the 
zooming and panning of the maps. The schema of the components of geoplotlib 
looks as follows:

 

Figure 5.1: Conceptual architecture of geoplotlib

geoplotlib uses the concept of layers that can be placed on top of one another, 
providing a powerful interface for even complex visualizations. It comes with several 
common visualization layers that are easy to set up and use.
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From the preceding diagram, we can see that geoplotlib is built on top of NumPy/
SciPy and Pyglet/OpenGL. These libraries take care of numerical operations and 
rendering. Both components are based on Python, therefore enabling the use of the 
full Python ecosystem.

Note

All the datasets used in this chapter can be found at  
https://packt.live/3bzApYN. All the files of exercises and  
activities can be found here: https://packt.live/2UJRbyt.

All of the following examples are created with the world_cities_pop.csv 
dataset, which we will use for the exercises and activities later in this chapter. Before 
we can use it, we have to extract the .zip file that is included in the  
Datasets folder.

To use the world_cities_pop dataset, we need to add a lat and lon column. 
For the examples, we also want to filter our dataset down to contain only cities in 
Brazil. This will give us dataset_filtered. We will use this filtered-down dataset 
in the following examples:

# loading the Dataset with geoplotlib

dataset = pd.read_csv('../../Datasets/world_cities_pop.csv', \

                      dtype={'Region': np.str})

# Adding lat and lon column needed by geoplotlib

dataset['lat'] = dataset['Latitude']

dataset['lon'] = dataset['Longitude']

# filtering for cities in brasil

dataset_filtered = dataset[dataset['Country'] == 'br']

To run these examples yourself, please refer to Examples.ipynb in the Examples 
folder of the chapter.

https://packt.live/3bzApYN
https://packt.live/2UJRbyt
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The Design Principles of geoplotlib

Taking a closer look at the internal design of geoplotlib, we can see that it is built 
around three design principles:

• Integration: geoplotlib visualizations are purely Python-based. This means 
that generic Python code can be executed, and other libraries such as pandas 
can be used for data wrangling purposes. We can manipulate and enrich our 
datasets using pandas DataFrames and later convert them into a geoplotlib 
DataAccessObject, which we need for optimal compatibilities, as follows:

import pandas as pd

from geoplotlib.utils import DataAccessObject

# data wrangling with pandas DataFrames here

dataset_obj = DataAccessObject(dataset_filtered)

geoplotlib fully integrates into the Python ecosystem. This even enables us to 
plot geographical data inline inside our Jupyter Notebooks. This possibility allows 
us to design our visualizations quickly and iteratively.

• Simplicity: Looking at the example provided here, we can quickly see that 
geoplotlib abstracts away the complexity of plotting map tiles and already-
provided layers such as dot density and histogram. It has a simple API that 
provides common visualizations. These visualizations can be created using 
custom data with only a few lines of code.

The core attributes of our datasets are lat and lon values. Latitude and 
longitude values enable us to index every single location on Earth. In geoplotlib, 
we need them to tell the library where on the map our elements need to be 
rendered. If our dataset comes with lat and lon columns, we can display each 
of those data points, for example, dots on a map with five lines of code.
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In addition, we can use the f_tooltip argument to provide a popup for each 
point as an element of the column we provide as a source as follows:

# plotting our dataset as a dot density plot

import geoplotlib

from geoplotlib.utils import DataAccessObject

dataset_obj = DataAccessObject(dataset_filtered)

geoplotlib.dot(dataset_obj, \

               f_tooltip=lambda d:d['City'].title())

geoplotlib.show()

Executing this code will result in the following dot density plot:

Figure 5.2: Dot density layer of cities in Brazil and an overlay of the city on hovering
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In addition to this, everyone who's used Matplotlib before will have no  
problems understanding geoplotlib. The syntax of geoplotlib is highly inspired  
by Matplotlib.

• Performance: As we mentioned before, geoplotlib can handle large amounts of 
data due to the use of NumPy for accelerated numerical operations and OpenGL 
for accelerated graphical rendering.

Next, we will create geographical visualizations without much effort and discover the 
advantages of using geoplotlib in combination with pandas. We will implement an 
exercise that plots the cities of the world and will be able to feel the performance of 
the library when plotting thousands of dots on our map.

Geospatial Visualizations
Voronoi tessellation, Delaunay triangulation, and choropleth plots are a few of 
the geospatial visualizations that will be used in this chapter. An explanation for each 
of them is provided here.

Voronoi Tessellation

In a Voronoi tessellation, each pair of data points is separated by a line that is the 
same distance from both data points. The separation creates cells that, for every 
given point, marks which data point is closer. The closer the data points, the smaller 
the cells.

The following example shows how you can simply use the voronoi method to 
create this visualization:

# plotting our dataset as voronoi plot

geoplotlib.voronoi(dataset_filtered, line_color='b')

geoplotlib.set_smoothing(True)

geoplotlib.show()

As we can see, the code to create this visualization is relatively short.

After importing the dependencies we need, we read the dataset using the read_csv 
method of pandas (or geoplotlib). We then use it as data for our voronoi method, 
which handles all the complex logic of plotting the data on the map.



262 | Plotting Geospatial Data

In addition to the data itself, we can set several parameters, such as general 
smoothing using the set_smoothing method. The smoothing of the lines  
uses anti-aliasing:

Figure 5.3: Voronoi plot of cities in Brazil to visualize population density

Delaunay Triangulation

A Delaunay triangulation is related to Voronoi tessellation. When connecting each 
data point to every other data point that shares an edge, we end up with a plot that 
is triangulated. The closer the data points are to each other, the smaller the triangles 
will be. This gives us a visual clue about the density of points in specific areas. When 
combined with color gradients, we get insights about points of interest, which can be 
compared with a heatmap:

# plotting our dataset as a delaunay

geoplotlib.delaunay(dataset_filtered, cmap='hot_r')

geoplotlib.set_smoothing(True)

geoplotlib.show()
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This example uses the same dataset as before, that is, population density in Brazil. 
The structure of the code is the same as in the voronoi example.

After importing the dependencies that we need, we read the dataset using the read_
csv method and then use it as data for our delaunay method, which handles all of 
the complex logic of plotting data on the map.

In addition to the data itself, we can again use the set_smoothing method to 
smooth the lines using anti-aliasing.

The resulting visualization looks as follows:

Figure 5.4: Delaunay triangulation of cities in Brazil to visualize population density
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Choropleth Plot

This kind of geographical plot displays areas such as the states of a country in 
a shaded or colored manner. The shade or color of the plot is determined by a 
single data point or a set of data points. It gives an abstract view of a geographical 
area to visualize the relationships and differences between the different areas. In 
the following code and visual example, we can see that the unemployment rate 
determines the shade of each state of the US. The darker the shade, the higher  
the rate:

from geoplotlib.colors import ColorMap

import json

"""

find the unemployment rate for the selected county, and convert it to 
color
"""

def get_color(properties):

    key = str(int(properties['STATE'])) \

          + properties['COUNTY']

    if key in unemployment_rates:

        return cmap.to_color(unemployment_rates.get(key), \

                             .15, 'lin')

    else:

        return [0, 0, 0, 0]

# get unemployment data

with open('../../Datasets/unemployment.json') as fin:

    unemployment_rates = json.load(fin)
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"""

plot the outlines of the states and color them using the unemployment 
rate
"""

cmap = ColorMap('Reds', alpha=255, levels=10)

geoplotlib.geojson('../../Datasets/us_states_shapes.json', \

                   fill=True, color=get_color, \

                   f_tooltip=lambda properties: properties['NAME'])

geoplotlib.geojson('../../Datasets/us_states_shapes.json', \

                   fill=False, color=[255, 255, 255, 64])

geoplotlib.set_bbox(BoundingBox.USA)

geoplotlib.show()

We will cover what each line does in more detail later. However, to give you a better 
understanding of what is happening here, we will quickly cover the sections of the 
preceding code.

The first few lines import all the necessary dependencies, including geoplotlib and 
json, which will be used to load our dataset, which is provided in this format.

After the import statements, we see a get_color method. This method returns 
a color that has been determined by the unemployment rate of the given data point. 
This method defines how dark the red value will be. In the last section of the script, 
we read our dataset and use it with the geojson method.

The choropleth plot is one of the only visualizations that does not have a method 
assigned that is solely used for this kind of plot. We use the geojson() method to 
create more complex shapes than simple dots. By using the f_tooltip argument, 
we can also display the name of the city we are hovering over.

The BoundingBox object is an object to define the "corners" of the viewport. We can 
set an initial focus when running our visualization, which helps the user see what the 
visualization is about without panning around and zooming first.
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Executing this code with the right example dataset provides the  
following visualization:

Figure 5.5: Choropleth plot of unemployment rates in the US; the darker the color, the 
higher the value

Next, we will implement an exercise to plot dot density and histograms.

Exercise 5.01: Plotting Poaching Density Using Dot Density and Histograms

In this exercise, we'll be looking at the primary use of geoplotlib's plot methods for 
dot density, histograms, and Voronoi diagrams. For this, we will make use of data 
on various poaching incidents that have taken place all over the world.

The dataset that we will be using here contains data from poaching incidents in 
Tanzania. The dataset consists of 268 rows and 6 columns (id_report, date_
report, description, created_date, lat, and lon).



Geospatial Visualizations | 267

Each row is uniquely identified by id_report. The date_report column states 
what date the poaching incident took place on. On the other hand, the created_
date column states the date on which the report was created. The description 
column provides basic information about the incident. The lat and lon columns 
state the geographical location of the place where the poaching took place.

Note that geoplotlib requires your dataset to have both lat and lon columns. These 
columns are the geographical data for latitude and longitude, which are used to 
determine how to plot the data. The following are the steps to perform:

1. Create an Exercise5.01.ipynb Jupyter Notebook within the  
Chapter05/Exercise5.01 folder to implement this exercise.

2. First, import the dependencies that you will need. Use the read_csv 
method provided by geoplotlib to read the dataset as a CSV file into a 
DataAccessObject:

import geoplotlib

from geoplotlib.utils import read_csv

3. Load the poaching_points_cleaned.csv dataset from the Datasets 
folder using the pandas read_csv method as well:

dataset = read_csv('../../Datasets/poaching_points_cleaned.csv')

4. Print out the dataset and look at its type. What difference do you see compared 
to a pandas DataFrame? Let's take a look:

# looking at the dataset structure

dataset

The following figure shows the output of the preceding code:

Figure 5.6: Dataset structure
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The dataset is stored in a DataAccessObject class that's provided by 
geoplotlib. It does not have the same capabilities as a pandas DataFrame. 
Instead, it's meant for the simple and quick loading of data so that you can 
create a visualization. If we print out this object, we can see the differences 
better. It gives us a basic overview of what columns are present and how many 
rows the dataset has.

5. Convert the dataset into a pandas DataFrame to preprocess the data:

# csv import with pandas

import pandas as pd

pd_dataset = \

    pd.read_csv('../../Datasets/poaching_points_cleaned.csv')

pd_dataset.head()

The following figure shows the output:

Figure 5.7: The first five entries of the dataset

6. Plot each row of our dataset as a single point on the map using a dot density 
layer by calling the dot method. Then, call the show method to render the map 
with a given layer:

# plotting our dataset with points

geoplotlib.dot(dataset)

geoplotlib.show()

The following figure shows the output:
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Figure 5.8: Dot density visualization of poaching points

Only looking at the lat and lon values in the dataset won't give us a very good 
idea of where on the map our elements are located or how far apart they are. 
We're not able to draw conclusions and get insights into our dataset without 
visualizing our data points on a map. When looking at the rendered map, we 
can instantly see that some areas have more incidents than others. This insight 
couldn't have been easily identified by simply looking at the numbers in the 
dataset itself.

7. Visualize the density using the hist method, which will create a Histogram 
Layer on top of our map tiles. Then, define a binsize of 20. This will allow us 
to set the size of the hist bins in our visualization:

# plotting our dataset as a histogram

geoplotlib.hist(dataset, binsize=20)

geoplotlib.show()
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The following figure shows the output of the preceding code:

Figure 5.9: Histogram visualization of poaching points

Histogram plots give us a better understanding of the density distribution of 
our dataset. Looking at the final plot, we can see that there are some hotspots 
for poaching. It also highlights the areas without any poaching incidents.

8. Create a Voronoi plot using the same dataset. Use a color map cmap of 
'Blues_r' and define the max_area parameter as 1e5:

# plotting a voronoi map

geoplotlib.voronoi(dataset, cmap='Blues_r', \

                   max_area=1e5, alpha=255)

geoplotlib.show()
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The following figure shows the output of the preceding code:

Figure 5.10: Voronoi visualization of poaching points

Note

To access the source code for this specific section, please refer to  
https://packt.live/2UIwGkT.

This section does not currently have an online interactive example, and will 
need to be run locally.

Voronoi plots are good for visualizing the density of data points, too. Voronoi 
introduces a little bit more complexity with several parameters, such as cmap, max_
area, and alpha. Here, cmap denotes the color of the map, alpha denotes the 
color of the alpha, and max_area denotes a constant that determines the color of 
the Voronoi areas.

https://packt.live/2UIwGkT
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If we compare this Voronoi visualization with the histogram plot, we can see that 
one area draws a lot of attention. The center-right edge of the plot shows quite a 
large dark blue area with an even darker center: something that could've easily been 
overlooked with the histogram plot.

We have now covered the basics of geoplotlib. It has many more methods, but they 
all have a similar API that makes using the other methods simple. Since we have 
looked at some very basic visualizations, it's now up to you to solve the first activity.

Activity 5.01: Plotting Geospatial Data on a Map

In this activity, we will take our previously learned skills of plotting data with 
geoplotlib and apply them to our new world_cities_pop.csv dataset. We will 
find the dense areas of cities in Europe that have a population of more than  
100,000 people:

1. Create an Activity5.01.ipynb Jupyter Notebook within the  
Chapter05/Activity5.01 folder to implement this activity.

2. Import the dependencies and load the world_cities_pop.csv dataset from 
the Datasets folder using pandas.

3. List all the datatypes that are present in it and verify that they are correct.  
Then, map the Latitude and Longitude columns to lat and lon.

4. Now, plot the data points on a dot density plot.

5. Use the agg method of pandas to get the average number of cities per country.

6. Obtain the number of cities per country (the first 20 entries) and extract the 
countries that have a population of greater than zero.

7. Plot the remaining data on a dot plot.

8. Again, filter your remaining data for cities with a population of greater  
than 100,000.

9. To get a better understanding of the density of our data points on the map, use 
a Voronoi tessellation layer.

10. Filter down the data even further to only cities in countries such as Germany and 
Great Britain.

11. Finally, use a Delaunay triangulation layer to find the most densely  
populated areas.
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Observe the expected output of the dot plot:

Figure 5.11: A dot density visualization of the reduced dataset

The following is the expected output of the Voronoi plot:

Figure 5.12: A Voronoi visualization of densely populated cities
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The following is the expected output of the Delaunay triangulation:

Figure 5.13: A Delaunay triangle visualization of cities in Germany and Great Britain

Note

The solution for this activity can be found via this link.
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You have now completed your first activity using geoplotlib. Note how we made use 
of different plots to get the information we required. Next, we will look at some more 
custom features of geoplotlib that will allow us to change the map tiles provider and 
create custom plotting layers.

The GeoJSON Format

The GeoJSON format is used to encode a variety of data structures, such as points, 
lines, and polygons with a focus on geographical visualization. The format has a 
defined structure that each valid file has to follow:

{

  "type": "Feature",

  "properties": {

    "name": "Dinagat Islands"

  },

  "geometry": {

    "type": "Point",

    "coordinates": [125.6, 10.1]

  }

}

Each object with additional properties, for example, an ID or name attribute, is a 
Feature. The properties attribute simply allows additional information to be 
added to the feature. The geometry attribute holds information about the type 
of feature we are working with, for example, a Point, and its specific coordinates. 
The coordinates define the positions for the "waypoints" of the given type. Those 
coordinates define the shape of the element to be displayed by the plotting library.
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Exercise 5.02: Creating a Choropleth Plot with GeoJSON Data

In this exercise, we will work with GeoJSON data and also create a choropleth 
visualization. GeoJSON is especially useful for displaying statistical variables in 
shaded areas. In our case, the areas will be the outlines of the states of the USA.

Let's create a choropleth visualization with the given GeoJSON data:

1. Create an Exercise5.02.ipynb Jupyter Notebook within the  
Chapter05/Activity5.02 folder to implement this exercise.  
Then, load the dependencies for this exercise:

# importing the necessary dependencies

import json

import geoplotlib

from geoplotlib.colors import ColorMap

from geoplotlib.utils import BoundingBox

2. Since the geojson method of geoplotlib only needs a path to the us_states.
json dataset instead of a DataFrame or object, we don't need to load it. 
However, since we still want to see what kind of data we are handling, we must 
open the GeoJSON file and load it as a json object. We can then access its 
members using simple indexing:

# displaying the fourth entry of the states dataset

with open('../../Datasets/us_states.json') as data:

    dataset = json.load(data)

   

    fourth_state = dataset.get('features')[3]

   

    # only showing one coordinate instead of all points

    fourth_state['geometry']['coordinates'] = \

        fourth_state['geometry']['coordinates'][0][0]

    print(json.dumps(fourth_state, indent=4))
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Our dataset contains a few properties. Only the state name, NAME, and the 
number of consensus areas, CENSUSAREA, are important for us in this exercise.

Note

Geospatial applications prefer GeoJSON files for persisting and exchanging 
geographical data.

3. Extract the names of all the states of the USA from the dataset. Next, print the 
number of states in the dataset and then print all the states as a list:

# listing the states in the dataset

with open('../../Datasets/us_states.json') as data:

    dataset = json.load(data)

   

    states = [feature['properties']['NAME'] for feature in \

             dataset.get('features')]

    print('Number of states:', len(states))

    print(states)

The following figure shows the output of the preceding code:

Figure 5.14: List of all cities in the US
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4. If your GeoJSON file is valid, that is, if it has the expected structure, then use the 
geojson method of geoplotlib. Create a GeoJSON plot using the geojson() 
method of geoplotlib:

# plotting the information from the geojson file

geoplotlib.geojson('../../Datasets/us_states.json')

geoplotlib.show()

After calling the show method, the map will show up with a focus on North 
America. In the following diagram, we can already see the borders of each state:

 

Figure 5.15: Map with outlines of the states plotted
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5. Rather than assigning a single value to each state, we want the darkness to 
represent the number of census areas. To do this, we have to provide a method 
for the color property. Map the CENSUSAREA attribute to a ColorMap class 
object with 10 levels to allow a good distribution of color. Provide a maxvalue 
of 300000 to the to_color method to define the upper limit of our dataset:

cmap = ColorMap('Reds', alpha=255, levels=10)

def get_color(properties):

    return cmap.to_color(properties[CENSUSAREA], \

                         maxvalue=300000,scale='lin')

As you can see in the code example, we can provide three arguments to our 
ColorMap. The first one, 'Reds', in our case, defines the basic coloring 
scheme. The alpha argument defines how opaque we want the color to be, 
255 being 100% opaque, and 0 completely invisible. Those 8-bit values for the 
Red, Green, Blue, and Alpha (RGBA) values are commonly used in styling: they 
all range from 0 to 255. With the levels argument, we can define how many 
"steps," that is, levels of red values, we can map to.

6. Use the us_states.json file in the Datasets folder to visualize the different 
states. First, provide the color mapping to our color parameter and set the 
fill parameter to True. Then, draw a black outline for each state. Use the 
color argument and provide the RGBA value for black. Lastly, use the USA 
constant of the BoundingBox class to set the bounding box:

"""

plotting the shaded states and adding another layer which plots the 
state outlines in white
our BoundingBox should focus the USA

"""

geoplotlib.geojson('../../Datasets/us_states.json', \

                   fill=True, color=get_color)

geoplotlib.geojson('../../Datasets/us_states.json', \

                   fill=False, color=[0, 0, 0, 255])

geoplotlib.set_bbox(BoundingBox.USA)

geoplotlib.show()
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After executing the preceding steps, the expected output is as follows:

Figure 5.16: Choropleth visualization showing census areas in different states

A new window will open, displaying the country, USA, with the areas of its  
states filled with different shades of red. The darker areas represent higher  
census areas.

7. To give the user some more information about this plot, use the f_tooltip 
argument to provide a tooltip displaying the name and census area value of the 
state currently hovered over:

# adding the f_tooltip that

geoplotlib.geojson('../../Datasets/us_states.json', \

                   fill=True, color=get_color, \

                   f_tooltip=lambda properties: \

                             properties['NAME'] \

                             + ' - Census Areas: ' \

                             + str(properties['CENSUSAREA']))
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geoplotlib.geojson('../../Datasets/us_states.json', \

                   fill=False, color=[0, 0, 0, 255])

geoplotlib.set_bbox(BoundingBox.USA)

geoplotlib.show()

The following is the output of the preceding code:

Figure 5.17: A choropleth visualization showing the census  
area value of the state hovered over

Upon hovering, we will get a tooltip for each of the plotted areas displaying the 
name of the state and the census area value.

Note

To access the source code for this specific section, please refer to  
https://packt.live/30PX9Rh.

This section does not currently have an online interactive example, and will 
need to be run locally.

https://packt.live/30PX9Rh
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You've already built different plots and visualizations using geoplotlib. In this exercise, 
we looked at displaying data from a GeoJSON file and creating a choropleth plot.

In the following topics, we will cover more advanced customizations that will give you 
the tools to create more powerful visualizations.

Tile Providers
geoplotlib supports the use of different tile providers. This means that any 
OpenStreetMap tile server can be used as a backdrop for our visualization. Some of 
the popular free tile providers include Stamen Watercolor, Stamen Toner, Stamen 
Toner Lite, and DarkMatter. Changing the tile provider can be done in two ways:

• Make use of built-in tile providers:

geoplotlib contains a few built-in tile providers with shortcuts. The following code 
shows you how to use it:

geoplotlib.tiles_provider('darkmatter')

• Provide a custom object to the tiles_provider method:

By providing a custom object to geoplotlib's tiles_provider() method, you 
will not only get access to the url parameter from which the map tiles are being 
loaded but also see the attribution parameter displayed in the lower-right 
corner of the visualization. We are also able to set a distinct caching directory 
for the downloaded tiles. The following code demonstrates how to provide a 
custom object:

geoplotlib.tiles_provider({\

                           'url': lambda zoom, \

                           xtile, ytile:

                           'http://a.tile.stamen.com/'\

                           'watercolor/%d/%d/%d.png' \

                           % (zoom, xtile, ytile),\

                           'tiles_dir': 'tiles_dir',

                           'attribution': \

                           'Python Data Visualization | Packt'\

})
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The caching in tiles_dir is mandatory since, each time the map is scrolled or 
zoomed into, we query new map tiles if they are not already downloaded. This 
can lead to the tile provider refusing your request due to too many requests 
occurring in a short period of time.

In the following exercise, we'll take a quick look at how to switch the map tile 
provider. It might not seem convincing at first, but it can take your visualizations to 
the next level if leveraged correctly.

Exercise 5.03: Visually Comparing Different Tile Providers

In this exercise, we will switch the map tile provider for our visualizations. 
geoplotlib provides mappings for some of the most popular available map tiles. 
However, we can also provide a custom object that contains the url of some tile 
providers.

The following are the steps to perform the exercise:

1. Create an Exercise5.03.ipynb Jupyter Notebook within the  
Chapter05/Exercise5.03 folder to implement this exercise. Import the 
necessary dependencies:

import geoplotlib

We won't use a dataset in this exercise since we want to focus on the map tiles 
and tile providers.

2. Display the map with the default tile provider:

geoplotlib.show()
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The following figure shows the output of the preceding code:

Figure 5.18: World map with the default tile provider

This will display an empty world map since we haven't specified a tile provider. 
By default, it will use the CartoDB Positron map tiles.
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3. Use the tiles_provider method and provide the 'darkmatter' tiles:

# using map tiles from the dark matter tile provider

geoplotlib.tiles_provider('darkmatter')

geoplotlib.show()

geoplotlib provides several shorthand accessors to common map tile providers. 
The following figure shows the output:

Figure 5.19: World map with darkmatter map tiles
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In this example, we used the darkmatter map tiles. As you can see, they are 
very dark and will make your visualizations pop out.

Note

We can also use different map tiles such as watercolor, toner,  
toner-lite, and positron in a similar way.

4. Use the attribution element of the tiles_provider argument object (the 
entity passed to the method) to provide a custom attribution:

geoplotlib.tiles_provider({

                           'url': lambda zoom, \

                           xtile, ytile: \

                           'http://a.tile.openstreetmap.fr/'\

                           'hot/%d/%d/%d.png' \

                           % (zoom, xtile, ytile),\

                           'tiles_dir': 'custom_tiles',

                           'attribution': 'Custom Tiles '\

                            'Provider – Humanitarian map style'\

})

geoplotlib.show()
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The following figure shows the output of the preceding code:

Figure 5.20: Humanitarian map tiles from the custom tile providers object
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Some map tile providers have strict request limits, so you may see warning 
messages if you're zooming in too fast.

Note

To access the source code for this specific section, please refer to  
https://packt.live/3e6WjTT.

This section does not currently have an online interactive example, and will 
need to be run locally.

You now know how to change the tile provider to give your visualization one more 
layer of customizability. This also introduces us to another layer of complexity. It 
all depends on the concept of our final product and whether we want to use the 
"default" map tiles or some artistic map tiles.

The next section will cover how to create custom layers that can go far beyond 
the ones we have described in this book. We'll look at the basic structure of the 
BaseLayer class and what it takes to create a custom layer.

Custom Layers
Now that we have covered the basics of visualizing geospatial data with built-in 
layers and methods to change the tile provider, we will now focus on defining our 
custom layers. Custom layers allow you to create more complex data visualizations. 
They also help with adding more interactivity and animation to them. Creating a 
custom layer starts by defining a new class that extends the BaseLayer class that's 
provided by geoplotlib. Besides the __init__ method, which initializes the class 
level variables, we also have to, at the very least, extend the draw method of the 
BaseLayer class already provided.

Depending on the nature of your visualization, you might also want to implement 
the invalidate method, which takes care of map projection changes such as 
zooming into your visualization. Both the draw and invalidate methods receive 
a Projection object that takes care of the latitude and longitude mapping on our 
two-dimensional viewport. These mapped points can be handed to an instance of a 
BatchPainter object that provides primitives such as points, lines, and shapes to 
draw those coordinates onto your map.

https://packt.live/3e6WjTT
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An example of a custom layer, comparable to what we will create, is this program, 
which plots the cities of a selected country as dots on the map. We have a given list of 
possible countries and can switch through them using the arrow keys:

# importing the necessary dependencies

import pyglet

from geoplotlib.layers import BaseLayer

from geoplotlib.core import BatchPainter

countries = ['be', 'ch', 'de', 'es', 'fr', 'it', 'nl', 'pt']

class CountrySelectLayer(BaseLayer):

    def __init__(self, data, bbox=BoundingBox.WORLD):

        self.data = data

        self.view = bbox

       

        # start with germany

        self.country_num = 0

       

    def invalidate(self, proj):

        country_data = \

                       self.data[self.data['Country'] \

                       == countries[self.country_num]]

        self.painter = BatchPainter()

       

        x, y = proj.lonlat_to_screen(country_data['lon'], \

               country_data['lat'])

        self.painter.points(x, y, 2)

    def draw(self, proj, mouse_x, mouse_y, ui_manager):

        self.painter.batch_draw()

       

    def draw(self, proj, mouse_x, mouse_y, ui_manager): 

        self.painter.batch_draw()

        ui_manager.info('Displaying cities in {}'.format\

                       (countries[self.country_num]))

       

    def on_key_release(self, key, modifiers):

        if key == pyglet.window.key.RIGHT:
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            self.country_num = (self.country_num + 1) \

                               % len(countries)

            return True

        elif key == pyglet.window.key.LEFT:

            self.country_num = (self.country_num - 1) \

                               % len(countries)

            return True

           

        return False

    # bounding box that gets used when layer is created

    def bbox(self):

        return self.view

europe_bbox = BoundingBox(north=68.574309, \

                          west=-25.298424, \

                          south=34.266013, \

                          east=47.387123)

geoplotlib.add_layer(CountrySelectLayer(dataset, europe_bbox))

geoplotlib.show()

As we've seen several times before, we first import all the necessary dependencies for 
this plot, including geoplotlib. BaseLayer and BatchPainter are dependencies 
we haven't seen before, since they are only needed when writing custom layers.

BaseLayer is a class provided by geoplotlib that is extended by our custom Layer 
class. This concept is called inheritance. This means that our custom class has access 
to all the properties and methods defined in the BaseLayer class. This is necessary 
since geoplotlib requires a predefined structure for layers to make them plottable.

The BatchPainter class is another helper for our implementation that lets us 
trigger the drawing of elements onto the map.

When creating the custom layer, we simply provide the BaseLayer class in the 
parentheses to tell Python to extend the given class.

The class then needs to implement at least two of the provided methods,  
__init__ and draw.

__init__ defines what happens when a new custom layer is instantiated. This is 
used to set the state of our layer; here, we define values such as our data to be used 
and create a new BatchPainter class.



Custom Layers | 291

The draw method is called every frame and draws the defined elements using the 
BatchPainter class.

In this method, we can do all sorts of calculations such as, in this case, filtering our 
dataset to only contain the values of the current active timestamp. In addition to that, 
we make the viewport follow our current lat and lon values by fitting the projection 
to a new BoundingBox.

Since we don't want to draw everything from scratch with every frame, we use the 
invalidate method, which only updates the points on the viewport. For example, 
changes such as zooming.

When using interaction elements, such as switching through our countries using 
the arrow keys, we can return either True or False from the on_key_pressed 
method to trigger the redrawing of all the points.

Once our class is defined, we can call the add_layer method of geoplotlib to add 
the newly defined layer to our visualization and finally call show() to show the map.

When executing the preceding example code, we get a visualization that, upon 
switching the selected country with the arrow keys, draws the cities for the selected 
country using dots on the map:

Figure 5.21: The selection of cities in Germany



292 | Plotting Geospatial Data

The following figure shows the cities in Spain after changing the selected country 
using the arrow keys:

Figure 5.22: The selection of cities in Spain after changing the country using the arrow keys

In the following exercise, we will create our animated visualization by using what 
we've learned about custom layers in the preceding example.

Note

Since geoplotlib operates on OpenGL, this process is highly performant and 
can even draw complex visualizations quickly.

Exercise 5.04: Plotting the Movement of an Aircraft with a Custom Layer

In this exercise, we will create a custom layer to display geospatial data and also 
animate your data points over time. We'll get a deeper understanding of how 
geoplotlib works and how layers are created and drawn. Our dataset contains both 
spatial and temporal information, which enables us to plot the flight's movement 
overtime on our map.
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Let's create a custom layer that will allow us to display geospatial data and animate 
the data points over time:

1. Import pandas for the data import:

# importing the necessary dependencies

import pandas as pd

2. Use the read_csv method of pandas to load the flight_tracking.csv 
dataset from the Datasets folder:

dataset = pd.read_csv('../../Datasets/flight_tracking.csv')

3. Use the head method to list the first five rows of the dataset and to understand 
the columns:

# displaying the first 5 rows of the dataset

dataset.head()

 

Figure 5.23: The first five elements of the dataset

4. Rename the latitude and longitude columns to lat and lon by using the 
rename method provided by pandas:

# renaming columns latitude to lat and longitude to lon

dataset = dataset.rename(index=str, \

          columns={"latitude": "lat", "longitude": "lon"})

Take another look at the first five elements of the dataset, and observe that the 
names of the columns have changed to lat and lon:

# displaying the first 5 rows of the dataset

dataset.head()

Figure 5.24: The dataset with the lat and lon columns
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5. Since we want to get a visualization over time in this activity, we need to work 
with date and time. If we take a closer look at our dataset, it shows us that 
date and time are separated into two columns. Combine date and time into 
a timestamp, using the to_epoch method already provided:

# method to convert date and time to an unix timestamp

from datetime import datetime

def to_epoch(date, time):

    try:

        timestamp = round(datetime.strptime('{} {}'.\

                    format(date, time), \

                    '%Y/%m/%d %H:%M:%S.%f').timestamp())

        return timestamp

    except ValueError:

        return round(datetime.strptime('2017/09/11 17:02:06.418', \

                     '%Y/%m/%d %H:%M:%S.%f').timestamp())

6. Use to_epoch and the apply method provided by the pandas DataFrame to 
create a new column called timestamp that holds the Unix timestamp:

"""

create a new column called timestamp with the to_epoch method applied

"""

dataset['timestamp'] = dataset.apply(lambda x: to_epoch\

                                    (x['date'], x['time']), \

                                    axis=1)

7. Take another look at our dataset. We now have a new column that holds the 
Unix timestamps:

# displaying the first 5 rows of the dataset

dataset.head()

 

Figure 5.25: The dataset with a timestamp column added



Custom Layers | 295

Since our dataset is now ready to be used with all the necessary columns 
in place, we can start writing our custom layer. This layer will display each 
point once it reaches the timestamp that's provided in the dataset. It will be 
displayed for a few seconds before it disappears. We'll need to keep track of the 
current timestamp in our custom layer. Consolidating what we learned in the 
theoretical section of this topic, we have an __init__ method that constructs 
our custom TrackLayer.

8. In the draw method, filter the dataset for all the elements that are in the 
mentioned time range and use each element of the filtered list to display it on 
the map with color that's provided by the colorbrewer method.

Since our dataset only contains data from a specific time range and we're always 
incrementing the time, we want to check whether there are still any elements 
with timestamps after the current timestamp. If not, we want to set our 
current timestamp to the earliest timestamp that's available in the dataset. The 
following code shows how we can create a custom layer:

# custom layer creation

import geoplotlib

from geoplotlib.layers import BaseLayer

from geoplotlib.core import BatchPainter

from geoplotlib.colors import colorbrewer

from geoplotlib.utils import epoch_to_str, BoundingBox

class TrackLayer(BaseLayer):

    def __init__(self, dataset, bbox=BoundingBox.WORLD):

        self.data = dataset

        self.cmap = colorbrewer(self.data['hex_ident'], \

                                alpha=200)

        self.time = self.data['timestamp'].min()

        self.painter = BatchPainter()

        self.view = bbox

    def draw(self, proj, mouse_x, mouse_y, ui_manager):

        self.painter = BatchPainter()

        df = self.data.where((self.data['timestamp'] \

                              > self.time) \

                              & (self.data['timestamp'] \

                              <= self.time + 180))
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        for element in set(df['hex_ident']):

            grp = df.where(df['hex_ident'] == element)

            self.painter.set_color(self.cmap[element])

            x, y = proj.lonlat_to_screen(grp['lon'], grp['lat'])

            self.painter.points(x, y, 15, rounded=True)

        self.time += 1

        if self.time > self.data['timestamp'].max():

            self.time = self.data['timestamp'].min()

        self.painter.batch_draw()

        ui_manager.info('Current timestamp: {}'.\

                        format(epoch_to_str(self.time)))

       

    # bounding box that gets used when the layer is created

    def bbox(self):

        return self.view

9. Define a custom BoundingBox that focuses our view on this area, since the 
dataset only contains data from the area around Leeds in the UK:

# bounding box for our view on Leeds

from geoplotlib.utils import BoundingBox

leeds_bbox = BoundingBox(north=53.8074, \

                         west=-3, \

                         south=53.7074 , \

                         east=0)

10. geoplotlib sometimes requires you to provide a DataAccessObject 
class instead of a pandas DataFrame. Use geoplotlib to convert any pandas 
DataFrame into a DataAccessObject class:

# displaying our custom layer using add_layer

from geoplotlib.utils import DataAccessObject

data = DataAccessObject(dataset)

geoplotlib.add_layer(TrackLayer(data, bbox=leeds_bbox))

geoplotlib.show()
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The following is the output of the preceding code:

Figure 5.26: Final animated tracking map that displays the routes of the aircraft



298 | Plotting Geospatial Data

Note

To access the source code for this specific section, please refer to  
https://packt.live/3htmztU.

This section does not currently have an online interactive example, and will 
need to be run locally.

You have now completed the custom layer activity using geoplotlib. We've applied 
several preprocessing steps to shape the dataset as we want to have it. We've also 
written a custom layer to display spatial data in the temporal space. Our custom layer 
even has a level of animation. This is something we'll look into more in the following 
chapter about Bokeh. We will now implement an activity that will help us get more 
acquainted with custom layers in Bokeh.

Activity 5.02: Visualizing City Density by the First Letter Using an Interactive 

Custom Layer

In this last activity for geoplotlib, you'll combine all the methodologies learned in the 
previous exercises and the activity to create an interactive visualization that displays 
the cities that start with a given letter, by merely pressing the left and right arrow keys 
on your keyboard.

Since we use the same setup to create custom layers as the library does, you will be 
able to understand the library implementations of most of the layers provided by 
geoplotlib after this activity.

1. Create an Activity5.02.ipynb Jupyter Notebook within the  
Chapter05/Activity5.02 folder to implement this activity.

2. Import the dependencies.

3. Load the world_cities_pop.csv dataset from the Datasets folder using 
pandas and look at the first five rows to understand its structure.

4. Map the Latitude and Longitude columns to lat and lon.

5. Filter the dataset to only contain European cities by using the given europe_
country_codes list.

https://packt.live/3htmztU
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6. Compare the length of all data with the filtered data of Europe by printing the 
length of both.

7. Filter down the European dataset to get a dataset that only contains cities that 
start with the letter Z.

8. Print its length and the first five rows using the head method.

9. Create a dot density plot with a tooltip that shows the country code and the 
name of the city separated by a -. Use the DataAccessObject to create a 
copy of our dataset, which allows the use of f_tooltip. The following is the 
expected output of the dot density plot:

Figure 5.27: Cities starting with a Z in Europe as dots
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10. Create a Voronoi plot with the same dataset that only contains cities that start 
with Z. Use the 'Reds_r' color map and set the alpha value to 50 to make 
sure you still see the map tiles. The following is the expected output of the 
Voronoi plot:

Figure 5.28: Voronoi visualization of cities starting with a Z in Europe

11. Create a custom layer that plots all the cities in Europe dataset that starts with 
the provided letter. Make it interactive so that by using the left and right arrow 
keys, we can switch between the letters. To do that, first, filter the self.data 
dataset in the invalidate method using the current letter acquired from the 
start_letters array using self.start_letter indexing.

12. Create a new BatchPainter() function and project the lon and lat values 
to x and y values. Use the BatchPainter function to paint the points on the 
map with a size of 2.



Custom Layers | 301

13. Call the batch_draw() method in the draw method and use the ui_
manager to add an info dialog to the screen telling the user which starting 
letter is currently being used.

14. Check which key is pressed using pyglet: pyglet.window.key.RIGHT. If 
the right or left key is pressed, increment or decrement the start_letter 
value of the FilterLayer class accordingly. (Use modulo to allow rotation, 
which should happen when A->Z or Z->A). Make sure that you return True in 
the on_key_release method if you changed the start_letter to trigger a 
redrawing of the points.

15. Add the custom layer using the add_layer method and provide the given 
europe_bbox as a BoundingBox class.

The following is the expected output of the custom filter layer:

Figure 5.29: A custom filter layer displaying European cities starting with A
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If we press the right arrow twice, we will see the cities starting with C instead:

Figure 5.30: A custom filter layer displaying European cities starting with C

Note

The solution for this activity can be found via this link.

This last activity has a custom layer that uses all the properties described by 
geoplotlib. All of the already provided layers by geoplotlib are created using the same 
structure. This means that you're now able to dig into the source code and create 
your own advanced layers.
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Summary
In this chapter, we covered basic and advanced concepts and methods of geoplotlib. 
It gave us a quick insight into internal processes, and we learned how to practically 
apply the library to our own problem statements. Most of the time, the built-in plots 
should suit your needs pretty well. If you're interested in building animated or even 
interactive visualizations, you will have to create custom layers that enable  
those features.

In the following chapter, we'll get some hands-on experience with the Bokeh library 
and build visualizations that can easily be integrated into web pages. Once we have 
finished using Bokeh, we'll conclude the chapter with an activity that allows you to 
work with a new dataset and a library of your choice so that you can come up with 
your very own visualization. 





Overview

In this chapter, we will design interactive plots using the Bokeh library. By 
the end of this chapter, you will be able to use Bokeh to create insightful 
web-based visualizations and explain the difference between two interfaces 
for plotting. You will identify when to use the Bokeh server and create 
interactive visualizations.

Making Things Interactive 

with Bokeh

6
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Introduction
Bokeh is an interactive visualization library focused on modern browsers and the 
web. Other than Matplotlib or geoplotlib, the plots and visualizations we are going to 
create in this chapter will be based on JavaScript widgets. Bokeh allows us to create 
visually appealing plots and graphs nearly out of the box without much styling. In 
addition to that, it helps us construct performant interactive dashboards based on 
large static datasets or even streaming data.

Bokeh has been around since 2013, with version 1.4.0 being released in November 
2019. It targets modern web browsers to present interactive visualizations to users 
rather than static images. The following are some of the features of Bokeh:

• Simple visualizations: Through its different interfaces, it targets users of many 
skill levels, providing an API for quick and straightforward visualizations as well 
as more complex and extremely customizable ones.

• Excellent animated visualizations: It provides high performance and can, 
therefore, work on large or even streaming datasets, which makes it the go-to 
choice for animated visualizations and data analysis.

• Inter-visualization interactivity: This is a web-based approach; it's easy to 
combine several plots and create unique and impactful dashboards  
with visualizations that can be interconnected to create  
inter-visualization interactivity.

• Supports multiple languages: Other than Matplotlib and geoplotlib, Bokeh has 
libraries for both Python and JavaScript, in addition to several other  
popular languages.

• Multiple ways to perform a task: Adding interactivity to Bokeh visualizations 
can be done in several ways. The simplest built-in way is the ability to zoom and 
pan in and out of your visualization. This gives the users better control of what 
they want to see. It also allows users to filter and transform the data.

• Beautiful chart styling: The tech stack is based on Tornado in the backend 
and is powered by D3 in the frontend. D3 is a JavaScript library for creating 
outstanding visualizations. Using the underlying D3 visuals allows us to create 
beautiful plots without much custom styling.

Since we are using Jupyter Notebook throughout this book, it's worth mentioning that 
Bokeh, including its interactivity, is natively supported in Notebook.
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Concepts of Bokeh

The basic concept of Bokeh is, in some ways, comparable to that of Matplotlib. In 
Bokeh, we have a figure as our root element, which has sub-elements such as a title, 
an axis, and glyphs. Glyphs have to be added to a figure, which can take on different 
shapes, such as circles, bars, and triangles. The following hierarchy shows the 
different concepts of Bokeh:

Figure 6.1: Concepts of Bokeh
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Interfaces in Bokeh

The interface-based approach provides different levels of complexity for users that 
either want to create some basic plots with very few customizable parameters or 
want full control over their visualizations to customize every single element of their 
plots. This layered approach is divided into two levels:

• Plotting: This layer is customizable.

• Models interface: This layer is complex and provides an open approach to 
designing charts.

Note

The models interface is the basic building block for all plots.

The following are the two levels of the layered approach to interfaces:

• bokeh.plotting

This mid-level interface has a somewhat comparable API to Matplotlib. The 
workflow is to create a figure and then enrich this figure with different glyphs 
that render data points in the figure. As in Matplotlib, the composition of 
sub-elements such as axes, grids, and the inspector (which provide basic ways 
of exploring your data through zooming, panning, and hovering) is done without 
additional configuration.

The vital thing to note here is that even though its setup is done automatically, 
we can configure the sub-elements. When using this interface, the creation of 
the scene graph used by BokehJS is handled automatically too.

• bokeh.models

This low-level interface is composed of two libraries: the JavaScript library called 
BokehJS, which gets used for displaying the charts in the browser, and the core 
plot creation Python code, which provides the developer interface. Internally, the 
definition created in Python creates JSON objects that hold the declaration for 
the JavaScript representation in the browser.



Introduction | 309

The models interface provides complete control over how Bokeh plots and 
widgets (elements that enable users to interact with the data displayed) are 
assembled and configured. This means that it is up to the developer to ensure 
the correctness of the scene graph (a collection of objects describing 
the visualization).

Output

Outputting Bokeh charts is straightforward. There are three ways this can be done:

• The .show() method: The primary option is to display the plot in an HTML page 
using this method.

• The inline .show() method: When using inline plotting with a Jupyter 
Notebook, the .show() method will allow you to display the chart inside  
your Notebook.

• The .output_file() method: You're also able to directly save the 
visualization to a file without any overhead using the .output_file() 
method. This will create a new file at the given path with a given name.

The most powerful way of providing your visualization is through the use of the 
Bokeh server.

Bokeh Server

Bokeh creates scene graph JSON objects that will be interpreted by the BokehJS 
library to create the visualization output. This process gives you a unified format for 
other languages to create the same Bokeh plots and visualizations, independently of 
the language used.

To create more complex visualizations and leverage the tooling provided by Python, 
we need a way to keep our visualizations in sync with one another. This way, we can 
not only filter data but also do calculations and operations on the server-side, which 
updates the visualizations in real-time.

In addition to that, since we will have an entry point for data, we can create 
visualizations that get fed by streams instead of static datasets. This design provides a 
way to develop more complex systems with even greater capabilities.
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Looking at the scheme of this architecture, we can see that the documents are 
provided on the server-side, then moved over to the browser, which then inserts 
it into the BokehJS library. This insertion will trigger the interpretation by BokehJS, 
which will then create the visualization. The following diagram describes how the 
Bokeh server works:

Figure 6.2: The Bokeh server

Presentation

In Bokeh, presentations help make the visualization more interactive by using 
different features, such as interactions, styling, tools, and layouts.

Interactions

Probably the most exciting feature of Bokeh is its interactions. There are two types of 
interactions: passive and active.
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Passive interactions are actions that the users can take that doesn't change the 
dataset. In Bokeh, this is called the inspector. As we mentioned before, the inspector 
contains attributes such as zooming, panning, and hovering over data. This tooling 
allows the user to inspect the data in more detail and might provide better insights 
by allowing the user to observe a zoomed-in subset of the visualized data points. The 
elements highlighted with a box in the following figure show the essential passive 
interaction elements provided by Bokeh. They include zooming, panning, and  
clipping data.

Figure 6.3: Example of passive interaction zooming

Active interactions are actions that directly change the displayed data. This includes 
actions such as selecting subsets of data or filtering the dataset based on parameters. 
Widgets are the most prominent of active interactions since they allow users to 
manipulate the displayed data with handlers. Examples of available widgets are 
buttons, sliders, and checkboxes. 



312 | Making Things Interactive with Bokeh

Referring back to the subsection about the output styles, these widgets can be 
used in both the so-called standalone applications in the browser and the Bokeh 
server. This will help us consolidate the recently learned theoretical concepts and 
make things more transparent. Some of the interactions in Bokeh are tab panes, 
dropdowns, multi-selects, radio groups, text inputs, check button groups, data tables, 
and sliders. The elements highlighted with a red box in the following figure show a 
custom active interaction widget for the same plot we looked at in the example of 
passive interaction.

Figure 6.4: Example of custom active interaction widgets
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Integrating

Embedding Bokeh visualizations can take two forms:

• HTML document: These are the standalone HTML documents. These 
documents are self-contained, which means that all the necessary dependencies 
of Bokeh are part of the generated HTML document. This format is simple to 
generate and can be sent to clients or quickly displayed on a web page.

• Bokeh applications: Backed by a Bokeh server, these provide the possibility to 
connect to, for example, Python tooling for more advanced visualizations.

Bokeh is a little bit more complicated than Matplotlib with Seaborn and has its 
drawbacks like every other library. Once you have the basic workflow down, however, 
you're able to quickly extend basic visualizations with interactivity features to give 
power to the user.

Note

One interesting feature is the to_bokeh method, which allows you to 
plot Matplotlib figures with Bokeh without configuration overhead. Further 
information about this method is available at https://bokeh.pydata.org/
en/0.12.3/docs/user_guide/compat.html.

In the following exercises and activities, we'll consolidate the theoretical knowledge 
and build several simple visualizations to explain Bokeh and its two interfaces. 
After we've covered the basic usage, we will compare the plotting and models 
interfaces and work with widgets that add interactivity to the visualizations.

https://bokeh.pydata.org/en/0.12.3/docs/user_guide/compat.html
https://bokeh.pydata.org/en/0.12.3/docs/user_guide/compat.html
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Basic Plotting
As mentioned before, the plotting interface of Bokeh gives us a higher-level 
abstraction, which allows us to quickly visualize data points on a grid.

To create a new plot, we have to define our imports to load the  
necessary dependencies:

# importing the necessary dependencies

import pandas as pd

from bokeh.plotting import figure, show

from bokeh.io import output_notebook

output_notebook()

Before we can create a plot, we need to import the dataset. In the examples in this 
chapter, we will work with a computer hardware dataset. It can be imported by using 
pandas' read_csv method.

# loading the Dataset with pandas

dataset = pd.read_csv('../../Datasets/computer_hardware.csv')

The basic flow when using the plotting interface is comparable to that of 
Matplotlib. We first create a figure. This figure is then used as a container to define 
elements and call methods on:

# adding an index column to use it for the x-axis

dataset['index'] = dataset.index

# plotting the cache memory levels as line

plot = figure(title='Cache per Hardware', \

              x_axis_label='Hardware index', \

              y_axis_label='Cache Memory')

plot.line(dataset['index'], dataset['cach'], line_width=5)

show(plot)

Once we have created a new figure instance using the imported figure() method, 
we can use it to draw lines, circles, or any glyph objects that Bokeh offers. Note that 
the first two arguments of the plot.line method is datasets that contain an equal 
number of elements to plot the element.
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To display the plot, we then call the show() method we imported from the bokeh.
plotting interface earlier on. The following figure shows the output of the 
preceding code:

Figure 6.5: Line plot showing the cache memory of different hardware
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Since the interface of different plotting types is unified, scatter plots can be created in 
the same way as line plots:

# plotting the hardware cache as dots

plot = figure(title='Cache per Hardware', \

              x_axis_label='Hardware', \

              y_axis_label='Cache Memory')

plot.scatter(dataset['index'], dataset['cach'], size=5, color='red')

show(plot)

The following figure shows the output of the preceding code:

Figure 6.6: Scatter plot showing the cache memory of different hardware
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In many cases, a visualization will have several attributes of a dataset plotted. A 
legend will help users understand which attributes they are looking at. Legends 
display a mapping between, for example, lines in the plot and according to 
information such as the hardware cache memory.

By adding a legend_label argument to the plot calls like plot.line(), we get a 
small box containing the information in the top-right corner (by default):

# plotting cache memory and cycle time with legend

plot = figure(title='Attributes per Hardware', \

              x_axis_label='Hardware index', \

              y_axis_label='Attribute Value')

plot.line(dataset['index'], dataset['cach'], \

          line_width=5, legend_label='Cache Memory')

plot.line(dataset['index'], dataset['myct'], line_width=5, \

          color='red', legend_label='Cycle time in ns')

show(plot)
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The following figure shows the output of the preceding code:

Figure 6.7: Line plots displaying the cache memory and cycle time per  
hardware with the legend
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When looking at the preceding example, we can see that once we have several lines, 
the visualization can get cluttered.

We can give the user the ability to mute, meaning defocus, the clicked element in  
the legend.

Adding a muted_alpha argument to the line plotting and adding a click_policy 
of mute to our legend element are the only two steps needed:

# adding mutability to the legend

plot = figure(title='Attributes per Hardware', \

              x_axis_label='Hardware index', \

              y_axis_label='Attribute Value')

plot.line(dataset['index'], dataset['cach'], line_width=5, \

          legend_label='Cache Memory', muted_alpha=0.2)

plot.line(dataset['index'], dataset['myct'], line_width=5, \

          color='red', legend_label='Cycle time in ns', \

          muted_alpha=0.2)

plot.legend.click_policy="mute"

show(plot)
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The following figure shows the output of the preceding code:

Figure 6.8: Line plots displaying the cache memory and cycle time per hardware with a 
mutable legend; cycle time is also muted
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Next, we will do an exercise to plot the graph using Bokeh.

Note

All the exercises and activities in this chapter are developed using  
Jupyter Notebook. The files can be downloaded from the following link: 
https://packt.live/39txwH5. All the datasets used in this chapter can be found 
at https://packt.live/3bzApYN.

Exercise 6.01: Plotting with Bokeh

In this exercise, we want to use bokeh.plotting interface, which is focused on 
providing a simple interface for quick visualization creation. We will use world_
population dataset. This dataset shows the population of different countries over 
the years. Follow these steps:

1. Create an Exercise6.01.ipynb Jupyter notebook within the Chapter06/
Exercise6.01 folder.

2. Import the figure (which will initialize a plot) and the show method (which 
displays the plot) from plotting our library:

import pandas as pd

from bokeh.plotting import figure, show

3. Import and call the output_notebook method from the io interface of Bokeh 
to display the plots inside a Jupyter Notebook:

from bokeh.io import output_notebook

output_notebook()

4. Use pandas to load the world_population dataset:

dataset = pd.read_csv('../../Datasets/world_population.csv', \

                      index_col=0)

5. Verify that our data has been successfully loaded by calling head on  
our DataFrame:

dataset.head()

https://packt.live/39txwH5
https://packt.live/3bzApYN
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The following figure shows the output:

Figure 6.9: Loading the top five rows of the world_population dataset  
using the head method
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6. Populate our x-axis and y-axis with some data extraction. The x-axis will hold all 
the years that are present in our columns. The y-axis will hold the population 
density values of the countries. Start with Germany:

# preparing our data for Germany

years = [year for year in dataset.columns if not year[0].isalpha()]

de_vals = [dataset.loc[['Germany']][year] for year in years]

7. After extracting the necessary data, create a new plot by calling the Bokeh 
figure method. Provide parameters such as title, x_axis_label, and 
y_axis_label to define the descriptions displayed on our plot. Once our 
plot is created, we can add glyphs to it. Here, we will use a simple line. Set the 
legend_label parameter next to the x and y values to get an informative 
legend in our visualization:

"""

plotting the population density change in Germany in the given years

"""

plot = figure(title='Population Density of Germany', \

              x_axis_label='Year', \

              y_axis_label='Population Density')

plot.line(years, de_vals, line_width=2, legend_label='Germany')

show(plot)
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The following figure shows the output of the preceding code:

Figure 6.10: Creating a line plot from the population density data of Germany
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8. Now add another country—in this case, Switzerland. Use the same technique 
that we used with Germany to extract the data for Switzerland:

# preparing the data for the second country

ch_vals = [dataset.loc[['Switzerland']][year] for year in years]

9. We can add several layers of glyphs on to our figure plot. We can also 
stack different glyphs on top of one another, thus giving specific and data-
improved visuals. Add an orange line to the plot that displays the data from 
Switzerland. Also, plot orange circles for each data point of the ch_vals list 
and assign it the same legend_label to combine both representations, the 
line, and circles:

"""

plotting the data for Germany and Switzerland in one visualization, 
adding circles for each data point for Switzerland
"""

plot = \

figure(title='Population Density of Germany and Switzerland', \

       x_axis_label='Year', y_axis_label='Population Density')

plot.line(years, de_vals, line_width=2, legend_label='Germany')

plot.line(years, ch_vals, line_width=2, color='orange', legend_
label='Switzerland')
plot.circle(years, ch_vals, size=4, line_color='orange', \

            fill_color='white', legend_label='Switzerland')

show(plot)
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The following figure shows the output of the preceding code:

Figure 6.11: Adding Switzerland to the plot
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10. When looking at a larger amount of data for different countries, it makes sense 
to have a plot for each of them separately. Use gridplot layout:

"""

plotting the Germany and Switzerland plot in two different 
visualizations that are interconnected in terms of view port
"""

from bokeh.layouts import gridplot

plot_de = figure(title='Population Density of Germany', \

                 x_axis_label='Year', \

                 y_axis_label='Population Density', \

                 plot_height=300)

plot_ch = figure(title='Population Density of Switzerland', \

                 x_axis_label='Year', \

                 y_axis_label='Population Density', \

                 plot_height=300, x_range=plot_de.x_range, \

                 y_range=plot_de.y_range)

plot_de.line(years, de_vals, line_width=2)

plot_ch.line(years, ch_vals, line_width=2)

plot = gridplot([[plot_de, plot_ch]])

show(plot)

The following figure shows the output of the preceding code:

Figure 6.12: Using a gridplot to display the country plots next to each other
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11. Realign the plots vertically by passing a two-dimensional array to the  
gridplot method:

# plotting the preceding declared figures in a vertical manner

plot_v = gridplot([[plot_de], [plot_ch]])

show(plot_v)

The following screenshot shows the output of the preceding code:

Figure 6.13: Using the gridplot method to arrange the visualizations vertically
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Note

To access the source code for this specific section, please refer to  
https://packt.live/2Beg0KY.

You can also run this example online at https://packt.live/3e1Hbr0.

We have now covered the very basics of Bokeh. Using the plotting interface makes 
it easy to get some quick visualizations in place. This helps you understand the data 
you're working with.

This simplicity is achieved by abstracting away complexity, and we lose much control 
by using the plotting interface. In the next exercise, we'll compare the plotting 
and models interfaces to show you how much abstraction is added to plotting.

Let's implement an exercise to compare the plotting and models interfaces.

Exercise 6.02: Comparing the Plotting and Models Interfaces

In this exercise, we want to compare the plotting and models interfaces. We will 
compare them by creating a basic plot with the high-level plotting interface and 
then recreate this plot by using the lower-level models interface. This will show us 
the differences between these two interfaces and set us up for the next exercises, in 
which we will need to understand how to use the models interface. Follow  
these steps:

1. Create an Exercise6.02.ipynb Jupyter Notebook within the Chapter06/
Exercise6.02 folder to implement this exercise. 

2. Import the figure (which will initialize a plot) and the show method (which 
displays the plot). Also, import and call the output_notebook method from 
the io interface of Bokeh to plot inline:

import numpy as np

import pandas as pd

from bokeh.io import output_notebook

output_notebook()

https://packt.live/2Beg0KY
https://packt.live/3e1Hbr0
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3. Use pandas to load our world_population dataset:

dataset = pd.read_csv('../../Datasets/world_population.csv', \

                      index_col=0)

4. Call head on our DataFrame to verify that our data has been  
successfully loaded:

dataset.head()

The following screenshot shows the output of the preceding code:

Figure 6.14: Loading the top five rows of the world_population dataset  
using the head method
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5. Import figure and show to display our plot:

from bokeh.plotting import figure, show

6. Create three lists that have years present in the dataset, the mean population 
density for the whole dataset for each year, and the mean population density 
per year for Japan:

years = [year for year in dataset.columns if not year[0].isalpha()]

mean_pop_vals = [np.mean(dataset[year]) for year in years]

jp_vals = [dataset.loc[['Japan']][year] for year in years]

7. Use the plot element and apply our glyphs elements to it. Plot the global mean 
with a line and the mean of Japan with crosses. Set the legend location to the 
bottom-right corner:

plot = \

figure(title='Global Mean Population Density compared to Japan', \

       x_axis_label='Year', y_axis_label='Population Density')

plot.line(years, mean_pop_vals, line_width=2, \

          legend_label='Global Mean')

plot.cross(years, jp_vals, legend_label='Japan', line_color='red')

plot.legend.location = 'bottom_right'

show(plot)



332 | Making Things Interactive with Bokeh

The following screenshot shows the output of the preceding code:

Figure 6.15: Line plots comparing the global mean population density with that of Japan

As we can see in the preceding diagram, we have many elements already in 
place. This means that we already have the right x-axis labels, the matching 
range for the y-axis, and our legend is nicely placed in the upper-right corner 
without much configuration.
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Using the models Interface

The models interface is of a much lower level than other interfaces. We can 
already see this when looking at the list of imports we need for a  
comparable plot.

8. Import Grid, Plot, LinearAxis, RangeId, Line, Cross, 
ColumnDataSource, SingleIntervalTicker, YearsTicker, the 
Glyphrenderer, Title, Legend, and LegendItem from the submodules of 
the models interface:

# importing the models dependencies

from bokeh.io import show

from bokeh.models.grids import Grid

from bokeh.models.plots import Plot

from bokeh.models.axes import LinearAxis

from bokeh.models.ranges import Range1d

from bokeh.models.glyphs import Line, Cross

from bokeh.models.sources import ColumnDataSource

from bokeh.models.tickers import SingleIntervalTicker, YearsTicker

from bokeh.models.renderers import GlyphRenderer

from bokeh.models.annotations import Title, Legend, LegendItem

9. Before we build our plot, we have to find the min and max values for the y-axis 
since we don't want to have too large or too small a range of values. Get all the 
mean values for global and Japan without any invalid values. Get their smallest 
and largest values and pass them to the constructor of Range1d. For the x-axis, 
our list of years is pre-defined:

# defining the range for the x and y axis

extracted_mean_pop_vals = \

[val for i, val in enumerate(mean_pop_vals) \

 if i not in [0, len(mean_pop_vals) - 1]]

extracted_jp_vals = \

[jp_val['Japan'] for i, jp_val in enumerate(jp_vals) \

 if i not in [0, len(jp_vals) - 1]]

min_pop_density = min(extracted_mean_pop_vals)

min_jp_densitiy = min(extracted_jp_vals)

min_y = int(min(min_pop_density, min_jp_densitiy))

max_pop_density = max(extracted_mean_pop_vals)
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max_jp_densitiy = max(extracted_jp_vals)

max_y = int(max(max_jp_densitiy, max_pop_density))

xdr = Range1d(int(years[0]), int(years[-1]))

ydr = Range1d(min_y, max_y)

10. Next, create two Axis objects, which will be used to display the axis lines and 
the label for the axis. Since we also want ticks between the different values, pass 
in a Ticker object that creates this setup:

axis_def = dict(axis_line_color='#222222', axis_line_width=1, \

                major_tick_line_color='#222222', \

                major_label_text_color='#222222', \

                major_tick_line_width=1)

x_axis = LinearAxis(ticker = SingleIntervalTicker(interval=10), \

                    axis_label = 'Year', **axis_def)

y_axis = LinearAxis(ticker = SingleIntervalTicker(interval=50), \

                    axis_label = 'Population Density', **axis_def)

11. Create the title by passing a Title object to the title attribute of the  
Plot object:

# creating the plot object

title = \

Title(align = 'left', \

      text = 'Global Mean Population Density compared to Japan')

plot = Plot(x_range=xdr, y_range=ydr, plot_width=650, \

            plot_height=600, title=title)

12. Try to display our plot now by using the show method. Since we have no 
renderers defined at the moment, we will get an error. We need to add elements 
to our plot:

"""

error will be thrown because we are missing renderers that are 
created when adding elements
"""

show(plot)
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The following screenshot shows the output of the preceding code:

Figure 6.16: Empty plot with title

13. Insert the data into a DataSource object. This can then be used to map the 
data source to the glyph object that will be displayed in the plot:

# creating the data display

line_source = ColumnDataSource(dict(x=years, y=mean_pop_vals))

line_glyph = Line(x='x', y='y', line_color='#2678b2', \

                  line_width=2)

cross_source = ColumnDataSource(dict(x=years, y=jp_vals))

cross_glyph = Cross(x='x', y='y', line_color='#fc1d26')

14. Use the right add method to add objects to the plot. For layout elements such as 
the Axis objects, use the add_layout method. Glyphs, which display our data, 
have to be added with the add_glyph method:

plot.add_layout(x_axis, 'below')

plot.add_layout(y_axis, 'left')

line_renderer = plot.add_glyph(line_source, line_glyph)

cross_renderer = plot.add_glyph(cross_source, cross_glyph)
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15. Show our plot again to see our lines are in place:

show(plot)

The following screenshot shows the output of the preceding code:

Figure 6.17: A models interface-based plot displaying the lines and axes
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16. Use an object to add a legend to the plot. Each LegendItem object will be 
displayed in one line in the legend:

legend_items= [LegendItem(label='Global Mean', \

                          renderers=[line_renderer]), \

                          LegendItem(label='Japan', \

                          renderers=[cross_renderer])]

legend = Legend(items=legend_items, location='bottom_right')

17. Create the grid by instantiating two Grid objects, one for each axis. Provide the 
tickers of the previously created x and y axes:

# creating the grid

x_grid = Grid(dimension=0, ticker=x_axis.ticker)

y_grid = Grid(dimension=1, ticker=y_axis.ticker)

18. Finally, use the add_layout method to add the grid and the legend to our plot. 
After this, display our complete plot, which will look like the one we created in 
the first task, with only four lines of code:

plot.add_layout(legend)

plot.add_layout(x_grid)

plot.add_layout(y_grid)

show(plot)
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The following screenshot shows the output of the preceding code:

Figure 6.18: Full recreation of the visualization done with the plotting interface

As you can see, the models interface should not be used for simple plots. It's 
meant to provide the full power of Bokeh to experienced users that have specific 
requirements that need more than the plotting interface.

Note

To access the source code for this specific section, please refer to  
https://packt.live/3fq8pIf.

You can also run this example online at https://packt.live/2YHFOaD.

https://packt.live/3fq8pIf
https://packt.live/2YHFOaD
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We have looked at the difference between the high-level plotting and low-level 
models interface now. This will help us understand the internal workings and 
potential future errors better. In this following activity, we'll use what we've already 
learned and created a basic visualization that plots the mean car price of each 
manufacturer from our dataset.

Next, we will color each data point with a color based on a given value. In Bokeh, like 
in geoplotlib, this can be done using ColorMapper.

ColorMapper can map specific values to a given color in the selected spectrum. By 
providing the minimum and maximum value for a variable, we define the range in 
which colors are returned:

# adding color based on the mean price to our elements

from bokeh.models import LinearColorMapper

color_mapper = LinearColorMapper(palette='Magma256', \

                                 low=min(dataset['cach']), \

                                 high=max(dataset['cach']))

plot = figure(title='Cache per Hardware', \

              x_axis_label='Hardware', \

              y_axis_label='Cache Memory')

plot.scatter(dataset['index'], dataset['cach'], \

             color={'field': 'y', 'transform': color_mapper}, \

             size=10)

show(plot)
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The following screenshot shows the output of the preceding code:

Figure 6.19: Cache memory colored using the amount of cache

Next, we will implement all the concepts related to Bokeh we have learned so far.
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Activity 6.01: Plotting Mean Car Prices of Manufacturers

This activity will combine everything that you have learned about Bokeh so far. We 
will use this knowledge to create a visualization that displays the mean price of each 
car manufacturer of our dataset.

Our automobile dataset contains the following columns:

• make: Manufacturer of the car

• fuel-type: Diesel or gas

• num-of-doors: Number of doors

• body-style: Body style of the car, for example, convertible

• engine-location: Front or rear

• length: Continuous from 141.1 to 208.1

• width: Continuous from 60.3 to 72.3

• height: Continuous from 47.8 to 59.8

• num-of-cylinders: Number of cylinders, for example, eight

• horsepower: Amount of horsepower

• peak-rpm: Maximum RPM

• city-mpg: Fuel consumption in the city

• highway-mpg: Fuel consumption on the highway

• price: Price of the car

Note that we will use only the make and price columns in our activity.

In the process, we will first plot all cars with their prices and then slowly develop 
a more sophisticated visualization that also uses color to visually focus the 
manufacturers with the highest mean prices.

1. Create an Activity6.01.ipynb Jupyter Notebook within the  
Chapter06/Activity6.01 folder.

2. Import pandas with an alias and make sure to enable Notebook output using 
the bokeh.io interface.
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3. Load the automobiles.csv dataset from the Datasets folder using pandas. 
Make sure that the dataset is loaded by displaying the first five elements of  
the dataset.

4. Import figure and show from Bokeh's plotting interface.

5. Add a new column index to our dataset by assigning it to the values from our 
dataset.index.

6. Create a new figure and plot each car using a scatter plot with the index and 
price column. Give the visualization a title of Car prices and name the x-axis 
Car Index. The y-axis should be named Price.

Grouping cars from manufacturers together

7. Group the dataset using groupby and the column make. Then use the mean 
method to get the mean value for each column. We don't want the make  
column to be used as an index, so provide the as_index=False  
argument to groupby.

8. Create a new figure with a title of Car Manufacturer Mean Prices, an 
x-axis of Car Manufacturer, and a y-label of Mean Price. In addition to 
that, handle the categorical data by providing the x_range argument to the 
figure with the make column.

9. Assign the value of vertical to the xaxis.major_label_orientation 
attribute of our grouped_plot. Call the show method again to display  
the visualization.

Adding color

10. Import and set up a new LinearColorMapper object with a palette of 
Magma256, and the min and max prices for the low and high arguments.

11. Create a new figure with the same name, labels, and x_range as before.

12. Plot each manufacturer and provide a size argument with a size of 15.

13. Provide the color argument to the scatter method and use the field and 
transform attributes to provide the column (y) and the color_mapper.

14. Set the label orientation to vertical.
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The final output will look like this:

Figure 6.20: Final visualization displaying the mean car price for each manufacturer

Note

The solution for this activity can be found via this link.
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In the next section, we will create interactive visualizations that allow the user to 
modify the data that is displayed.

Adding Widgets
One of the most powerful features of Bokeh is the ability to use widgets to 
interactively change the data that's displayed in a visualization. To understand the 
importance of interactivity in your visualizations, imagine seeing a static visualization 
about stock prices that only shows data for the last year.

If you're interested in seeing the current year or even visually comparing it to the 
recent and coming years, static plots won't be suitable. You would need to create one 
plot for every year or even overlay different years on one visualization, which would 
make it much harder to read. 

Comparing this to a simple plot that lets the user select the date range they want, we 
can already see the advantages. You can guide the user by restricting values and only 
displaying what you want them to see. Developing a story behind your visualization is 
very important, and doing this is much easier if the user has ways of interacting with 
the data.

Bokeh widgets work best when used in combination with the Bokeh server. However, 
using the Bokeh server approach is beyond the content of this book, since we would 
need to work with simple Python files. Instead, we will use a hybrid approach that 
only works with the Jupyter Notebook.

We will look at the different widgets and how to use them before going in and 
building a basic plot with one of them. There are a few different options regarding 
how to trigger updates, which are also explained in this section. The widgets that will 
be covered in the following exercise are explained in the following table:
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Figure 6.21: Some of the basic widgets with examples

The general way to create a new widget visible in a Jupyter Notebook is to define 
a new method and wrap it into an interact widget. We'll be using the "syntactic 
sugar" way of adding a decorator to a method—that is, by using annotations. This will 
give us an interactive element that will be displayed after the executable cell, like in 
the following example:

# importing the widgets

from ipywidgets import interact, interact_manual

# creating an input text

@interact(Value='Input Text')

def text_input(Value):

    print(Value)
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The following screenshot shows the output of the preceding code:

Figure 6.22: Interactive text input

In the preceding example, we first import the interact element from the 
ipywidgets library. This then allows us to define a new method and annotate it 
with the @interact decorator.

The Value attribute tells the interact element which widget to use based on the 
data type of the argument. In our example, we provide a string, which will give us a 
TextBox widget. We can refer to the preceding table to determine which Value 
data type will return which widget.

The print statement in the preceding code prints whatever has been entered in the 
textbox below the widget.

Note

The methods that we can use interact with always have the same structure. 
We will look at several examples in the following exercise.

Exercise 6.03: Building a Simple Plot Using Basic Interactivity Widgets

This first exercise of the Adding Widgets topic will give you a gentle introduction to the 
different widgets and the general concept of how to use them. We will quickly go over 
the most common widgets, sliders, checkboxes, and dropdowns to understand  
their structure.

1. Create an Exercise6.03.ipynb Jupyter Notebook within the  
Chapter06/Exercise6.03 folder to implement this exercise. 
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2. Import and call the output_notebook method from Bokeh's io interface to 
display the plots inside Jupyter Notebook:

# make bokeh display figures inside the notebook

from bokeh.io import output_notebook

output_notebook()

Looking at Basic Widgets

3. In this first task, we will add interactive widgets to the interactive element of 
IPython. Import the necessary interact and interact_manual elements 
from ipywidgets:

# importing the widgets

from ipywidgets import interact, interact_manual

4. Create a checkbox widget and print out the result of the interactive element:

@interact(Value=False)

def checkbox(Value=False):

    print(Value)

The following screenshot shows the output of the preceding code:

Figure 6.23: Interactive checkbox that will switch from False to True if checked

Note

@interact() is called a decorator. It wraps the annotated method into 
the interact component. This allows us to display and react to the change of 
the drop-down menu. The method will be executed every time the value of 
the dropdown changes.
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5. Create a dropdown using a list of options, ['Option1', 'Option2', 
'Option3', 'Option4'] as the @interact decorator value:

# creating a dropdown

options=['Option1', 'Option2', 'Option3', 'Option4']

@interact(Value=options)

def dropdown(Value=options[0]):

    print(Value)

The following screenshot shows the output of the preceding code:

Figure 6.24: Interactive dropdown

6. Create a text input using a value of 'Input Text' as the @interact 
decorator value:

# creating an input text

@interact(Value='Input Text')

def text_input(Value):

    print(Value)

The following screenshot shows the output of the preceding code:

Figure 6.25: Interactive text input
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7. Create two widgets, a dropdown and a checkbox with the same value, as in the 
last two tasks:

# multiple widgets with default layout

options=['Option1', 'Option2', 'Option3', 'Option4']

@interact(Select=options, Display=False)

def uif(Select, Display):

    print(Select, Display)

The following screenshot shows the output of the preceding code:

Figure 6.26: Two widgets are displayed vertically by default

8. Create an int slider using a range value of (0,100) as the @interact 
decorator value:

# creating an int slider with dynamic updates

@interact(Value=(0, 100))

def slider(Value=0):

    print(Value)

The following screenshot shows the output of the preceding code:

Figure 6.27: Interactive int slider
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9. Create an int slider using values of 0 and 100 as the @interact decorator min 
and max values. Set continuous_update to false to only trigger an update on 
mouse release:

# creating an int slider that only triggers on mouse release

from ipywidgets import IntSlider

slider=IntSlider(min=0, max=100, continuous_update=False)

@interact(Value=slider)

def slider(Value=0.0):

    print(Value)

The following screenshot shows the output of the preceding code:

Figure 6.28: Interactive int slider that only triggers upon mouse release

Note

Although the outputs of Figure 6.27 and Figure 6.28 look the same, in Figure 
6.28, the slider triggers only upon mouse release.

10. Use the @interact_manual decorator, which adds an execution button to 
the output that triggers a manual update of the plot. Create an int slider using a 
range value of (0.0,100.0,0.5) as the decorator value to set a step size  
of 0.5:

# creating a float slider 0.5 steps with manual update trigger

@interact_manual(Value=(0.0, 100.0, 0.5))

def slider(Value=0.0):

    print(Value)
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The following screenshot shows the output of the preceding code:

Figure 6.29: Interactive int slider with a manual update trigger

Note

Compared to the previous cells, this one contains the interact_
manual decorator instead of interact. This will add an execution button that 
will trigger the update of the value instead of triggering with every change. 
This can be really useful when working with larger datasets, where the 
recalculation time would be large. Because of this, you don't want to trigger 
the execution for every small step, but only once you have selected the 
correct value.

Note

To access the source code for this specific section, please refer to  
https://packt.live/3e8G60B.

You can also run this example online at https://packt.live/37ANwXT.

After looking at several example widgets and how to create and use them in the 
previous exercise, we will now use a real-world stock_price dataset to create a 
basic plot and add simple interactive widgets.

https://packt.live/3e8G60B
https://packt.live/37ANwXT
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Exercise 6.04: Plotting Stock Price Data in Tabs

In this exercise, we will revisit the essential widgets and build a simple plot that will 
display the first 25 data points for the selected stock. We will display the stocks that 
can be changed with a drop-down menu.

The dataset of this exercise is a stock_prices dataset. This means that we will be 
looking at data over a range of time. As this is a large and variable dataset, it will be 
easier to show and explain widgets such as slider and dropdown on it. The dataset 
is available in the Datasets folder of the GitHub repository; here is the link to it: 
https://packt.live/3bzApYN. Follow these steps:

1. Create an Exercise6.04.ipynb Jupyter Notebook in the  
Chapter06/Exercise6.04 folder to implement this exercise. 

2. Import the pandas library:

import pandas as pd

3. Import and call the output_notebook method from Bokeh's io interface to 
display the plots inside Jupyter Notebook:

from bokeh.io import output_notebook

output_notebook()

4. After downloading the dataset and moving it into the Datasets folder of this 
chapter, import our stock_prices.csv data:

dataset = pd.read_csv('../../Datasets/stock_prices.csv')

5. Test whether the data has been loaded successfully by executing the head 
method on the dataset:

dataset.head()

https://packt.live/3bzApYN
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The following screenshot shows the output of the preceding code:

Figure 6.30: Loading the top five rows of the stock_prices dataset using the head method

Since the date column has no information about the hour, minute, and second, 
we want to avoid displaying them in the visualization later on and display the 
year, month, and day.

6. Create a new column that holds the formatted short version of the date value. 
Print out the first five rows of the dataset to see the new column, short_date:

# mapping the date of each row to only the year-month-day format

from datetime import datetime

def shorten_time_stamp(timestamp):

    shortened = timestamp[0]

    if len(shortened) > 10:

        parsed_date=datetime.strptime(shortened, \

                                      '%Y-%m-%d %H:%M:%S')

        shortened=datetime.strftime(parsed_date, '%Y-%m-%d')

    return shortened

dataset['short_date'] = \

dataset.apply(lambda x: shorten_time_stamp(x), axis=1)

dataset.head()
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The following screenshot shows the output of the preceding code:

Figure 6.31: Dataset with the added short_date column

Note

The execution of the cell will take a moment since it's a fairly large dataset. 
Please be patient.

Creating a Basic Plot and Adding a Widget

In this task, we will create a basic visualization with the stock price dataset. 
This will be your first interactive visualization in which you can dynamically 
change the stock that is displayed in the graph. We will get used to one of the 
aforementioned interactive widgets: the drop-down menu. It will be the main 
point of interaction for our visualization.

7. Import the already-familiar figure and show methods from the plotting 
interface. Since we also want to have a panel with two tabs displaying different 
plot styles, also import the Panel and Tabs classes from the models interface:

from ipywidgets import interact

from bokeh.models.widgets import Panel, Tabs

from bokeh.plotting import figure, show
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To better structure, our notebook, write an adaptable method that gets a 
subsection of stock data as an argument and builds a two-tab Pane object that 
lets us switch between the two views in our visualization.

8. Create two tabs. The first tab will contain a line plot of the given data, while the 
second will contain a circle-based representation of the same data. Create a 
legend that will display the name of the currently viewed stock:

# method to build the tab-based plot

def get_plot(stock):

    stock_name=stock['symbol'].unique()[0]

    line_plot=figure(title='Stock prices', \

                     x_axis_label='Date', \

                     x_range=stock['short_date'], \

                     y_axis_label='Price in $USD')

    line_plot.line(stock['short_date'], stock['high'], \

                   legend_label=stock_name)

    line_plot.xaxis.major_label_orientation = 1

    circle_plot=figure(title='Stock prices', \

                       x_axis_label='Date', \

                       x_range=stock['short_date'], \

                       y_axis_label='Price in $USD')

    circle_plot.circle(stock['short_date'], stock['high'], \

                       legend_label=stock_name)

    circle_plot.xaxis.major_label_orientation = 1

    line_tab=Panel(child=line_plot, title='Line')

    circle_tab=Panel(child=circle_plot, title='Circles')

    tabs = Tabs(tabs=[ line_tab, circle_tab ])

    return tabs
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9. Get a list of all the stock names in our dataset by using the unique method for 
our symbol column:

# extracting all the stock names

stock_names=dataset['symbol'].unique()

Once we have done this, use this list as an input for the interact element.

10. Add the drop-down widget in the decorator and call the method that returns our 
visualization in the show method with the selected stock. Only provide the first 
25 entries of each stock. By default, the stock of Apple should be displayed; its 
symbol in the dataset is AAPL. This will give us a visualization that is displayed 
in a pane with two tabs. The first tab will display an interpolated line, and the 
second tab will display the values as circles:

# creating the dropdown interaction and building the plot

@interact(Stock=stock_names)

def get_stock_for(Stock='AAPL'):

    stock = dataset[dataset['symbol'] == Stock][:25]

    show(get_plot(stock))
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The following screenshot shows the output of the preceding code:

Figure 6.32: Line tab with the data of AAPL displayed
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The following screenshot shows the output of the code in step 11:

Figure 6.33: Circle tab with the data of AAPL displayed
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Note

We can already see that each date is displayed on the x-axis. If we want to 
display a bigger time range, we have to customize the ticks on our x-axis. 
This can be done using ticker objects.

Note

To access the source code for this specific section, please refer to  
https://packt.live/3fnfPvI.

You can also run this example online at https://packt.live/3d7RqsH.

We have now covered the very basics of widgets and how to use them in a  
Jupyter Notebook.

Note

If you want to learn more about using widgets and which widgets can be 
used in Jupyter, visit https://ipywidgets.readthedocs.io/en/latest/examples/
Using%20Interact.html and https://ipywidgets.readthedocs.io/en/stable/
examples/Widget%20List.html.

https://packt.live/3fnfPvI
https://packt.live/3d7RqsH
https://ipywidgets.readthedocs.io/en/latest/examples/Using%20Interact.html
https://ipywidgets.readthedocs.io/en/latest/examples/Using%20Interact.html
https://ipywidgets.readthedocs.io/en/stable/examples/Widget%20List.html
https://ipywidgets.readthedocs.io/en/stable/examples/Widget%20List.html
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In the following activity, we will make use of the Bokeh DataSource to add a 
tooltip overlay to our plot that is displayed upon hovering over the data points. 
DataSource can be helpful in several cases, for example, displaying a tooltip on 
hovering the data points. In most cases, we can use pandas DataFrames to feed data 
into our plot, but for certain features, such as tooltips, we have to use DataSource:

# using a ColumnDataSource to display a tooltip on hovering

from bokeh.models.sources import ColumnDataSource

data_source = \

ColumnDataSource(data=dict(vendor_name=dataset['vendor_name'], \

                           model=dataset['model'], \

                           cach=dataset['cach'], \

                           x=dataset['index'], \

                           y=dataset['cach']))

TOOLTIPS=[('Vendor', '@vendor_name'), ('Model', '@model'), \

          ('Cache', '@cach')]

plot = figure(title='Cache per Hardware', \

              x_axis_label='Hardware', \

              y_axis_label='Cache Memory', tooltips=TOOLTIPS)

plot.scatter('x', 'y', size=10, color='teal', source=data_source)

show(plot)
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The following screenshot shows the output of the preceding code:

Figure 6.34: Cache memory plotted as dots with tooltip overlay displaying the vendor, 
model, and amount of memory

In the next activity, we will learn to extend plots using widgets.
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Activity 6.02: Extending Plots with Widgets

In this activity, you will combine what you have already learned about Bokeh. You 
will also need the skills you have acquired while working with pandas for additional 
DataFrame handling. We will create an interactive visualization that lets us explore 
the results of the 2016 Rio Olympics.

Our dataset contains the following columns:

• id: Unique ID of the athlete

• name: Name of the athlete

• nationality: Nationality of the athlete

• sex: Male or female

• dob: Date of birth of the athlete

• height: Height of the athlete

• weight: Weight of the athlete

• sport: Category the athlete is competing in

• gold: Number of gold medals the athlete won

• silver: Number of silver medals the athlete won

• bronze: Number of bronze medals the athlete won

We want to use the nationality, gold, silver, and bronze columns to create 
a custom visualization that lets us dig through the Olympians.
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Our visualization will display each country that participated in a coordinate system 
where the x-axis represents the number of medals won and the y-axis represents the 
number of athletes. Using interactive widgets, we will be able to filter the displayed 
countries by both the maximum number of medals won and the maximum amount 
of athletes axes.

Figure 6.35: Final interactive visualization that displays the scatter plot
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There are many options when it comes to choosing which interactivity to use. We will 
focus on only two widgets to make it easier for you to understand the concepts. In 
the end, we will have a visualization that allows us to filter countries for the number 
of medals and athletes they placed in the Olympics and upon hovering over the single 
data points, receive more information about each country:

1. Create an Activity6.02.ipynb Jupyter Notebook within the Chapter06/
Activity6.02 folder.

2. Enable notebook output using the bokeh.io interface. Import pandas and load 
the dataset and make sure that the dataset is loaded by displaying the first five 
elements of the dataset.

3. Import figure and show from Bokeh and interact and widgets from 
ipywidgets to get started.

4. Load our olympia2016_athletes.csv dataset from the Datasets folder 
and set up the interaction elements. Scroll down until you reach the cell that says 
getting the max number of medals and athletes of all countries. Extract the 
two numbers from the dataset.

5. Create widgets for IntSlider for the maximum number of athletes 
(orientation vertical) and IntSlider for the maximum number of medals 
(orientation horizontal).

6. Set up the @interact method, which will display the complete visualization. 
The only code we will write here is to show the return value of the get_plot 
method that gets all the interaction element values as parameters.

7. Implement the decorator method, move up in the Notebook, and work on the 
get_plot method.

8. First, filter our countries dataset that contains all the countries that placed 
athletes in the Olympic games. Check whether they have a lower or equal 
number of medals and athletes than our max values passed as arguments.

9. Create our DataSource and use it for the tooltips and the printing of the  
circle glyphs.

10. After that, create a new plot using the figure method that has the following 
attributes: title set to Rio Olympics 2016 - Medal comparison, x_
axis_label set to Number of Medals, and y_axis_label set to Num 
of Athletes.
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11. Execute every cell starting from the get_plot cell to the bottom—again, 
making sure that all implementations are captured.

12. When executing the cell that contains the @interact decorator, you will 
see a scatter plot that displays a circle for every country displaying additional 
information, such as the shortcode of the country, the number of athletes, 
and the number of gold, silver, and bronze medals.

Note

The solution for this activity can be found via this link.

As we mentioned before, when working with interactive features and Bokeh, you 
might want to read up about the Bokeh server a little bit more. It will give you more 
options to express your creativity by creating animated plots and visualizations that 
can be explored by several people at the same time.

Summary
In this chapter, we have looked at another option for creating visualizations with a 
whole new focus: web-based Bokeh plots. We also discovered ways in which we can 
make our visualizations more interactive and give the user the chance to explore data 
in a different way. 

As we mentioned in the first part of this chapter, Bokeh is a comparably new tool 
that empowers developers to use their favorite language to create easily portable 
visualizations for the web. After working with Matplotlib, Seaborn, geoplotlib, and 
Bokeh, we can see some standard interfaces and similar ways to work with those 
libraries. After studying the tools that are covered in this book, it will be simple to 
understand new plotting tools.

In the next and final chapter, we will introduce a new real-life dataset to create 
visualizations. This last chapter will allow you to consolidate the concepts and tools 
that you have learned about in this book and further enhance your skills.





Overview

In this chapter, we will apply all the concepts that we have learned in all 
the previous chapters. We will use three new datasets in combination 
with practical activities for Matplotlib, Seaborn, geoplotlib, and Bokeh. By 
the end of this chapter, you will be able to apply your skills in Matplotlib 
and Seaborn. We will create a time series with Bokeh, and finally, we will 
analyze geospatial data with geoplotlib. We will conclude this chapter with a 
summary that recaps what we've learned throughout the book.

Combining What We Have 

Learned

7
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Introduction
In recent chapters, we've learned about some of the most widely used and state-of-
the-art visualization libraries for Python. In the previous chapter, we advanced from 
simple static plots to building interactive visualizations using Bokeh, which allowed us 
to gain control over what is displayed to the users.

To consolidate what we have learned, we will provide you with three sophisticated 
activities. Each activity uses one of the libraries that we have covered in this book. 
Each activity has a more extensive dataset than we have used before, which will 
prepare you to work with real-world examples.

In the first activity, we will consolidate the acquired knowledge in Matplotlib and 
Seaborn. For a quick recap, Matplotlib allows the generation of various plot types 
with just a few lines of code. Seaborn is based on Matplotlib and provides a high-level 
interface for creating visually appealing charts. It dramatically extends Matplotlib with 
predefined visualization styles and color palettes.

Note

All activities will be developed in the Jupyter Notebook or Jupyter Lab. 
Please download the GitHub repository with all the prepared templates and 
datasets from https://packt.live/2tSthph.

Activity 7.01: Implementing Matplotlib and Seaborn on the New York  

City Database

In this activity, we will visualize data pertaining to New York City (NYC) and compare 
it to the state of New York and the United States (US), including visualizing the 
median household income, plotting the average wage by gender and for different job 
categories, visualizing the wage distribution, and much more. The goal of this activity 
is to combine everything you've learned about Matplotlib and Seaborn to create  
self-explanatory, nice-looking plots.

The American Community Survey (ACS) Public-Use Microdata Samples (PUMS) dataset 
(one-year estimate from 2017) from https://www.census.gov/programs-surveys/acs/
technical-documentation/pums/documentation.2017.html is used.

https://packt.live/2tSthph
https://www.census.gov/programs-surveys/acs/technical-documentation/pums/documentation.2017.html
https://www.census.gov/programs-surveys/acs/technical-documentation/pums/documentation.2017.html
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Download the following datasets and place the extracted CSV file in the 
Datasets subdirectory: https://www2.census.gov/programs-surveys/acs/data/
pums/2017/1-Year/csv_pny.zip and https://www2.census.gov/programs-surveys/acs/data/
pums/2017/1-Year/csv_hny.zip.

In this activity, the New York Population Records (../../Datasets/acs2017/
pny.csv) and New York Housing Unit Records (../../Datasets/acs2017/
hny.csv) datasets are used. The first dataset contains information about the 
New York population, and the second dataset contains information about housing 
units. The dataset contains data for about 1% of the population and housing units. 
Due to the extensive amount of data, we do not provide the datasets for the whole 
of the US; instead, we will provide the required information related to the US, if 
necessary. The PUMS_Data_Dictionary_2017.pdf PDF gives an overview 
and description of all variables. A further description of the codes can be found in 
ACSPUMS2017CodeLists.xls:

1. Create an Activity7.01.ipynb Jupyter Notebook in the Chapter07/
Activity7.01 folder to implement this activity. Import all the 
necessary libraries.

2. Use pandas to read both CSV files located in the Datasets folder.

3. Use the given PUMA (public use microdata area code based on the 2010 census 
definition, which are areas with populations of 100k or more) ranges to further 
divide the dataset into NYC districts (Bronx, Manhattan, Staten Island, Brooklyn, 
and Queens):

# PUMA ranges

bronx = [3701, 3710]

manhatten = [3801, 3810]

staten_island = [3901, 3903]

brooklyn = [4001, 4018]

queens = [4101, 4114]

nyc = [bronx[0], queens[1]]

https://www2.census.gov/programs-surveys/acs/data/pums/2017/1-Year/csv_pny.zip
https://www2.census.gov/programs-surveys/acs/data/pums/2017/1-Year/csv_pny.zip
https://www2.census.gov/programs-surveys/acs/data/pums/2017/1-Year/csv_hny.zip
https://www2.census.gov/programs-surveys/acs/data/pums/2017/1-Year/csv_hny.zip
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4. In the dataset, each sample has a certain weight that reflects the weight 
for the total dataset. Therefore, we cannot simply calculate the median. Use 
the given weighted_median function in the following code to compute 
the median:

# Function for a 'weighted' median

def weighted_frequency(values, weights):

    weighted_values = []

    for value, weight in zip(values, weights):

        weighted_values.extend(np.repeat(value, weight))

    return weighted_values

def weighted_median(values, weights):

    return np.median(weighted_frequency(values, weights))

5. In this subtask, we will create a plot containing multiple subplots that visualize 
information with regard to NYC wages. Before we create the plots, some data 
wrangling is necessary.

6. Compute the average wage by gender for the given occupation categories for the 
population of NYC:

occ_categories = ['Management,\nBusiness,\nScience,\nand Arts'\

                  '\nOccupations', 'Service\nOccupations', \

                  'Sales and\nOffice\nOccupations', \

                  'Natural Resources,\nConstruction,\nand '\

                  'Maintenance\nOccupations', \

                  'Production,\nTransportation,\nand Material '\

                  'Moving\nOccupations']

occ_ranges = {'Management, Business, Science, and Arts Occupations': 
\
              [10, 3540], 'Service Occupations': [3600, 4650], \

              'Sales and Office Occupations': [4700, 5940], \

              'Natural Resources, Construction, and Maintenance '\

              'Occupations': [6000, 7630], \

              'Production, Transportation, and Material Moving '\

              'Occupations': [7700, 9750]}
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7. Compute the wage frequencies for New York and NYC. Use the following yearly 
wage intervals: 10k steps between 0 and 100k, 50k steps between 100k and 
200k, and >200k:

wage_bins = {'<$10k': [0, 10000], '$10-20k': [10000, 20000], \

             '$20-30k': [20000, 30000], \

             '$30-40k': [30000, 40000], \

             '$10-20k': [40000, 50000], \

             '$50-60k': [50000, 60000], \

             '$60-70k': [60000, 70000], \

             '$70-80k': [70000, 80000], \

             '$80-90k': [80000, 90000], \

             '$90-100k': [90000, 100000], \

             '$100-150k': [100000, 150000], \

             '$150-200k': [150000, 200000], \

             '>$200k': [200000, np.infty]}

8. Create a plot containing multiple subplots that visualize information with regard 
to NYC wages. Now, visualize the median household income for the US, New 
York, NYC, and its districts. Next, visualize the average wage by gender for 
the given occupation categories for the population of NYC. Then, visualize the 
wage distribution for New York and NYC. Lastly, use the following yearly wage 
intervals: 10k steps between 0 and 100k, 50k steps between 100k and 200k,  
and >200k. 



372 | Combining What We Have Learned

Following is the expected output:

Figure 7.1: Wage statistics for New York City in comparison with New York  
and the United States
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9. Use a tree map to visualize the percentage for the given occupation 
subcategories for the population of NYC:

occ_subcategories = \

{'Management,\nBusiness,\nand Financial': [10, 950], \

 'Computer, Engineering,\nand Science': [1000, 1965], \

 'Education,\nLegal,\nCommunity Service,'\

 '\nArts,\nand Media': [2000, 2960], \

 'Healthcare\nPractitioners\nand\nTechnical': [3000, 3540], \

 'Service': [3600, 4650], \

 'Sales\nand Related': [4700, 4965], \

 'Office\nand Administrative\nSupport': [5000, 5940], \

 '': [6000, 6130], \

 'Construction\nand Extraction': [6200, 6940], \

 'Installation,\nMaintenance,\nand Repair': [7000, 7630], \

 'Production': [7700, 8965], \

 'Transportation\nand Material\nMoving': [9000, 9750]}

Following is the expected output:

Figure 7.2: Occupations in NYC
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10. Use a heatmap to show the correlation between difficulties (self-care difficulty, 
hearing difficulty, vision difficulty, independent living difficulty, ambulatory 
difficulty, veteran service-connected disability, and cognitive difficulty) and age 
groups (<5, 5-11, 12-14, 15-17, 18-24, 25-34, 35-44, 45-54, 55-64, 65-74, and 75+) 
in NYC. Following is the expected output:

Figure 7.3: Percentage of NYC population with disabilities

Note

The solution for this activity can be found via this link.

In the next section, we will perform an activity on Bokeh using a real-life scenario.

Bokeh

Stock price data is one of the most exciting types of data for many people. When 
thinking about its nature, we can see that it is highly dynamic and continually 
changing. To understand it, we need high levels of interactivity to not only look at the 
stocks of interest, but also to compare different stocks, see their traded volume, and 
the highs/lows of the given dates and whether it rose or sunk the day before that.
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Considering all of the features mentioned previously, we need to use a highly 
customizable visualization tool. We also need the possibility to add different 
widgets to enable interactivity. In this activity, we will, therefore, use Bokeh to 
create a candlestick visualization with several interactivity widgets to enable a better 
exploration of our data. Please make sure the Bokeh version you are using is 1.4.0.

Activity 7.02: Visualizing Stock Prices with Bokeh

In this activity, we will implement all the skills of Bokeh that we have learned. You 
will also need the skills you have acquired while working with pandas. We will create 
an interactive visualization that displays a candlestick plot, which is often used when 
handling stock price data. We will be able to compare two stocks with one another 
by selecting them from dropdowns. A RangeSlider will allow us to restrict the 
displayed date range in the requested year, 2016. Depending on what graph we 
choose, we will either see the candlestick visualization or a simple line plot displaying 
the volume of the selected stock:

1. Create an Activity7.02.ipynb Jupyter Notebook in the Chapter07/
Activity7.02 folder to implement this activity.

2. Import pandas and enable notebook output by using the bokeh.io interface.

3. Load the downloaded stock_prices dataset.

4. Make sure that the dataset is loaded by displaying the first five elements of 
the dataset.

5. Use the datetime library to create a column, short_date, in our DataFrame 
that holds the information from the date column without the hour, minute, and 
second information.

6. Validate by displaying the first five elements of the updated DataFrame.

7. Import figure and show from Bokeh and interact and widgets from 
ipywidgets to get started.

8. Execute the cells from top to bottom until you reach the cell that has 
the comment #extracting the necessary data. Start your 
implementation there.

9. Get the unique stock names from the dataset. Filter out the dates from 2016. 
Only get unique dates from 2016. Create a list that contains the strings open-
close and volume, which will be used for the radio buttons to switch between 
the two plots.
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10. After extracting the necessary data, set up the interaction elements. Create 
widgets for the following: a dropdown for the first stock name (the default value 
will be AAPL) and a dropdown for the second stock name that will be compared 
to the first (the default value will be AON).

11. Also, set up a SelectionRangeSlider to select the range of dates we want 
to display in our plot (the default values displayed will be 0 to 25).

12. Define a RadioButtons attribute to choose between the candlestick plot and 
the plot that displays the traded volume (the default value will be open-close, 
which will display the candlestick plot.)

13. Set up the @interact method that finally displays the complete visualization. 
Provide the interaction elements that have just been set up with the @
interact decorator and call the show method with the get_plot method we 
executed before.

14. After implementing the decorated method, move up in our notebook and 
work on the add_candle_plot method. Start with the so-called candlestick 
visualization, which is often used with stock price data. Calculate the mean for 
every (high/low) pair and then plot those data points with a line with the given 
color. Next, set up an add_candle_plot that gets a plot object, a stock_
name, a stock_range columns containing the data of only the selected 
date range that was defined with the widgets, and a color for the line. Create a 
segment that creates the vertical line, and either a green or red vbar to color 
code whether the close price is lower than the open price. Once the candles are 
created, draw a continuous line running through the mean high, low point of 
each candle.

15. Move on and implement the line plot in the cell that contains the get_plot 
method. Plot a line for the data from stock_1 with a blue color. Plot a line for 
the data from stock_2 with an orange color.
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16. Before finalizing this activity, add mutability to our legend, which changes the 
way elements are displayed upon clicking on one of the displayed elements in 
the legend of the visualization. The resulting visualization should look somewhat 
like the following image:

Figure 7.4: Final interactive visualization that displays the candlestick plot
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The following figure shows the final interactive visualization of volume plot:

Figure 7.5: Final interactive visualization that displays the volume plot

Note

The solution for this activity can be found via this link.

As we mentioned before, when working with interactive features and Bokeh, you 
might want to read up about the Bokeh server a little bit more. It will give you more 
options to create animated plots and visualizations that can be explored by several 
people at the same time.
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Geoplotlib

The dataset that is used in this activity is from Airbnb, which is publicly available 
online. Accommodation listings have two predominant features: latitude and 
longitude. Those two features allow us to create geospatial visualizations that give 
us a better understanding of attributes such as the distribution of accommodation 
across each city.

In this activity, we will use geoplotlib to create a visualization that maps each 
accommodation to a dot on a map. Each dot is colored based on either the price or 
rating of that listing. The two attributes can be switched by pressing the left and right 
keys on the keyboard.

Activity 7.03: Analyzing Airbnb Data with Geoplotlib

In this activity, we will implement all the geoplotlib skills that we have learned. We 
will use Airbnb listing data to determine the most expensive and best-rated regions 
of accommodation in the New York area. We will write a custom layer with which 
we can switch between the price and the review score of each accommodation. In 
the end, we will be able to see the hotspots for the most expensive and best-rated 
accommodation across New York.

In theory, we should see a price increase the closer we get to the center of 
Manhattan. It will be very fascinating to see whether the ratings for the given 
accommodations also increase as we get closer to the center of Manhattan:

1. Create an Activity7.03.ipynb Jupyter Notebook in the Chapter07/
Activity7.03 folder to implement this activity. First, make sure you import 
the necessary dependencies.

2. Load the airbnb_new_york.csv dataset using pandas. If your system is a 
little bit slower, just use the airbnb_new_york_smaller.csv dataset with 
fewer data points.

3. Understand the dataset by observing the variables and the first few entries.

4. Since our dataset once again has columns that are named Latitude 
and Longitude instead of lat and lon, rename those columns to their 
short versions.

5. To use a color map that changes color based on the price of accommodation, we 
need a value that can easily be compared and checked whether it's smaller or 
bigger than any other listing. 
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Therefore, create a new column called dollar_price that will hold the value 
of the price column as float. Make sure to fill all the NaN values of the price 
column with $0.0, and review_scores_rating column with 0.0 by using 
the fillna() method of the dataset.

6. This dataset has 96 columns. When working with such a huge dataset, it makes 
sense to think about what data we really need and create a subsection of our 
dataset that only holds the data we need. Print all the columns that are available 
and an example for that column to decide what information is suitable.

7. Trim down the number of columns our working dataset has by creating a 
subsection of the columns with id, latitude (as lat), longitude (as lon), 
price (in $), and review_scores_rating.

8. Print the first five rows of the trimmed down the dataset.

9. Create a new DataAccessObject object with the newly created subsection of 
the dataset. Use it to plot out a dot map. The expected output is as follows:

Figure 7.6: Simple dot map created from the points
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10. Create a new ValueLayer class that extends the geoplotlib BaseLayer class.

11. Initiate the following instance variables in the __init__ method of the 
ValueLayer class: first, self.data, which holds the dataset; second, self.
display, which holds the currently selected attribute name; third, self.
painter, which holds an instance of the BatchPainter class; fourth, self.
view, which holds the BoundingBox function; and lastly, self.cmap, which 
holds a color map with the jet color schema, and an alpha of 255 and 
100 levels:

Figure 7.7: Jet color map scale

12. Implement the bbox, draw, and on_key_release methods from the 
ValueLayer class. First, return the self.view variable in the bbox 
method. Then, set the ui_manager.info text to Use left and right 
to switch between the displaying of price and ratings. 
Currently displaying: dollar_price or review_scores_rating, 
depending on what the self.display variable holds. Next, in the on_key_
release method, check whether the left or right key is pressed and switch 
the self.display variable between dollar_price or review_scores_
rating. Lastly, return True if the left or the right key has been pressed to 
trigger redrawing the dots, otherwise return False.

13. Given the data, plot each point on the map with a color that is defined by the 
currently selected attribute, either price or rating. First, in the invalidate 
method, assign a new BatchPainter() function to the self.painter 
variable. Second, get the max value of the dataset given the current self.
display variable. Third, use a log scale if dollar_price is used, otherwise 
use a lin scale. Fourth, map the value to color using the cmap object we defined 
in the __init__ method and plot each point with the given color onto the map 
with a size of 5.

This is not the most efficient solution, but it will do for now.
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14. Create a new BoundingBox function focused on New York by using 
north=40.897994, west=-73.999040, south=40.595581, 
east=-73.95040. In addition to a custom BoundingBox, we will use the 
darkmatter tile provider that we looked at in Chapter 5, Plotting Geospatial 
Data. Provide the BoundingBox function to the ValueLayer class when 
adding a new layer to geoplotlib.

The following is an expected output that shows a dot map with color based 
on rating:

Figure 7.8: New York Airbnb dot map, colored based on the price
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The following is an expected output that shows a dot map with color based 
on rating:

Figure 7.9: New York Airbnb dot map, colored based on the ratings

Note

The solution for this activity can be found via this link.

As we can now see, writing custom layers for geoplotlib is a good approach for 
focusing on the attributes that you are interested in.
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Summary
This chapter gave us a short overview and recap of everything that was covered in 
this book based on three extensive practical activities. In Chapter 1, The Importance of 
Data Visualization and Data Exploration, we started with a Python library journey that 
we used as a guide throughout the whole book. We first talked about the importance 
of data and visualizing this data to get meaningful insights from it and gave a quick 
recap of different statistical concepts.

Through several activities, we learned how to import and handle datasets with 
NumPy and pandas. In Chapter 2, All You Need to Know about Plots, we discussed 
various plot/chart visualizations and which visualizations are best for displaying 
certain information. We mentioned the use case, design practices, and practical 
examples for each plot type.

In Chapter 3, A Deep Dive into Matplotlib, we thoroughly covered Matplotlib and started 
with the basic concepts. Next, we dived deeper into the numerous possibilities for 
enriching visualizations with text. Emphasis was put on explaining almost all plotting 
functions Matplotlib offers using practical examples. Furthermore, we talked about 
different ways to create layouts. The chapter was rounded off by demonstrating how 
you can visualize images and write mathematical expressions.

Chapter 4, Simplifying Visualizations Using Seaborn, covered Seaborn, which is built 
on top of Matplotlib and provides a higher-level abstraction to make insightful 
visualizations. With several examples, we showed you how Seaborn can simplify the 
creation of visualizations. We also introduced further plots, such as heatmaps, violin 
plots, and correlograms. Finally, we used Squarify to create tree maps.

Visualizing geospatial data was covered in Chapter 5, Plotting Geospatial Data, using 
geoplotlib. Understanding how geoplotlib is structured internally explained why we 
had to work with the pyglet library when adding interactivity to our visualizations. We 
worked with different datasets and built both static and interactive visualizations for 
geospatial data.
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In Chapter 6, Making Things Interactive with Bokeh, we focused on working with Bokeh, 
which targets modern web browsers to present interactive visualizations. Starting 
with simple examples, we explored the most significant advantage of Bokeh, namely, 
interactive widgets.

We ended the book with this chapter, applying all the skills that we've learned 
through three real-life datasets.

With the conclusion of this book, you should now have the practical knowledge and 
skills to design your own data visualizations using various Python libraries such as 
NumPy, pandas, Matplotlib, Seaborn, geoplotlib, and Bokeh.





Appendix
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Chapter 1: The Importance of Data Visualization and Data 
Exploration

Activity 1.01: Using NumPy to Compute the Mean, Median, Variance, and Standard 

Deviation of a Dataset

Solution:

1. Import NumPy:

import numpy as np

2. Load the normal_distribution.csv dataset by using the genfromtxt 
method from NumPy:

dataset = np.genfromtxt('../../Datasets/normal_distribution.csv', \

                        delimiter=',')

3. First, print a subset of the first two rows of the dataset:

dataset[0:2]

The output of the preceding code is as follows:

Figure 1.57: First two rows of the dataset

4. Load the dataset and calculate the mean of the third row. Access the third row 
by using index 2, dataset[2]:

np.mean(dataset[2])

The output of the preceding code is as follows:

100.20466135250001

5. Index the last element of an ndarray in the same way a regular Python list can be 
accessed. dataset[:, -1] will give us the last column of every row:

np.mean(dataset[:,-1])

The output of the preceding code is as follows:

100.4404927375
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6. Get a submatrix of the first three elements of every row of the first three 
columns by using the double-indexing mechanism of NumPy, which gives us an 
interface to extract sub-selection:

"""

calculate the mean of the intersection of the first 3 rows \

and first 3 columns

"""

np.mean(dataset[0:3, 0:3])

The output of the preceding code is as follows:

97.87197312333333

7. Calculate the median of the last row of the dataset. Don't use the length of the 
dataset as the index:

np.median(dataset[-1])

The output of the preceding code is as follows:

99.18748092

8. Use reverse indexing define a range to get the last three columns using 
dataset[:, -3:]:

np.median(dataset[:, -3:])

The output of the preceding code is as follows:

99.47332349999999

9. To aggregate the values along an axis to calculate the rows, use axis=1:

np.median(dataset, axis=1)

The output of the preceding code is as follows:

Figure 1.58: Using axis to calculate the median of each row
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10. Calculate the variance for each column using axis=0:

np.var(dataset, axis=0)

The output of the preceding code is as follows:

Figure 1.59: Variance across each column

11. Calculate the variance of the intersection of the last two rows and the first two 
columns. When only looking at a very small subset of the matrix (2x2) elements, 
we can apply what we learned in the statistical overview to observe that the 
value is way smaller than the whole dataset:

np.var(dataset[-2:, :2])

The output of the preceding code is as follows:

4.674691991769191

The values of the variance might seem a little bit strange at first. You can always 
go back to the Measures of Dispersion section to recap what you've learned so far.

Note

A small subset of a dataset does not display the attributes of the whole.

12. Calculate the standard deviation of the dataset. Just remember that the variance 
is not the standard deviation:

np.std(dataset)

The output of the preceding code is as follows:

4.838197554269257

Note

To access the source code for this specific section, please refer to  
https://packt.live/3hroPlv.

You can also run this example online at https://packt.live/30MIyG8.

https://packt.live/3hroPlv
https://packt.live/30MIyG8
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Activity 1.02: Forest Fire Size and Temperature Analysis

Solution:

1. Import the necessary libraries:

import pandas as pd

2. Use the read_csv method to load the forestfires.csv dataset: 

dataset = pd.read_csv('../../Datasets/forestfires.csv')

3. Print the first two rows of the dataset to get a feeling for its structure:

dataset[0:2]

The output of the preceding code is as follows:

Figure 1.60: Printing the first two rows of the dataset

Derive insights from the sizes of forest fires

4. Filter the dataset so that it only contains rows that have an area value of >0 since 
our dataset contains several rows with an area of 0 and we only want to look at 
rows that have an area larger than 0 for now:

area_dataset= dataset[dataset["area"] > 0]

area_dataset
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The output of the preceding code is as follows:

Figure 1.61: Filtered dataset with only rows that have an area of larger than 0
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5. Get the mean, min, max, and std of the area column and see what information 
this gives you. First, let's find the mean value:

area_dataset["area"].mean()

Following is the output of the code:

24.600185185185182

Get the smallest area value from our dataset:

area_dataset["area"].min()

The output of the preceding code is as follows:

0.09

Get the largest area value from our dataset:

area_dataset["area"].max()

The output of the preceding code is as follows:

1090.84

Get the standard deviation of values in our dataset:

area_dataset["area"].std()

The output of the preceding code is as follows:

86.50163460412126

6. Sort the filtered dataset using the area column and print the last 20 entries using 
the tail method to see how many very large values it holds:

area_dataset.sort_values(by=["area"]).tail(20)
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The output of the preceding code is as follows:

Figure 1.62: 20 largest entries sorted by area

7. Get the median of the area column and visually compare it to the mean value:

area_dataset["area"].median()

The output of the preceding code is as follows:

6.37
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Finding the month with the most forest fires

8. List all the month values present in the dataset to compare the number of fires 
and the temperature and get a list of unique values from the month column 
of the dataset:

months = dataset["month"].unique()

months

The output of the preceding code is as follows:

Figure 1.63: List of month values present in the dataset

9. Get the amount of entries for the month of March using the shape member of 
our DataFrame:

dataset[dataset["month"] == "mar"].shape[0]

The output of the preceding code is as follows:

54

10. Now, iterate over all months, filter our dataset for rows containing the given 
month, and calculate the mean temperature. Print a statement containing the 
number of fires, the mean temperature, and the month:

for month in months:

    month_dataset = dataset[dataset["month"] == month]

    fires_in_month = month_dataset.shape[0]

    avg_tmp_in_month = int(month_dataset["temp"].mean())

    print(str(fires_in_month) + " fires in " + month \

          + " with a mean temperature of ~" \

          + str(avg_tmp_in_month) + "°C")
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The output of the preceding code is as follows:

Figure 1.64: Amount of forest fires and mean temperature for each month

Note

To access the source code for this specific section, please refer to  
https://packt.live/2NeLJ1H.

You can also run this example online at https://packt.live/3d7RUiv.

https://packt.live/2NeLJ1H
https://packt.live/3d7RUiv


Chapter 2: All You Need to Know about Plots | 397

Chapter 2: All You Need to Know about Plots

Activity 2.01: Employee Skill Comparison

Solution:

1. Bar charts and radar charts are great for comparing multiple variables for 
multiple groups.

2. Suggested response: The bar chart is great for comparing the skill attributes of 
the different employees, but it is not the best choice when it comes to getting 
an overall impression of an employee, due to the fact that the skills are not 
displayed directly next to one another.

The radar chart is great for this scenario because you can both compare 
performance across employees and directly observe the individual performance 
for each skill attribute.

3. Suggested response:

For both the bar and radar charts, adding a title and labels would help to 
understand the plots better. Additionally, using different colors for the different 
employees in the radar chart would help to keep the different employees apart.

Activity 2.02: Road Accidents Occurring over Two Decades

Solution:

1. Suggested response: If we look at Figure 2.20, we can see that the years 2000 
and 2015 have the lightest colored squares overall. These are the two years that 
have the lowest accident rates.

2. Suggested response: If we look at the trend for each month, that is, January, 
April, July, and October for the past two decades, we can see a decreasing trend 
in the number of accidents taking place in January.

The activity about road accidents gave you a simple example of how to use heatmaps 
to illustrate the relationship between multiple variables. In the next section, we will 
cover composition plots.
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Activity 2.03: Smartphone Sales Units

Solution:

1. Suggested response: If we compare the performance of each manufacturer 
in the third and fourth quarters, we come to the conclusion that Apple has 
performed exceptionally well. Their sales units have risen at a higher rate from 
the third quarter to the fourth quarter for both 2016 and 2017 when compared 
with that of other manufacturers.

2. Suggested response: If we look at the trends in the sales units of each 
manufacturer, we can see that after the third quarter of 2017, the sales units of 
all the companies except Xiaomi have shown an inconsistency. If we look at the 
performance of Xiaomi, there has been an upward trend after the first quarter 
of the year 2017. The sales of Apple and Samsung are exhibiting a downward 
trend while the sales of Huawei and Xiaomi are showing an upward trend. It is 
predicted that these trends will continue.

3. Suggested response: Using a stacked area chart would additionally directly 
visualize the overall trend of smartphone sales. A small drawback is that it 
would be more difficult to read absolute smartphone sales numbers for an 
individual company.

Activity 2.04: Frequency of Trains during Different Time Intervals

Solution:

1. Suggested response: Most trains arrive at 4 p.m. and 6 p.m.

2. Suggested response: The histogram appears as follows:
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Figure 2.47: Frequency of trains in the morning

Activity 2.05: Analyzing Visualizations

Solution:

First Visualization

Suggested response:

1. The proposed visualization has multiple faults. First, a pie chart is supposed to 
show part-of-a-whole relations, which is not the case for this task since we only 
consider the top 30 YouTube music channels and not all channels. Second, 30 
values are too many to visualize within a pie chart. Third, the labels overlap. Also, 
it is difficult to quantify the slices as there is no unit of measurement specified.
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2. An improvement would be to use a bar chart. For example, in the following 
horizontal bar chart, it is easier to tell the number of subscribers in millions for 
each YouTube channel:

Figure 2.48: Horizontal bar chart showing YouTube music channels

Second Visualization

Suggested response:

1. This is also an example of using the wrong chart type. A line chart was used 
to compare different categories that do not have any temporal relation. 
Furthermore, informative guides such as legends and labels are missing.

2. The following diagram shows how the data should have been represented using 
a comparative bar chart:
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Figure 2.49: Comparative bar chart displaying casino data for 2 days

Activity 2.06: Choosing a Suitable Visualization

Solution:

Since it was asked of us to visualize the median, the interquartile ranges, and the 
underlying density of populations from different income groups, violin plots are 
the best choice as they visualize both summary statistics and a kernel density 
estimate. The density plot only shows the density, whereas box plots only illustrate 
summary statistics.
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Chapter 3: A Deep Dive into Matplotlib

Activity 3.01: Visualizing Stock Trends by Using a Line Plot

Solution:

Visualize a stock trend by using a line plot:

1. Create an Activity3.01.ipynb Jupyter notebook in the  
Chapter03/Activity3.01 folder to implement this activity.

2. Import the necessary modules and enable plotting within the Jupyter notebook:

# Import statements

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

%matplotlib inline

3. Use pandas to read the datasets (GOOGL_data.csv, FB_data.csv, 
AAPL_data.csv, AMZN_data.csv, and MSFT_data.csv) located in the 
Datasets folder. The read_csv() function reads a .csv file into a DataFrame:

# load datasets

google = pd.read_csv('../../Datasets/GOOGL_data.csv')

facebook = pd.read_csv('../../Datasets/FB_data.csv')

apple = pd.read_csv('../../Datasets/AAPL_data.csv')

amazon = pd.read_csv('../../Datasets/AMZN_data.csv')

microsoft = pd.read_csv('../../Datasets/MSFT_data.csv')

4. Use Matplotlib to create a line chart that visualizes the closing prices for the 
past 5 years (whole data sequence) for all five companies. Add labels, titles, 
and a legend to make the visualization self-explanatory. Use the plt.grid() 
function to add a grid to your plot:

# Create figure

plt.figure(figsize=(16, 8), dpi=300)

# Plot data

plt.plot('date', 'close', data=google, label='Google')

plt.plot('date', 'close', data=facebook, label='Facebook')

plt.plot('date', 'close', data=apple, label='Apple')

plt.plot('date', 'close', data=amazon, label='Amazon')

plt.plot('date', 'close', data=microsoft, label='Microsoft')
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# Specify ticks for x and y axis

plt.xticks(np.arange(0, 1260, 40), rotation=70)

plt.yticks(np.arange(0, 1450, 100))

# Add title and label for y-axis

plt.title('Stock trend', fontsize=16)

plt.ylabel('Closing price in $', fontsize=14)

# Add grid

plt.grid()

# Add legend

plt.legend()

# Show plot

plt.show()

Following is the output of the code:

Figure 3.50: Visualization of stock trends of five companies

From the preceding diagram, we can see that the stock prices of Google and 
Amazon are high compared to Facebook, Microsoft, and Apple.
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Note

To access the source code for this specific section, please refer to  
https://packt.live/2Y35oHT.

You can also run this example online at https://packt.live/3hxuyGj.

Activity 3.02: Creating a Bar Plot for Movie Comparison

Solution:

Create a bar plot for comparing the ratings of different movies:

1. Create an Activity3.02.ipynb Jupyter notebook in the Chapter03/
Activity3.02 folder to implement this activity.

2. Import the necessary modules and enable plotting within the Jupyter notebook:

# Import statements

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

3. Use pandas to read the data located in the Datasets folder:

# Load dataset

movie_scores = pd.read_csv('../../Datasets/movie_scores.csv')

4. Use Matplotlib to create a visually appealing bar plot comparing the two scores 
for all five movies. Use the movie titles as labels for the x-axis. Use percentages 
at intervals of 20 for the y-axis, and minor ticks at intervals of 5. Add a legend 
and a suitable title to the plot:

# Create figure

plt.figure(figsize=(10, 5), dpi=300)

# Create bar plot

pos = np.arange(len(movie_scores['MovieTitle']))

width = 0.3

plt.bar(pos - width / 2, movie_scores['Tomatometer'], \

        width, label='Tomatometer')

plt.bar(pos + width / 2, movie_scores['AudienceScore'], \

        width, label='Audience Score')

# Specify ticks

https://packt.live/2Y35oHT
https://packt.live/3hxuyGj
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plt.xticks(pos, rotation=10)

plt.yticks(np.arange(0, 101, 20))

# Get current Axes for setting tick labels and horizontal grid

ax = plt.gca()

# Set tick labels

ax.set_xticklabels(movie_scores['MovieTitle'])

ax.set_yticklabels(['0%', '20%', '40%', '60%', '80%', '100%'])

# Add minor ticks for y-axis in the interval of 5

ax.set_yticks(np.arange(0, 100, 5), minor=True)

# Add major horizontal grid with solid lines

ax.yaxis.grid(which='major')

# Add minor horizontal grid with dashed lines

ax.yaxis.grid(which='minor', linestyle='--')

# Add title

plt.title('Movie comparison')

# Add legend

plt.legend()

# Show plot

plt.show()

The output is as follows:

Figure 3.51: Bar plot comparing scores of five movies
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In the preceding output, we can see that the audience liked the movie "The 
Hobbit: An Unexpected Journey" when compared to other movies that were 
rated high by Tomatometer.

Note

To access the source code for this specific section, please refer to  
https://packt.live/30NVXhs.

You can also run this example online at https://packt.live/3fu2e5X.

Activity 3.03: Creating a Stacked Bar Plot to Visualize Restaurant Performance

Solution:

Let's create a stacked bar chart to visualize the performance of a restaurant:

1. Create an Activity3.03.ipynb Jupyter notebook in the Chapter03/
Activity3.03 folder to implement this activity.

Navigate to the path of this file and type in the following at the command-line 
terminal: jupyter-lab.

2. Import the necessary modules and enable plotting within the Jupyter notebook:

# Import statements

import pandas as sb

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

%matplotlib inline

Note that we have imported the Seaborn library to load the built-in dataset that 
the library provides.

3. Load the dataset:

# Load dataset

bills = sns.load_dataset('tips')

https://packt.live/30NVXhs
https://packt.live/3fu2e5X
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4. Use the given dataset and create a matrix where the elements contain the sum 
of the total bills for each day and are split by smokers/non-smokers:

days = ['Thur', 'Fri', 'Sat', 'Sun']

days_range = np.arange(len(days))

smoker = ['Yes', 'No']

bills_by_days = [bills[bills['day'] == day] for day in days]

bills_by_days_smoker = \

[[bills_by_days[day][bills_by_days[day]['smoker'] == s] \

  for s in smoker] for day in days_range]

total_by_days_smoker = \

[[bills_by_days_smoker[day][s]['total_bill'].sum() \

  for s in range(len(smoker))] for day in days_range]

totals = np.asarray(total_by_days_smoker)

Here, the asarray() function is used to convert any list into an array.

5. Create a stacked bar plot, stacking the summed total bills separated by smoker 
and non-smoker for each day. Add a legend, labels, and a title:

# Create figure

plt.figure(figsize=(10, 5), dpi=300)

# Create stacked bar plot

plt.bar(days_range, totals[:, 0], label='Smoker')

plt.bar(days_range, totals[:, 1], bottom=totals[:, 0], \

        label='Non-smoker')

# Add legend

plt.legend()

# Add labels and title

plt.xticks(days_range)

ax = plt.gca()

ax.set_xticklabels(days)

ax.yaxis.grid()

plt.ylabel('Daily total sales in $')

plt.title('Restaurant performance')

# Show plot

plt.show()
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Figure 3.52: Stacked bar chart showing restaurant performance on different days

In the preceding output, we can see that the highest sales were made on 
Saturday by both smokers and non-smokers.

Note

To access the source code for this specific section, please refer to  
https://packt.live/3ea2IxY.

You can also run this example online at https://packt.live/3htcMEl.

https://packt.live/3ea2IxY
https://packt.live/3htcMEl
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Activity 3.04: Comparing Smartphone Sales Units Using a Stacked Area Chart

Solution:

Let's compare the sales units of smartphone manufacturers using a stacked 
area chart:

1. Create an Activity3.04.ipynb Jupyter notebook in the Chapter03/
Activity3.04 folder to implement this activity.

2. Import the necessary modules and enable plotting within the Jupyter notebook:

# Import statements

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

3. Use pandas to read the data located in the Datasets folder:

# Load dataset

sales = pd.read_csv('../../Datasets/smartphone_sales.csv')

4. Create a visually appealing stacked area chart. Add a legend, labels, and a title:

# Create figure

plt.figure(figsize=(10, 6), dpi=300)

# Create stacked area chart

labels = sales.columns[2:]

plt.stackplot('Quarter', 'Apple', 'Samsung', 'Huawei', \

              'Xiaomi', 'OPPO', data=sales, labels=labels)

# Add legend

plt.legend()

# Add labels and title

plt.xlabel('Quarters')

plt.ylabel('Sales units in thousands')

plt.title('Smartphone sales units')

# Show plot

plt.show()
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Figure 3.53: Stacked area chart comparing sales units of different smartphone 
manufacturers

In the preceding output, we can see a comparison of five smartphone units. We 
can see that Samsung has the highest sales and it would be safe to invest in it.

Note

To access the source code for this specific section, please refer to  
https://packt.live/2CckMJC.

You can also run this example online at https://packt.live/3hvKQQ7.

https://packt.live/2CckMJC
https://packt.live/3hvKQQ7
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Activity 3.05: Using a Histogram and a Box Plot to Visualize  

Intelligence Quotient

Solution:

Let's visualize the IQ of different groups using a histogram and a box plot:

1. Import the necessary modules and enable plotting within a Jupyter notebook:

# Import statements

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

2. Use the following IQ scores for the following plots:

# IQ samples

iq_scores = [126,  89,  90, 101, 102,  74,  93, 101,  66, \

             120, 108,  97,  98, 105, 119,  92, 113,  81, \

             104, 108,  83, 102, 105, 111, 102, 107, 103,  \

             89,  89, 110,  71, 110, 120,  85, 111,  83, \

             122, 120, 102, 84, 118, 100, 100, 114,  81, \

             109,  69,  97,  95, 106, 116, 109, 114,  98,  \

             90,  92,  98,  91,  81,  85,  86, 102,  93, \

             112,  76, 89, 110,  75, 100,  90,  96,  94, \

             107, 108,  95,  96,  96, 114, 93,  95, 117, \

             141, 115,  95,  86, 100, 121, 103,  66,  99,  \

             96, 111, 110, 105, 110, 91, 112, 102, 112,  75]

3. Plot a histogram with 10 bins for the given IQ scores. IQ scores are normally 
distributed with a mean of 100 and a standard deviation of 15. Visualize the 
mean as a vertical solid red line, and the standard deviation using dashed 
vertical lines. Add labels and a title:

# Create figure

plt.figure(figsize=(6, 4), dpi=150)

# Create histogram

plt.hist(iq_scores, bins=10)

plt.axvline(x=100, color='r')

plt.axvline(x=115, color='r', linestyle= '--')

plt.axvline(x=85, color='r', linestyle= '--')

# Add labels and title

plt.xlabel('IQ score')
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plt.ylabel('Frequency')

plt.title('IQ scores for a test group of a hundred adults')

# Show plot

plt.show()

Following is the output of the code:

Figure 3.54: Histogram for an IQ test

4. Create a box plot to visualize the IQ scores. Add labels and a title:

# Create figure

plt.figure(figsize=(6, 4), dpi=150)

# Create histogram

plt.boxplot(iq_scores)

# Add labels and title

ax = plt.gca()

ax.set_xticklabels(['Test group'])

plt.ylabel('IQ score')

plt.title('IQ scores for a test group of a hundred adults')

# Show plot

plt.show()



Chapter 3: A Deep Dive into Matplotlib | 413

Following is the output of the code:

Figure 3.55: Box plot for IQ scores

5. The following are IQ scores for different test groups that we can use as data:

group_a = [118, 103, 125, 107, 111,  96, 104,  97,  96, \

           114,  96,  75, 114, 107,  87, 117, 117, 114, \

           117, 112, 107, 133,  94,  91, 118, 110, 117, \

           86, 143,  83, 106,  86,  98, 126, 109,  91, \

           112, 120, 108, 111, 107,  98,  89, 113, 117, \

           81, 113, 112,  84, 115,  96,  93, 128, 115, \

           138, 121,  87, 112, 110,  79, 100,  84, 115, \

           93, 108, 130, 107, 106, 106, 101, 117,  93, \

           94, 103, 112,  98, 103,  70, 139,  94, 110, \

           105, 122,  94,  94, 105, 129, 110, 112,  97, \

           109, 121, 106, 118, 131,  88, 122, 125,  93,  78]

group_b = [126,  89,  90, 101, 102,  74,  93, 101,  66, 120, \

           108,  97,  98, 105, 119,  92, 113,  81, 104, 108, \

           83, 102, 105, 111, 102, 107, 103,  89,  89, 110, \

           71, 110, 120,  85, 111,  83, 122, 120, 102, 84, \

           118, 100, 100, 114,  81, 109,  69,  97,  95, 106, \

           116, 109, 114,  98,  90,  92,  98,  91,  81,  85, \

           86, 102,  93, 112,  76, 89, 110,  75, 100,  90, \
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           96,  94, 107, 108,  95,  96,  96, 114, 93,  95, \

           117, 141, 115,  95,  86, 100, 121, 103,  66, 99, \

           96, 111, 110, 105, 110,  91, 112, 102, 112,  75]

group_c = [108,  89, 114, 116, 126, 104, 113,  96,  69, 121, \

           109, 102, 107, 122, 104, 107, 108, 137, 107, 116, \

           98, 132, 108, 114,  82,  93, 89,  90,  86,  91, \

           99,  98,  83,  93, 114,  96,  95, 113, 103, 81, \

           107,  85, 116,  85, 107, 125, 126, 123, 122, 124, \

           115, 114, 93,  93, 114, 107, 107,  84, 131,  91, \

           108, 127, 112, 106, 115, 82,  90, 117, 108, 115, \

           113, 108, 104, 103,  90, 110, 114,  92, 101,  72, \

           109,  94, 122,  90, 102,  86, 119, 103, 110,  96,  \

           90, 110,  96,  69,  85, 102,  69,  96, 101,  90]

group_d = [93,  99,  91, 110,  80, 113, 111, 115,  98,  74, \

           96,  80,  83, 102,  60,  91,  82,  90,  97, 101, \

           89,  89, 117,  91, 104, 104, 102, 128, 106, 111, \

           79,  92,  97, 101, 106, 110,  93,  93, 106, 108, \

           85,  83, 108,  94,  79,  87, 113, 112, 111, 111, \

           79, 116, 104,  84, 116, 111, 103, 103, 112,  68, \

           54,  80,  86, 119,  81, 84,  91,  96, 116, 125, \

           99,  58, 102,  77,  98, 100,  90, 106, 109, 114, \

           102, 102, 112, 103,  98,  96,  85,  97, 110, 131, \

           92, 79, 115, 122,  95, 105,  74,  85,  85,  95]

6. Create a box plot for each of the IQ scores of different test groups. Add labels 
and a title:

# Create figure

plt.figure(figsize=(6, 4), dpi=150)

# Create histogram

plt.boxplot([group_a, group_b, group_c, group_d])

# Add labels and title

ax = plt.gca()

ax.set_xticklabels(['Group A', 'Group B', 'Group C', 'Group D'])

plt.ylabel('IQ score')

plt.title('IQ scores for different test groups')

# Show plot

plt.show()
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Following is the output of the code:

Figure 3.56: Box plot for IQ scores of different test groups

Note

To access the source code for this specific section, please refer to  
https://packt.live/3e80Wx4.

You can also run this example online at https://packt.live/2UOfoCM.

Activity 3.06: Creating a Scatter Plot with Marginal Histograms

Solution:

1. Import the necessary modules and enable plotting within a Jupyter notebook:

# Import statements

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

2. Use pandas to read the data located in the Datasets folder:

# Load dataset

data = pd.read_csv('../../Datasets/anage_data.csv')

https://packt.live/3e80Wx4
https://packt.live/2UOfoCM
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3. Filter the data so that you end up with samples containing a body mass and a 
maximum longevity as the given dataset is not complete. Select all the samples 
of the aves class and with a body mass smaller than 20,000:

# Preprocessing

longevity = 'Maximum longevity (yrs)'

mass = 'Body mass (g)'

data = data[np.isfinite(data[longevity]) \

       & np.isfinite(data[mass])]

# Sort according to class

aves = data[data['Class'] == 'Aves']

aves = data[data[mass] < 20000]

4. Create a Figure with a constrained layout. Create a gridspec of size 4x4. Create a 
scatter plot of size 3x3 and marginal histograms of size 1x3 and 3x1. Add labels 
and a Figure title:

# Create figure

fig = plt.figure(figsize=(8, 8), dpi=150, \

                 constrained_layout=True)

# Create gridspec

gs = fig.add_gridspec(4, 4)

# Specify subplots

histx_ax = fig.add_subplot(gs[0, :-1])

histy_ax = fig.add_subplot(gs[1:, -1])

scatter_ax = fig.add_subplot(gs[1:, :-1])

# Create plots

scatter_ax.scatter(aves[mass], aves[longevity])

histx_ax.hist(aves[mass], bins=20, density=True)

histx_ax.set_xticks([])

histy_ax.hist(aves[longevity], bins=20, density=True, \

              orientation='horizontal')

histy_ax.set_yticks([])

# Add labels and title

plt.xlabel('Body mass in grams')

plt.ylabel('Maximum longevity in years')

fig.suptitle('Scatter plot with marginal histograms')

# Show plot

plt.show()
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The following is the output of the code:

Figure 3.57: Scatter plots with marginal histograms

Note

To access the source code for this specific section, please refer to  
https://packt.live/2Ccl03q.

You can also run this example online at https://packt.live/2UP020X.

https://packt.live/2Ccl03q
https://packt.live/2UP020X
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Activity 3.07: Plotting Multiple Images in a Grid

Solution:

1. Import the necessary modules and enable plotting within a Jupyter notebook:

# Import statements

import os

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.image as mpimg

%matplotlib inline

2.  Load all four images from the Datasets folder:

# Load images

img_filenames = sorted(os.listdir('../../Datasets/images'))

imgs = [mpimg.imread(os.path.join('../../Datasets/images', \

                     img_filename)) \

                     for img_filename in img_filenames]

3. Visualize the images in a 2x2 grid. Remove the axes and give each image a label:

# Create subplot

fig, axes = plt.subplots(2, 2)

fig.figsize = (6, 6)

fig.dpi = 150

axes = axes.ravel()

# Specify labels

labels = ['coast', 'beach', 'building', 'city at night']

# Plot images

for i in range(len(imgs)):

    axes[i].imshow(imgs[i])

    axes[i].set_xticks([])

    axes[i].set_yticks([])

    axes[i].set_xlabel(labels[i])
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The following is the output of the code:

Figure 3.58: Visualizing images in a 2x2 grid

Note

To access the source code for this specific section, please refer to  
https://packt.live/3hxvFWv.

You can also run this example online at https://packt.live/2zABMrY.

https://packt.live/3hxvFWv
https://packt.live/2zABMrY
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Chapter 4: Simplifying Visualizations Using Seaborn

Activity 4.01: Using Heatmaps to Find Patterns in Flight Passengers' Data

Solution:

Find the patterns in the flight passengers' data with the help of a heatmap:

1. Create an Activity4.01.ipynb Jupyter notebook in the Chapter04/
Activity4.01 folder to implement this activity. 

2. Import the necessary modules and enable plotting within a Jupyter notebook:

%matplotlib inline

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

sns.set()

3. Use pandas to read the flight_details.csv dataset located in the 
Datasets folder. The given dataset contains the monthly figures for flight 
passengers for the years 1949 to 1960:

data = pd.read_csv("../../Datasets/flight_details.csv")

4. Now, we can use the pivot() function to transform the data into a format that 
is suitable for heatmaps:

data = data.pivot("Months", "Years", "Passengers")

data = data.reindex(['January', 'February', 'March', \

                     'April', 'May', 'June', 'July', \

                     'August', 'September', 'October', \

                     'November', 'December'])

5. Use the heatmap() function of the Seaborn library to visualize this data. Within 
this function, we pass parameters such as DataFrame and colormap. Since 
we got data from the preceding code, we will pass it as a DataFrame in the 
heatmap() function. Also, we will create our own colormap and pass it as a 
second parameter to this function:

plt.figure(dpi=200)

# you can use any sequential color palette

sns.heatmap(data, cmap=sns.cubehelix_palette(rot=-.3, \

                                             as_cmap=True))
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plt.title("Flight Passengers from 1949 to 1960")

plt.show()

The following is the output of the code:

Figure 4.45: Heatmap of flight passengers' data

The heatmap reveals an increasing number of flight passengers from year to 
year as well as increased demand for flights during the summer months.

Note

To access the source code for this specific section, please refer to  
https://packt.live/2UOMTov.

You can also run this example online at https://packt.live/3ftSPLy.

https://packt.live/2UOMTov
https://packt.live/3ftSPLy
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Activity 4.02: Movie Comparison Revisited

Solution:

Compare the movie scores for five different movies by using a bar plot that's been 
provided by the Seaborn library:

1. Create an Activity4.02.ipynb Jupyter notebook in the Chapter04/
Activity4.01 folder to implement this activity. 

2. Import the necessary modules and enable plotting within a Jupyter notebook:

%matplotlib inline

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

3. Use the read_csv() function of pandas to read the movie_scores.csv 
dataset located in the Datasets folder:

mydata = pd.read_csv("../../Datasets/movie_scores.csv", \

                     index_col=0)

4. Construct a DataFrame from this given data. This can be done with the help of 
the pd.DataFrame() function provided by pandas. The following code gives 
us a better idea of this:

movie_scores = \

pd.DataFrame({"Movie Title": list(mydata["MovieTitle"]) * 2, \

              "Score": list(mydata["AudienceScore"]) \

              + list(mydata["Tomatometer"]), \

              "Type": ["Audience Score"] \

              * len(mydata["AudienceScore"]) + ["Tomatometer"] \

              * len(mydata["Tomatometer"])})

5. Make use of the barplot() function provided by Seaborn. Provide Movies 
and Scores as parameters so that their data is displayed on both axes. Provide 
Type as hue to use subgroups. The final parameter requires a DataFrame as 
input. Thus, we provide the movie_scores DataFrame that we obtained from 
the previous step.

The following code provides a better understanding of this:

sns.set()

plt.figure(figsize=(10, 5), dpi=300)
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# Create bar plot

ax = sns.barplot("Movie Title", "Score", hue="Type", \

                 data=movie_scores)

plt.xticks(rotation=10)

# Add title

plt.title("Movies Scores comparison")

plt.xlabel("Movies")

plt.ylabel("Scores")

# Show plot

plt.show()

The following is the output of the code:

Figure 4.46: Movie scores comparison

We compared the ratings of Audience Score and Tomatometer for five different 
movies and concluded that the ratings matched for the movie The Martian.

Note

To access the source code for this specific section, please refer to  
https://packt.live/2B7ohQZ.

You can also run this example online at https://packt.live/3e9k9hZ.

https://packt.live/2B7ohQZ
https://packt.live/3e9k9hZ
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Activity 4.03: Comparing IQ Scores for Different Test Groups by Using  

a Violin Plot

Solution:

Compare IQ scores among different test groups using the Seaborn library:

1. Create an Activity4.03.ipynb Jupyter notebook from the Chapter04/
Activity4.03 folder to implement this activity. 

2. Import the necessary modules and enable plotting within a Jupyter notebook:

%matplotlib inline

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

3. Use the read_csv() function of pandas to read the data located in the 
Datasets folder:

mydata = pd.read_csv("../../Datasets/iq_scores.csv")

4. Access the data of each test group in the column. Convert this into a list using 
the tolist() method. Once the data of each test group has been converted 
into a list, assign this list to the variables of each respective test group:

group_a = mydata[mydata.columns[0]].tolist()

group_b = mydata[mydata.columns[1]].tolist()

group_c = mydata[mydata.columns[2]].tolist()

group_d = mydata[mydata.columns[3]].tolist()

5. Print the variables of each group to check whether the data inside it has been 
converted into a list. This can be done with the help of the print() function:

print(group_a)

Following is the output of the code:

Figure 4.47: Values of Group A
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Print data of group b:

print(group_b)

Following is the output of the code:

Figure 4.48: Values of Group B

Print data of group c:

print(group_c)

Following is the output of the code:

Figure 4.49: Values of Group C

Print data of group d:

print(group_d)

Following is the output of the code:

Figure 4.50: Values of Group D

6. Once we get the data for each test group, we need to construct a DataFrame 
from this given data. This can be done with the help of the pd.DataFrame() 
function that's provided by pandas:

data = pd.DataFrame({'Groups': ['Group A'] * len(group_a) \

                     + ['Group B'] * len(group_b) + ['Group C'] \

                     * len(group_c) + ['Group D'] \

                     * len(group_d), \

                     'IQ score': group_a + group_b + group_c \

                     + group_d})
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7. Now, since we have the DataFrame, we need to create a violin plot using the 
violinplot() function that's provided by Seaborn. Within this function, we 
need to specify the titles for both the axes along with the DataFrame we are 
using. The title for the x-axis will be Groups, and the title for the y-axis will be IQ 
score. As far as the DataFrame is concerned, we will pass data as a parameter. 
Here, data is the DataFrame that we obtained from the previous step:

plt.figure(dpi=150)

# Set style

sns.set_style('whitegrid')

# Create boxplot

sns.violinplot('Groups', 'IQ score', data=data)

# Despine

sns.despine(left=True, right=True, top=True)

# Add title

plt.title('IQ scores for different test groups')

# Show plot

plt.show()

The following is the output of the code:

Figure 4.51: Violin plot showing IQ scores of different groups
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The despine() function helps to remove the top and right spines from the 
plot. Here, we have also removed the left spine. Using the title() function, we 
have set the title for our plot. The show() function helps to visualize the plot.

Note

To access the source code for this specific section, please refer to  
https://packt.live/30OU8ka.

You can also run this example online at https://packt.live/2Y6G04g.

Activity 4.04: Visualizing the Top 30 Music YouTube Channels Using  

Seaborn's FacetGrid

Solution:

Visualize the total number of subscribers and the total number of views for the top 
30 YouTube channels by using the FacetGrid() function that's provided by the 
Seaborn library:

1. Create an Activity4.04.ipynb Jupyter notebook in the Chapter04/
Activity4.04 folder to implement this activity. 

2. Import the necessary modules and enable plotting within a Jupyter notebook:

%matplotlib inline

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

3. Use the read_csv() function of pandas to read the data located in the 
Datasets folder:

mydata = pd.read_csv("../../Datasets/YouTube.csv")

4. Access the data of each test group in the column. Convert this into a list by using 
the tolist() method. Once the data of each test group has been converted 
into a list, assign this list to variables of each respective test group:

channels = mydata[mydata.columns[0]].tolist()

subs = mydata[mydata.columns[1]].tolist()

views = mydata[mydata.columns[2]].tolist()

https://packt.live/30OU8ka
https://packt.live/2Y6G04g
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5. Print the variables of each group to check whether the data inside it has been 
converted into a list. This can be done with the help of the print() function:

print(channels)

Following is the output of the code:

Figure 4.52: List of YouTube channels

Printing the number of subscribers for each channel:

print(subs)

Following is the output of the code:

Figure 4.53: List of subscribers for each YouTube channel

Printing the number of views for each channel:

print(views)

Figure 4.54: List of views for each YouTube channel

6. Once we get the data for channels, subs, and views, we need to construct 
a DataFrame from the given data. This can be done with the help of the 
pd.DataFrame() function that's provided by pandas:

data = pd.DataFrame({'YouTube Channels': channels + channels, \

                     'Subscribers in millions': subs + views, \

                     'Type': ['Subscribers'] * len(subs) \

                     + ['Views'] * len(views)})



Chapter 4: Simplifying Visualizations Using Seaborn | 429

7. Now, since we have the DataFrame, we need to create a FacetGrid using 
the FacetGrid() function that's provided by Seaborn. Here, data is the 
DataFrame, which we obtained from the previous step:

sns.set()

g = sns.FacetGrid(data, col='Type', hue='Type', \

                  sharex=False, height=8)

g.map(sns.barplot, 'Subscribers in millions', 'YouTube Channels')

plt.show()

The following is the output of the code:

Figure 4.55: Subscribers and views of the top 30 YouTube channels

We can conclude that the YouTube channel T-Series has both the highest 
number of subscribers and views in the music category.

Note

To access the source code for this specific section, please refer to  
https://packt.live/3d9qLLU.

You can also run this example online at https://packt.live/37A5xFY.

https://packt.live/3d9qLLU
https://packt.live/37A5xFY
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Activity 4.05: Linear Regression for Animal Attribute Relations

Solution:

Visualize the linear relationship between maximum longevity and body mass 
in the regression plot by using the regplot() function that's provided by the 
Seaborn library:

1. Create an Activity4.05.ipynb Jupyter notebook in the Chapter04/
Activity4.05 folder to implement this activity. 

2. Import the necessary modules and enable plotting within a Jupyter notebook:

%matplotlib inline

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

3. Use the read_csv() function of pandas to read the data located in the 
Datasets folder:

mydata = pd.read_csv("../../Datasets/anage_data.csv")

4. Filter the data so that you end up with samples containing a body mass and 
maximum longevity. Only consider samples for the Mammalia class and a body 
mass of less than 200,000. This preprocessing can be seen in the following code:

longevity = 'Maximum longevity (yrs)'

mass = 'Body mass (g)'

data = mydata[mydata['Class'] == 'Mammalia']

data = data[np.isfinite(data[longevity]) \

       & np.isfinite(data[mass]) & (data[mass] < 200000)]

5. Once the preprocessing is done, plot the data using the regplot() function 
that's provided by the Seaborn library. There are three parameters inside the 
regplot() function that have to be specified. The first two parameters are 
mass and longevity, wherein the body mass data will be shown on the 
x-axis, and the maximum longevity data will be shown on the y-axis. For the third 
parameter, provide the DataFrame obtained from the previous step:

# Create figure

sns.set()

plt.figure(figsize=(10, 6), dpi=300)

# Create a scatter plot
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sns.regplot(mass, longevity, data=data)

# Show plot

plt.show()

The following is the output of the code:

Figure 4.56: Linear regression for animal attribute relations

We can conclude that there is a linear relationship between body mass and 
maximum longevity for the Mammalia class.

Note

To access the source code for this specific section, please refer to  
https://packt.live/2UNM5Ax.

You can also run this example online at https://packt.live/30Nf9Mk.

https://packt.live/2UNM5Ax
https://packt.live/30Nf9Mk
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Activity 4.06: Visualizing the Impact of Education on Annual Salary and Weekly 

Working Hours

Solution:

You're asked to determine whether education has an influence on annual salary and 
weekly working hours. You ask 500 people in the state of New York about their age, 
annual salary, weekly working hours, and their education. You first want to know the 
percentage for each education type, so therefore you use a tree map. Two violin plots 
will be used to visualize the annual salary and weekly working hours. Compare in 
each case to what extent education has an impact.

It should also be taken into account that all visualizations in this activity are designed 
to be suitable for colorblind people. In principle, this is always a good idea to 
bear in mind:

1. Create an Activity4.06.ipynb Jupyter notebook from the Chapter04/
Activity4.06 folder to implement this activity. Navigate to the path of this 
file and type in the following at the command-line terminal: jupyter-lab.

2. Import the necessary modules and enable plotting within a Jupyter notebook:

%matplotlib inline

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import squarify

sns.set()

3. Use the read_csv() function of pandas to read the age_salary_hours.
csv dataset located in the Datasets folder:

data = pd.read_csv("../../Datasets/age_salary_hours.csv")

4. Use a tree map to visualize the percentages for each education type:

# Compute percentages from dataset

degrees = set(data['Education'])

percentages = []

for degree in degrees:

    percentages.append(data[data['Education'] == degree].shape[0])

percentages = np.array(percentages)
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percentages = ((percentages / percentages.sum()) * 100)

# Create labels for tree map

labels = [degree + '\n({0:.1f}%)'.format(percentage) \

          for degree, percentage in zip(degrees, percentages)]

# Create figure

plt.figure(figsize=(9, 6), dpi=200)

squarify.plot(percentages, label=labels, \

              color=sns.color_palette('colorblind', \

                                      len(degrees)))

plt.axis('off')

# Add title

plt.title('Degrees')

# Show plot

plt.show()

The following is the output of the code:

Figure 4.57: Tree map
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5. Create a subplot with two rows to visualize two violin plots for the annual salary 
and weekly working hours, respectively. Compare in each case to what extent 
education has an impact. To exclude pensioners, only consider people younger 
than 65. Use a colormap that is suitable for colorblind people. subplots() can 
be used in combination with Seaborn's plot, by simply passing the ax argument 
with the respective axes:

ordered_degrees = sorted(list(degrees))

ordered_degrees = [ordered_degrees[4], ordered_degrees[3], \

                   ordered_degrees[1], ordered_degrees[0], \

                   ordered_degrees[2]]

data = data.loc[data['Age'] < 65]

# Set color palette to colorblind

sns.set_palette('colorblind')

# Create subplot with two rows

fig, ax = plt.subplots(2, 1, dpi=200, figsize=(8, 8))

sns.violinplot('Education', 'Annual Salary', data=data, \

               cut=0, order=ordered_degrees, ax=ax[0])

ax[0].set_xticklabels(ax[0].get_xticklabels(), rotation=10)

sns.violinplot('Education', 'Weekly hours', data=data, \

               cut=0, order=ordered_degrees, ax=ax[1])

ax[1].set_xticklabels(ax[1].get_xticklabels(), rotation=10)

plt.tight_layout()

# Add title

fig.suptitle('Impact of Education on Annual Salary and '\

             'Weekly Working Hours')

# Show figure

plt.show()

The following is the output of the code:



Chapter 4: Simplifying Visualizations Using Seaborn | 435

Figure 4.58: Violin plots showing the impact of education on annual salary  
and weekly working hours

The preceding output helps us to analyze the impact of education on annual salary 
and weekly working hours.

Note

To access the source code for this specific section, please refer to  
https://packt.live/2AIDJ66.

You can also run this example online at https://packt.live/3fw499U.

https://packt.live/2AIDJ66
https://packt.live/3fw499U
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Chapter 5: Plotting Geospatial Data

Activity 5.01: Plotting Geospatial Data on a Map

Solution:

Let's plot the geospatial data on a map and find the densely populated areas of cities 
in Europe that have population of more than 100,000:

1.  Create an Activity5.01.ipynb Jupyter notebook in the Chapter05/
Activity5.01 folder to implement this activity and then import the 
necessary dependencies:

import numpy as np

import pandas as pd

import geoplotlib

2. Load the world_cities_pop.csv dataset from the Datasets folder 
using pandas:

#loading the Dataset (make sure to have the dataset downloaded)

dataset = pd.read_csv('../../Datasets/world_cities_pop.csv', \

                      dtype = {'Region': np.str})

Note

If we import our dataset without defining the dtype attribute of the 
Region column as a String type, we will get a warning telling us 
that it has a mixed datatype. We can get rid of this warning by explicitly 
defining the type of the values in this column, which we can do by using the 
dtype parameter.

3. Check the dtype attribute of each column using the dtypes attribute of 
a DataFrame:

# looking at the data types of each column

dataset.dtypes
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The following figure shows the output of the preceding code:

Figure 5.31: The datatypes of each column of the dataset

Note

Here, we can see the datatypes of each column. Since the String type is 
not a primitive datatype, it's displayed as an object.

4. Use the head() method of a pandas DataFrame to display the first five entries:

# showing the first 5 entries of the dataset

dataset.head()

The following figure shows the output of the preceding code:

 

Figure 5.32: The first five entries of the dataset

5. Map the Latitude and Longitude columns into the lat and lon columns 
by using simple code:

# mapping Latitude to lat and Longitude to lon

dataset['lat'] = dataset['Latitude']

dataset['lon'] = dataset['Longitude']
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Most datasets won't be in the format that you desire. Some of them might have 
their Latitude and Longitude values hidden in a different column. This is 
where the data wrangling skills of Chapter 1, The Importance of Data Visualization 
and Data Exploration, are required.

6. Our dataset is now ready for the first plotting. Use a DotDensityLayer to see 
all of our data points:

# plotting the whole dataset with dots

geoplotlib.dot(dataset)

geoplotlib.show()

The following figure shows the output of the preceding code:

Figure 5.33: Dot density visualization of all the cities
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7. Before we start breaking down our data to get a better and more workable 
dataset, we want to understand the outlines of all of our data. Display the 
number of countries and the number of cities that our dataset holds:

# amount of countries and cities

print(len(dataset.groupby(['Country'])), 'Countries')

print(len(dataset), 'Cities')

The following figure shows the output of the preceding code:

234 Countries

3173958 Cities

8. Use the size() method, which returns a Series object, to see each grouped 
element on its own:

# amount of cities per country (first 20 entries)

dataset.groupby(['Country']).size().head(20)

The following figure shows the output of the preceding code:

 

Figure 5.34: The number of cities per country
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9. Display the average number of cities per country using the agg method 
of pandas:

# average num of cities per country

dataset.groupby(['Country']).size().agg('mean')

The following figure shows the output of the preceding code:

13563.923076923076

Reduce the amount of data we are working with by removing all the cities that 
don't have a population value, meaning a population of 0, in this case:

# filter for countries with a population entry (Population > 0)

dataset_with_pop = dataset[(dataset['Population'] > 0)]

print('Full dataset:', len(dataset))

print('Cities with population information:', \

      len(dataset_with_pop))

The following figure shows the output of the preceding code:

Full dataset: 3173958

Cities with population information: 47980

Note

Breaking down and filtering your data is one of the most important aspects 
of getting good insights. Cluttered visualizations can hide information.
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10. Display the first five items of the new dataset to get a basic indication of what 
the values in the Population column will look like:

# displaying the first 5 items from dataset_with_pop

dataset_with_pop.head()

The following figure shows the output of the preceding code:

 

Figure 5.35: The first five items of the reduced dataset

11. Now, take a look at our reduced dataset with the help of a dot density plot:

"""

showing all cities with a defined population \

with a dot density plot

"""

geoplotlib.dot(dataset_with_pop)

geoplotlib.show()
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The following is the output of the code:

Figure 5.36: Cities with a valid population

On the new dot plot, we can already see some improvements in terms of clarity. 
However, we still have too many dots on our map. Given the activity definition, 
we can filter our dataset further by only looking at cities with a population of 
more than 100k.

12. Filter the dataset to contain only cities with a population of more than 100k:

# dataset with cities with a population of >= 100k

dataset_100k = \

dataset_with_pop[(dataset_with_pop['Population'] >= 100000)]

print('Cities with a population of 100k or more:', \

      len(dataset_100k))

The following figure shows the output of the preceding code:

Cities with a population of 100k or more: 3527
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13. In addition to just plotting our 100k dataset, fix our viewport to a specific 
bounding box. Since our data is spread across the world, use the built-in WORLD 
constant of the BoundingBox class:

"""

displaying all cities >= 100k population with a fixed bounding box 
(WORLD) in a dot density plot
"""

from geoplotlib.utils import BoundingBox

geoplotlib.dot(dataset_100k)

geoplotlib.set_bbox(BoundingBox.WORLD)

geoplotlib.show()

The following figure shows the output of the preceding code:

Figure 5.37: Dot density visualization of cities with a population of 100,000 or more
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14. Compare the output with the previous plots; it gives us a better view of where 
the highest number of cities with a population of more than 100,000 is. Find the 
areas of these cities that are the most densely packed using a Voronoi plot:

# using filled voronoi to find dense areas

geoplotlib.voronoi(dataset_100k, cmap='hot_r', \

                   max_area=1e3, alpha=255)

geoplotlib.show()

Figure 5.38: A Voronoi visualization of densely populated cities
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The resulting visualization is exactly what we were searching for. On the Voronoi 
plot, we can see clear tendencies. Germany, Great Britain, Nigeria, India, Japan, 
Java, the East Coast of the USA, and Brazil stick out. We can now filter our 
data and only look at those countries to find the ones that are best suited to 
this scenario.

Note

You can also create a custom colormap gradient with the ColorMap class.

15. Filter the dataset to only countries in Europe, such as Germany and Great Britain. 
Use the or operator when adding a filter to our data. This will allow us to filter 
for Germany and Great Britain at the same time:

# filter 100k dataset for cities in Germany and GB

dataset_europe = dataset_100k[(dataset_100k['Country'] == 'de') \

                 | (dataset_100k['Country'] == 'gb')]

print('Cities in Germany or GB with population >= 100k:', \

      len(dataset_europe))

The following is the output of the preceding code:

Cities in Germany or GB with population >= 100k: 150

16. Use Delaunay triangulation to find the areas that have the most densely 
packed cities:

"""

using Delaunay triangulation to find the most densely populated area

"""

geoplotlib.delaunay(dataset_europe, cmap='hot_r')

geoplotlib.show()
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By using a hot_r color map, we can quickly get a good visual representation 
and make the areas of interest pop out. Here, the areas around Cologne, 
Birmingham, and Manchester really stick out:

Figure 5.39: A Delaunay triangle visualization of cities in Germany and Great Britain

Note

To access the source code for this specific section, please refer to  
https://packt.live/3hBl0dE.

This section does not currently have an online interactive example, and will 
need to be run locally.

https://packt.live/3hBl0dE
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Activity 5.02: Visualizing City Density by the First Letter Using an Interactive 

Custom Layer

Solution:

1. Create an Activity5.02.ipynb Jupyter notebook in the Chapter05/
Activity5.02 folder to implement this activity, and then import the 
necessary dependencies:

# importing the necessary dependencies

import numpy as np

import pandas as pd

import geoplotlib

2. Load the world_cities_pop.csv dataset from the Datasets folder 
using pandas:

dataset = pd.read_csv('../../Datasets/world_cities_pop.csv', \

                      dtype = {'Region': np.str})

Note

If we import our dataset without defining the dtype parameter of the 
Region column as a String type, we will get a warning telling us 
that it has a mixed datatype. We can get rid of this warning by explicitly 
defining the type of the values in this column, which we can do by using the 
dtype parameter.

3. Check the dtype parameter of each column using the dtypes attribute of 
a DataFrame:

# looking at the first 5 rows of the dataset

dataset.head()
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The following figure shows the output of the preceding code:

Figure 5.40: The first five rows of the dataset

4. Prepare our dataset to be usable by geoplotlib by assigning two new columns, 
lat and lon. Map the Latitude and Longitude columns into lat and lon 
columns, which are used by geoplotlib:

# mapping Latitude to lat and Longitude to lon

dataset['lat'] = dataset['Latitude']

dataset['lon'] = dataset['Longitude']

5. Focus your attention on European countries and their cities. A list of all 
European countries is as follows:

# 2 letter country codes of europe without russia

europe_country_codes = ['al', 'ad', 'at', 'by', 'be', 'ba', \

                        'bg', 'hr', 'cy', 'cz', 'dk', 'ee', \

                        'fo', 'fi', 'fr', 'de', 'gi', 'gr', \

                        'hu', 'is', 'ie', 'im', 'it', 'xk', \

                        'lv', 'li', 'lt', 'lu', 'mk', 'mt', \

                        'md', 'mc', 'me', 'nl', 'no', 'pl', \

                        'pt', 'ro', 'sm', 'rs', 'sk', 'si', \

                        'es', 'se', 'ch', 'ua', 'gb', 'va']

6. Given this list, we want to use filtering to get a dataset that only contains 
European cities. The filtering works exactly as we learned in Chapter 01, The 
Importance of Data Visualization and Data Exploration. Use the europe_
country_codes column to filter down our dataset by using the isin() 
method as a condition for our DataFrame:

# filtering the dataset for countries in europe

europe_dataset = \

dataset[dataset['Country'].isin(europe_country_codes)]
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7. Print both the length of our whole dataset and the filtered down dataset:

# printing the length of both datasets

print('Whole World data', len(dataset))

print('Europe data', len(europe_dataset))

The following figure shows the output of the preceding code:

Whole World data 3173958

Europe data 682348

8. As preparation for our interactive visualization, we want to do a test run with 
cities that start with the letter Z. Filter down our Europe dataset by using 
europe_dataset['AccentCity'].str.startswith('Z') as a filter 
condition. Print out the number of cities starting with Z and the first five rows of 
our filtered dataset:

# plotting the whole dataset with dots

cities_starting_z = \

europe_dataset[europe_dataset['AccentCity'].str.startswith('Z')]

print('Cities starting with Z:', len(cities_starting_z))

cities_starting_z.head()

The following figure shows the output of the preceding code:

Figure 5.41: The dataset only containing cities starting with Z

We want to take a quick look at the cities starting with Z in the dataset using 
a DotDensity plot and also get some information about the cities using the 
previously seen f_tooltip argument. To use the f_tooltip argument, we 
need to wrap our dataset in DataAccessObject.
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9. Create a new DataAccessObject from our cities with the Z dataset, visualize 
it with a dot plot, and use a tooltip that outputs the Country and City name 
separated by a - (for example, Ch - Zürich):

# using dot density to plot a point for each city

from geoplotlib.utils import DataAccessObject

geoplotlib_data = DataAccessObject(cities_starting_z)

geoplotlib.dot(geoplotlib_data, f_tooltip=lambda d: '{} \

               - {}'.format(d['Country'].upper(), \

               d['City']).title())

geoplotlib.show()

The following figure shows the output of the preceding code:

Figure 5.42: A dot density plot of cities starting with Z in Europe
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10. As a second step, we want to use a voronoi plot to display the density of cities 
starting with the letter Z. Create a new voronoi plot using a color map of 
Reds_r, max area of 1e5, and an alpha value of 50 so that we can still see the 
mapping peeking through:

"""

displaying the density of cities stating with \

z using a voronoi plot

"""

geoplotlib.voronoi(cities_starting_z, cmap='Reds_r', \

                   max_area=1e5, alpha=50)

geoplotlib.show()

The following figure shows the output of the preceding code:

Figure 5.43: A Voronoi plot showing the density of cities starting with Z in Europe
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Now we will create an interactive visualization that displays each city, as a dot, 
that starts with the currently selected first letter. The letter selected by default 
will be A. We need a way to iterate through the letters using the left and right 
arrows. As described in the introductory Custom Layers section, we can make use 
of the on_key_release method, which is specifically designed for this.

11. Filter the self.data dataset in the invalidate method using the current 
letter acquired from the start_letters array using the self.start_
letter index:

# custom layer creation

import pyglet

import geoplotlib

from geoplotlib.layers import BaseLayer

from geoplotlib.core import BatchPainter

from geoplotlib.utils import BoundingBox

start_letters = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', \

                 'H', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', \

                 'S', 'T', 'U', 'V', 'W' , 'X', 'Y', 'Z']

class FilterLayer (BaseLayer):

    def __init__(self, dataset, bbox=BoundingBox.WORLD):

        self.data = dataset

        self.start_letter = 0

        self.view = bbox

    def invalidate(self, proj):

        start_letter_data = self.data[self.data['AccentCity']\

                            .str.startswith\

                            (start_letters[self.start_letter])]

12. Create a new BatchPainter() function and project the lon and lat values 
to the x and y values. Use the BatchPainter function to paint the points on 
the map with a size of 2:

        self.painter = BatchPainter()

        x, y = proj.lonlat_to_screen(start_letter_data['lon'], \

                                     start_letter_data['lat'])

        self.painter.points(x, y, 2)
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13. Call the batch_draw() method in the draw method and use the ui_
manager to add an info dialog to the screen telling the user which starting 
letter is currently being used:

    def draw(self, proj, mouse_x, mouse_y, ui_manager):

        self.painter.batch_draw()

        ui_manager.info('Displaying cities starting with {}'\

                        .format(start_letters[self.start_letter]))

14. Check which key is pressed using pyglet, pyglet.window.key.RIGHT. 
If the right or left key is pressed, increment or decrement the start_letter 
value of the FilterLayer class accordingly. (Use modulo to allow rotation, 
which should happen when A->Z or Z->A). Make sure that you return True 
in the on_key_release method if you changed the start_letter value to 
trigger a redrawing of the points:

    def on_key_release(self, key, modifiers):

        if key == pyglet.window.key.RIGHT:

            self.start_letter = (self.start_letter + 1) \

                                % len(start_letters)

            return True

        elif key == pyglet.window.key.LEFT:

            self.start_letter = (self.start_letter - 1) \

                                % len(start_letters)

            return True

            

        return False

        

    # bounding box that gets used when the layer is created

    def bbox(self):

        return self.view



454 | Appendix

15. Now call the add_layer() method of geoplotlib, providing our custom layer 
with the given BoundingBox class of Europe:

# using Delaunay triangulation to find the densest area

europe_bbox = BoundingBox(north=68.574309, west=-25.298424, \

                          south=34.266013, east=47.387123)

geoplotlib.add_layer(FilterLayer(europe_dataset, europe_bbox))

geoplotlib.show()

The following figure shows the output of the preceding code:

Figure 5.44: A dot density plot of cities starting with A in Europe in the custom layer
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Pressing the right arrow key twice will lead to the custom layer plotting the cities 
starting with a C:

Figure 5.45: A dot density plot of cities starting with C in Europe in the custom layer

Note

To access the source code for this specific section, please refer to  
https://packt.live/2Y63NBi.

This section does not currently have an online interactive example, and will 
need to be run locally.

https://packt.live/2Y63NBi
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Chapter 6: Making Things Interactive with Bokeh

Activity 6.01: Plotting Mean Car Prices of Manufacturers

Solution:

1. Create an Activity6.01.ipynb Jupyter notebook in the Chapter06/
Activity6.01 folder.

2. Import the necessary libraries:

import pandas as pd

from bokeh.io import output_notebook

output_notebook()

3. Load the automobiles.csv dataset from the Datasets folder:

dataset = pd.read_csv('../../Datasets/automobiles.csv')

4. Use the head method to print the first five rows of the dataset:

dataset.head()

The following figure shows the output of the preceding code:

Figure 6.36: Loading the top five rows of the automobile dataset
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Plotting each car with its price

1. Use the plotting interface of Bokeh to do some basic visualization first. 
Let's plot each car with its price. Import figure and show from the bokeh.
plotting interface:

from bokeh.plotting import figure, show

2. First, use the index as our x-axis since we just want to plot each car with its price. 
Create a new column in our dataset that uses dataset.index as values:

dataset['index'] = dataset.index

Once we have our usable index column, we can plot our cars.

3. Create a new figure and plot each car using a scatter plot with the index and 
price column. Give the visualization a title of Car prices and name the x-axis 
Car Index. Name the y-axis Price:

plot = figure(title='Car prices', x_axis_label='Car Index', \

              y_axis_label='Price')

plot.scatter(dataset['index'], dataset['price'])

show(plot)
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The following screenshot shows the output of the preceding code:

Figure 6.37: One point for each car

Grouping cars from manufacturers together

1. Group the dataset using groupby and the make column. Then use the mean 
method to get the mean value for each column. We don't want the make 
column to be used as an index, so provide the as_index=False argument to 
groupby. Print out the grouped average dataset to see how it differs from the 
initial dataset:

grouped_average = dataset.groupby(['make'], as_index=False).mean()

grouped_average



Chapter 6: Making Things Interactive with Bokeh | 459

The following screenshot shows the output of the preceding code:

Figure 6.38: New grouped dataset with mean values for columns

Note that we are dealing with categorical data, the manufacturer name, 
this time.
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2. Create a new figure with a title of Car Manufacturer Mean Prices, an 
x-axis of Car Manufacturer, and a y-axis of Mean Price. In addition to 
that, handle the categorical data by providing the x_range argument to the 
figure with the make column:

# plotting the manufacturers and their mean car prices

grouped_plot = figure(title='Car Manufacturer Mean Prices', \

                      x_axis_label='Car Manufacturer', \

                      y_axis_label='Mean Price', \

                      x_range=grouped_average['make'])

grouped_plot.scatter(grouped_average['make'], \

                     grouped_average['price'])

show(grouped_plot)
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The following screenshot shows the output of the preceding code:

Figure 6.39: Car manufacturers with their mean car prices

By default, the axis labels are aligned horizontally.
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3. Assign the value of vertical to the xaxis.major_label_orientation 
attribute of our grouped_plot. Call the show method again to display 
the visualization:

grouped_plot.xaxis.major_label_orientation = "vertical"

show(grouped_plot)

The following screenshot shows the output of the preceding code:

Figure 6.40: Car manufacturers with their mean car prices and vertical make labels
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Adding color

To give the user a little bit more information about the data, we want to add 
some color based on the mean price of each manufacturer. In addition to that, 
we also want to increase the size of the points to make them pop more.

4. Import and set up a new LinearColorMapper with a palette of Magma256, 
and the min and max prices for the low and high arguments.

5. Create a new figure with the same name, labels, and x_range as before. Plot 
each manufacturer and provide a size argument with a size of 15. Provide the 
color argument to the scatter method and use the field and transform 
attributes to provide the column (y) and color_mapper. As we've done before, 
set the label orientation to vertical:

# adding color based on the mean price to our elements

from bokeh.models import LinearColorMapper

color_mapper = \

LinearColorMapper(palette='Magma256', \

                  low=min(grouped_average['price']), \

                  high=max(grouped_average['price'])) 

grouped_colored_plot = \

figure(title='Car Manufacturer Mean Prices', x_axis_label='Car \

       Manufacturer', y_axis_label='Mean Price', \

       x_range=grouped_average['make'])

grouped_colored_plot.scatter(grouped_average['make'], \

                             grouped_average['price'], \

                             color={'field': 'y', \

                                    'transform': color_mapper}, \

                                    size=15)

grouped_colored_plot.xaxis.major_label_orientation = "vertical"

show(grouped_colored_plot)
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The following screenshot shows the output of the preceding code:

Figure 6.41: Car manufacturers with their mean car prices colored based on the mean price
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You've built a full visualization to display data of different car manufacturers. 
We worked with basic plotting elements such as the scatter method 
and categorical data. In addition to that, we also discovered how to use 
ColorMappers, similar to what we did with geoplotlib, to give our data points 
colors based on specific values, such as the mean price.

Note

To access the source code for this specific section, please refer to  
https://packt.live/3hxyHdr.

You can also run this example online at https://packt.live/30L3Fsw.

Activity 6.02: Extending Plots with Widgets

Solution:

1. Create an Activity6.02.ipynb Jupyter notebook in the Chapter06/
Activity6.02 folder.

2. Import the necessary libraries:

import pandas as pd

3. Import and call the output_notebook method from the io interface 
of Bokeh:

from bokeh.io import output_notebook

output_notebook()

4. Load our olympia2016_athletes.csv dataset from the Datasets folder:

dataset = pd.read_csv('../../Datasets/olympia2016_athletes.csv')

5. Call head on the DataFrame to test that our data has been successfully loaded:

dataset.head()

https://packt.live/3hxyHdr
https://packt.live/30L3Fsw
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The following figure shows the output of the preceding code:

Figure 6.42: Loading the top five rows of the olympia2016_athletes dataset  
using the head method

Building an Interactive Visualization

6. Import figure and show from the plotting interface and interact, as a 
decorator, from the widgets interface:

from bokeh.plotting import figure, show, ColumnDataSource

from ipywidgets import interact, widgets

7. Get a list of unique countries and one for the number of athletes and the 
number of medals per country. Use the groupby method of your dataset to 
achieve this:

countries = dataset['nationality'].unique()

athletes_per_country = dataset.groupby('nationality').size()

medals_per_country = dataset.groupby('nationality')\

                     ['gold', 'silver','bronze'].sum()

Before we go in and implement the plotting for this visualization, we want to 
set up our widgets and the @interact method that will display the plot upon 
execution. Execute this empty get_plot() method cell and then move on to 
the widget creation. We will implement this later.



Chapter 6: Making Things Interactive with Bokeh | 467

8. Use two IntSlider widgets that will control the max numbers for the number 
of athletes and/or medals a country is allowed to have in order to be displayed 
in the visualization. Get the maximum number of medals of all the countries and 
the maximum number of athletes of all the countries:

max_medals = medals_per_country.sum(axis=1).max()

max_athletes = athletes_per_country.max()

9. Use those maximum numbers as the maximum for two IntSlider widgets. 
Display the max_athletes_slider in a vertical orientation and the max_
medals_slider in a horizontal orientation. In the visualization, they should be 
described as Max. Athletes and Max. Medals:

# setting up the interaction elements

max_athletes_slider=\

widgets.IntSlider(value=max_athletes, min=0, max=max_athletes, \

                  step=1, description='Max. Athletes:', \

                  continuous_update=False, \

                  orientation='vertical', \

                  layout={'width': '100px'})

max_medals_slider=\

widgets.IntSlider(value=max_medals, min=0, max=max_medals, \

                  step=1, description='Max. Medals:', \

                  continuous_update=False, \

                  orientation='horizontal')

10. After setting up the widgets, implement the method that will be called with 
each update of the interaction widgets. Use the @interact decorator for 
this. Instead of value ranges or lists, provide the variable names of our already 
created widgets in the decorator:

@interact(max_athletes=max_athletes_slider, \

          max_medals=max_medals_slider)

def get_olympia_stats(max_athletes, max_medals):

    show(get_plot(max_athletes, max_medals))

Since we have already set up the empty method that will return a plot, we can 
call show() with the method call inside it to show the result once it is returned 
from the get_plot method.
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11. Scroll up and implement the plotting we skipped in a previous step. The two 
arguments passed are max_athletes and max_medals. First, filter our 
countries dataset, which contains all the countries that placed athletes in the 
Olympic games. Check whether they have less than or equal medals and athletes 
than our max values, which were passed as arguments. Once we have a filtered 
dataset, create our DataSource. This DataSource will be used both for the 
tooltips and the printing of the circle glyphs.

Note

There is extensive documentation on how to use and set up tooltips that 
you can and use, which can be accessed with the following link: 
 https://bokeh.pydata.org/en/latest/docs/user_guide/tools.html.

12. Create a new plot using the figure method that has the following attributes: 
title set to 'Rio Olympics 2016 - Medal comparison', x_axis_
label set to 'Number of Medals', and y_axis_label set to 'Num 
of Athletes':

# creating the scatter plot

def get_plot(max_athletes, max_medals):

    filtered_countries=[]

    for country in countries:

        if (athletes_per_country[country] <= max_athletes and \

            medals_per_country.loc[country].sum() <= max_medals):

            filtered_countries.append(country)

    data_source=get_datasource(filtered_countries)

    TOOLTIPS=[('Country', '@countries'), ('Num of Athletes', '@y'), \

              ('Gold', '@gold'), ('Silver', '@silver'), \

              ('Bronze', '@bronze')]

    plot=figure(title='Rio Olympics 2016 - Medal comparison', \

                x_axis_label='Number of Medals', \

                y_axis_label='Num of Athletes', \

                plot_width=800, plot_height=500, tooltips=TOOLTIPS)

    plot.circle('x', 'y', source=data_source, size=20, \

                color='color', alpha=0.5)

    return plot

https://bokeh.pydata.org/en/latest/docs/user_guide/tools.html
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13. Display every country with a different color by randomly creating the colors with 
a six-digit hex code. The following method does this:

"""

get a 6 digit random hex color to differentiate the countries better

"""

import random

def get_random_color():

    return '#%06x' % random.randint(0, 0xFFFFFF)

14. Use a Bokeh ColumnDataSource object to handle our data and make it easily 
accessible for our tooltip and glyphs. We want to display additional information 
in a tooltip, so add the color field, which holds the required amount of random 
colors; the countries field, which holds the filtered list of countries; the 
gold, silver, and bronze fields, which hold the number of gold, silver, 
and bronze medals for each country, respectively; the x field, which holds the 
summed number of medals for each country; and the y field, which holds the 
number of athletes for each country, to our DataSource object:

# build the datasource

def get_datasource(filtered_countries):

    return ColumnDataSource(data=dict(

        color=[get_random_color() for _ in filtered_countries], \

               countries=filtered_countries, \

               gold=[medals_per_country.loc[country]['gold'] \

                     for country in filtered_countries],

               silver=[medals_per_country.loc[country]['silver'] \

                       for country in filtered_countries],

               bronze=[medals_per_country.loc[country]['bronze'] \

                       for country in filtered_countries],

               x=[medals_per_country.loc[country].sum() \

                  for country in filtered_countries],

               y=[athletes_per_country.loc[country].sum() \

                  for country in filtered_countries])) 
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15. Execute the last cell with our @interact decorator once more. This time, it will 
display our scatter plot with our interactive widgets. We will see each country in 
a different color. Upon hovering over them, we will get more information about 
each country, such as its short name, number of athletes, and the number of 
gold, silver, and bronze medals they earned. The resulting visualization should 
look as follows:

Figure 6.43: Final interactive visualization
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You've built a full visualization to display and explore data from the 2016 
Olympics. We added two widgets to our visualization, which allowed us to filter the 
displayed countries.

Note

To access the source code for this specific section, please refer to  
https://packt.live/2CdiAl5.

You can also run this example online at https://packt.live/3fuWEQQ.

https://packt.live/2CdiAl5
https://packt.live/3fuWEQQ
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Chapter 7: Combining What We Have Learned

Activity 7.01: Implementing Matplotlib and Seaborn on the New York City 

Database

Solution:

1. Create an Activity7.01.ipynb Jupyter Notebook in the Chapter07/
Activity7.01 folder to implement this activity. Import all the 
necessary libraries:

# Import statements

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib

import matplotlib.pyplot as plt

import squarify

sns.set()

2. Use pandas to read both CSV files located in the Datasets folder:

p_ny = pd.read_csv('../../Datasets/acs2017/pny.csv')

h_ny = pd.read_csv('../../Datasets/acs2017/hny.csv')

3. Use the given PUMA (public use microdata area code based on the 2010 census 
definition, which are areas with populations of 100,000 or more) ranges to 
further divide the dataset into NYC districts (Bronx, Manhattan, Staten Island, 
Brooklyn, and Queens):

# PUMA ranges

bronx = [3701, 3710]

manhatten = [3801, 3810]

staten_island = [3901, 3903]

brooklyn = [4001, 4017]

queens = [4101, 4114]

nyc = [bronx[0], queens[1]]

def puma_filter(data, puma_ranges):

    return data.loc[(data['PUMA'] >= puma_ranges[0]) \

                    & (data['PUMA'] <= puma_ranges[1])]

h_bronx = puma_filter(h_ny, bronx)

h_manhatten = puma_filter(h_ny, manhatten)

h_staten_island = puma_filter(h_ny, staten_island)
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h_brooklyn = puma_filter(h_ny, brooklyn)

h_queens = puma_filter(h_ny, queens)

p_nyc = puma_filter(p_ny, nyc)

h_nyc = puma_filter(h_ny, nyc)

4. Use the given weighted_median function in the following code to compute 
the median:

# Function for a 'weighted' median

def weighted_frequency(values, weights):

    weighted_values = []

    for value, weight in zip(values, weights):

        weighted_values.extend(np.repeat(value, weight))

    return weighted_values

def weighted_median(values, weights):

    return np.median(weighted_frequency(values, weights))

5. In this subtask, we will create a plot containing multiple subplots that visualize 
information with regard to NYC wages. Before we create the plots, some data 
wrangling is necessary:

# Median household income in the US

us_income_median = 60336

# Data wrangling for median household income

income_adjustement = h_ny.loc[0, ['ADJINC']].values[0] / 1e6

def median_household_income(data):

    query = data.loc[np.isfinite(data['HINCP']), \

                     ['HINCP', 'WGTP']].values

    return np.round(weighted_median(query[:, 0], query[:, 1]) \

                    * income_adjustement)

h_ny_income_median = median_household_income(h_ny)

h_nyc_income_median = median_household_income(h_nyc)

h_bronx_income_median = median_household_income(h_bronx)

h_manhatten_income_median = median_household_income(h_manhatten)

h_staten_island_income_median = \

median_household_income(h_staten_island)

h_brooklyn_income_median = median_household_income(h_brooklyn)

h_queens_income_median = median_household_income(h_queens)
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6. Compute the average wage by gender for the given occupation categories for the 
population of NYC:

occ_categories = ['Management,\nBusiness,\nScience,\nand '\

                  'Arts\nOccupations', 'Service\nOccupations', \

                  'Sales and\nOffice\nOccupations', \

                  'Natural Resources,\nConstruction,\nand '\

                  'Maintenance\nOccupations', \

                  'Production,\nTransportation,\nand Material '\

                  'Moving\nOccupations']

occ_ranges = \

{'Management, Business, Science, and Arts '\

 'Occupations': [10, 3540], \

 'Service Occupations': [3600, 4650], \

 'Sales and Office Occupations': [4700, 5940], \

 'Natural Resources, Construction, and '\

 'Maintenance Occupations': [6000, 7630], \

 'Production, Transportation, and Material '\

 'Moving Occupations': [7700, 9750]}

def wage_by_gender_and_occupation(data, gender):

    weighted_wages = []

    for occ in occ_ranges.values():

        query = data.loc[(data['OCCP'] >= occ[0]) \

                         & (data['OCCP'] <= occ[1]) \

                         & (data['SEX'] == gender), \

                         ['WAGP', 'PWGTP']]

        weight_sum = np.sum(query['PWGTP'])

        weighted_wages.append(np.round(np.sum(query['WAGP'] \

                              * (query['PWGTP'] / weight_sum))))

    return weighted_wages

wages_male = wage_by_gender_and_occupation(p_nyc, 1)

wages_female = wage_by_gender_and_occupation(p_nyc, 2)
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7. Compute the wage frequencies for New York and NYC. Use the following yearly 
wage intervals: 10k steps between 0 and 100k, 50k steps between 100k and 
200k, and >200k:

wage_bins = {'<$10k': [0, 10000], '$10-20k': [10000, 20000], \

             '$20-30k': [20000, 30000], \

             '$30-40k': [30000, 40000], \

             '$10-20k': [40000, 50000], \

             '$50-60k': [50000, 60000], \

             '$60-70k': [60000, 70000], \

             '$70-80k': [70000, 80000], \

             '$80-90k': [80000, 90000], \

             '$90-100k': [90000, 100000], \

             '$100-150k': [100000, 150000], \

             '$150-200k': [150000, 200000], \

             '>$200k': [200000, np.infty]}

def wage_frequency(data):

    # Only consider people who have a job: salary > 0

    valid = data.loc[np.isfinite(data['WAGP']) \

                     & (data['WAGP'] > 0), ['WAGP', 'PWGTP']]

    overall_sum = np.sum(valid['PWGTP'].values)

    frequency = []

    for wage_bin in wage_bins.values():

        query = data.loc[(data['WAGP'] \

                * income_adjustement > wage_bin[0]) \

                & (data['WAGP'] \

                * income_adjustement <= wage_bin[1]), \

                ['PWGTP']].values

        frequency.append(np.sum(query) / overall_sum)

    return frequency

wages_nyc = wage_frequency(p_nyc)

wages_ny = wage_frequency(p_ny)
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8. Create a plot containing multiple subplots that visualize information with regard 
to NYC wages. Now, visualize the median household income for the US, New 
York, NYC, and its districts. Next, visualize the average wage by gender for 
the given occupation categories for the population of NYC. Then, visualize the 
wage distribution for New York and NYC. Lastly, use the following yearly wage 
intervals: 10k steps between 0 and 100k, 50k steps between 100k and 200k, 
and >200k:

# Create figure with three subplots

fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(7, 10), \

                                    dpi=300)

# Median household income

ax1.set_title('Median Household Income', fontsize=14)

x = np.arange(8)

ax1.barh(x, [h_bronx_income_median, h_manhatten_income_median, \

             h_staten_island_income_median, \

             h_brooklyn_income_median, \

             h_queens_income_median, h_nyc_income_median, \

             h_ny_income_median, us_income_median])

ax1.set_yticks(x)

ax1.set_yticklabels(['Bronx', 'Manhatten', 'Staten Island', \

                     'Brooklyn', 'Queens', 'New York City', \

                     'New York', 'United States'])

ax1.set_xlabel('Yearly household income in $')

# Wage by gender in common jobs

ax2.set_title('Wage by Gender for different Job Categories', \

              fontsize=14)

x = np.arange(5) + 1

width = 0.4

ax2.bar(x - width / 2, wages_male, width=width, label='Male')

ax2.bar(x + width / 2, wages_female, width=width, label='Female')

ax2.legend()
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ax2.set_xticks(x)

ax2.set_xticklabels(occ_categories, rotation=0, fontsize=8)

ax2.set_ylabel('Average Salary in $')

# Wage distribution

ax3.set_title('Wage Distribution', fontsize=14)

x = np.arange(len(wages_nyc)) + 1

width = 0.4

ax3.bar(x - width / 2, np.asarray(wages_nyc) \

        * 100, width=width, label='NYC')

ax3.bar(x + width / 2, np.asarray(wages_ny) \

        * 100, width=width, label='New York')

ax3.legend()

ax3.set_xticks(x)

ax3.set_xticklabels(wage_bins.keys(), rotation=90, fontsize=8)

ax3.set_ylabel('Percentage')

ax3.vlines(x=9.5, ymin=0, ymax=15, linestyle='--')

# Overall figure

fig.tight_layout()

plt.show()
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The following diagram shows the output of the preceding code:

Figure 7.10: Wage statistics for NYC in comparison with New York and the United States
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9. Use a tree map to visualize the percentage for the given occupation 
subcategories for the population of NYC:

# Data wrangling for occupations

occ_subcategories = \

{'Management,\nBusiness,\nand Financial': [10, 950], \

 'Computer, Engineering,\nand Science': [1000, 1965], \

 'Education,\nLegal,\nCommunity Service,\nArts,\nand '\

 'Media': [2000, 2960], \

 'Healthcare\nPractitioners\nand\nTechnical': [3000, 3540],

 'Service': [3600, 4650],

 'Sales\nand Related': [4700, 4965],

 'Office\nand Administrative\nSupport': [5000, 5940],

 '': [6000, 6130],

 'Construction\nand Extraction': [6200, 6940],

 'Installation,\nMaintenance,\nand Repair': [7000, 7630],

 'Production': [7700, 8965],

 'Transportation\nand Material\nMoving': [9000, 9750]}

def occupation_percentage(data):

    percentages = []

    overall_sum = np.sum(data.loc[(data['OCCP'] >= 10) \

                         & (data['OCCP'] <= 9750), \

                         ['PWGTP']].values)

    for occ in occ_subcategories.values():

        query = data.loc[(data['OCCP'] >= occ[0]) \

                          & (data['OCCP'] <= occ[1]), \

                          ['PWGTP']].values

        percentages.append(np.sum(query) / overall_sum)

    return percentages

occ_percentages = occupation_percentage(p_nyc)

# Visualization of tree map

plt.figure(figsize=(18, 10), dpi=300)

df = pd.DataFrame({'percentage': occ_percentages, \

                   'group': list(occ_subcategories.keys())})

df['group'] = df['group'] + ' (' \

              + (np.round(df['percentage'] * 1000) \

              / 10).astype('str') + '%)'
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blues = [matplotlib.cm.Blues((i + 2) * 30) for i in range(4)]

greens = [matplotlib.cm.Greens((i + 2) * 40) for i in range(1)]

oranges = [matplotlib.cm.Oranges((i + 2) * 40) for i in range(2)]

purples = [matplotlib.cm.Purples((i + 2) * 40) for i in range(3)]

reds = [matplotlib.cm.Reds((i + 2) * 40) for i in range(2)]

colors = blues + greens + oranges + purples + reds

squarify.plot(sizes=df['percentage'], label=df['group'], \

              color=colors, text_kwargs={'fontsize': 20, \

                                         'rotation': 25, \

                                         'fontweight': 'bold'})

plt.axis('off')

plt.title('Occupations in New York City', fontsize=24)

plt.savefig('tree_map.png', dpi=300, bbox_inches='tight')

The following diagram shows the output of the preceding code:

Figure 7.11: Occupations in NYC
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Note

Please note that the terms here addressed refer solely to the classifications 
of disabilities as defined by the US Census Bureau (accessible through the 
following link: https://www.census.gov/topics/health/disability/guidance/data-
collection-acs.html). This language does not reflect the views or intentions of 
Packt or its affiliates.

Independent living difficulty: Because of a physical, mental, or 
emotional problem, having difficulties performing errands alone, such as 
visiting a doctor's office or shopping (DOUT).

Ambulatory difficulty: Having serious difficulty walking or climbing 
stairs (DPHY).

Self-care difficulty: Having difficulty bathing or dressing (DDRS).

10. Use a heatmap to show the correlation between the different disability types 
(self-care difficulty, hearing difficulty, vision difficulty, independent living 
difficulty, ambulatory difficulty, veteran service-connected disability, and 
cognitive difficulty) and age groups (<5, 5-11, 12-14, 15-17, 18-24, 25-34, 35-44, 
45-54, 55-64, 65-74, 75+) in New York City:

# Data wrangling for New York City population difficulties

difficulties = {'Self-care difficulty': 'DDRS', \

                'Hearing difficulty': 'DEAR', \

                'Vision difficulty': 'DEYE', \

                'Independent living difficulty': 'DOUT', \

                'Ambulatory difficulty': 'DPHY', \

                'Veteran service connected disability': 'DRATX', \

                'Cognitive difficulty': 'DREM'}

age_groups = {'<5': [0, 4], '5-11': [5, 11], '12-14': [12, 14], \

              '15-17': [15, 17], '18-24': [18, 24], \

              '25-34': [25, 34], '35-44': [35, 44], \

              '45-54': [45, 54], '55-64': [55, 64], \

              '65-74': [65, 74], '75+': [75, np.infty]}

https://www.census.gov/topics/health/disability/guidance/data-collection-acs.html
https://www.census.gov/topics/health/disability/guidance/data-collection-acs.html
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def difficulty_age_array(data):

    array = np.zeros((len(difficulties.values()), \

                      len(age_groups.values())))

    for d, diff in enumerate(difficulties.values()):

        for a, age in enumerate(age_groups.values()):

            age_sum = np.sum(data.loc[(data['AGEP'] >= age[0]) \

                      & (data['AGEP'] <= age[1]), \

                      ['PWGTP']].values)

            query = data.loc[(data['AGEP'] >= age[0]) \

                    & (data['AGEP'] <= age[1]) \

                    & (data[diff] == 1), ['PWGTP']].values

            array[d, a] = np.sum(query) / age_sum

    return array

array = difficulty_age_array(p_nyc)

# Heatmap

plt.figure(dpi=300 , \

           cmap=sns.cubehelix_palette(rot=-.3, as_cmap=True))

ax = sns.heatmap(array * 100)

ax.set_yticklabels(difficulties.keys(), rotation=0)

ax.set_xticklabels(age_groups.keys(), rotation=90)

ax.set_xlabel('Age Groups')

ax.set_title('Percentage of NYC population with difficulties', \

             fontsize=14)

plt.show()



Chapter 7: Combining What We Have Learned | 483

The following diagram shows the output of the preceding code:

Figure 7.12: Percentage of NYC population with disabilities

Note

To access the source code for this specific section, please refer to  
https://packt.live/3e7xU0z.

This section does not currently have an online interactive example, and will 
need to be run locally.

https://packt.live/3e7xU0z
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Activity 7.02: Visualizing Stock Prices with Bokeh

Solution:

1. Create an Activity7.02.ipynb Jupyter Notebook from the  
Chapter07/Activity7.02 folder to implement this activity.

2. Import pandas and enable the notebook output for Bokeh:

# importing the necessary dependencies

import pandas as pd

from bokeh.io import output_notebook

output_notebook()

3. After downloading the dataset and moving it into the Datasets folder, import 
our stock_prices.csv data:

# loading the Dataset with geoplotlib

dataset = pd.read_csv('../../Datasets/stock_prices.csv')

4. Check the first five rows on our DataFrame to make sure that our data has been 
loaded successfully:

# looking at the dataset

dataset.head()

The following diagram shows the output of the preceding code:

Figure 7.13: Head of our imported data
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5. Since the date column has no information regarding the hour, minute, and 
second (all 00:00:00), avoid displaying them in the visualization later on by 
simply displaying the year, month, and day. Create a new column that holds the 
formatted short version of the date value. Display the first five elements of the 
dataset again to validate your new column:

# mapping the date of each row to only the year-month-day format

from datetime import datetime

def shorten_time_stamp(timestamp):

    shortened = timestamp[0] 

    if len(shortened) > 10:

        parsed_date=datetime.strptime(shortened, \

                                      '%Y-%m-%d %H:%M:%S')

        shortened=datetime.strftime(parsed_date, '%Y-%m-%d')

    return shortened

dataset['short_date'] = \

dataset.apply(lambda x: shorten_time_stamp(x), axis=1)

# looking at the dataset with shortened date

dataset.head()

The following diagram shows the output of the preceding code:

Figure 7.14: Dataset with an added short_date column

Note

The execution of the cell will take a moment since it's a fairly large dataset. 
Please, be patient.
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6. To create our visualization, we need some additional imports. Import figure 
and show this from the plotting interface. The widgets, as we saw in Chapter 6, 
Making Things Interactive with Bokeh, come from the ipywidgets library. Import 
the @interact decorator and the widgets interface, which gives us access to 
the different widgets:

# importing the necessary dependencies

from bokeh.plotting import figure, show

from ipywidgets import interact, widgets

7. Scroll down to the cell that says #extracting the necessary data 
before implementing the plotting. Make sure that you execute the cells below 
that, even though this will simply pass and do nothing for now. Extract the 
following information: a list of unique stock names that are present in the 
dataset, a list of all short_dates that are in 2016, a sorted list of unique dates 
generated from the previous list of dates from 2016, and a list with the values 
open-close and volume:

# extracting the necessary data

stock_names=dataset['symbol'].unique()

dates_2016=dataset[dataset['short_date'] >= '2016-01-01']\

           ['short_date']

unique_dates_2016=sorted(dates_2016.unique())

value_options=['open-close', 'volume']

8. Given the extracted information from the preceding cell, define widgets and 
provide the available options for it. Create a dropdown with the stock_names, 
which, by default, should have the AAPL stock selected, named Compare:. The 
second dropdown also uses stock_names, but, by default, should have the 
AON stock selected, named to:

# setting up the interaction elements

drp_1=widgets.Dropdown(options=stock_names, \

                       value='AAPL', \

                       description='Compare:')

drp_2=widgets.Dropdown(options=stock_names, \

                       value='AON', description='to:')
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9. Create a SelectionRange slider, which will allow us to select a range of 
dates from the extracted list of unique 2016 dates. By default, set the first 25 
dates as selected and name it From-To. Disable the continuous_update 
parameter. Adjust the layout width to 500px to make sure that the dates are 
displayed correctly:

range_slider=\

widgets.SelectionRangeSlider(options=unique_dates_2016, \

                             index=(0,25), \

                             continuous_update=False, \

                             description='From-To', \

                             layout={'width': '500px'})

10. Add a RadioButtons group that provides the open-close and volume 
options. By default, open-close should be selected, named Metric:

range_slider=\

widgets.SelectionRangeSlider(options=unique_dates_2016, \

                             index=(0,25), \

                             continuous_update=False, \

                             description='From-To', \

                             layout={'width': '500px'})

value_radio=widgets.RadioButtons(options=value_options, \

                                 value='open-close', \

                                 description='Metric') 

Note

As we mentioned in Chapter 6, Making Things Interactive with Bokeh, we 
can also make use of the widgets that are described here: https://ipywidgets.
readthedocs.io/en/stable/examples/Widget%20List.html.

https://ipywidgets.readthedocs.io/en/stable/examples/Widget%20List.html
https://ipywidgets.readthedocs.io/en/stable/examples/Widget%20List.html
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11. After setting up the widgets, implement the method that will be called with each 
update of the interactive widgets. Use the @interact decorator for this.

Instead of value ranges or lists, provide the variable names of our already 
created widgets in the decorator. The method will get four arguments: 
stock_1, stock_2, date, and value.

Since we have already set up the empty method that will return the preceding 
plot, call show() with the method call inside to show the result once it 
is returned from the get_stock_for_2016 method. Now, create the 
interact method:

@interact(stock_1=drp_1, stock_2=drp_2, date=range_slider, \

          value=value_radio)

def get_stock_for_2016(stock_1, stock_2, date, value):

    show(get_plot(stock_1, stock_2, date, value))

12. Start with the so-called candlestick visualization, which is often used with stock 
price data. Calculate the mean for every (high/low) pair and then plot those 
data points with a line with the given color. Next, set up an add_candle_plot 
function that gets a plot object, a stock_name parameter, a stock_range 
parameter containing the data of only the selected date range that was defined 
with the widgets, and a color for the line. Create a segment that creates the 
vertical line, and either a green or red vbar to color code whether the close 
price is lower than the open price. Once the candles are created, draw a 
continuous line running through the mean (high, low) point of each candle:

def add_candle_plot(plot, stock_name, stock_range, color):

    inc_1 = stock_range.close > stock_range.open

    dec_1 = stock_range.open > stock_range.close

    w = 0.5

    plot.segment(stock_range['short_date'], stock_range['high'], \

                 stock_range['short_date'], stock_range['low'], \

                 color="grey")

    plot.vbar(stock_range['short_date'][inc_1], w, \

              stock_range['high'][inc_1], \

              stock_range['close'][inc_1], \

              fill_color="green", line_color="black", \

              legend_label=('Mean price of ' + stock_name))
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    plot.vbar(stock_range['short_date'][dec_1], w, \

              stock_range['high'][dec_1], \

              stock_range['close'][dec_1], \

              fill_color="red", line_color="black", \

              legend_label=('Mean price of ' + stock_name))

    stock_mean_val=stock_range[['high', 'low']].mean(axis=1)

    plot.line(stock_range['short_date'], stock_mean_val, \

              legend_label=('Mean price of ' + stock_name), \

              line_color=color, alpha=0.5)

Note

Make sure to reference the example provided in the Bokeh library here. You 
can adapt the code in there to our arguments: https://bokeh.pydata.org/en/
latest/docs/gallery/candlestick.html.

13. After you have implemented the add_candle_plot method, scroll down and 
rerun the @interact cell. You will now see the candles being displayed for the 
two selected stocks. The final missing step is implementing the plotting of the 
lines if the volume value is selected.

14. Add an interactive legend that allows us to mute, meaning gray out, each stock 
in the visualization:

# method to build the plot

def get_plot(stock_1, stock_2, date, value):

    #[..]

    plot.xaxis.major_label_orientation = 1

    plot.grid.grid_line_alpha=0.3

    if value == 'open-close':

        add_candle_plot(plot, stock_1_name, \

                        stock_1_range, 'blue')

        add_candle_plot(plot, stock_2_name, \

                        stock_2_range, 'orange')

https://bokeh.pydata.org/en/latest/docs/gallery/candlestick.html
https://bokeh.pydata.org/en/latest/docs/gallery/candlestick.html
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    if value == 'volume':

    plot.line(stock_1_range['short_date'], \

              stock_1_range['volume'], \

              legend_label=stock_1_name, muted_alpha=0.2)

    plot.line(stock_2_range['short_date'], \

              stock_2_range['volume'], \

              legend_label=stock_2_name, muted_alpha=0.2, \

              line_color='orange')

    plot.legend.click_policy="mute"

    return plot

Note

To make our legend interactive, please take a look at the documentation 
for the legend feature: https://bokeh.pydata.org/en/latest/docs/user_guide/
interaction/legends.html.

The complete code for this step can be found on GitHub: https://github.com/
PacktWorkshops/The-Data-Visualization-Workshop/blob/master/Chapter07/
Activity7.02/Activity7.02.ipynb.

15. After our implementation has finished, execute the last cell with our @interact 
decorator once more. This time, it will display our candlestick plot and, once we 
switch to the volume RadioButton, we will see the volumes displayed that have 
been traded at the given dates. The resulting visualization should look something 
like this:

https://bokeh.pydata.org/en/latest/docs/user_guide/interaction/legends.html
https://bokeh.pydata.org/en/latest/docs/user_guide/interaction/legends.html
https://github.com/PacktWorkshops/The-Data-Visualization-Workshop/blob/master/Chapter07/Activity7.02/Activity7.02.ipynb
https://github.com/PacktWorkshops/The-Data-Visualization-Workshop/blob/master/Chapter07/Activity7.02/Activity7.02.ipynb
https://github.com/PacktWorkshops/The-Data-Visualization-Workshop/blob/master/Chapter07/Activity7.02/Activity7.02.ipynb
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Figure 7.15: Final interactive visualization that displays the candlestick plot
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The following diagram shows the final interactive visualization of the 
volume plot:

Figure 7.16: Final interactive visualization that displays the volume plot

You have now built a full visualization to display and explore stock price data. 
We added several widgets to our visualization that allows us to select "to be 
compared" stocks, restrict the displayed data to a specific date range, and even 
display two different kinds of plots.

Note

To access the source code for this specific section, please refer to  
https://packt.live/37ADxSM.

You can also run this example online at https://packt.live/3e83pHQ.

https://packt.live/37ADxSM
https://packt.live/3e83pHQ
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Activity 7.03: Analyzing Airbnb Data with geoplotlib

Solution:

1. Create an Activity7.03.ipynb Jupyter Notebook in the Chapter07/
Activity7.03 folder to implement this activity. Import NumPy, pandas, and 
geoplotlib first:

# importing the necessary dependencies

import numpy as np

import pandas as pd

import geoplotlib

2. Use the read_csv method of pandas to load the .csv file. If your computer is 
a little slow, use the smaller dataset:

# loading the Dataset

dataset = pd.read_csv('../../Datasets/airbnb_new_york.csv')

# dataset = pd.read_csv('../../Datasets/airbnb_new_york_smaller.csv')

3. Observe the structure of our dataset by looking at the features provided:

# print the first 5 rows of the dataset

dataset.head()

The following diagram shows the output of the preceding code:

Figure 7.17: Displaying the first five elements of the dataset
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4. Remember that geoplotlib needs latitude and longitude columns with the 
names lat and lon. We will, therefore, add new columns for lat and lon and 
assign the corresponding value columns to them:

# mapping Latitude to lat and Longitude to lon

dataset['lat'] = dataset['latitude']

dataset['lon'] = dataset['longitude']

5. In order to use a color map that changes color based on the price of 
accommodation, we need a value that can easily be compared and checked 
whether it's smaller or bigger than any other listing. Therefore, create a new 
column called dollar_price that will hold the value of the price column 
as a float. Make sure to fill all the NaN values of the price column and the 
review_scores_rating column with 0.0 by using the fillna() method 
of the dataset:

# convert string of type $<numbers> to <nubmers> of type float

def convert_to_float(x):

    try:

        value=str.replace(x[1:], ',', '')

        return float(value)

    except:

        return 0.0

"""

create new dollar_price column with the price as a number \

and replace the NaN values by 0 in the rating column

"""

dataset['price'] = dataset['price'].fillna('$0.0')

dataset['review_scores_rating'] = \

dataset['review_scores_rating'].fillna(0.0)

dataset['dollar_price'] = \

dataset['price'].apply(lambda x: convert_to_float(x))
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6. This dataset has 96 columns. When working with such a huge dataset, it makes 
sense to think about what data we need and creates a subsection of our dataset 
that only holds the data we need. Before we can do that, we'll take a look at all 
available columns and an example for that column. This will help us decide what 
information is suitable:

# print the col name and the first entry per column

for col in dataset.columns:

    print('{}\t{}'.format(col, dataset[col][0]))

The following diagram shows the output of the preceding code:

Figure 7.18: Each column header with an example entry from the dataset

7. Trim down the number of columns our working dataset has by creating a 
subsection of the columns with id, latitude as lat, longitude as lon, 
price in $, and review_scores_rating:

"""

create a subsection of the dataset with the above-mentioned columns

"""

columns=['id', 'lat', 'lon', 'dollar_price', \

         'review_scores_rating']

sub_data=dataset[columns]
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8. Print the first five rows of the trimmed down dataset:

# print the first 5 rows of the dataset

sub_data.head()

The following diagram shows the output of the preceding code:

 

Figure 7.19: Displaying the first five rows after keeping only five columns

9. Create a new DataAccessObject object with the newly created subsection 
of the dataset. Use it to plot out a dot map:

"""

import DataAccessObject and create a data object \

as an instance of that class

"""

from geoplotlib.utils import DataAccessObject

data = DataAccessObject(sub_data)

# plotting the whole dataset with dots

geoplotlib.dot(data)

geoplotlib.show()
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The following diagram shows the output of the preceding code:

Figure 7.20: Simple dot map created from the points

10. The final step is to write the custom layer. Define a ValueLayer class that 
extends the BaseLayer object of geoplotlib. For the interactive feature 
mentioned, we require an additional import. pyglet provides us with the 
option to act on key presses:

# custom layer creation

import pyglet

import geoplotlib

from geoplotlib.layers import BaseLayer

from geoplotlib.core import BatchPainter

from geoplotlib.colors import ColorMap

from geoplotlib.utils import BoundingBox

class ValueLayer(BaseLayer):
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    def __init__(self, dataset, bbox=BoundingBox.WORLD):

        # initialize instance variables

        pass

    def invalidate(self, proj):

        """

        draw the points with the color based on the \

        selected attribute

        """

        pass

    def draw(self, proj, mouse_x, mouse_y, ui_manager):

        # display the ui manager info

        pass

    def on_key_release(self, key, modifiers):

    """

    check if left or right keys are pressed \

    to switch to other attribute

    """

    pass

    def bbox(self):

        # bounding box that gets used when the layer is created

        pass

11. Initiate the following instance variables in the __init__ method of the 
ValueLayer class: first, self.data, which holds the dataset; second, self.
display, which holds the currently selected attribute name; third, self.
painter, which holds an instance of the BatchPainter class; fourth, self.
view, which holds the BoundingBox function; and lastly, self.cmap, which 
holds a color map with the jet color schema and an alpha of 255 and 
100 levels:

# custom layer creation

import pyglet

import geoplotlib

from geoplotlib.layers import BaseLayer

from geoplotlib.core import BatchPainter

from geoplotlib.colors import ColorMap

from geoplotlib.utils import BoundingBox
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class ValueLayer(BaseLayer):

    def __init__(self, dataset, bbox=BoundingBox.WORLD):

        # initialize instance variables

        self.data = dataset

        self.display = 'dollar_price'

        self.painter = BatchPainter()

        self.view = bbox

        self.cmap = ColorMap('jet', alpha=255, levels=100)

12. Implement the bbox, draw, and on_key_release method for the 
ValueLayer class. First, return the self.view variable in the bbox 
method. Then, set the ui_manager.info text to Use left and right 
to switch between the displaying of price and ratings. 
Currently displaying: dollar_price or review_scores_rating, 
depending on what the self.display variable holds, and lastly, in the 
on_key_release method, check whether the left or right key is pressed and 
switch the self.display variable between dollar_price or review_
scores_rating. Next, return True if the left or the right key has been 
pressed to trigger redrawing of the dots, otherwise return False. The full 
custom layer notebook cell will look like this:

# custom layer creation

import pyglet

import geoplotlib

from geoplotlib.layers import BaseLayer

from geoplotlib.core import BatchPainter

from geoplotlib.colors import ColorMap

from geoplotlib.utils import BoundingBox

class ValueLayer(BaseLayer):

    def __init__(self, dataset, bbox=BoundingBox.WORLD):

        # initialize instance variables

        self.data = dataset

        self.display = 'dollar_price'

        self.painter = BatchPainter()

        self.view = bbox

        self.cmap = ColorMap('jet', alpha=255, levels=100)
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    def invalidate(self, proj):

        """

        draw the points with the color based \

        on the selected attribute

        """

        pass

    def draw(self, proj, mouse_x, mouse_y, ui_manager):

        # display the ui manager info

        ui_manager.info('Use left and right to switch between '\

                        'the displaying of price and ratings. '\

                        'Currently displaying: {}'\

                        .format(self.display))

        self.painter.batch_draw()

    def on_key_release(self, key, modifiers):

        """

        check if left or right keys are pressed \

        to switch to other attribute

        """

        if key == pyglet.window.key.LEFT \

        or key == pyglet.window.key.RIGHT:

            self.display = 'dollar_price' if self.display \

            != 'dollar_price' else 'review_scores_rating'

            return True

        return False

    def bbox(self):

        # bounding box that gets used when a layer is created

        return self.view

13. Given the data, plot each point on the map with a color that is defined by the 
currently selected attribute, either price or rating. First, in the invalidate 
method, assign a new BatchPainter() function to the self.painter 
variable. Second, get the max value of the dataset given the current self.
display variable. Third, use a log scale if dollar_price is used, otherwise 
use a lin scale. Lastly, map the value to color using the cmap object we defined 
in the __init__ method and plot each point with the given color onto the map 
with a size of 5:
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# custom layer creation

import pyglet

import geoplotlib

from geoplotlib.layers import BaseLayer

from geoplotlib.core import BatchPainter

from geoplotlib.colors import ColorMap

from geoplotlib.utils import BoundingBox

class ValueLayer(BaseLayer):

    def __init__(self, dataset, bbox=BoundingBox.WORLD):

        # initialize instance variables

        self.data = dataset

        self.display = 'dollar_price'

        self.painter = BatchPainter()

        self.view = bbox

        self.cmap = ColorMap('jet', alpha=255, levels=100)

    def invalidate(self, proj):

        """

        paint every point with a color that represents \

        the currently selected attributes value

        """

        self.painter = BatchPainter()

        max_val = max(self.data[self.display])

        scale = 'log' if self.display == 'dollar_price' else 'lin'

        for index, id in enumerate(self.data['id']):

            # log scale can't start at 0, must be 1

            min_val = max(self.data[self.display][index], 1)

            color = self.cmap.to_color(min_val, max_val, scale)

            self.painter.set_color(color)

            lat, lon = self.data['lon'][index], \

                       self.data['lat'][index]

            x, y = proj.lonlat_to_screen(lat, lon)

            self.painter.points(x, y, 5)
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    def draw(self, proj, mouse_x, mouse_y, ui_manager):

        # display the ui manager info

        ui_manager.info('Use left and right to switch between \

                        'the displaying of price and ratings. '\

                        'Currently displaying: {}'\

                        .format(self.display))

        self.painter.batch_draw()

    def on_key_release(self, key, modifiers):

        """

        check if left or right keys are pressed to \

        switch to other attribute

        """

        if key == pyglet.window.key.LEFT \

        or key == pyglet.window.key.RIGHT:

            self.display = 'dollar_price' if self.display \

                           != 'dollar_price' \

                           else 'review_scores_rating'

            return True

        return False

    # bounding box that gets used when layer is created

    def bbox(self):

        return self.view

14. Create a new BoundingBox function focused on New York by using 
north=40.897994, west=-73.999040, south=40.595581, 
east=-73.95040. Use the darkmatter tile provider that we looked at in 
Chapter 5, Plotting Geospatial Data. Provide the BoundingBox function to the 
ValueLayer class when adding a new layer to geoplotlib:

# bounding box for our view on New York

from geoplotlib.utils import BoundingBox

ny_bbox = BoundingBox(north=40.897994, west=-73.999040, \

                      south=40.595581, east=-73.95040)

# displaying our custom layer using add_layer

geoplotlib.tiles_provider('darkmatter')

geoplotlib.add_layer(ValueLayer(data, bbox=ny_bbox))

geoplotlib.show()
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After launching our visualization, we can see that our viewport is focused on 
New York. Every accommodation is displayed with one dot. Each dot is colored, 
based on either its price or (upon clicking the right or left arrow) the rating. We 
can see that the general color gets closer to yellow/orange the closer we get to 
central Manhattan. On the other hand, in the rating visualization, we can see that 
the accommodation in central Manhattan appears to be rated lower than the 
accommodation outside:

Figure 7.21: New York Airbnb dot map, colored based on price
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The following diagram shows a dot map with color based on rating:

Figure 7.22: New York Airbnb dot map, colored based on ratings

You have just created an interactive visualization by writing your custom layer to 
display and visualize price and rating information for Airbnb accommodations 
spread across New York.

Note

To access the source code for this specific section, please refer to  
https://packt.live/3eioPSA.

This section does not currently have an online interactive example, and will 
need to be run locally.

https://packt.live/3eioPSA
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