
Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

AI_Module5

Syllabus :
Inference in First Order Logic: Backward Chaining, Resolution
Classical Planning: Definition of Classical Planning, Algorithms for Planning as
State-Space Search, Planning Graphs
Chapter 9-9.4, 9.5
Chapter 10- 10.1,10.2,10.3

Topics:

1. Inference in First Order Logic

1. Backward Chaining,

2. Resolution

2. Classical Planning

1. Definition of Classical Planning

2. Algorithms for Planning as State Space Search

3. Planning Graphs

4. Logic Programming

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

5.1.1 Backward Chaining
Backward chaining is a reasoning method that starts with the goal and works

backward through the inference rules to find out whether the goal can be

satisfied by the known facts.

It's essentially goal-driven reasoning, where the system seeks to prove the

hypothesis by breaking it down into subgoals and verifying if the premises

support them.

Example : Consider the following knowledge base representing a simple

diagnostic system:

1. If a patient has a fever, it might be a cold.

2. If a patient has a sore throat, it might be strep throat.

3. If a patient has a fever and a sore throat, they should see a doctor.

Given the facts:

• The patient has a fever.

• The patient has a sore throat.

Backward chaining would proceed as follows:

• Start with the goal: Should the patient see a doctor?

• Check the third rule: Does the patient have a cold and a sore throat? Yes.

• Check the first and second rules: Does the patient have a fever and sore

throat? Yes.

• The goal is satisfied: The patient should see a doctor.

Backward chaining is useful when there is a specific goal to be achieved, and the

system can efficiently backtrack through the inference rules to determine

whether the goal can be satisfied.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

5.1.1.1 Backward Chaining: Algorithm
These algorithms work backward from the goal, chaining through rules to find

known facts that support the proof.

Source Book: Stuart J. Russell and Peter Norvig, Artificial Intelligence, 3rd Edition, Pearson,2015

5.1.1.2 Overview of the Algorithm

1. Goal:

o The purpose of the algorithm is to determine whether a query

(goal) can be derived from a given knowledge base (KB).

2. Process:

o It uses backward chaining, meaning it starts with the goal and

works backward by looking for rules or facts in the knowledge

base that could satisfy the goal.

o The algorithm returns substitutions (values or variables) that make

the query true.

3. Key Components:

o FOL-BC-ASK: This is the main function that starts the backward-

chaining process by calling FOL-BC-OR.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

o FOL-BC-OR: This function checks whether the goal can be

satisfied by any rule in the KB. It iterates over applicable rules and

tries to unify the goal with the rule’s conclusions.

o FOL-BC-AND: This function handles multiple sub-goals. It

ensures that all sub-goals are satisfied for the main goal to be true.

4. Key Terminology:

o FOL-BC-ASK: Entry point for the algorithm.

o FOL-BC-OR: Handles rules and checks if the goal is satisfied by

any rule.

o FOL-BC-AND: Ensures all sub-goals are satisfied.

o FETCH-RULES-FOR-GOAL: Retrieves applicable rules for a

goal.

o UNIFY: Matches terms by finding substitutions.

o Standardize Variables: Ensures variable names are unique to avoid

conflict.

o θ: The substitution carried into the current function call.

o θ′: A substitution produced by solving the first sub-goal in FOL-BC-

AND.

o θ′′: A substitution produced by solving the remaining sub-goals

using the updated θ′.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Detailed Algorithm Steps

Step 1: FOL-BC-ASK(KB, query):

 Start with the query and call FOL-BC-OR.

 Example: For Ancestor(John, Sam), call:

o FOL-BC-OR(KB, Ancestor(John, Sam), { }).

Step 2: FOL-BC-OR(KB, goal, θ):

 Fetch all rules from the KB that could produce the goal.

 For each rule:

1. Standardize Variables: Make rule variables unique to avoid

conflicts.

2. Unify rhs and goal: Match the conclusion of the rule (rhs)

with the current goal using Unify. This updates θ.

3. Call FOL-BC-AND: Recursively evaluate the conditions (lhs) of

the rule with the updated θ.

 Yield θ′: Each substitution that satisfies the rule is yielded back to the

caller.

Step 3: FOL-BC-AND(KB, goals, θ):

 Handles multiple sub-goals (goals) produced from the rule's conditions.

1. If goals is empty, yield θ because all sub-goals are satisfied.

2. Otherwise:

o Split goals into first and rest.

o Call FOL-BC-OR for the first goal.

o For each result (θ′) from FOL-BC-OR:

 Recursively solve rest using FOL-BC-AND with the

updated θ′.

 Yield θ′′, the result of solving all sub-goals.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Step-by-Step Explanation with Example

Let’s use the following Knowledge Base (KB) and query.

Knowledge Base:

1. Parent(x, y) ⇒ Ancestor(x, y) (Rule 1)
2. Parent(x, z) ∧ Ancestor(z, y) ⇒ Ancestor(x, y) (Rule 2)
3. Parent(John, Mary) (Fact)
4. Parent(Mary, Sam) (Fact)

Query: Ancestor(John, Sam)

Execution Steps

Step 1: FOL-BC-ASK

 Query: Ancestor(John, Sam)
 Calls: FOL-BC-OR(KB, Ancestor(John, Sam), { }).

Step 2: FOL-BC-OR

 Goal: Ancestor(John, Sam)
 Fetch rules for Ancestor:

1. Rule 1: Parent(x, y) ⇒ Ancestor(x, y)
2. Rule 2: Parent(x, z) ∧ Ancestor(z, y) ⇒ Ancestor(x, y)

Case 1: Use Rule 1

 lhs = Parent(x, y), rhs = Ancestor(x, y).

 Unify Ancestor(John, Sam) with Ancestor(x, y):
o Substitution: θ = {x=John, y=Sam}.

 Sub-goal: Parent(John, Sam).

Step 3: FOL-BC-AND

 Goals: [Parent(John, Sam)]
 Calls: FOL-BC-OR(KB, Parent(John, Sam), {x=John, y=Sam}).

Step 4: FOL-BC-OR

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

 Goal: Parent(John, Sam)
 Check the KB:

o Facts: Parent(John, Mary) (no match for Sam).
o Rule 1 fails.

Case 2: Use Rule 2

 lhs = Parent(x, z) ∧ Ancestor(z, y), rhs = Ancestor(x, y).

 Unify Ancestor(John, Sam) with Ancestor(x, y):
o Substitution: θ = {x=John, y=Sam}.

 Sub-goals:
o goals = [Parent(John, z), Ancestor(z, Sam)].

Step 5: FOL-BC-AND

 Goals: [Parent(John, z), Ancestor(z, Sam)].

1. First sub-goal (Parent(John, z)):

o Calls: FOL-BC-OR(KB, Parent(John, z), θ).

o Matches: Parent(John, Mary).
o Substitution: {z=Mary}.
o Update θ′: {x=John, y=Sam, z=Mary}.

2. Second sub-goal (Ancestor(z, Sam)):

o Calls: FOL-BC-OR(KB, Ancestor(Mary, Sam), θ′).
o Unify with Rule 1: Parent(x, y) ⇒ Ancestor(x, y).
o Sub-goal: Parent(Mary, Sam).

Step 6: FOL-BC-AND

 Goal: [Parent(Mary, Sam)].
 Matches fact: Parent(Mary, Sam).
 Substitution: {x=Mary, y=Sam}.
 Satisfies all sub-goals.

Final Result

 Combine all substitutions:

o {x=John, y=Sam, z=Mary}.
 The query Ancestor(John, Sam) is true.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Source Book: Stuart J. Russell and Peter Norvig, Artificial Intelligence, 3rd Edition, Pearson,2015

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

5.1.2 Resolution

Resolution is a fundamental inference rule used in automated theorem proving

and logic programming. It is based on the principle of proof by contradiction.

Resolution combines logical sentences in the form of clauses to derive new

sentences.

The resolution rule states that if there are two clauses that contain

complementary literals (one positive, one negative) then these literals can be

resolved, leading to a new clause that is inferred from the original clauses.

Example1:

Consider two logical statements:

1. P∨Q

2. ¬P∨R

Applying resolution: Resolve the statements by eliminating P:

• P∨Q

• ¬P∨R

Resolving P and ¬P: Q∨R

The resulting statement Q∨R is a new clause inferred from the original two.

Resolution is a key component of logical reasoning in FOL, especially in tasks like

automated theorem proving and knowledge representation.

Example2:

Clause 1: (P∨Q∨R)

Clause 2:(¬P∨¬Q∨S)

To resolve these clauses, we look for complementary literals. In this case, P and

¬P are complementary.

So, we can resolve these two clauses by removing the complementary literals

and combining the remaining literals:

Resolving P and ¬P gives: (Q∨R)∨(¬Q∨S)

Resolving Q and ¬Q gives (RVS)

This is the resolvent.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Conjunctive Normal Form

A formula is in CNF if it is a conjunction (AND) of clauses, where each clause is

a disjunction (OR) of literals.

CNF Examples

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Proof By Resolution Process includes the following steps in general

1. Initial Set of Clauses (Knowledge Base)

2. Convert the Statement into Clausal Form

3. Skolemization

4. Standardize Variables

5. Unification

6. Resolution Rule

7. Iterative Application

Resolution in First Order Logic (FOL) is a proof technique used in automated

reasoning to determine the validity of a statement. It is based on the principle of

refutation, where we attempt to derive a contradiction from a set of clauses.

Key Steps in Resolution in FOL:

1. Convert the Statement into Clausal Form:

o The statement and its negation are converted into conjunctive

normal form (CNF).

o CNF is a conjunction of disjunctions where each disjunction is

called a clause.

o Example: (A∨¬B)∧(¬A∨C).

2. Skolemization:

o Eliminate existential quantifiers by replacing them with Skolem

functions or constants.

o This step ensures the formula becomes purely universal.

3. Standardize Variables:

o Rename variables so that no two clauses share the same variable

names.

4. Unification:

o Unification is the process of making two literals identical by

finding a substitution for their variables.

o Example: P(x) and P(a) can be unified with the substitution x=a.

5. Resolution Rule:

o The resolution rule combines two clauses that contain

complementary literals (e.g., P(x) and ¬P(x) to produce a new

clause without those literals.

o Example:

 Clause 1: P(x)∨Q(x),

 Clause 2: ¬P(a)∨R(x),

 Resolvent: Q(a)∨R(x).

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

6. Iterative Application:

o Apply the resolution rule repeatedly to derive new clauses.

o If the empty clause □is derived, it indicates a contradiction,

proving the original statement.

Example: Proving Validity

Suppose we have the following knowledge base:

1. P(a)∨Q(b)

2. ¬Q(b)∨R(c)

3. ¬R(c)

We want to prove ¬P(a).

Steps:

1. Negate the statement to be proven and add it to the clauses:

o ¬P(a) becomes P(a).

2. Apply the resolution rule:

o Combine P(a)∨Q(b).

o Combine Q(b) and ¬Q(b)∨R(c) .

o Combine R(c) and ¬R(c) to get □ empty clause.

Since the empty clause □ is derived, the original statement ¬P(a) is valid.

Applications of Resolution in FOL:

 Automated theorem proving.

 Reasoning in expert systems.

 Artificial intelligence, particularly for tasks involving logical inference.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Example 1:

Let's consider a simplified example of a knowledge base for the Wumpus World

scenario and demonstrate proof by resolution to establish the unsatisfiability of

a certain statement.

In Wumpus World, an agent explores a grid containing a Wumpus (a monster),

pits, and gold. Apply the resolution to prove P[1,2].

 Knowledge Base (KB)

1. W[1,1] ∨ P[1,2]

2. ¬W[1,1]∨¬P[1,2]

3. B[1,2]⇒P[1,2]

4. ¬B[1,2]⇒¬P[1,2]

 Convert the Knowledge Base (KB) into CNF

 Negated Conclusion:

Let's say we want to prove the negation of the statement: ¬PitIn[1,2]

 Apply Resolution:

1. W[1,1] ∨ P[1,2] , ¬P[1,2] resolves into W[1,1]

2. ¬W[1,1]∨¬P[1,2], W[1,1] resolves into ¬P[1,2]

3. ¬B[1,2] ∨ P[1,2] , ¬P[1,2] resolves into ¬B[1,2]

4. B[1,2] ∨¬P[1,2], ¬B[1,2] resolves into ¬P[1,2]

Applying resolution, we end up with: ¬P[1,2] , Which is not empty and also

there is not further any clauses to continue. This gives conclusion that our

negation conclusion is True and P[1,2] is False for the given knowledge base.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Example 2:

A grammar for conjunctive normal form

Conjunctive normal form for first-order logic:

As in the propositional case, first-order resolution requires that sentences be in

conjunctive normal form (CNF)—that is, a conjunction of clauses, where each

clause is a disjunction of literals.

Literals can contain variables, which are assumed to be universally quantified.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

For example, the sentence

• ∀ x American(x) ∧ Weapon(y) ∧ Sells(x, y, z) ∧ Hostile(z) ⇒ Criminal(x)

becomes, in CNF,

¬American(x) ∨ ¬Weapon(y) ∨ ¬Sells(x, y, z) ∨ ¬Hostile(z) ∨ Criminal(x)

Every sentence of first-order logic can be converted into an inferentially

equivalent CNF sentence. The procedure for conversion to CNF is similar to the

propositional case, The principal difference arises from the need to eliminate

existential quantifiers.

We illustrate the procedure by translating the sentence

“Everyone who loves all animals is loved by someone,”

or

∀ x [∀ y Animal(y) ⇒ Loves(x, y)] ⇒ [∃ y Loves(y, x)] .

Steps

• Eliminate implications: ∀ x [¬∀ y ¬Animal(y) ∨ Loves(x, y)] ∨ [∃ y

Loves(y, x)] .

• Move ¬ inwards: In addition to the usual rules for negated connectives,

we need rules for negated quantifiers. Thus, we have

• ¬∀ x p becomes ∃ x ¬p

• ¬∃ x p becomes ∀ x ¬p .

• Our sentence goes through the following transformations:

• ∀ x [∃ y ¬(¬Animal(y) ∨ Loves(x, y))] ∨ [∃ y Loves(y, x)] .

• ∀ x [∃ y ¬¬Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)] .

• ∀ x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)] .

• Standardize variables: For sentences like (∃ x P(x))∨(∃ x Q(x)) which use

the same variable name twice, change the name of one of the variables.

This avoids confusion later when we drop the quantifiers. Thus, we have

• ∀ x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ z Loves(z, x)] .

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

• Skolemize: Skolemization is the process of removing existential

quantifiers by elimination. Translate ∃ x P(x) into P(A), where A is a new

constant.

• Example :

• ∀ x [Animal(A) ∧ ¬Loves(x, A)] ∨ Loves(B, x) ,

• ∀ x [Animal(F(x)) ∧ ¬Loves(x, F(x))] ∨ Loves(G(z), x) . Here F

and G are Skolem functions.

• Drop universal quantifiers: At this point, all remaining variables must be

universally quantified. Moreover, the sentence is equivalent to one in

which all the universal quantifiers have been moved to the left. We can

therefore drop the universal quantifiers:

• [Animal(F(x)) ∧ ¬Loves(x, F(x))] ∨ Loves(G(z), x) .

• Distribute ∨ over ∧:

[Animal(F(x)) ∨ Loves(G(z), x)] ∧ [¬Loves(x, F(x)) ∨ Loves(G(z), x)] .

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

The resolution inference rule

• Two clauses, which are assumed to be standardized apart so that they

share no variables, can be resolved if they contain complementary

literals.

• Propositional literals are complementary if one is the negation of the

other;

• first-order literals are complementary if one unifies with the negation of

the other.

• Thus We have

Example:

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Another Example :

Suppose Curiosity did not kill Tuna. We know that either Jack or

Curiosity did; thus Jack must have. Now, Tuna is a cat and cats are

animals, so Tuna is an animal. Because anyone who kills an animal is

loved by no one, we know that no one loves Jack. On the other hand,

Jack loves all animals, so someone loves him; so we have a

contradiction. Therefore, Curiosity killed the cat.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Summary

1. Forward chaining starts with known facts and moves forward to reach

conclusions,

2. Backward chaining starts with the goal and moves backward to verify if

the goal can be satisfied, and

3. Resolution is an inference rule used to derive new clauses by combining

existing ones.

These techniques are essential for reasoning and inference in First-Order Logic

systems.

Note : The empty clause derived always implies the assumed

negation(contradiction) is false.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Completeness of resolution

Resolution is a method in logic that can prove whether a set of statements is

unsatisfiable. If the statements are unsatisfiable (i.e., there’s no way they can all

be true at once), resolution will eventually find a contradiction.

 Unsatisfiable set of statements: Means the statements can't all be true

together.

 Contradiction: A clear proof that the statements conflict with each other.

Key Idea

If a set of statements is unsatisfiable, resolution can always derive a contradiction,

proving unsatisfiability. This doesn’t mean resolution finds all logical

consequences—it’s focused on checking contradictions.

Steps in Proving Completeness

1. Transforming to Clausal Form:

Any logical statement can be converted into a standard form called

Conjunctive Normal Form (CNF). This is the foundation for using

resolution.

2. Using Herbrand's Theorem:

Herbrand's theorem says if the set of statements is unsatisfiable, there’s a

specific subset of ground instances (statements without variables) that’s

also unsatisfiable.

3. Applying Ground Resolution:

For these ground instances, propositional resolution (which works with

statements without variables) can find the contradiction.

4. Lifting to First-Order Logic:

A "lifting lemma" proves that if there’s a resolution proof for the ground

instances, there’s also one for the original statements with variables. This

ensures resolution works for first-order logic, not just simple ground

statements.

Structure of a completeness proof for resolution is illustrated in the figure
below:

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

What Are Ground Terms and Herbrand's Universe?

 Ground terms: Statements with no variables, created by substituting

constants or functions.

 Herbrand Universe: A collection of all possible ground terms that can

be built from the constants and functions in the given statements.

 Saturation: Generating all possible combinations of ground terms in the

statements.

Herbrand's theorem ensures we only need to check a finite subset of these terms

to find a contradiction.

Why is the Lifting Lemma Important?

The lifting lemma connects proofs for ground terms to proofs for first-order logic. It "lifts"

results from simpler cases (propositional logic) to more general cases (with variables). This

step is essential to show resolution's power in first-order logic.

The Conclusion

If a set of statements is unsatisfiable:

 Resolution finds a contradiction using a finite number of steps.

 This proof works for both simple ground statements and complex first-

order logic.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

This makes resolution a powerful tool in automated theorem proving!

The Lifting Lemma Explained

The lifting lemma is a principle that allows us to "lift" a resolution proof from

specific ground instances (statements without variables) to general first-order

logic (statements with variables). Here's how it works:

 C₁ and C₂: Two clauses that do not share variables.

 C′₁ and C′₂: Ground instances of C₁ and C₂ (created by substituting

variables with constants or terms).

 C′: A resolvent (a result of applying the resolution rule) of C′₁ and C′₂.

The lemma states:

There exists a clause C such that:

1. C is a resolvent of C₁ and C₂ (it works at the variable level).

2. C′ is a ground instance of C.

In simpler terms, if resolution works for specific ground instances, we can

always find a corresponding proof for the original first-order clauses.

Example

Let’s illustrate with an example:

1. Original clauses with variables:

o C1=¬P(x,F(x,A))∨¬Q(x,A)∨R(x,B)

o C2=¬N(G(y),z)∨P(H(y),z)

2. Ground instances (after substituting variables with specific terms):

o C′1=¬P(H(B),F(H(B),A))∨¬Q(H(B),A)∨R(H(B),B)

C′2=¬N(G(B),F(H(B),A))∨P(H(B),F(H(B),A))

3. Resolvent of the ground instances:

o C′=¬N(G(B),F(H(B),A))∨¬Q(H(B),A)∨R(H(B),B)

4. Lifted clause (with variables):

o C=¬N(G(y),F(H(y),A))∨¬Q(H(y),A)∨R(H(y),B)

Here, C′ is a ground instance of C, showing how the lifting lemma bridges

ground-level proofs to general first-order logic.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

This lemma is crucial because it ensures that resolution proofs for specific cases

(ground terms) can be generalized to more complex first-order logic, making the

method powerful and versatile.

Handling Equality in Inference Systems

So far, inference methods don't naturally handle statements like x=y. To deal

with equality, we can take one of three approaches.

1. Axiomatizing Equality

We write rules (axioms) in the knowledge base that define how equality works.

These rules must express:

 Reflexivity: x=x

 Symmetry: x=y⇒y=x

 Transitivity: x=y∧y=z⇒x=z

Additionally, we add rules to allow substitution of equal terms in predicates and

functions. For example:

 x=y⇒(P(x)⇔P(y)) (for predicates P)

 w=y∧x=z⇒F(w,x)=F(y,z)(for functions F)

Using these axioms, standard inference methods like resolution can handle

equality reasoning (e.g., solving equations). However, this approach can

generate many unnecessary conclusions, making it inefficient.

2. Demodulation: Adding Inference Rules

Instead of axioms, we can add specific inference rules like demodulation to

handle equality.

How it works:

 If x=y (a unit clause) and a clause α contains x, we replace x with y in α.

 Demodulation simplifies expressions in one direction (e.g., x+0=x allows

x+0 to simplify to x, but not vice versa).

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Example:

Given:

 Father(Father(x))=PaternalGrandfather(x)

 Birthdate(Father(Father(Bella)), 1926)

We use demodulation to derive:

 Birthdate(PaternalGrandfather(Bella), 1926)

3. Paramodulation

A more general rule, paramodulation, extends demodulation to handle cases

where equalities are part of more complex clauses.

How it works:

 If x=y appears as part of a clause and a term z in another clause unifies

with x, substitute y for x in z.

Formal Rule:

 For any terms x, y, and z:

o If z appears in a clause mmm and x unifies with z,

o Replace x with y in m, while preserving other parts of the clause.

Summary

 Axiomatization defines equality with explicit rules but can be inefficient.

 Demodulation simplifies terms by replacing variables with their equal

counterparts in one direction.

 Paramodulation generalizes equality handling for complex clauses.

These methods provide efficient ways to incorporate equality reasoning into

inference systems.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

More formally we have

Resolution Strategies

Resolution inference is guaranteed to find a proof if one exists, but some

strategies can make the process more efficient. Below are key strategies and their

applications.

Unit Preference

 Focuses on resolving clauses where one is a unit clause (a single literal).

 Resolving a unit clause (e.g., P) with a longer clause (e.g., ¬P∨¬Q∨R)

results in a shorter clause (¬Q∨R).

 This strategy, first applied in 1964, dramatically improved the efficiency

of propositional inference.

 Unit Resolution: A restricted form of this strategy, requiring every

resolution step to involve a unit clause.

o Complete for Horn Clauses: Proofs resemble forward chaining.

o Incomplete in General: Not suitable for all forms of knowledge

bases.

 Example: The OTTER theorem prover employs a best-first search with

a heuristic that assigns “weights” to clauses, favoring shorter ones (e.g.,

unit clauses).

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Set of Support

 Restricts resolutions to involve at least one clause from a predefined set

of support.

 The set of support typically includes the negated query or clauses likely

to lead to a proof.

 Resolutions add their results to this set, significantly reducing the search

space if the set is small.

 This strategy is complete if the remaining sentences in the knowledge

base are satisfiable.

 Advantages:

o Generates goal-directed proof trees, which are easier for humans

to interpret.

Input Resolution

 In this strategy, resolutions always involve one of the original input

clauses (from the knowledge base or the query).

 Example: Modus Ponens in Horn knowledge bases is an input resolution

strategy, as it combines an implication from the KB with other sentences.

 Linear Resolution: A generalization where PPP and QQQ can be

resolved if PPP is either an input clause or an ancestor of QQQ in the

proof tree.

o Complete for Linear Resolution: Particularly useful in structured

proofs.

Subsumption

 Eliminates redundant sentences in the knowledge base that are

subsumed by more general sentences.

 Example: If P(x) is in the KB, there’s no need to add P(A) or P(A)∨Q(B).

 Benefits:

o Reduces the size of the knowledge base.

o Keeps the search space manageable.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Applications of Resolution Theorem Provers

Resolution theorem provers are widely used in the synthesis and verification of

both hardware and software systems.

1. Hardware Design and Verification

 Axioms describe the interactions between signals and circuit components.

 Example: Logical reasoners have verified entire CPUs, including timing

properties.

 AURA Theorem Prover: Used to design highly compact circuits.

2. Software Verification and Synthesis

 Similar to reasoning about actions, axioms define the preconditions and

effects of program statements.

 Algorithm Synthesis:

o Deductive synthesis constructs programs to meet specific criteria.

o Although fully automated synthesis is not yet practical for general-

purpose programming, hand-guided synthesis has successfully

created sophisticated algorithms.

 Verification Tools: Systems like the SPIN model checker are used to

verify programs such as:

o Remote spacecraft control systems.

o Algorithms like RSA encryption and Boyer–Moore string

matching.

Summary

Resolution strategies like unit preference, set of support, input resolution, and

subsumption improve proof efficiency by focusing on relevance, reducing

redundancy, and constraining the search space. Applications in hardware and

software demonstrate their importance in real-world problem-solving.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

5.2 Classical Planning:

Syllabus: Definition of Classical Planning, Algorithms for Planning as State-

Space Search, Planning Graphs.

5.2.1 The Definition of Classical Planning

Classical planning focuses on solving problems by identifying sequences of

actions that transition from an initial state to a goal state. In this approach factored

representations is adopted, where a state is expressed as a collection of

variables. This approach uses the Planning Domain Definition Language

(PDDL), which enables concise representation of actions through schemas,

reducing redundancy. For instance, instead of defining individual actions for all

possible combinations, a single action schema in PDDL can represent multiple

actions by using variables.

5.2.1.1 Representing States in Classical Planning

States are represented as conjunctions of fluents—ground, functionless

atomic facts. For example:

 Poor ∧ Unknown: Represents the state of a struggling agent.
 At(Truck1, Melbourne) ∧ At(Truck2, Sydney): Represents locations of

trucks in a delivery problem.

The representation follows:

1. Closed-world assumption: Any fluent not explicitly mentioned is
considered false.

2. Unique names assumption: Different symbols (e.g., Truck1 and Truck2)
represent distinct entities.

Certain constructs are disallowed in states, such as:

 Non-ground fluents: e.g., At(x, y).
 Negations: e.g., ¬Poor.
 Function symbols: e.g., At(Father(Fred), Sydney).

States can be manipulated as either conjunctions of fluents (using logical

inference) or sets of fluents (using set operations).

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

5.2.1.2 Defining Actions with Schemas

Actions are defined using schemas, which specify:

 The action name and variables.
 Precondition: The required state for the action to execute.
 Effect: The state resulting from the action.

For example, an action schema for flying a plane is:

Action(Fly(p, from, to),

 PRECOND: At (p, from) ∧Plane(p) ∧ Airport(from) ∧
Airport(to),

 EFFECT: ¬At (p, from) ∧ At (p, to))

From this schema, specific actions can be instantiated by substituting

variable values.

For instance:

Action (Fly (P1, SFO, JFK),

 PRECOND: At (P1, SFO) ∧ Plane(P1) ∧ Airport(SFO)
∧ Airport(JFK),
 EFFECT: ¬At (P1, SFO) ∧ At(P1, JFK))

An action is applicable in a state if its preconditions are satisfied. When

executed, the resulting state is determined by:

 Removing fluents in the delete list (negative effects).
 Adding fluents in the add list (positive effects).

For example, executing Fly(P1, SFO, JFK) in a state would remove At(P1,

SFO) and add At(P1, JFK).

5.2.1.3 Planning Domains and Problems

A planning domain is defined by a set of action schemas. A specific problem

within the domain includes:

1. Initial state: A conjunction of ground fluents.
2. Goal: A conjunction of literals, possibly containing variables treated as

existentially quantified.
The planning problem is solved when a sequence of actions leads to a state that

satisfies the goal.

For example:

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

 The state Plane(Plane1) ∧ At(Plane1, SFO) satisfies the goal At(p, SFO) ∧
Plane(p).

5.2.1.4 Limitations in Early Approaches:

1. Atomic State Representations (Chapter 3 Problem-Solving Agent):
o States are treated as indivisible entities, leading to a lack of structure in

representations.

o This approach relies heavily on domain-specific heuristics for

effective problem-solving, limiting its generalizability and requiring

significant manual tuning for each domain.

2. Ground Propositional Inference (Chapter 7 Hybrid Propositional Logic

Agent):
o Uses domain-independent heuristics, reducing the need for manual

tuning.

o However, it relies on ground (variable-free) propositional inference,

which becomes computationally infeasible with large state spaces or

a high number of actions.

o Example: In the Wumpus World, a simple move action must account

for all possible orientations, time steps, and grid locations, causing a

combinatorial explosion in the number of actions.

5.2.1.5 Overcoming Limitations with Factored Representations:

1. Structured State Representation:

o States are expressed as collections of variables, enabling a more

structured and compact representation.

o This approach captures relationships and dependencies between

state components, improving efficiency and scalability.

2. Use of PDDL (Planning Domain Definition Language):
o Action Schemas: Introduced to reduce redundancy by representing

actions with variables rather than enumerating all possible

instances.

Example: Instead of defining actions for every plane and airport

combination, a single schema can describe the action of flying a

plane between airports.

o Domain Independence: PDDL allows concise and reusable

descriptions of actions and states, supporting various domains

without customization.

3. Improved Computational Efficiency:

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

o By focusing on factored representations and logical reasoning

over variables, the new approach avoids the combinatorial

explosion seen in propositional logic.

o This scalability makes classical planning applicable to complex

domains with numerous states and actions.

Summary of Improvement: The transition from atomic and ground

representations to factored representations with PDDL enables classical

planning to handle larger, more complex problems with greater efficiency and

flexibility. This advancement overcomes the scalability challenges of earlier

approaches while reducing dependency on domain-specific heuristics.

5.2.1.6 Example : Air cargo transport

The air cargo transport problem, illustrated in Figure 10.1, involves transporting

cargo between airports by loading, unloading, and flying planes. This problem

uses three main actions: Load, Unload, and Fly, which operate on two primary

predicates:

1. In(c, p): Indicates that cargo c is inside plane p.
2. At(x, a): Specifies that an object x (plane or cargo) is located at airport

a.

To ensure the correct maintenance of the At predicates, special care is required.

When a plane flies from one airport to another, all cargo inside the plane must

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

also move with it. While first-order logic can easily quantify over all objects

within the plane, basic PDDL lacks universal quantifiers. Therefore, a different

solution is adopted:

 Cargo ceases to be At any location once it is loaded into a plane (it is
considered In the plane).

 The cargo becomes At the destination airport only when it is unloaded
from the plane.

Thus, At(x, a) effectively signifies "available for use at a given location."

Example Solution Plan : A valid solution plan for transporting cargo C1

and C2 is as follows:

1. Load(C1, P1, SFO): Load cargo C1 onto plane P1 at airport SFO.
2. Fly(P1, SFO, JFK): Fly plane P1 from SFO to JFK.
3. Unload(C1, P1, JFK): Unload cargo C1 from plane P1 at JFK.
4. Load(C2, P2, JFK): Load cargo C2 onto plane P2 at JFK.

5. Fly(P2, JFK, SFO): Fly plane P2 from JFK to SFO.
6. Unload(C2, P2, SFO): Unload cargo C2 from plane P2 at SFO.

Handling Spurious Actions : The problem can also involve spurious actions,

such as Fly(P1, JFK, JFK), which would be a no-op but can produce

contradictory effects (e.g., both At(P1, JFK) and ¬At(P1, JFK)). While

such issues are often ignored in practice because they rarely lead to incorrect

plans, the proper way to prevent them is by adding inequality preconditions,

ensuring that the departure (from) and arrival (to) airports are different.

In the context of the air cargo transport problem, SFO and JFK refer to airport

codes:

 SFO: San Francisco International Airport

 JFK: John F. Kennedy International Airport (located in New York City)

These are commonly used IATA airport codes to represent specific locations in

transportation and logistics scenarios. In this problem, they are used as example

locations for cargo and planes.

5.2.1.7 Example: The Spare Tire Problem

Imagine the task of changing a flat tire, as shown in Figure 10.2. The goal is to

replace the flat tire on the car's axle with a good spare tire. Initially, the flat tire

is mounted on the axle, and the spare tire is in the trunk. For simplicity, this

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

problem is abstracted—there are no challenges like stubborn lug nuts or other

real-world complications.

In this scenario, there are only four actions available:

1. Removing the spare tire from the trunk.
2. Removing the flat tire from the axle.
3. Mounting the spare tire onto the axle.
4. Leaving the car unattended overnight.

It is assumed that leaving the car unattended in a dangerous neighborhood

results in all the tires disappearing. A valid solution to this problem would be

the sequence:
[Remove(Flat, Axle), Remove(Spare, Trunk), PutOn(Spare, Axle)].

5.2.1.8 Example: The Blocks World

The blocks world is a classic planning domain often used to study problem-

solving and AI planning. It involves manipulating cube-shaped blocks on a table

to achieve a specified configuration.

Key Concepts:

1. Setup:

o Blocks can be placed on the table or stacked on top of one
another.

o Only one block can fit directly on top of another block.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

o A robot arm is used to move the blocks:
 It can pick up only one block at a time.
 It cannot pick up a block that has another block on top of it.

2. Goal:

o The goal is defined by a specific arrangement of blocks, e.g., block
A on B and block B on C.

3. Predicates:

o On(b, x): Block b is on x (where x is another block or the table).
o Clear(x): Block x is clear, meaning no other block is on it.

4. Actions:

o Move(b, x, y): Moves block b from x to y (either another block or
the table).

 Preconditions:
On(b, x) ∧ Clear(b) ∧ Clear(y)

(Block b is on x, block b is clear, and the destination y is
clear.)

 Effects:
On(b, y) ∧ Clear(x) ∧ ¬On(b, x) ∧
¬Clear(y)
(Block b is on y, x becomes clear, b is no longer on x, and y
is no longer clear.)

5. Issues and Solutions:

o Problem: The initial action schema does not handle the table
correctly:

 When moving a block from or to the table, the Clear(Table)
predicate is mishandled.

 For example:
 Clear(Table) should always be true, as the table

always has space.
 However, the original schema treats the table like a

block, leading to incorrect interpretations.
o Fixes:

 Introduce a new action, MoveToTable(b, x):
 Preconditions:

On(b, x) ∧ Clear(b)

(Block b is on x and is clear.)
 Effects:

On(b, Table) ∧ Clear(x) ∧ ¬On(b, x)
(Block b is now on the table, x is clear, and b is no

longer on x.)

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

 Reinterpret Clear(x):
"There is space on x to hold a block."
(Under this interpretation, Clear(Table) is always true.)

6. Optional Optimization:

o To prevent redundant use of Move(b, x, Table) instead of
MoveToTable(b, x):

 Add the predicate Block(y) to the Move action's
precondition.

 This ensures Move is only used for moving blocks between
other blocks, not the table.

By making these adjustments, the blocks world planner becomes more accurate

and efficient, avoiding unnecessary computational overhead.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

5.2.1.9 The Complexity of Classical Planning

In this subsection we consider the theoretical complexity of planning and

distinguish two decision problems. PlanSAT is the question of whether there

exists any plan that solves a planning problem. Bounded PlanSAT asks whether

there is a solution of length k or less; this can be used to find an optimal plan.

1. Key Decision Problems:

o PlanSAT: Determines whether a solution (plan) exists for a given
planning problem.

o Bounded PlanSAT: Checks if a solution of length ≤ k exists, often used
to find optimal plans.

2. Decidability:

o Both PlanSAT and Bounded PlanSAT are decidable for classical
planning because the state space is finite.

o When function symbols are added (creating an infinite state space):
 PlanSAT becomes semidecidable: it terminates for solvable

problems but may not terminate for unsolvable ones.
 Bounded PlanSAT remains decidable even with function

symbols.
3. Complexity Classes:

o Both problems are in PSPACE, a complexity class harder than NP,
requiring polynomial space to solve.

o Even with restrictions:
 Without negative effects, both problems are NP-hard.
 Without negative preconditions, PlanSAT reduces to the easier

class P.
4. Practical Implications:

o Although the worst-case scenarios are complex, real-world problems
in specific domains (e.g., blocks world, air cargo) are often simpler.

 For many domains:
 Bounded PlanSAT is NP-complete (hard for optimal

planning).
 PlanSAT is in P (easier for suboptimal solutions).

5. Role of Heuristics:

o Classical planning's advantage lies in the development of domain-
independent heuristics, which perform well on practical problems.

o This contrasts with systems based on first-order logic, which struggle
to create effective heuristics.

In summary, while planning problems can be theoretically hard, domain-specific

scenarios and effective heuristics often simplify practical implementations.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

PlanSAT and Bounded PlanSAT
This subsection explores the theoretical complexity of classical planning by distinguishing

two decision problems:

1. PlanSAT: Determines whether there exists any plan that solves a given planning

problem.

2. Bounded PlanSAT: Asks if there is a solution of length kkk or less, which can help

find an optimal plan.

Decidability

Both problems are decidable for classical planning due to the finiteness of states. However,

introducing function symbols to the language makes the number of states infinite. In this

case:

 PlanSAT becomes semidecidable: an algorithm can terminate with the correct

answer for solvable problems but might not terminate for unsolvable ones.

 Bounded PlanSAT remains decidable even with function symbols.

For detailed proofs, refer to Ghallab et al. (2004).

Complexity Class

Both PlanSAT and Bounded PlanSAT belong to the complexity class PSPACE, which

includes problems solvable by a deterministic Turing machine using polynomial space.

PSPACE is broader and more challenging than NP. Even with severe restrictions, these

problems remain complex:

 Disallowing negative effects keeps them NP-hard.

 Disallowing negative preconditions reduces PlanSAT to P.

Practical Implications

These theoretical results might seem daunting, but practical planning rarely involves worst-

case scenarios. For instance:

 In specific domains like the blocks-world or air-cargo problems, Bounded PlanSAT

is NP-complete, while PlanSAT is in P.

 This implies optimal planning is often challenging, but suboptimal planning can be

relatively easier.

To handle such cases effectively, good search heuristics are essential. Classical planning has

advanced significantly by enabling highly accurate domain-independent heuristics. In

contrast, systems relying on successor state axioms in first-order logic have struggled to

develop strong heuristics.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

5.2.2 Algorithms for Planning as State-Space Search

Two approaches to searching for a plan. (a) Forward (progression) search through

the space of states, starting in the initial state and using the problem’s actions to

search forward for a member of the set of goal states. (b) Backward (regression)

search through sets of relevant states, starting at the set of states representing the

goal and using the inverse of the actions to search backward for the initial state.

Forward (Progression) State-Space Search

 Description: Starts from the initial state and applies actions to reach the
goal.

o It explores all possible actions from the current state, leading to a
large branching factor and potential inefficiency without heuristics.

 Challenges:
1. Explores irrelevant actions.
2. Handles large state spaces with numerous possible states and

actions.
 Example:

In an air cargo problem with 10 airports, 5 planes, and 20 cargo items:
o At each step, the search needs to evaluate thousands of possible

actions like flying planes, loading cargo, or unloading it.
o Without a heuristic, this leads to a massive search space.

Backward (Regression) Relevant-States Search

 Description: Starts from the goal and works backward by identifying
actions that can lead to the goal state.

 Advantages: Focuses only on relevant actions and avoids irrelevant
branches.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

 Example:
If the goal is At(C2, SFO), the algorithm considers the action
Unload(C2, p, SFO):

o Precondition: In(C2, p) ∧ At(p, SFO).
o Effect: At(C2, SFO).

It regresses to find the predecessor state where these
preconditions are true.

Heuristics for Planning

 Purpose: Estimate the cost of reaching the goal from the current state to
guide search algorithms like A*.

 Types of Heuristics:
1. Ignore Preconditions:

 Drops preconditions, making every action applicable.
 Example: Simplifies the 8-puzzle by ignoring adjacency

requirements for moves.
2. Ignore Delete Lists:

 Assumes actions cannot undo progress, making the problem
monotonic.

 Example: In a transportation problem, unloading an item is
never undone.

3. State Abstraction:
 Groups states by ignoring irrelevant fluents to reduce the

state space.
 Example: In air cargo, consider only packages and

destinations while abstracting plane details.

Figure 10.6 diagrams part of the state space for two planning problems using
the ignore-delete-lists heuristic. The dots represent states and the edges
actions, and the height of each dot above the bottom plane represents the

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

heuristic value. States on the bottom plane are solutions. In both these
problems, there is a wide path to the goal. There are no dead ends, so no need
for backtracking; a simple hill climbing search will easily find a solution to these
problems (although it may not be an optimal solution).

The image illustrates two state spaces derived from planning problems where the ignore-

delete-lists heuristic is applied. Here’s a breakdown of the key details:

1. State Space Representation:

o The white lines represent the connections between different states (nodes) in

the planning problem.

o Each state corresponds to a possible configuration of the problem, and

transitions represent actions that lead from one state to another.

2. Heuristic Scores:

o The height of a state above the base plane indicates its heuristic score. The

heuristic score reflects an estimate of the distance to the goal state (lower is

better).

o The visualization shows how the heuristic value changes as states progress

toward the goal.

3. Goal States:

o States that lie directly on the bottom plane are goal states (i.e., configurations

that satisfy the problem's requirements).

4. Ignore-Delete-Lists Heuristic:

o This heuristic simplifies the problem by ignoring negative effects of actions

(delete lists) during the planning process.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

o It creates a state space without local minima, meaning there are no dead ends

or misleading paths that can trap the search. This makes the search for the goal

straightforward.

5. Two Examples:

o The two diagrams represent different problem instances:

 The left diagram shows a relatively "steep" and orderly descent to the

goal, indicating a direct and simple path.

 The right diagram has a more "twisted" state space, with complex

paths leading to the goal, but still without any local minima.

These visualizations help explain why the ignore-delete-lists heuristic is effective: the

absence of local minima ensures the search algorithm does not get stuck, and the heuristic

guides the planner efficiently toward the goal.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

5.2.3 Planning Graphs

Definition:

A planning graph is a directed, leveled graph that represents actions and literals

in alternating layers, capturing all possible states and actions up to a certain time

step.

Construction of a Planning Graph:

1. Levels:
o S₀: Represents the initial state.
o A₀: Represents actions applicable in S₀.
o Alternates between states (S₁, S₂, ...) and actions (A₁, A₂, ...).

2. Termination:
o Stops when two consecutive levels are identical (levelled off).

Example: For the problem "Have Cake and Eat Cake Too":

o S₀: {Have(Cake)}
o A₀: {Eat(Cake), Bake(Cake)}
o S₁: {Have(Cake), Eaten(Cake)}
o Mutex Links: Highlight conflicts, e.g., eating and having the cake.

Figure 10.8 shows the planning graph for the “have cake and eat cake too”
problem up to level S2. Rectangles indicate actions (small squares indicate
persistence actions), and straight lines indicate preconditions and effects. Mutex
links are shown as curved gray lines. Not all mutex links are shown, because the
graph would be too cluttered. In general, if two literals are mutex at Si, then the

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

persistence actions for those literals will be mutex at Ai and we need not draw
that mutex link.

5.2.3.1 Planning Graphs for Heuristic Estimation

A planning graph provides valuable insights into a problem once constructed.

Here's how it aids heuristic estimation:

1. Unsolvability Check:

If a goal literal does not appear in the final level of the graph, the problem

is unsolvable.

2. Estimating Goal Costs:

The cost of achieving a goal literal gi from an initial state s is estimated

as the level at which gi first appears in the planning graph constructed

from s. This is termed the level cost of gi. For example, in Figure 10.8,

Have(Cake) has a level cost of 0, and Eaten(Cake) has a level cost

of 1.

3. Accuracy and Serial Graphs:

The level cost may not always align with reality because planning graphs

allow multiple actions per level, while the heuristic only considers levels,

not actions. To improve accuracy, serial planning graphs are often used.

These enforce only one action per time step by adding mutual exclusion

(mutex) links between non-persistence actions. Costs derived from serial

graphs are more realistic.

4. Estimating Conjunction Costs:

Estimating costs for a conjunction of goals involves three approaches:

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

o Max-Level Heuristic: Uses the maximum level cost of any goal.

This heuristic is admissible but may lack precision.

o Level-Sum Heuristic: Assumes subgoal independence and sums

the level costs of the goals. While inadmissible, it performs well

for decomposable problems. For instance, for Have(Cake) ∧
Eaten(Cake), this heuristic estimates 0+1=10 + 1 = 10+1=1,

though the correct answer is 2, achieved by the plan

[Eat(Cake), Bake(Cake)]. However, it may underestimate

when certain actions, like Bake(Cake), are missing.

o Set-Level Heuristic: Determines the level where all literals in the

conjunction appear without mutual exclusivity. This heuristic is

admissible, dominates the max-level heuristic, and performs

effectively when subplans interact significantly. For the above

example, it gives the correct value of 2 and identifies infeasibility

(infinity) when Bake(Cake) is absent.

5. Planning Graphs as Relaxed Problems:

Planning graphs model a relaxed problem by ensuring:

o If a literal g does not appear at a level Si, no plan exists to achieve

g within i steps.

o If g does appear, it implies a plan exists with no obvious flaws

(e.g., mutex violations between two actions or literals). However, it

does not guarantee the absence of more subtle flaws involving

three or more actions.

6. Limits of Planning Graphs:

Planning graphs cannot detect some unsolvable problems. For instance, in

a blocks-world scenario with the goal of stacking A on B, B on C, and C

on A (an impossible circular tower), no mutex exists between any two

subgoals. The impossibility emerges only when considering all three

together. Detecting such cases would require searching the graph.

In summary, planning graphs are powerful tools for generating heuristics by

efficiently solving a relaxed version of the problem. While they provide useful

approximations, certain complexities may remain undetected without deeper

search efforts.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

5.2.3.2 The GRAPHPLAN Algorithm

This subsection explains how to extract a plan directly from the planning graph

instead of using it solely for heuristic estimation. The GRAPHPLAN algorithm

(illustrated in Figure 10.9) iteratively builds the planning graph using the

EXPAND-GRAPH function. When all goal literals appear in the graph without

mutual exclusions (mutex), the algorithm invokes EXTRACT-SOLUTION to

search for a valid plan. If the search fails, GRAPHPLAN adds another level to

the graph and retries. The process ends with failure if further expansion becomes

futile.

The GRAPHPLAN algorithm. GRAPHPLAN calls EXPAND-GRAPH to add a

level until either a solution is found by EXTRACT-SOLUTION, or no solution

is possible.

Tracing GRAPHPLAN on the Spare Tire Problem

This section demonstrates how the GRAPHPLAN algorithm operates using the

spare tire problem , with its planning graph depicted in Figure 10.10.

1. Initialization:

GRAPHPLAN begins by initializing the planning graph with a single level

(S0) that represents the initial state. The positive and negative fluents from

the initial state are included, while unchanging positive literals (e.g.,

Tire(Spare)) and irrelevant negative literals are omitted.

Since the goal At(Spare, Axle) does not appear in S0, EXTRACT-

SOLUTION is not called. Instead, EXPAND-GRAPH adds actions to A0

whose preconditions are met in S0 (all actions except PutOn(Spare,

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Axle)), along with persistence actions for S0's literals. The effects of these

actions form S1, and mutex relations are identified and added.

2. Expanding the Graph:

In S1, the goal At(Spare, Axle) is still absent, so EXPAND-GRAPH is

called again to produce A1 and S2, resulting in the full planning graph

(Figure 10.10). The process highlights examples of mutex relationships:

o Inconsistent Effects: Remove(Spare, Trunk) is mutex with
LeaveOvernight due to conflicting effects (At(Spare,
Ground) vs. its negation).

o Interference: Remove(Flat, Axle) is mutex with
LeaveOvernight because one requires At(Flat, Axle) as a
precondition, while the other negates it.

o Competing Needs: PutOn(Spare, Axle) is mutex with
Remove(Flat, Axle) as they depend on conflicting
preconditions (At(Flat, Axle) vs. its negation).

o Inconsistent Support: At(Spare, Axle) and At(Flat,
Axle) in S2 are mutex because achieving At(Spare, Axle)
requires PutOn(Spare, Axle), which conflicts with the
persistence of At(Flat, Axle).

3. Solution Extraction:

When all goal literals appear in S2 without mutex, EXTRACT-SOLUTION

is invoked. This process is framed as a Boolean constraint satisfaction

problem (CSP), with variables representing actions, values being inclusion

in or exclusion from the plan, and constraints being mutexes and

goal/precondition requirements. Alternatively, it can be defined as a

backward search problem, where:

o The initial state includes the last graph level (Sn) and the unsatisfied
goals.

o Actions at Si are conflict-free subsets of Ai−1 that satisfy the current
goals.

o The goal is to reach S0 with all goals satisfied, with each action
incurring a cost of 1.

4. Example Execution:

Starting at S2 with the goal At(Spare, Axle), the only relevant action

is PutOn(Spare, Axle), leading to S1 with goals At(Spare,

Ground) and ¬At(Flat, Axle).

o At(Spare, Ground) is achieved by Remove(Spare,
Trunk).

o ¬At(Flat, Axle) is achieved by either Remove(Flat,
Axle) or LeaveOvernight, but the latter is mutex with

Remove(Spare, Trunk).

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Thus, the chosen actions are Remove(Spare, Trunk) and
Remove(Flat, Axle), leading to S0 with goals At(Spare,
Trunk) and At(Flat, Axle), both satisfied. The solution

consists of Remove(Spare, Trunk) and Remove(Flat,
Axle) at A0, followed by PutOn(Spare, Axle) at A1.

5. Handling Failure:

If EXTRACT-SOLUTION fails for a given level and set of goals, the pair is

recorded as a "no-good," preventing redundant searches in subsequent

iterations.

6. Heuristic Guidance:

Extracting solutions is computationally intractable in the worst case, so

heuristic guidance is essential. A greedy approach involves:

o Prioritizing literals with the highest level cost.
o Selecting actions with easier preconditions, where "easier" minimizes

the sum or maximum of the preconditions' level costs.

This strategy balances efficiency with practicality for solving complex planning

problems.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

5.2.3.3 Termination of GRAPHPLAN

GRAPHPLAN ensures termination and returns failure when no solution exists.

Here's an explanation of how it achieves this:

Why Not Stop at Level-Off?

The graph levels off when no new literals, actions, or mutex relations are added.

However, this does not guarantee a solution. Consider an air cargo problem

where one plane must transport nnn pieces of cargo from airport A to airport B,

but only one piece fits in the plane at a time.

 The graph levels off at level 4, reflecting the steps required to load, fly,
and unload a single piece of cargo.

 However, solving the problem requires 4n−1 steps, including return trips
for additional cargo. Thus, leveling off does not necessarily mean a
solution exists at that point.

When to Terminate?

The algorithm continues expanding the graph as long as new possibilities arise:

1. No-Goods: If EXTRACT-SOLUTION fails, it indicates that some goals are
unachievable and are marked as no-goods.

2. Leveling-Off: Termination occurs when both the graph and the no-goods
stabilize, i.e., no new literals, actions, or mutexes are added, and no
further reduction in no-goods is possible. At this point, if no solution is
found, GRAPHPLAN terminates with failure.

Proof of Leveling-Off

The key to proving that the graph and no-goods stabilize lies in the monotonic

properties of planning graphs:

 Literals Increase Monotonically: Once a literal appears at a level, it
persists at all subsequent levels due to persistence actions.

 Actions Increase Monotonically: If an action appears at a level, it remains
in all subsequent levels, as its preconditions (which are literals) persist.

 Mutexes Decrease Monotonically: Mutex relations never reappear once
removed.

o Inconsistent Effects and Interference mutexes depend on inherent
properties of actions and persist across levels.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

o Competing Needs mutexes depend on level-specific preconditions,
which become achievable as actions increase monotonically.

 No-Goods Decrease Monotonically: If a set of goals is unachievable at
one level, it remains unachievable at all previous levels, as persistence
actions cannot retroactively make them achievable.

Finite Nature of Planning Graphs

Since actions and literals increase monotonically and are finite in number, the

graph eventually stabilizes at a level where no new actions or literals are

introduced. Similarly, mutexes and no-goods, which decrease monotonically and

cannot fall below zero, also stabilize.

Termination Condition

When the graph stabilizes and either:

1. A goal is missing, or
2. Any goal is mutex with another,

the algorithm terminates, returning failure. This guarantees that further expansion

would not yield a solution.

For a detailed formal proof, refer to Ghallab et al. (2004).

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

5.2.4 Logic Programming
Logic programming is a method of building systems by writing rules and facts

in a formal language. Problems are solved by reasoning based on this

knowledge. This concept is summed up by Robert Kowalski’s principle:

Algorithm = Logic + Control
This means that logic specifies what the system should do, while control defines

how it should execute.

PROLOG

Prolog is the most popular logic programming language. It’s used for quick

prototyping and tasks like:

 Writing compilers

 Parsing natural language

 Creating expert systems in fields like law, medicine, and finance

Prolog Programs

Prolog programs consist of rules and facts (called definite clauses) written in a

special syntax. Here’s what makes Prolog different:

1. Variables and Constants: Variables are uppercase (e.g., X), and

constants are lowercase (e.g., john).

2. Clause Structure: Instead of A ∧ B ⇒ C, Prolog writes it as C :-

A, B. For example:

criminal(X) :- american(X), weapon(Y),

sells(X,Y,Z), hostile(Z).

This means: "X is a criminal if X is American, Y is a weapon, X sells Y

to Z, and Z is hostile."

3. Lists: [E|L] represents a list where E is the first item, and L is the rest.

Example: Appending Lists

Here’s a Prolog program to join two lists, X and Y, into Z:

append([],Y,Y).

append([A|X],Y,[A|Z]) :- append(X,Y,Z).

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

This means:

1. Appending an empty list to Y gives Y.

2. To append [A|X] to Y, the result is [A|Z] if appending X to Y gives Z.

You can also use it in reverse! For example, asking:

append(X,Y,[1,2]).

This query finds pairs of lists X and Y that combine to [1,2]. The answers are:

 X=[] and Y=[1,2]

 X=[1] and Y=[2]

 X=[1,2] and Y=[]

How Prolog Executes

Prolog works using depth-first backward chaining:

 It tries rules one by one, in the order written.

 It stops as soon as a solution is found.

 Some features make it faster but can cause issues:

o Arithmetic Built-ins: It calculates results directly. For example:

 X is 4+3 → Prolog sets X = 7.

 5 is X+Y → Fails because Prolog doesn't solve general

equations.

o Side Effects: Predicates like assert (add facts) and retract

(remove facts) can behave unpredictably.

o Infinite Recursion: Prolog doesn’t check for infinite loops, so

wrong rules might cause it to hang.

Design Philosophy : Prolog balances declarative logic (what should

happen) with execution efficiency (how it runs). While not perfect, it’s a

powerful tool for certain types of tasks!

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

5.2.4.1 Efficient Implementation of Logic Programs

Prolog programs can be executed in two modes: interpreted and compiled.

Each mode has distinct characteristics and optimizations:

Interpreted Mode

In this mode, Prolog functions like the FOL-BC-ASK algorithm (Figure 9.6),

treating the program as a knowledge base. However, Prolog interpreters include

optimizations for better efficiency. Two key improvements are:

1. Global Stack of Choice Points:

o Instead of explicitly managing iterations over possible results,
Prolog uses a global stack of choice points to track alternatives
considered in the FOL-BC-OR step.

o This approach is not only more efficient but also simplifies
debugging, as the debugger can traverse up and down the stack to
inspect states.

2. Logic Variables and Trails:

o Prolog uses logic variables that dynamically remember their
current bindings. At any time, a variable is either unbound or
bound to a specific value. These bindings implicitly define the
substitution for the current proof branch.

o New variable bindings extend the path, but attempts to rebind an
already bound variable fail due to unification constraints.

o When backtracking occurs after a goal fails, variables are unbound
in reverse order using a trail stack. Each variable bound by
UNIFY-VAR is pushed onto the trail, and during backtracking,
variables are unbound as they are popped from the trail.

Despite these optimizations, Prolog interpreters still require thousands of

machine instructions per inference step due to the overhead of operations like

index lookups, unification, and recursive call stack management. In essence, the

interpreter processes each query as if encountering the program for the first

time, repeatedly finding clauses to match the goal.

Compiled Mode

Compiled Prolog programs offer significant performance improvements by

tailoring inference procedures to specific sets of clauses. This eliminates much

of the interpretation overhead:

1. Optimized Clause Matching:

o Unlike interpreters, compiled Prolog "remembers" which clauses
match a given goal, streamlining the process.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

o It generates a dedicated inference procedure (essentially a small
theorem prover) for each predicate, avoiding the need for
repetitive clause searching.

2. Open-Coded Unification:

o Compilers can create open-coded unification routines for specific
calls, bypassing the need for general-purpose term structure
analysis. This improves execution speed.

3. Intermediate Language Compilation:

o Direct compilation of Prolog to machine code is inefficient due to
the mismatch between Prolog semantics and modern processor
architectures.

o Instead, Prolog is typically compiled into an intermediate
language like the Warren Abstract Machine (WAM), which
abstracts Prolog's operations for efficient execution.

o The WAM, developed by David H. D. Warren, is a widely-used
intermediate instruction set designed for Prolog, which can either
be interpreted or further compiled into machine code.

4. High-Level Language Translation:

o Some Prolog compilers translate Prolog code into high-level
languages like Lisp or C, leveraging their compilers to generate
machine code.

For example, the Prolog append predicate can be compiled into efficient low-

level code as shown in Figure 9.8, using strategies like choice points and term

structure analysis to enhance performance.

The append predicate in Prolog can be compiled into an optimized form, such

as the example shown in Figure 9.8. Several noteworthy points highlight how

this compilation enhances efficiency:

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Transforming Clauses into Procedures

 Instead of searching the knowledge base for append clauses during
execution, the clauses are compiled into a procedure.

 Inferences are then performed by directly calling the procedure,
significantly improving execution speed and reducing overhead.

Trail Management for Variable Bindings

 Prolog maintains variable bindings on a trail, which records their current
state.

 The procedure begins by saving the trail's state. If the first clause fails,
RESET-TRAIL restores the original state, undoing any bindings

created by the initial call to UNIFY.
 This ensures correctness and prepares Prolog to explore alternative

paths during backtracking.

Use of Continuations for Choice Points

 Continuations are critical for handling choice points during execution. A
continuation packages a procedure and its arguments, specifying what
should happen next when a goal succeeds.

 This approach prevents premature termination of a procedure like
append when multiple solutions exist. Each success triggers the
continuation, enabling all possibilities to be explored.

 For example, if append is invoked at the top level:
o If the first list is empty and the second unifies with the third, the

predicate succeeds.
o The continuation is then called with the current bindings on the

trail to perform the next steps (e.g., printing variable bindings).

Impact of Prolog Compilation

Before the advancements by Warren and others, Prolog's performance was too

slow for practical use. However, compilers like the Warren Abstract Machine

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

(WAM) enabled Prolog to achieve execution speeds competitive with C on

standard benchmarks (Van Roy, 1990).

Prolog’s ability to express complex logic, such as planners or natural language

parsers, in just a few lines makes it ideal for prototyping small-scale AI research

projects, often surpassing C in ease of use.

Parallelism in Prolog :

Prolog also leverages parallelism to achieve substantial speedups by exploiting

the independence of branches in logic programming:

1. OR-Parallelism:

o Occurs when a goal can unify with multiple clauses in the
knowledge base.

o Each unification forms an independent branch of the search
space, which can be solved in parallel.

2. AND-Parallelism:

o Arises from solving multiple conjuncts in the body of a rule
simultaneously.

o Unlike OR-parallelism, AND-parallelism is more challenging, as it
requires consistent bindings across all conjunctive branches.
Communication between branches ensures a globally valid
solution.

Dynamic Programming for Efficiency

By combining compilation techniques with parallelization and dynamic

programming, Prolog minimizes redundant computations and optimizes search

processes. These advancements make Prolog an efficient and desirable choice

for logic programming in AI and other computational fields.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

5.2.4.2 Redundant Inference and Infinite Loops in Prolog

Prolog's reliance on depth-first search (DFS) introduces challenges when

dealing with search trees containing repeated states and infinite paths,

creating significant inefficiencies.

Infinite Loops in Depth-First Search

Consider the following Prolog program, which checks if a path exists between

two points in a directed graph:

path(X, Z) :- link(X, Z).

path(X, Z) :- path(X, Y), link(Y, Z).

Given a simple three-node graph with facts link(a, b) and link(b, c)

(Figure 9.9(a)):

1. If queried as path(a, c), the proof tree (Figure 9.10(a))
demonstrates a successful result.

2. However, changing the order of the clauses:

path(X, Z) :- path(X, Y), link(Y, Z).

path(X, Z) :- link(X, Z).

causes Prolog to follow an infinite loop (Figure 9.10(b)).

This happens because Prolog's DFS prioritizes depth over breadth and fails to

detect cyclic dependencies. Consequently, Prolog is incomplete as a theorem

prover for definite clauses—even for simple Datalog programs like this one.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Forward chaining, in contrast, avoids this issue by systematically generating

facts. Once path(a, b), path(b, c), and path(a, c) are inferred, the

process halts.

Redundant Computations

Another major drawback of DFS in Prolog is redundant computations,

particularly in graph problems.

For example:

 When finding a path from A1 to J4 in a more complex graph (Figure
9.9(b)), Prolog performs 877 inferences, exploring multiple unnecessary
paths, including those leading to unreachable nodes.

 This redundancy resembles the repeated-state problem in Chapter 3.

Forward chaining, applied to the same problem, is far more efficient:

 It generates at most n2 path(X, Y) facts for n nodes, avoiding
repeated calculations.

 For the problem in Figure 9.9(b), forward chaining requires only 62
inferences, compared to the exponential growth of DFS.

Dynamic Programming in Forward Chaining

Forward chaining for graph search exemplifies dynamic programming, where

solutions to smaller subproblems are incrementally combined to solve larger

ones. This approach eliminates the inefficiencies of redundant inferences and

infinite loops inherent in Prolog's DFS, making it a more effective strategy for

certain problem domains.

Subproblems are cached to prevent recomputation. A similar effect can be

achieved in a backward chaining system through memorization—caching

solutions to subgoals as they are found and reusing these solutions when the

subgoal is encountered again, instead of repeating the computation. This is the

approach used by tabled logic programming systems, which implement

efficient storage and retrieval mechanisms for memoization. Tabled logic

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

programming combines the goal-directed nature of backward chaining with the

dynamic programming efficiency of forward chaining. It is also complete for

Datalog knowledge bases, meaning the programmer has less concern about

infinite loops. However, infinite loops can still occur with predicates like

father(X,Y), which may refer to a potentially unbounded number of

objects.

Source Book: Stuart J. Russell and Peter Norvig, Artificial Intelligence, 3rd Edition, Pearson,2015

5.2.4.3 Database Semantics of Prolog

Prolog employs database semantics. The unique names assumption states that

each Prolog constant and ground term refers to a distinct object, while the closed

world assumption asserts that only the sentences entailed by the knowledge base

are considered true. In Prolog, there is no way to assert that a sentence is false,

which makes Prolog less expressive than first-order logic (FOL). However, this

limitation contributes to Prolog's efficiency and conciseness.

Consider the following Prolog assertions about course offerings:

Course(CS, 101), Course(CS, 102), Course(CS, 106),

Course(EE, 101).

Under the unique names assumption, CS and EE are distinct, as are the course

numbers 101, 102, and 106. This means that there are exactly four distinct

courses. According to the closed-world assumption, there are no other courses,

so the total number of courses is exactly four.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

In contrast, if these were assertions in FOL, they would only imply that there are

at least one and at most infinity courses. This is because FOL does not deny the

existence of other unmentioned courses, nor does it specify that the mentioned

courses are distinct. In FOL, the assertions would be expressed as:

Course(d, n) ⇔ (d=CS ∧ n=101) ∨ (d=CS ∧ n=102) ∨ (d=CS
∧ n=106) ∨ (d=EE ∧ n=101).

This is the completion of the Prolog assertions, which expresses the idea that

there are at most four courses in FOL. To express that there are at least four

courses in FOL, we would need to expand the equality predicate as follows:

x = y ⇔ (x=CS ∧ y=CS) ∨ (x=EE ∧ y=EE) ∨ (x=101 ∧ y=101)
∨ (x=102 ∧ y=102) ∨ (x=106 ∧ y=106).

While the completion is useful for understanding database semantics, it is often

more efficient to work directly with Prolog or another database semantics system

for practical problems. Translating the problem into FOL and reasoning with a

full FOL theorem prover can be more cumbersome and less efficient.

5.2.4.4 Constraint Logic Programming

Standard Prolog solves Constraint Satisfaction problems (CSP) using a

backtracking algorithm, However, backtracking works by enumerating the

domains of the variables, making it suitable only for finite-domain CSPs. This

means there must be a finite number of possible solutions for any goal with

unbound variables.

For infinite-domain CSPs, such as those involving integer or real-valued

variables, different algorithms are needed, like bounds propagation or linear

programming.

Example: Triangle Inequality

Consider the following example, where triangle(X, Y, Z) is a predicate

that holds if the three arguments satisfy the triangle inequality:
triangle(X, Y, Z) :- X > 0, Y > 0, Z > 0, X + Y >= Z,

Y + Z >= X, X + Z >= Y.

 When we query triangle(3, 4, 5), Prolog successfully returns
true.

 However, when we query triangle(3, 4, Z), no solution is found
because the subgoal Z >= 0 cannot be handled by Prolog—Prolog
cannot compare an unbound value to 0.

Constraint Logic Programming (CLP) extends traditional logic programming

by allowing variables to be constrained rather than bound. In CLP, the solution

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

is the most specific set of constraints that can be derived from the knowledge base

for the query variables.

For example, the solution to the query triangle(3, 4, Z) would be the

constraint 7 >= Z >= 1, which means that Z must be between 1 and 7. In

contrast, standard logic programs are a special case of CLP, where the solution

constraints are always equality constraints (bindings).

CLP systems include various constraint-solving algorithms tailored to the types

of constraints allowed in the system. For example, a CLP system that supports

linear inequalities on real-valued variables might employ a linear

programming algorithm to solve such constraints.

Flexible Query Solving in CLP :

CLP systems offer more flexibility than traditional logic programming. Rather

than relying solely on depth-first, left-to-right backtracking, CLP systems can

use more efficient algorithms, including:

 Heuristic conjunct ordering
 Backjumping
 Cutset conditioning

These approaches improve the efficiency of solving logic programming queries
and integrate techniques from constraint satisfaction algorithms, logic
programming, and deductive databases.

Control Over Search Order:

Several CLP systems allow programmers to control the order in which inferences

are made. For example, the MRS language (Genesereth and Smith, 1981;

Russell, 1985) lets the programmer define metarules to determine the order of

conjunct evaluations. A programmer could write a rule to prioritize goals with

fewer variables or define domain-specific rules for particular predicates.

In summary, CLP systems enhance traditional logic programming by

incorporating constraint-solving techniques, providing greater flexibility and

efficiency for handling a wide range of problems, from finite-domain CSPs to

complex real-valued constraints.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Examples of Prolog Programs

1. To Find the Sum of Two Numbers

% Rule to find the sum of two numbers

sum(X, Y, Z) :- Z is X + Y.

% Example Query:

% ?- sum(5, 3, Result).

% Result = 8.

2. To Swap Two Numbers

% Rule to swap two numbers

swap(X, Y, SwappedX, SwappedY) :- SwappedX = Y,

SwappedY = X.

% Example Query:

% ?- swap(5, 3, A, B).

% A = 3,

% B = 5.

3. To Add Two Lists

% Rule to add corresponding elements of two lists

add_lists([], [], []). % Base case: Adding two empty

lists gives an empty list.

add_lists([A|X], [B|Y], [C|Z]) :- C is A + B,

add_lists(X, Y, Z).

% Example Query:

% ?- add_lists([1, 2, 3], [4, 5, 6], Result).

% Result = [5, 7, 9].

4. To Find the Factorial of a Number

% Base case: Factorial of 0 is 1

factorial(0, 1).

% Recursive case: N! = N * (N-1)!

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

factorial(N, Result) :-

 N > 0,

 N1 is N - 1,

 factorial(N1, SubResult),

 Result is N * SubResult.

% Example Query:

% ?- factorial(5, Result).

% Result = 120.

Example Usage

1. Sum of Two Numbers

?- sum(10, 15, Result).

Result = 25.

2. Swap Two Numbers

?- swap(7, 9, A, B).

A = 9,

B = 7.

3. Add Two Lists

?- add_lists([2, 4, 6], [1, 3, 5], Result).

Result = [3, 7, 11].

4. Find Factorial

?- factorial(4, Result).

Result = 24.

Dr.Thyagaraju G S (9480123526)

