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5.1.1  Backward Chaining 
Backward chaining is a reasoning method that starts with the goal and works 

backward through the inference rules to find out whether the goal can be 

satisfied by the known facts.  

It's essentially goal-driven reasoning, where the system seeks to prove the 

hypothesis by breaking it down into subgoals and verifying if the premises 

support them. 

Example : Consider the following knowledge base representing a simple 

diagnostic system: 

1. If a patient has a fever, it might be a cold. 

2. If a patient has a sore throat, it might be strep throat. 

3. If a patient has a fever and a sore throat, they should see a doctor. 

 

Given the facts: 

• The patient has a fever. 

• The patient has a sore throat. 

 

Backward chaining would proceed as follows: 

• Start with the goal: Should the patient see a doctor? 

• Check the third rule: Does the patient have a cold and a sore throat? Yes. 

• Check the first and second rules: Does the patient have a fever and sore 

throat? Yes. 

• The goal is satisfied: The patient should see a doctor. 

 

Backward chaining is useful when there is a specific goal to be achieved, and the 

system can efficiently backtrack through the inference rules to determine 

whether the goal can be satisfied. 

 

 

 

 

 

 

 

 



Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT. 
 
 

5.1.1.1 Backward Chaining: Algorithm 
These algorithms work backward from the goal, chaining through rules to find 

known facts that support the proof. 
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5.1.1.2 Overview of the Algorithm 

1. Goal: 

o The purpose of the algorithm is to determine whether a query 

(goal) can be derived from a given knowledge base (KB). 

2. Process: 

o It uses backward chaining, meaning it starts with the goal and 

works backward by looking for rules or facts in the knowledge 

base that could satisfy the goal. 

o The algorithm returns substitutions (values or variables) that make 

the query true. 

3. Key Components: 

o FOL-BC-ASK: This is the main function that starts the backward-

chaining process by calling FOL-BC-OR. 
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o FOL-BC-OR: This function checks whether the goal can be 

satisfied by any rule in the KB. It iterates over applicable rules and 

tries to unify the goal with the rule’s conclusions. 

o FOL-BC-AND: This function handles multiple sub-goals. It 

ensures that all sub-goals are satisfied for the main goal to be true. 

4. Key Terminology: 

o FOL-BC-ASK: Entry point for the algorithm. 

o FOL-BC-OR: Handles rules and checks if the goal is satisfied by 

any rule. 

o FOL-BC-AND: Ensures all sub-goals are satisfied. 

o FETCH-RULES-FOR-GOAL: Retrieves applicable rules for a 

goal. 

o UNIFY: Matches terms by finding substitutions. 

o Standardize Variables: Ensures variable names are unique to avoid 

conflict. 

o θ: The substitution carried into the current function call. 

o θ′: A substitution produced by solving the first sub-goal in FOL-BC-

AND. 

o θ′′: A substitution produced by solving the remaining sub-goals 

using the updated θ′. 
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Detailed Algorithm Steps 

Step 1: FOL-BC-ASK(KB, query): 

 Start with the query and call FOL-BC-OR. 

 Example: For Ancestor(John, Sam), call: 

o FOL-BC-OR(KB, Ancestor(John, Sam), { }). 

 

Step 2: FOL-BC-OR(KB, goal, θ): 

 Fetch all rules from the KB that could produce the goal. 

 For each rule: 

1. Standardize Variables: Make rule variables unique to avoid 

conflicts. 

2. Unify rhs and goal: Match the conclusion of the rule (rhs) 

with the current goal using Unify. This updates θ. 

3. Call FOL-BC-AND: Recursively evaluate the conditions (lhs) of 

the rule with the updated θ. 

 Yield θ′: Each substitution that satisfies the rule is yielded back to the 

caller. 

 

Step 3: FOL-BC-AND(KB, goals, θ): 

 Handles multiple sub-goals (goals) produced from the rule's conditions. 

1. If goals is empty, yield θ because all sub-goals are satisfied. 

2. Otherwise: 

o Split goals into first and rest. 

o Call FOL-BC-OR for the first goal. 

o For each result (θ′) from FOL-BC-OR: 

 Recursively solve rest using FOL-BC-AND with the 

updated θ′. 

 Yield θ′′, the result of solving all sub-goals. 
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Step-by-Step Explanation with Example 

Let’s use the following Knowledge Base (KB) and query. 

Knowledge Base: 

1. Parent(x, y) ⇒ Ancestor(x, y) (Rule 1) 
2. Parent(x, z) ∧ Ancestor(z, y) ⇒ Ancestor(x, y) (Rule 2) 
3. Parent(John, Mary) (Fact) 
4. Parent(Mary, Sam) (Fact) 

Query: Ancestor(John, Sam) 

 

Execution Steps 

Step 1: FOL-BC-ASK 

 Query: Ancestor(John, Sam) 
 Calls: FOL-BC-OR(KB, Ancestor(John, Sam), { }). 

 

Step 2: FOL-BC-OR 

 Goal: Ancestor(John, Sam) 
 Fetch rules for Ancestor: 

1. Rule 1: Parent(x, y) ⇒ Ancestor(x, y) 
2. Rule 2: Parent(x, z) ∧ Ancestor(z, y) ⇒ Ancestor(x, y) 

Case 1: Use Rule 1 

 lhs = Parent(x, y), rhs = Ancestor(x, y). 

 Unify Ancestor(John, Sam) with Ancestor(x, y): 
o Substitution: θ = {x=John, y=Sam}. 

 Sub-goal: Parent(John, Sam). 

 

Step 3: FOL-BC-AND 

 Goals: [Parent(John, Sam)] 
 Calls: FOL-BC-OR(KB, Parent(John, Sam), {x=John, y=Sam}). 

 

Step 4: FOL-BC-OR 
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 Goal: Parent(John, Sam) 
 Check the KB: 

o Facts: Parent(John, Mary) (no match for Sam). 
o Rule 1 fails. 

 
Case 2: Use Rule 2 

 lhs = Parent(x, z) ∧ Ancestor(z, y), rhs = Ancestor(x, y). 

 Unify Ancestor(John, Sam) with Ancestor(x, y): 
o Substitution: θ = {x=John, y=Sam}. 

 Sub-goals: 
o goals = [Parent(John, z), Ancestor(z, Sam)]. 

 

Step 5: FOL-BC-AND 

 Goals: [Parent(John, z), Ancestor(z, Sam)]. 

1. First sub-goal (Parent(John, z)): 

o Calls: FOL-BC-OR(KB, Parent(John, z), θ). 

o Matches: Parent(John, Mary). 
o Substitution: {z=Mary}. 
o Update θ′: {x=John, y=Sam, z=Mary}. 

2. Second sub-goal (Ancestor(z, Sam)): 

o Calls: FOL-BC-OR(KB, Ancestor(Mary, Sam), θ′). 
o Unify with Rule 1: Parent(x, y) ⇒ Ancestor(x, y). 
o Sub-goal: Parent(Mary, Sam). 

 

Step 6: FOL-BC-AND 

 Goal: [Parent(Mary, Sam)]. 
 Matches fact: Parent(Mary, Sam). 
 Substitution: {x=Mary, y=Sam}. 
 Satisfies all sub-goals. 

 

Final Result 

 Combine all substitutions: 

o {x=John, y=Sam, z=Mary}. 
 The query Ancestor(John, Sam) is true. 
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5.1.2 Resolution 

Resolution is a fundamental inference rule used in automated theorem proving 

and logic programming. It is based on the principle of proof by contradiction.  

Resolution combines logical sentences in the form of clauses to derive new 

sentences.  

The resolution rule states that if there are two clauses that contain 

complementary literals (one positive, one negative) then these literals can be 

resolved, leading to a new clause that is inferred from the original clauses. 

 

Example1: 

Consider two logical statements: 

1. P∨Q 

2. ¬P∨R 

Applying resolution: Resolve the statements by eliminating P:  

• P∨Q 

• ¬P∨R 

Resolving P and ¬P:  Q∨R 

The resulting statement Q∨R is a new clause inferred from the original two.  

 

Resolution is a key component of logical reasoning in FOL, especially in tasks like 

automated theorem proving and knowledge representation. 

 

Example2:  

Clause 1: (P∨Q∨R) 

Clause 2:(¬P∨¬Q∨S) 

To resolve these clauses, we look for complementary literals. In this case, P and 

¬P are complementary. 

So, we can resolve these two clauses by removing the complementary literals 

and  combining the remaining literals:   

Resolving  P and  ¬P gives: (Q∨R)∨(¬Q∨S) 

Resolving Q and ¬Q gives (RVS) 

 

This is the resolvent. 
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Conjunctive Normal Form  

A formula is in CNF if it is a conjunction (AND) of clauses, where each clause is 

a disjunction (OR) of literals.  

CNF Examples 
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Proof By Resolution Process includes the following steps in general 

1. Initial Set of Clauses (Knowledge Base) 

2. Convert the Statement into Clausal Form 

3. Skolemization 

4. Standardize Variables 

5. Unification 

6. Resolution Rule 

7. Iterative Application 

 

Resolution in First Order Logic (FOL) is a proof technique used in automated 

reasoning to determine the validity of a statement. It is based on the principle of 

refutation, where we attempt to derive a contradiction from a set of clauses. 

Key Steps in Resolution in FOL: 

1. Convert the Statement into Clausal Form: 

o The statement and its negation are converted into conjunctive 

normal form (CNF). 

o CNF is a conjunction of disjunctions where each disjunction is 

called a clause. 

o Example: (A∨¬B)∧(¬A∨C). 

2. Skolemization: 

o Eliminate existential quantifiers by replacing them with Skolem 

functions or constants. 

o This step ensures the formula becomes purely universal. 

3. Standardize Variables: 

o Rename variables so that no two clauses share the same variable 

names. 

4. Unification: 

o Unification is the process of making two literals identical by 

finding a substitution for their variables. 

o Example: P(x) and P(a) can be unified with the substitution x=a. 

5. Resolution Rule: 

o The resolution rule combines two clauses that contain 

complementary literals (e.g., P(x) and ¬P(x) to produce a new 

clause without those literals. 

o Example: 

 Clause 1: P(x)∨Q(x), 

 Clause 2: ¬P(a)∨R(x), 

 Resolvent: Q(a)∨R(x). 
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6. Iterative Application: 

o Apply the resolution rule repeatedly to derive new clauses. 

o If the empty clause □is derived, it indicates a contradiction, 

proving the original statement. 

Example: Proving Validity 

Suppose we have the following knowledge base: 

1. P(a)∨Q(b)   

2. ¬Q(b)∨R(c)  

3. ¬R(c)  

We want to prove ¬P(a). 

Steps: 

1. Negate the statement to be proven and add it to the clauses: 

o ¬P(a) becomes P(a). 

2. Apply the resolution rule: 

o Combine P(a)∨Q(b). 

o Combine Q(b) and ¬Q(b)∨R(c) . 

o Combine R(c)  and ¬R(c) to get □ empty clause. 

Since the empty clause □ is derived, the original statement ¬P(a) is valid. 

 

Applications of Resolution in FOL: 

 Automated theorem proving. 

 Reasoning in expert systems. 

 Artificial intelligence, particularly for tasks involving logical inference. 
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Example 1:  

Let's consider a simplified example of a knowledge base for the Wumpus World 

scenario and demonstrate proof by resolution to establish the unsatisfiability of 

a certain statement.  

In Wumpus World, an agent explores a grid containing a Wumpus (a monster), 

pits, and gold. Apply the resolution to prove   P[1,2]. 

 Knowledge Base (KB) 

1. W[1,1] ∨ P[1,2]  

2. ¬W[1,1]∨¬P[1,2]  

3. B[1,2]⇒P[1,2]  

4. ¬B[1,2]⇒¬P[1,2] 

 

 Convert the Knowledge Base (KB) into CNF 

 

 Negated Conclusion:   

Let's say we want to prove the negation of the statement:  ¬PitIn[1,2] 

 Apply Resolution: 

1. W[1,1] ∨ P[1,2] , ¬P[1,2]  resolves into W[1,1] 

2. ¬W[1,1]∨¬P[1,2], W[1,1] resolves into ¬P[1,2] 

3. ¬B[1,2] ∨ P[1,2] , ¬P[1,2] resolves into ¬B[1,2] 

4. B[1,2] ∨¬P[1,2], ¬B[1,2] resolves into ¬P[1,2] 

Applying resolution, we end up with:  ¬P[1,2] , Which is not empty and also 

there is not further any clauses to continue. This gives conclusion that our 

negation conclusion is True and P[1,2]  is False for the given knowledge base. 
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Example 2:  

 

 

A grammar for conjunctive normal form 

 

Conjunctive normal form for first-order logic:  

As in the propositional case, first-order resolution requires that sentences be in 

conjunctive normal form (CNF)—that is, a conjunction of clauses, where each 

clause is a disjunction of literals. 

Literals can contain variables, which are assumed to be universally quantified.  
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For example, the sentence  

• ∀ x American(x) ∧ Weapon(y) ∧ Sells(x, y, z) ∧ Hostile(z) ⇒ Criminal(x) 

becomes, in CNF,  

¬American(x) ∨ ¬Weapon(y) ∨ ¬Sells(x, y, z) ∨ ¬Hostile(z) ∨ Criminal(x) 

Every sentence of first-order logic can be converted into an inferentially 

equivalent CNF sentence. The procedure for conversion to CNF is similar to the 

propositional case, The principal difference arises from the need to eliminate 

existential quantifiers. 

We illustrate the procedure by translating the sentence  

“Everyone who loves all animals is loved by someone,”  

or  

∀ x [∀ y Animal(y) ⇒ Loves(x, y)] ⇒ [∃ y Loves(y, x)] . 

 

Steps 

• Eliminate implications: ∀ x [¬∀ y ¬Animal(y) ∨ Loves(x, y)] ∨ [∃ y 

Loves(y, x)] . 

• Move ¬ inwards: In addition to the usual rules for negated connectives, 

we need rules for negated quantifiers. Thus, we have  

• ¬∀ x p becomes ∃ x ¬p  

• ¬∃ x p becomes ∀ x ¬p .  

• Our sentence goes through the following transformations:  

• ∀ x [∃ y ¬(¬Animal(y) ∨ Loves(x, y))] ∨ [∃ y Loves(y, x)] .  

• ∀ x [∃ y ¬¬Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)] .  

• ∀ x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)] . 

• Standardize variables: For sentences like (∃ x P(x))∨(∃ x Q(x)) which use 

the same variable name twice, change the name of one of the variables. 

This avoids confusion later when we drop the quantifiers. Thus, we have  

• ∀ x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ z Loves(z, x)] . 
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• Skolemize: Skolemization is the process of removing existential 

quantifiers by elimination. Translate ∃ x P(x) into P(A), where A is a new 

constant. 

• Example :  

• ∀ x [Animal(A) ∧ ¬Loves(x, A)] ∨ Loves(B, x) ,  

• ∀ x [Animal(F(x)) ∧ ¬Loves(x, F(x))] ∨ Loves(G(z), x) . Here F 

and G are Skolem functions. 

• Drop universal quantifiers: At this point, all remaining variables must be 

universally quantified. Moreover, the sentence is equivalent to one in 

which all the universal quantifiers have been moved to the left. We can 

therefore drop the universal quantifiers:  

• [Animal(F(x)) ∧ ¬Loves(x, F(x))] ∨ Loves(G(z), x) .  

• Distribute ∨ over ∧:  

[Animal(F(x)) ∨ Loves(G(z), x)] ∧ [¬Loves(x, F(x)) ∨ Loves(G(z), x)] . 
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The resolution inference rule 

• Two clauses, which are assumed to be standardized apart so that they 

share no variables, can be resolved if they contain complementary 

literals.  

• Propositional literals are complementary if one is the negation of the 

other;  

• first-order literals are complementary if one unifies with the negation of 

the other. 

• Thus We have 

 

Example:  
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Another Example :  

 

 

Suppose Curiosity did not kill Tuna. We know that either Jack or 

Curiosity did; thus Jack must have. Now, Tuna is a cat and cats are 

animals, so Tuna is an animal. Because anyone who kills an animal is 

loved by no one, we know that no one loves Jack. On the other hand, 

Jack loves all animals, so someone loves him; so we have a 

contradiction. Therefore, Curiosity killed the cat.  
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Summary 

1. Forward chaining starts with known facts and moves forward to reach 

conclusions,  

2. Backward chaining starts with the goal and moves backward to verify if 

the goal can be satisfied, and  

3. Resolution is an inference rule used to derive new clauses by combining 

existing ones.  

These techniques are essential for reasoning and inference in First-Order Logic 

systems. 

 

Note : The empty clause derived always implies the assumed 

negation(contradiction) is false. 

 

 

 

 



Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT. 
 
 

Completeness of resolution 

Resolution is a method in logic that can prove whether a set of statements is 

unsatisfiable. If the statements are unsatisfiable (i.e., there’s no way they can all 

be true at once), resolution will eventually find a contradiction. 

 Unsatisfiable set of statements: Means the statements can't all be true 

together. 

 Contradiction: A clear proof that the statements conflict with each other. 

Key Idea 

If a set of statements is unsatisfiable, resolution can always derive a contradiction, 

proving unsatisfiability. This doesn’t mean resolution finds all logical 

consequences—it’s focused on checking contradictions. 

 

Steps in Proving Completeness 

1. Transforming to Clausal Form: 

Any logical statement can be converted into a standard form called 

Conjunctive Normal Form (CNF). This is the foundation for using 

resolution. 

2. Using Herbrand's Theorem: 

Herbrand's theorem says if the set of statements is unsatisfiable, there’s a 

specific subset of ground instances (statements without variables) that’s 

also unsatisfiable. 

3. Applying Ground Resolution: 

For these ground instances, propositional resolution (which works with 

statements without variables) can find the contradiction. 

4. Lifting to First-Order Logic: 

A "lifting lemma" proves that if there’s a resolution proof for the ground 

instances, there’s also one for the original statements with variables. This 

ensures resolution works for first-order logic, not just simple ground 

statements. 

Structure of a completeness proof for resolution is illustrated in the figure 
below: 
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What Are Ground Terms and Herbrand's Universe? 

 Ground terms: Statements with no variables, created by substituting 

constants or functions. 

 Herbrand Universe: A collection of all possible ground terms that can 

be built from the constants and functions in the given statements. 

 Saturation: Generating all possible combinations of ground terms in the 

statements. 

Herbrand's theorem ensures we only need to check a finite subset of these terms 

to find a contradiction. 

 

Why is the Lifting Lemma Important? 

The lifting lemma connects proofs for ground terms to proofs for first-order logic. It "lifts" 

results from simpler cases (propositional logic) to more general cases (with variables). This 

step is essential to show resolution's power in first-order logic. 

 

The Conclusion 

If a set of statements is unsatisfiable: 

 Resolution finds a contradiction using a finite number of steps. 

 This proof works for both simple ground statements and complex first-

order logic. 
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This makes resolution a powerful tool in automated theorem proving! 

The Lifting Lemma Explained 

The lifting lemma is a principle that allows us to "lift" a resolution proof from 

specific ground instances (statements without variables) to general first-order 

logic (statements with variables). Here's how it works: 

 C₁ and C₂: Two clauses that do not share variables. 

 C′₁ and C′₂: Ground instances of C₁ and C₂ (created by substituting 

variables with constants or terms). 

 C′: A resolvent (a result of applying the resolution rule) of C′₁ and C′₂. 

The lemma states: 

There exists a clause C such that: 

1. C is a resolvent of C₁ and C₂ (it works at the variable level). 

2. C′ is a ground instance of C. 

In simpler terms, if resolution works for specific ground instances, we can 

always find a corresponding proof for the original first-order clauses. 

 

Example 

Let’s illustrate with an example: 

1. Original clauses with variables: 

o C1=¬P(x,F(x,A))∨¬Q(x,A)∨R(x,B) 

o  C2=¬N(G(y),z)∨P(H(y),z) 

2. Ground instances (after substituting variables with specific terms): 

o C′1=¬P(H(B),F(H(B),A))∨¬Q(H(B),A)∨R(H(B),B) 

C′2=¬N(G(B),F(H(B),A))∨P(H(B),F(H(B),A)) 

3. Resolvent of the ground instances: 

o C′=¬N(G(B),F(H(B),A))∨¬Q(H(B),A)∨R(H(B),B) 

4. Lifted clause (with variables): 

o C=¬N(G(y),F(H(y),A))∨¬Q(H(y),A)∨R(H(y),B)  

Here, C′ is a ground instance of C, showing how the lifting lemma bridges 

ground-level proofs to general first-order logic. 
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This lemma is crucial because it ensures that resolution proofs for specific cases 

(ground terms) can be generalized to more complex first-order logic, making the 

method powerful and versatile. 

Handling Equality in Inference Systems 

So far, inference methods don't naturally handle statements like x=y. To deal 

with equality, we can take one of three approaches. 

 

1. Axiomatizing Equality 

We write rules (axioms) in the knowledge base that define how equality works. 

These rules must express: 

 Reflexivity: x=x 

 Symmetry: x=y⇒y=x 

 Transitivity: x=y∧y=z⇒x=z 

Additionally, we add rules to allow substitution of equal terms in predicates and 

functions. For example: 

 x=y⇒(P(x)⇔P(y)) (for predicates P) 

 w=y∧x=z⇒F(w,x)=F(y,z)(for functions F) 

Using these axioms, standard inference methods like resolution can handle 

equality reasoning (e.g., solving equations). However, this approach can 

generate many unnecessary conclusions, making it inefficient. 

 

2. Demodulation: Adding Inference Rules 

Instead of axioms, we can add specific inference rules like demodulation to 

handle equality. 

How it works: 

 If x=y (a unit clause) and a clause α contains x, we replace x with y in α. 

 Demodulation simplifies expressions in one direction (e.g., x+0=x allows 

x+0 to simplify to x, but not vice versa). 
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Example: 

Given: 

 Father(Father(x))=PaternalGrandfather(x) 

 Birthdate(Father(Father(Bella)), 1926) 

We use demodulation to derive: 

 Birthdate(PaternalGrandfather(Bella), 1926) 

 

3. Paramodulation 

A more general rule, paramodulation, extends demodulation to handle cases 

where equalities are part of more complex clauses. 

How it works: 

 If x=y appears as part of a clause and a term z in another clause unifies 

with x, substitute y for x in z. 

Formal Rule: 

 For any terms x, y, and z: 

o If z appears in a clause mmm and x unifies with z, 

o Replace x with y in m, while preserving other parts of the clause. 

 

Summary 

 Axiomatization defines equality with explicit rules but can be inefficient. 

 Demodulation simplifies terms by replacing variables with their equal 

counterparts in one direction. 

 Paramodulation generalizes equality handling for complex clauses. 

These methods provide efficient ways to incorporate equality reasoning into 

inference systems. 
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More formally we have  

 

 

 

 

Resolution Strategies 

Resolution inference is guaranteed to find a proof if one exists, but some 

strategies can make the process more efficient. Below are key strategies and their 

applications. 

 

Unit Preference 

 Focuses on resolving clauses where one is a unit clause (a single literal). 

 Resolving a unit clause (e.g., P) with a longer clause (e.g., ¬P∨¬Q∨R) 

results in a shorter clause (¬Q∨R). 

 This strategy, first applied in 1964, dramatically improved the efficiency 

of propositional inference. 

 Unit Resolution: A restricted form of this strategy, requiring every 

resolution step to involve a unit clause. 

o Complete for Horn Clauses: Proofs resemble forward chaining. 

o Incomplete in General: Not suitable for all forms of knowledge 

bases. 

 Example: The OTTER theorem prover employs a best-first search with 

a heuristic that assigns “weights” to clauses, favoring shorter ones (e.g., 

unit clauses). 
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Set of Support 

 Restricts resolutions to involve at least one clause from a predefined set 

of support. 

 The set of support typically includes the negated query or clauses likely 

to lead to a proof. 

 Resolutions add their results to this set, significantly reducing the search 

space if the set is small. 

 This strategy is complete if the remaining sentences in the knowledge 

base are satisfiable. 

 Advantages: 

o Generates goal-directed proof trees, which are easier for humans 

to interpret. 

 

Input Resolution 

 In this strategy, resolutions always involve one of the original input 

clauses (from the knowledge base or the query). 

 Example: Modus Ponens in Horn knowledge bases is an input resolution 

strategy, as it combines an implication from the KB with other sentences. 

 Linear Resolution: A generalization where PPP and QQQ can be 

resolved if PPP is either an input clause or an ancestor of QQQ in the 

proof tree. 

o Complete for Linear Resolution: Particularly useful in structured 

proofs. 

 

Subsumption 

 Eliminates redundant sentences in the knowledge base that are 

subsumed by more general sentences. 

 Example: If P(x) is in the KB, there’s no need to add P(A) or P(A)∨Q(B). 

 Benefits: 

o Reduces the size of the knowledge base. 

o Keeps the search space manageable. 
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Applications of Resolution Theorem Provers 

Resolution theorem provers are widely used in the synthesis and verification of 

both hardware and software systems. 

1. Hardware Design and Verification 

 Axioms describe the interactions between signals and circuit components. 

 Example: Logical reasoners have verified entire CPUs, including timing 

properties. 

 AURA Theorem Prover: Used to design highly compact circuits. 

2. Software Verification and Synthesis 

 Similar to reasoning about actions, axioms define the preconditions and 

effects of program statements. 

 Algorithm Synthesis: 

o Deductive synthesis constructs programs to meet specific criteria. 

o Although fully automated synthesis is not yet practical for general-

purpose programming, hand-guided synthesis has successfully 

created sophisticated algorithms. 

 Verification Tools: Systems like the SPIN model checker are used to 

verify programs such as: 

o Remote spacecraft control systems. 

o Algorithms like RSA encryption and Boyer–Moore string 

matching. 

 

Summary 

Resolution strategies like unit preference, set of support, input resolution, and 

subsumption improve proof efficiency by focusing on relevance, reducing 

redundancy, and constraining the search space. Applications in hardware and 

software demonstrate their importance in real-world problem-solving. 
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5.2 Classical Planning: 

 

Syllabus: Definition of Classical Planning, Algorithms for Planning as State-

Space Search, Planning Graphs. 

5.2.1 The Definition of Classical Planning 

Classical planning focuses on solving problems by identifying sequences of 

actions that transition from an initial state to a goal state. In this approach factored 

representations is adopted, where a state is expressed as a collection of 

variables. This approach uses the Planning Domain Definition Language 

(PDDL), which enables concise representation of actions through schemas, 

reducing redundancy. For instance, instead of defining individual actions for all 

possible combinations, a single action schema in PDDL can represent multiple 

actions by using variables. 

5.2.1.1 Representing States in Classical Planning 

States are represented as conjunctions of fluents—ground, functionless 

atomic facts. For example: 

 Poor ∧ Unknown: Represents the state of a struggling agent. 
 At(Truck1, Melbourne) ∧ At(Truck2, Sydney): Represents locations of 

trucks in a delivery problem. 

The representation follows: 

1. Closed-world assumption: Any fluent not explicitly mentioned is 
considered false. 

2. Unique names assumption: Different symbols (e.g., Truck1 and Truck2) 
represent distinct entities. 

Certain constructs are disallowed in states, such as: 

 Non-ground fluents: e.g., At(x, y). 
 Negations: e.g., ¬Poor. 
 Function symbols: e.g., At(Father(Fred), Sydney). 

States can be manipulated as either conjunctions of fluents (using logical 

inference) or sets of fluents (using set operations). 
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5.2.1.2 Defining Actions with Schemas 

Actions are defined using schemas, which specify: 

 The action name and variables. 
 Precondition: The required state for the action to execute. 
 Effect: The state resulting from the action. 

 

For example, an action schema for flying a plane is: 
 

Action(Fly(p, from, to), 

   PRECOND: At (p, from) ∧Plane(p) ∧ Airport(from) ∧ 
Airport(to), 

    EFFECT: ¬At (p, from) ∧ At (p, to)) 
 

From this schema, specific actions can be instantiated by substituting 

variable values.  

For instance: 
 

Action (Fly (P1, SFO, JFK), 

    PRECOND: At (P1, SFO) ∧ Plane(P1) ∧ Airport(SFO) 
∧ Airport(JFK), 
    EFFECT: ¬At (P1, SFO) ∧ At(P1, JFK)) 
 

An action is applicable in a state if its preconditions are satisfied. When 

executed, the resulting state is determined by: 

 Removing fluents in the delete list (negative effects). 
 Adding fluents in the add list (positive effects). 

 

For example, executing Fly(P1, SFO, JFK) in a state would remove At(P1, 

SFO) and add At(P1, JFK). 

5.2.1.3 Planning Domains and Problems 
 

A planning domain is defined by a set of action schemas. A specific problem 

within the domain includes: 

1. Initial state: A conjunction of ground fluents. 
2. Goal: A conjunction of literals, possibly containing variables treated as 

existentially quantified. 
The planning problem is solved when a sequence of actions leads to a state that 

satisfies the goal.  

For example: 
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 The state Plane(Plane1) ∧ At(Plane1, SFO) satisfies the goal At(p, SFO) ∧ 
Plane(p). 

5.2.1.4 Limitations in Early Approaches: 

1. Atomic State Representations (Chapter 3 Problem-Solving Agent): 
o States are treated as indivisible entities, leading to a lack of structure in 

representations. 

o This approach relies heavily on domain-specific heuristics for 

effective problem-solving, limiting its generalizability and requiring 

significant manual tuning for each domain. 

2. Ground Propositional Inference (Chapter 7 Hybrid Propositional Logic 

Agent): 
o Uses domain-independent heuristics, reducing the need for manual 

tuning. 

o However, it relies on ground (variable-free) propositional inference, 

which becomes computationally infeasible with large state spaces or 

a high number of actions. 

o Example: In the Wumpus World, a simple move action must account 

for all possible orientations, time steps, and grid locations, causing a 

combinatorial explosion in the number of actions. 

 

5.2.1.5 Overcoming Limitations with Factored Representations: 

1. Structured State Representation: 

o States are expressed as collections of variables, enabling a more 

structured and compact representation. 

o This approach captures relationships and dependencies between 

state components, improving efficiency and scalability. 

2. Use of PDDL (Planning Domain Definition Language): 
o Action Schemas: Introduced to reduce redundancy by representing 

actions with variables rather than enumerating all possible 

instances. 

Example: Instead of defining actions for every plane and airport 

combination, a single schema can describe the action of flying a 

plane between airports. 

o Domain Independence: PDDL allows concise and reusable 

descriptions of actions and states, supporting various domains 

without customization. 

3. Improved Computational Efficiency: 
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o By focusing on factored representations and logical reasoning 

over variables, the new approach avoids the combinatorial 

explosion seen in propositional logic. 

o This scalability makes classical planning applicable to complex 

domains with numerous states and actions. 

 

Summary of Improvement: The transition from atomic and ground 

representations to factored representations with PDDL enables classical 

planning to handle larger, more complex problems with greater efficiency and 

flexibility. This advancement overcomes the scalability challenges of earlier 

approaches while reducing dependency on domain-specific heuristics. 

 

5.2.1.6 Example : Air cargo transport 

 

The air cargo transport problem, illustrated in Figure 10.1, involves transporting 

cargo between airports by loading, unloading, and flying planes. This problem 

uses three main actions: Load, Unload, and Fly, which operate on two primary 

predicates: 

1. In(c, p): Indicates that cargo c is inside plane p. 
2. At(x, a): Specifies that an object x (plane or cargo) is located at airport 

a. 

To ensure the correct maintenance of the At predicates, special care is required. 

When a plane flies from one airport to another, all cargo inside the plane must 
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also move with it. While first-order logic can easily quantify over all objects 

within the plane, basic PDDL lacks universal quantifiers. Therefore, a different 

solution is adopted: 

 Cargo ceases to be At any location once it is loaded into a plane (it is 
considered In the plane). 

 The cargo becomes At the destination airport only when it is unloaded 
from the plane. 

Thus, At(x, a) effectively signifies "available for use at a given location." 

Example Solution Plan : A valid solution plan for transporting cargo C1 

and C2 is as follows: 

1. Load(C1, P1, SFO): Load cargo C1 onto plane P1 at airport SFO. 
2. Fly(P1, SFO, JFK): Fly plane P1 from SFO to JFK. 
3. Unload(C1, P1, JFK): Unload cargo C1 from plane P1 at JFK. 
4. Load(C2, P2, JFK): Load cargo C2 onto plane P2 at JFK. 

5. Fly(P2, JFK, SFO): Fly plane P2 from JFK to SFO. 
6. Unload(C2, P2, SFO): Unload cargo C2 from plane P2 at SFO. 

Handling Spurious Actions : The problem can also involve spurious actions, 

such as Fly(P1, JFK, JFK), which would be a no-op but can produce 

contradictory effects (e.g., both At(P1, JFK) and ¬At(P1, JFK)). While 

such issues are often ignored in practice because they rarely lead to incorrect 

plans, the proper way to prevent them is by adding inequality preconditions, 

ensuring that the departure (from) and arrival (to) airports are different. 

In the context of the air cargo transport problem, SFO and JFK refer to airport 

codes: 

 SFO: San Francisco International Airport 

 JFK: John F. Kennedy International Airport (located in New York City) 

These are commonly used IATA airport codes to represent specific locations in 

transportation and logistics scenarios. In this problem, they are used as example 

locations for cargo and planes. 

5.2.1.7 Example: The Spare Tire Problem 

Imagine the task of changing a flat tire, as shown in Figure 10.2. The goal is to 

replace the flat tire on the car's axle with a good spare tire. Initially, the flat tire 

is mounted on the axle, and the spare tire is in the trunk. For simplicity, this 
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problem is abstracted—there are no challenges like stubborn lug nuts or other 

real-world complications. 

In this scenario, there are only four actions available: 

1. Removing the spare tire from the trunk. 
2. Removing the flat tire from the axle. 
3. Mounting the spare tire onto the axle. 
4. Leaving the car unattended overnight. 

It is assumed that leaving the car unattended in a dangerous neighborhood 

results in all the tires disappearing. A valid solution to this problem would be 

the sequence: 
[Remove(Flat, Axle), Remove(Spare, Trunk), PutOn(Spare, Axle)]. 

 

 

5.2.1.8 Example: The Blocks World 

The blocks world is a classic planning domain often used to study problem-

solving and AI planning. It involves manipulating cube-shaped blocks on a table 

to achieve a specified configuration. 

Key Concepts: 

1. Setup: 

o Blocks can be placed on the table or stacked on top of one 
another. 

o Only one block can fit directly on top of another block. 
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o A robot arm is used to move the blocks: 
 It can pick up only one block at a time. 
 It cannot pick up a block that has another block on top of it. 

2. Goal: 

o The goal is defined by a specific arrangement of blocks, e.g., block 
A on B and block B on C. 

3. Predicates: 

o On(b, x): Block b is on x (where x is another block or the table). 
o Clear(x): Block x is clear, meaning no other block is on it. 

4. Actions: 

o Move(b, x, y): Moves block b from x to y (either another block or 
the table). 

 Preconditions: 
On(b, x) ∧ Clear(b) ∧ Clear(y) 

(Block b is on x, block b is clear, and the destination y is 
clear.) 

 Effects: 
On(b, y) ∧ Clear(x) ∧ ¬On(b, x) ∧ 
¬Clear(y) 
(Block b is on y, x becomes clear, b is no longer on x, and y 
is no longer clear.) 

5. Issues and Solutions: 

o Problem: The initial action schema does not handle the table 
correctly: 

 When moving a block from or to the table, the Clear(Table) 
predicate is mishandled. 

 For example: 
 Clear(Table) should always be true, as the table 

always has space. 
 However, the original schema treats the table like a 

block, leading to incorrect interpretations. 
o Fixes: 

 Introduce a new action, MoveToTable(b, x): 
 Preconditions: 

On(b, x) ∧ Clear(b) 

(Block b is on x and is clear.) 
 Effects: 

On(b, Table) ∧ Clear(x) ∧ ¬On(b, x) 
(Block b is now on the table, x is clear, and b is no 

longer on x.) 
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 Reinterpret Clear(x): 
"There is space on x to hold a block." 
(Under this interpretation, Clear(Table) is always true.) 

6. Optional Optimization: 

o To prevent redundant use of Move(b, x, Table) instead of 
MoveToTable(b, x): 

 Add the predicate Block(y) to the Move action's 
precondition. 

 This ensures Move is only used for moving blocks between 
other blocks, not the table. 

By making these adjustments, the blocks world planner becomes more accurate 

and efficient, avoiding unnecessary computational overhead. 
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5.2.1.9 The Complexity of Classical Planning 

In this subsection we consider the theoretical complexity of planning and 

distinguish two decision problems. PlanSAT is the question of whether there 

exists any plan that solves a planning problem. Bounded PlanSAT asks whether 

there is a solution of length k or less; this can be used to find an optimal plan. 

1. Key Decision Problems: 

o PlanSAT: Determines whether a solution (plan) exists for a given 
planning problem. 

o Bounded PlanSAT: Checks if a solution of length ≤ k exists, often used 
to find optimal plans. 

2. Decidability: 

o Both PlanSAT and Bounded PlanSAT are decidable for classical 
planning because the state space is finite. 

o When function symbols are added (creating an infinite state space): 
 PlanSAT becomes semidecidable: it terminates for solvable 

problems but may not terminate for unsolvable ones. 
 Bounded PlanSAT remains decidable even with function 

symbols. 
3. Complexity Classes: 

o Both problems are in PSPACE, a complexity class harder than NP, 
requiring polynomial space to solve. 

o Even with restrictions: 
 Without negative effects, both problems are NP-hard. 
 Without negative preconditions, PlanSAT reduces to the easier 

class P. 
4. Practical Implications: 

o Although the worst-case scenarios are complex, real-world problems 
in specific domains (e.g., blocks world, air cargo) are often simpler. 

 For many domains: 
 Bounded PlanSAT is NP-complete (hard for optimal 

planning). 
 PlanSAT is in P (easier for suboptimal solutions). 

5. Role of Heuristics: 

o Classical planning's advantage lies in the development of domain-
independent heuristics, which perform well on practical problems. 

o This contrasts with systems based on first-order logic, which struggle 
to create effective heuristics. 

In summary, while planning problems can be theoretically hard, domain-specific 

scenarios and effective heuristics often simplify practical implementations. 
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PlanSAT and Bounded PlanSAT 
This subsection explores the theoretical complexity of classical planning by distinguishing 

two decision problems: 

1. PlanSAT: Determines whether there exists any plan that solves a given planning 

problem. 

2. Bounded PlanSAT: Asks if there is a solution of length kkk or less, which can help 

find an optimal plan. 

Decidability 

Both problems are decidable for classical planning due to the finiteness of states. However, 

introducing function symbols to the language makes the number of states infinite. In this 

case: 

 PlanSAT becomes semidecidable: an algorithm can terminate with the correct 

answer for solvable problems but might not terminate for unsolvable ones. 

 Bounded PlanSAT remains decidable even with function symbols. 

For detailed proofs, refer to Ghallab et al. (2004). 

Complexity Class 

Both PlanSAT and Bounded PlanSAT belong to the complexity class PSPACE, which 

includes problems solvable by a deterministic Turing machine using polynomial space. 

PSPACE is broader and more challenging than NP. Even with severe restrictions, these 

problems remain complex: 

 Disallowing negative effects keeps them NP-hard. 

 Disallowing negative preconditions reduces PlanSAT to P. 

Practical Implications 

These theoretical results might seem daunting, but practical planning rarely involves worst-

case scenarios. For instance: 

 In specific domains like the blocks-world or air-cargo problems, Bounded PlanSAT 

is NP-complete, while PlanSAT is in P. 

 This implies optimal planning is often challenging, but suboptimal planning can be 

relatively easier. 

To handle such cases effectively, good search heuristics are essential. Classical planning has 

advanced significantly by enabling highly accurate domain-independent heuristics. In 

contrast, systems relying on successor state axioms in first-order logic have struggled to 

develop strong heuristics. 
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5.2.2 Algorithms for Planning as State-Space Search 

Two approaches to searching for a plan. (a) Forward (progression) search through 

the space of states, starting in the initial state and using the problem’s actions to 

search forward for a member of the set of goal states. (b) Backward (regression) 

search through sets of relevant states, starting at the set of states representing the 

goal and using the inverse of the actions to search backward for the initial state. 

Forward (Progression) State-Space Search 

 Description: Starts from the initial state and applies actions to reach the 
goal. 

o It explores all possible actions from the current state, leading to a 
large branching factor and potential inefficiency without heuristics. 

 Challenges: 
1. Explores irrelevant actions. 
2. Handles large state spaces with numerous possible states and 

actions. 
 Example: 

In an air cargo problem with 10 airports, 5 planes, and 20 cargo items: 
o At each step, the search needs to evaluate thousands of possible 

actions like flying planes, loading cargo, or unloading it. 
o Without a heuristic, this leads to a massive search space. 

 

 

Backward (Regression) Relevant-States Search 

 Description: Starts from the goal and works backward by identifying 
actions that can lead to the goal state. 

 Advantages: Focuses only on relevant actions and avoids irrelevant 
branches. 
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 Example: 
If the goal is At(C2, SFO), the algorithm considers the action 
Unload(C2, p, SFO): 

o Precondition: In(C2, p) ∧ At(p, SFO). 
o Effect: At(C2, SFO). 

It regresses to find the predecessor state where these 
preconditions are true. 

 

 

Heuristics for Planning 

 Purpose: Estimate the cost of reaching the goal from the current state to 
guide search algorithms like A*. 

 Types of Heuristics: 
1. Ignore Preconditions: 

 Drops preconditions, making every action applicable. 
 Example: Simplifies the 8-puzzle by ignoring adjacency 

requirements for moves. 
2. Ignore Delete Lists: 

 Assumes actions cannot undo progress, making the problem 
monotonic. 

 Example: In a transportation problem, unloading an item is 
never undone. 

3. State Abstraction: 
 Groups states by ignoring irrelevant fluents to reduce the 

state space. 
 Example: In air cargo, consider only packages and 

destinations while abstracting plane details. 

Figure 10.6 diagrams part of the state space for two planning problems using 
the ignore-delete-lists heuristic. The dots represent states and the edges 
actions, and the height of each dot above the bottom plane represents the 
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heuristic value. States on the bottom plane are solutions. In both these 
problems, there is a wide path to the goal. There are no dead ends, so no need 
for backtracking; a simple hill climbing search will easily find a solution to these 
problems (although it may not be an optimal solution). 

 

 

The image illustrates two state spaces derived from planning problems where the ignore-

delete-lists heuristic is applied. Here’s a breakdown of the key details: 

1. State Space Representation: 

o The white lines represent the connections between different states (nodes) in 

the planning problem. 

o Each state corresponds to a possible configuration of the problem, and 

transitions represent actions that lead from one state to another. 

2. Heuristic Scores: 

o The height of a state above the base plane indicates its heuristic score. The 

heuristic score reflects an estimate of the distance to the goal state (lower is 

better). 

o The visualization shows how the heuristic value changes as states progress 

toward the goal. 

3. Goal States: 

o States that lie directly on the bottom plane are goal states (i.e., configurations 

that satisfy the problem's requirements). 

4. Ignore-Delete-Lists Heuristic: 

o This heuristic simplifies the problem by ignoring negative effects of actions 

(delete lists) during the planning process. 
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o It creates a state space without local minima, meaning there are no dead ends 

or misleading paths that can trap the search. This makes the search for the goal 

straightforward. 

5. Two Examples: 

o The two diagrams represent different problem instances: 

 The left diagram shows a relatively "steep" and orderly descent to the 

goal, indicating a direct and simple path. 

 The right diagram has a more "twisted" state space, with complex 

paths leading to the goal, but still without any local minima. 

These visualizations help explain why the ignore-delete-lists heuristic is effective: the 

absence of local minima ensures the search algorithm does not get stuck, and the heuristic 

guides the planner efficiently toward the goal. 
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5.2.3 Planning Graphs 

Definition: 

A planning graph is a directed, leveled graph that represents actions and literals 

in alternating layers, capturing all possible states and actions up to a certain time 

step. 

 

Construction of a Planning Graph: 

1. Levels: 
o S₀: Represents the initial state. 
o A₀: Represents actions applicable in S₀. 
o Alternates between states (S₁, S₂, ...) and actions (A₁, A₂, ...). 

2. Termination: 
o Stops when two consecutive levels are identical (levelled off). 

Example:  For the problem "Have Cake and Eat Cake Too": 

o S₀: {Have(Cake)} 
o A₀: {Eat(Cake), Bake(Cake)} 
o S₁: {Have(Cake), Eaten(Cake)} 
o Mutex Links: Highlight conflicts, e.g., eating and having the cake. 

 

Figure 10.8 shows the planning graph for the “have cake and eat cake too” 
problem up to level S2. Rectangles indicate actions (small squares indicate 
persistence actions), and straight lines indicate preconditions and effects. Mutex 
links are shown as curved gray lines. Not all mutex links are shown, because the 
graph would be too cluttered. In general, if two literals are mutex at Si, then the 
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persistence actions for those literals will be mutex at Ai and we need not draw 
that mutex link. 

 

 
 

5.2.3.1 Planning Graphs for Heuristic Estimation 

A planning graph provides valuable insights into a problem once constructed. 

Here's how it aids heuristic estimation: 

1. Unsolvability Check: 

If a goal literal does not appear in the final level of the graph, the problem 

is unsolvable. 

2. Estimating Goal Costs: 

The cost of achieving a goal literal gi from an initial state s is estimated 

as the level at which gi first appears in the planning graph constructed 

from s. This is termed the level cost of gi. For example, in Figure 10.8, 

Have(Cake) has a level cost of 0, and Eaten(Cake) has a level cost 

of 1.  

3. Accuracy and Serial Graphs: 

The level cost may not always align with reality because planning graphs 

allow multiple actions per level, while the heuristic only considers levels, 

not actions. To improve accuracy, serial planning graphs are often used. 

These enforce only one action per time step by adding mutual exclusion 

(mutex) links between non-persistence actions. Costs derived from serial 

graphs are more realistic. 

4. Estimating Conjunction Costs: 

Estimating costs for a conjunction of goals involves three approaches: 
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o Max-Level Heuristic: Uses the maximum level cost of any goal. 

This heuristic is admissible but may lack precision. 

o Level-Sum Heuristic: Assumes subgoal independence and sums 

the level costs of the goals. While inadmissible, it performs well 

for decomposable problems. For instance, for Have(Cake) ∧ 
Eaten(Cake), this heuristic estimates 0+1=10 + 1 = 10+1=1, 

though the correct answer is 2, achieved by the plan 

[Eat(Cake), Bake(Cake)]. However, it may underestimate 

when certain actions, like Bake(Cake), are missing. 

o Set-Level Heuristic: Determines the level where all literals in the 

conjunction appear without mutual exclusivity. This heuristic is 

admissible, dominates the max-level heuristic, and performs 

effectively when subplans interact significantly. For the above 

example, it gives the correct value of 2 and identifies infeasibility 

(infinity) when Bake(Cake) is absent. 

5. Planning Graphs as Relaxed Problems: 

Planning graphs model a relaxed problem by ensuring: 

o If a literal g does not appear at a level Si, no plan exists to achieve 

g within i steps. 

o If g does appear, it implies a plan exists with no obvious flaws 

(e.g., mutex violations between two actions or literals). However, it 

does not guarantee the absence of more subtle flaws involving 

three or more actions. 

6. Limits of Planning Graphs: 

Planning graphs cannot detect some unsolvable problems. For instance, in 

a blocks-world scenario with the goal of stacking A on B, B on C, and C 

on A (an impossible circular tower), no mutex exists between any two 

subgoals. The impossibility emerges only when considering all three 

together. Detecting such cases would require searching the graph. 

In summary, planning graphs are powerful tools for generating heuristics by 

efficiently solving a relaxed version of the problem. While they provide useful 

approximations, certain complexities may remain undetected without deeper 

search efforts. 
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5.2.3.2 The GRAPHPLAN Algorithm 

This subsection explains how to extract a plan directly from the planning graph 

instead of using it solely for heuristic estimation. The GRAPHPLAN algorithm 

(illustrated in Figure 10.9) iteratively builds the planning graph using the 

EXPAND-GRAPH function. When all goal literals appear in the graph without 

mutual exclusions (mutex), the algorithm invokes EXTRACT-SOLUTION to 

search for a valid plan. If the search fails, GRAPHPLAN adds another level to 

the graph and retries. The process ends with failure if further expansion becomes 

futile. 

The GRAPHPLAN algorithm. GRAPHPLAN calls EXPAND-GRAPH to add a 

level until either a solution is found by EXTRACT-SOLUTION, or no solution 

is possible. 

 

Tracing GRAPHPLAN on the Spare Tire Problem 

This section demonstrates how the GRAPHPLAN algorithm operates using the 

spare tire problem , with its planning graph depicted in Figure 10.10. 

1. Initialization: 

GRAPHPLAN begins by initializing the planning graph with a single level 

(S0) that represents the initial state. The positive and negative fluents from 

the initial state are included, while unchanging positive literals (e.g., 

Tire(Spare)) and irrelevant negative literals are omitted. 

Since the goal At(Spare, Axle) does not appear in S0, EXTRACT-

SOLUTION is not called. Instead, EXPAND-GRAPH adds actions to A0 

whose preconditions are met in S0 (all actions except PutOn(Spare, 



Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT. 
 
 

Axle)), along with persistence actions for S0's literals. The effects of these 

actions form S1, and mutex relations are identified and added. 

2. Expanding the Graph: 

In S1, the goal At(Spare, Axle) is still absent, so EXPAND-GRAPH is 

called again to produce A1 and S2, resulting in the full planning graph 

(Figure 10.10). The process highlights examples of mutex relationships: 

o Inconsistent Effects: Remove(Spare, Trunk) is mutex with 
LeaveOvernight due to conflicting effects (At(Spare, 
Ground) vs. its negation). 

o Interference: Remove(Flat, Axle) is mutex with 
LeaveOvernight because one requires At(Flat, Axle) as a 
precondition, while the other negates it. 

o Competing Needs: PutOn(Spare, Axle) is mutex with 
Remove(Flat, Axle) as they depend on conflicting 
preconditions (At(Flat, Axle) vs. its negation). 

o Inconsistent Support: At(Spare, Axle) and At(Flat, 
Axle) in S2 are mutex because achieving At(Spare, Axle) 
requires PutOn(Spare, Axle), which conflicts with the 
persistence of At(Flat, Axle). 

3. Solution Extraction: 

When all goal literals appear in S2 without mutex, EXTRACT-SOLUTION 

is invoked. This process is framed as a Boolean constraint satisfaction 

problem (CSP), with variables representing actions, values being inclusion 

in or exclusion from the plan, and constraints being mutexes and 

goal/precondition requirements. Alternatively, it can be defined as a 

backward search problem, where: 

o The initial state includes the last graph level (Sn) and the unsatisfied 
goals. 

o Actions at Si are conflict-free subsets of Ai−1 that satisfy the current 
goals. 

o The goal is to reach S0 with all goals satisfied, with each action 
incurring a cost of 1. 

4. Example Execution: 

Starting at S2 with the goal At(Spare, Axle), the only relevant action 

is PutOn(Spare, Axle), leading to S1 with goals At(Spare, 

Ground) and ¬At(Flat, Axle). 

o At(Spare, Ground) is achieved by Remove(Spare, 
Trunk). 

o ¬At(Flat, Axle) is achieved by either Remove(Flat, 
Axle) or LeaveOvernight, but the latter is mutex with 

Remove(Spare, Trunk). 
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Thus, the chosen actions are Remove(Spare, Trunk) and 
Remove(Flat, Axle), leading to S0 with goals At(Spare, 
Trunk) and At(Flat, Axle), both satisfied. The solution 

consists of Remove(Spare, Trunk) and Remove(Flat, 
Axle) at A0, followed by PutOn(Spare, Axle) at A1. 

5. Handling Failure: 

If EXTRACT-SOLUTION fails for a given level and set of goals, the pair is 

recorded as a "no-good," preventing redundant searches in subsequent 

iterations. 

6. Heuristic Guidance: 

Extracting solutions is computationally intractable in the worst case, so 

heuristic guidance is essential. A greedy approach involves: 

o Prioritizing literals with the highest level cost. 
o Selecting actions with easier preconditions, where "easier" minimizes 

the sum or maximum of the preconditions' level costs. 

This strategy balances efficiency with practicality for solving complex planning 

problems. 
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5.2.3.3 Termination of GRAPHPLAN 

GRAPHPLAN ensures termination and returns failure when no solution exists. 

Here's an explanation of how it achieves this: 

Why Not Stop at Level-Off? 

The graph levels off when no new literals, actions, or mutex relations are added. 

However, this does not guarantee a solution. Consider an air cargo problem 

where one plane must transport nnn pieces of cargo from airport A to airport B, 

but only one piece fits in the plane at a time. 

 The graph levels off at level 4, reflecting the steps required to load, fly, 
and unload a single piece of cargo. 

 However, solving the problem requires 4n−1 steps, including return trips 
for additional cargo. Thus, leveling off does not necessarily mean a 
solution exists at that point. 

When to Terminate? 

The algorithm continues expanding the graph as long as new possibilities arise: 

1. No-Goods: If EXTRACT-SOLUTION fails, it indicates that some goals are 
unachievable and are marked as no-goods. 

2. Leveling-Off: Termination occurs when both the graph and the no-goods 
stabilize, i.e., no new literals, actions, or mutexes are added, and no 
further reduction in no-goods is possible. At this point, if no solution is 
found, GRAPHPLAN terminates with failure. 

Proof of Leveling-Off 

The key to proving that the graph and no-goods stabilize lies in the monotonic 

properties of planning graphs: 

 Literals Increase Monotonically: Once a literal appears at a level, it 
persists at all subsequent levels due to persistence actions. 

 Actions Increase Monotonically: If an action appears at a level, it remains 
in all subsequent levels, as its preconditions (which are literals) persist. 

 Mutexes Decrease Monotonically: Mutex relations never reappear once 
removed. 

o Inconsistent Effects and Interference mutexes depend on inherent 
properties of actions and persist across levels. 
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o Competing Needs mutexes depend on level-specific preconditions, 
which become achievable as actions increase monotonically. 

 No-Goods Decrease Monotonically: If a set of goals is unachievable at 
one level, it remains unachievable at all previous levels, as persistence 
actions cannot retroactively make them achievable. 

Finite Nature of Planning Graphs 

Since actions and literals increase monotonically and are finite in number, the 

graph eventually stabilizes at a level where no new actions or literals are 

introduced. Similarly, mutexes and no-goods, which decrease monotonically and 

cannot fall below zero, also stabilize. 

Termination Condition 

When the graph stabilizes and either: 

1. A goal is missing, or 
2. Any goal is mutex with another, 

the algorithm terminates, returning failure. This guarantees that further expansion 

would not yield a solution. 

For a detailed formal proof, refer to Ghallab et al. (2004). 
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5.2.4 Logic Programming 
Logic programming is a method of building systems by writing rules and facts 

in a formal language. Problems are solved by reasoning based on this 

knowledge. This concept is summed up by Robert Kowalski’s principle: 

Algorithm = Logic + Control 
This means that logic specifies what the system should do, while control defines 

how it should execute. 

PROLOG 

Prolog is the most popular logic programming language. It’s used for quick 

prototyping and tasks like: 

 Writing compilers 

 Parsing natural language 

 Creating expert systems in fields like law, medicine, and finance 

Prolog Programs 

Prolog programs consist of rules and facts (called definite clauses) written in a 

special syntax. Here’s what makes Prolog different: 

1. Variables and Constants: Variables are uppercase (e.g., X), and 

constants are lowercase (e.g., john). 

2. Clause Structure: Instead of A ∧ B ⇒ C, Prolog writes it as C :- 

A, B. For example: 

criminal(X) :- american(X), weapon(Y), 

sells(X,Y,Z), hostile(Z). 

This means: "X is a criminal if X is American, Y is a weapon, X sells Y 

to Z, and Z is hostile." 

3. Lists: [E|L] represents a list where E is the first item, and L is the rest. 

Example: Appending Lists 

Here’s a Prolog program to join two lists, X and Y, into Z: 

append([],Y,Y).   

append([A|X],Y,[A|Z]) :- append(X,Y,Z). 
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This means: 

1. Appending an empty list to Y gives Y. 

2. To append [A|X] to Y, the result is [A|Z] if appending X to Y gives Z. 

You can also use it in reverse! For example, asking: 

append(X,Y,[1,2]). 

This query finds pairs of lists X and Y that combine to [1,2]. The answers are: 

 X=[] and Y=[1,2] 

 X=[1] and Y=[2] 

 X=[1,2] and Y=[] 

 

How Prolog Executes 

Prolog works using depth-first backward chaining: 

 It tries rules one by one, in the order written. 

 It stops as soon as a solution is found. 

 Some features make it faster but can cause issues: 

o Arithmetic Built-ins: It calculates results directly. For example: 

 X is 4+3 → Prolog sets X = 7. 

 5 is X+Y → Fails because Prolog doesn't solve general 

equations. 

o Side Effects: Predicates like assert (add facts) and retract 

(remove facts) can behave unpredictably. 

o Infinite Recursion: Prolog doesn’t check for infinite loops, so 

wrong rules might cause it to hang. 

 

Design Philosophy : Prolog balances declarative logic (what should 

happen) with execution efficiency (how it runs). While not perfect, it’s a 

powerful tool for certain types of tasks! 
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5.2.4.1 Efficient Implementation of Logic Programs 

Prolog programs can be executed in two modes: interpreted and compiled. 

Each mode has distinct characteristics and optimizations: 

Interpreted Mode 

In this mode, Prolog functions like the FOL-BC-ASK algorithm (Figure 9.6), 

treating the program as a knowledge base. However, Prolog interpreters include 

optimizations for better efficiency. Two key improvements are: 

1. Global Stack of Choice Points: 

o Instead of explicitly managing iterations over possible results, 
Prolog uses a global stack of choice points to track alternatives 
considered in the FOL-BC-OR step. 

o This approach is not only more efficient but also simplifies 
debugging, as the debugger can traverse up and down the stack to 
inspect states. 

2. Logic Variables and Trails: 

o Prolog uses logic variables that dynamically remember their 
current bindings. At any time, a variable is either unbound or 
bound to a specific value. These bindings implicitly define the 
substitution for the current proof branch. 

o New variable bindings extend the path, but attempts to rebind an 
already bound variable fail due to unification constraints. 

o When backtracking occurs after a goal fails, variables are unbound 
in reverse order using a trail stack. Each variable bound by 
UNIFY-VAR is pushed onto the trail, and during backtracking, 
variables are unbound as they are popped from the trail. 

Despite these optimizations, Prolog interpreters still require thousands of 

machine instructions per inference step due to the overhead of operations like 

index lookups, unification, and recursive call stack management. In essence, the 

interpreter processes each query as if encountering the program for the first 

time, repeatedly finding clauses to match the goal. 

 
Compiled Mode 

Compiled Prolog programs offer significant performance improvements by 

tailoring inference procedures to specific sets of clauses. This eliminates much 

of the interpretation overhead: 

1. Optimized Clause Matching: 

o Unlike interpreters, compiled Prolog "remembers" which clauses 
match a given goal, streamlining the process. 
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o It generates a dedicated inference procedure (essentially a small 
theorem prover) for each predicate, avoiding the need for 
repetitive clause searching. 

2. Open-Coded Unification: 

o Compilers can create open-coded unification routines for specific 
calls, bypassing the need for general-purpose term structure 
analysis. This improves execution speed. 

3. Intermediate Language Compilation: 

o Direct compilation of Prolog to machine code is inefficient due to 
the mismatch between Prolog semantics and modern processor 
architectures. 

o Instead, Prolog is typically compiled into an intermediate 
language like the Warren Abstract Machine (WAM), which 
abstracts Prolog's operations for efficient execution. 

o The WAM, developed by David H. D. Warren, is a widely-used 
intermediate instruction set designed for Prolog, which can either 
be interpreted or further compiled into machine code. 

4. High-Level Language Translation: 

o Some Prolog compilers translate Prolog code into high-level 
languages like Lisp or C, leveraging their compilers to generate 
machine code. 

For example, the Prolog append predicate can be compiled into efficient low-

level code as shown in Figure 9.8, using strategies like choice points and term 

structure analysis to enhance performance. 

 

The append predicate in Prolog can be compiled into an optimized form, such 

as the example shown in Figure 9.8. Several noteworthy points highlight how 

this compilation enhances efficiency: 
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Transforming Clauses into Procedures 

 Instead of searching the knowledge base for append clauses during 
execution, the clauses are compiled into a procedure. 

 Inferences are then performed by directly calling the procedure, 
significantly improving execution speed and reducing overhead. 

 

Trail Management for Variable Bindings 

 Prolog maintains variable bindings on a trail, which records their current 
state. 

 The procedure begins by saving the trail's state. If the first clause fails, 
RESET-TRAIL restores the original state, undoing any bindings 

created by the initial call to UNIFY. 
 This ensures correctness and prepares Prolog to explore alternative 

paths during backtracking. 

 

Use of Continuations for Choice Points 

 Continuations are critical for handling choice points during execution. A 
continuation packages a procedure and its arguments, specifying what 
should happen next when a goal succeeds. 

 This approach prevents premature termination of a procedure like 
append when multiple solutions exist. Each success triggers the 
continuation, enabling all possibilities to be explored. 

 For example, if append is invoked at the top level: 
o If the first list is empty and the second unifies with the third, the 

predicate succeeds. 
o The continuation is then called with the current bindings on the 

trail to perform the next steps (e.g., printing variable bindings). 

 

Impact of Prolog Compilation 

Before the advancements by Warren and others, Prolog's performance was too 

slow for practical use. However, compilers like the Warren Abstract Machine 
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(WAM) enabled Prolog to achieve execution speeds competitive with C on 

standard benchmarks (Van Roy, 1990). 

Prolog’s ability to express complex logic, such as planners or natural language 

parsers, in just a few lines makes it ideal for prototyping small-scale AI research 

projects, often surpassing C in ease of use. 

 

Parallelism in Prolog :  

Prolog also leverages parallelism to achieve substantial speedups by exploiting 

the independence of branches in logic programming: 

1. OR-Parallelism: 

o Occurs when a goal can unify with multiple clauses in the 
knowledge base. 

o Each unification forms an independent branch of the search 
space, which can be solved in parallel. 

2. AND-Parallelism: 

o Arises from solving multiple conjuncts in the body of a rule 
simultaneously. 

o Unlike OR-parallelism, AND-parallelism is more challenging, as it 
requires consistent bindings across all conjunctive branches. 
Communication between branches ensures a globally valid 
solution. 

 

Dynamic Programming for Efficiency 

By combining compilation techniques with parallelization and dynamic 

programming, Prolog minimizes redundant computations and optimizes search 

processes. These advancements make Prolog an efficient and desirable choice 

for logic programming in AI and other computational fields. 
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5.2.4.2 Redundant Inference and Infinite Loops in Prolog 

Prolog's reliance on depth-first search (DFS) introduces challenges when 

dealing with search trees containing repeated states and infinite paths, 

creating significant inefficiencies. 

 

Infinite Loops in Depth-First Search 

Consider the following Prolog program, which checks if a path exists between 

two points in a directed graph: 

path(X, Z) :- link(X, Z).   

path(X, Z) :- path(X, Y), link(Y, Z).   

Given a simple three-node graph with facts link(a, b) and link(b, c) 

(Figure 9.9(a)): 

1. If queried as path(a, c), the proof tree (Figure 9.10(a)) 
demonstrates a successful result. 

2. However, changing the order of the clauses: 

path(X, Z) :- path(X, Y), link(Y, Z).   

path(X, Z) :- link(X, Z).   

causes Prolog to follow an infinite loop (Figure 9.10(b)). 

This happens because Prolog's DFS prioritizes depth over breadth and fails to 

detect cyclic dependencies. Consequently, Prolog is incomplete as a theorem 

prover for definite clauses—even for simple Datalog programs like this one. 
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Forward chaining, in contrast, avoids this issue by systematically generating 

facts. Once path(a, b), path(b, c), and path(a, c) are inferred, the 

process halts. 

 

Redundant Computations 

Another major drawback of DFS in Prolog is redundant computations, 

particularly in graph problems. 

For example: 

 When finding a path from A1 to J4 in a more complex graph (Figure 
9.9(b)), Prolog performs 877 inferences, exploring multiple unnecessary 
paths, including those leading to unreachable nodes. 

 This redundancy resembles the repeated-state problem in Chapter 3. 

Forward chaining, applied to the same problem, is far more efficient: 

 It generates at most n2  path(X, Y) facts for n nodes, avoiding 
repeated calculations. 

 For the problem in Figure 9.9(b), forward chaining requires only 62 
inferences, compared to the exponential growth of DFS. 

 

 

Dynamic Programming in Forward Chaining 

Forward chaining for graph search exemplifies dynamic programming, where 

solutions to smaller subproblems are incrementally combined to solve larger 

ones. This approach eliminates the inefficiencies of redundant inferences and 

infinite loops inherent in Prolog's DFS, making it a more effective strategy for 

certain problem domains. 

Subproblems are cached to prevent recomputation. A similar effect can be 

achieved in a backward chaining system through memorization—caching 

solutions to subgoals as they are found and reusing these solutions when the 

subgoal is encountered again, instead of repeating the computation. This is the 

approach used by tabled logic programming systems, which implement 

efficient storage and retrieval mechanisms for memoization. Tabled logic 
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programming combines the goal-directed nature of backward chaining with the 

dynamic programming efficiency of forward chaining. It is also complete for 

Datalog knowledge bases, meaning the programmer has less concern about 

infinite loops. However, infinite loops can still occur with predicates like 

father(X,Y), which may refer to a potentially unbounded number of 

objects. 

 
Source Book: Stuart J. Russell and Peter Norvig, Artificial Intelligence, 3rd Edition, Pearson,2015 

 

5.2.4.3 Database Semantics of Prolog 

Prolog employs database semantics. The unique names assumption states that 

each Prolog constant and ground term refers to a distinct object, while the closed 

world assumption asserts that only the sentences entailed by the knowledge base 

are considered true. In Prolog, there is no way to assert that a sentence is false, 

which makes Prolog less expressive than first-order logic (FOL). However, this 

limitation contributes to Prolog's efficiency and conciseness. 

Consider the following Prolog assertions about course offerings: 

Course(CS, 101), Course(CS, 102), Course(CS, 106), 

Course(EE, 101). 

Under the unique names assumption, CS and EE are distinct, as are the course 

numbers 101, 102, and 106. This means that there are exactly four distinct 

courses. According to the closed-world assumption, there are no other courses, 

so the total number of courses is exactly four. 
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In contrast, if these were assertions in FOL, they would only imply that there are 

at least one and at most infinity courses. This is because FOL does not deny the 

existence of other unmentioned courses, nor does it specify that the mentioned 

courses are distinct. In FOL, the assertions would be expressed as: 

Course(d, n) ⇔ (d=CS ∧ n=101) ∨ (d=CS ∧ n=102) ∨ (d=CS 
∧ n=106) ∨ (d=EE ∧ n=101). 

This is the completion of the Prolog assertions, which expresses the idea that 

there are at most four courses in FOL. To express that there are at least four 

courses in FOL, we would need to expand the equality predicate as follows: 

x = y ⇔ (x=CS ∧ y=CS) ∨ (x=EE ∧ y=EE) ∨ (x=101 ∧ y=101) 
∨ (x=102 ∧ y=102) ∨ (x=106 ∧ y=106). 

While the completion is useful for understanding database semantics, it is often 

more efficient to work directly with Prolog or another database semantics system 

for practical problems. Translating the problem into FOL and reasoning with a 

full FOL theorem prover can be more cumbersome and less efficient. 

5.2.4.4 Constraint Logic Programming 

Standard Prolog solves Constraint Satisfaction problems (CSP) using a 

backtracking algorithm, However, backtracking works by enumerating the 

domains of the variables, making it suitable only for finite-domain CSPs. This 

means there must be a finite number of possible solutions for any goal with 

unbound variables.  

For infinite-domain CSPs, such as those involving integer or real-valued 

variables, different algorithms are needed, like bounds propagation or linear 

programming. 

Example: Triangle Inequality 

Consider the following example, where triangle(X, Y, Z) is a predicate 

that holds if the three arguments satisfy the triangle inequality: 
triangle(X, Y, Z) :- X > 0, Y > 0, Z > 0, X + Y >= Z, 

Y + Z >= X, X + Z >= Y. 

 When we query triangle(3, 4, 5), Prolog successfully returns 
true. 

 However, when we query triangle(3, 4, Z), no solution is found 
because the subgoal Z >= 0 cannot be handled by Prolog—Prolog 
cannot compare an unbound value to 0. 

Constraint Logic Programming (CLP) extends traditional logic programming 

by allowing variables to be constrained rather than bound. In CLP, the solution 
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is the most specific set of constraints that can be derived from the knowledge base 

for the query variables. 

For example, the solution to the query triangle(3, 4, Z) would be the 

constraint 7 >= Z >= 1, which means that Z must be between 1 and 7. In 

contrast, standard logic programs are a special case of CLP, where the solution 

constraints are always equality constraints (bindings). 

CLP systems include various constraint-solving algorithms tailored to the types 

of constraints allowed in the system. For example, a CLP system that supports 

linear inequalities on real-valued variables might employ a linear 

programming algorithm to solve such constraints. 

 

Flexible Query Solving in CLP :  

CLP systems offer more flexibility than traditional logic programming. Rather 

than relying solely on depth-first, left-to-right backtracking, CLP systems can 

use more efficient algorithms, including: 

 Heuristic conjunct ordering 
 Backjumping 
 Cutset conditioning 

These approaches improve the efficiency of solving logic programming queries 
and integrate techniques from constraint satisfaction algorithms, logic 
programming, and deductive databases. 

 
Control Over Search Order:  

 

Several CLP systems allow programmers to control the order in which inferences 

are made. For example, the MRS language (Genesereth and Smith, 1981; 

Russell, 1985) lets the programmer define metarules to determine the order of 

conjunct evaluations. A programmer could write a rule to prioritize goals with 

fewer variables or define domain-specific rules for particular predicates. 

In summary, CLP systems enhance traditional logic programming by 

incorporating constraint-solving techniques, providing greater flexibility and 

efficiency for handling a wide range of problems, from finite-domain CSPs to 

complex real-valued constraints. 
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Examples of Prolog Programs 

 

1. To Find the Sum of Two Numbers 

% Rule to find the sum of two numbers 

sum(X, Y, Z) :- Z is X + Y. 

 

% Example Query: 

% ?- sum(5, 3, Result). 

% Result = 8. 

 

2. To Swap Two Numbers 

% Rule to swap two numbers 

swap(X, Y, SwappedX, SwappedY) :- SwappedX = Y, 

SwappedY = X. 

 

% Example Query: 

% ?- swap(5, 3, A, B). 

% A = 3, 

% B = 5. 

 

3. To Add Two Lists 

% Rule to add corresponding elements of two lists 

add_lists([], [], []). % Base case: Adding two empty 

lists gives an empty list. 

add_lists([A|X], [B|Y], [C|Z]) :- C is A + B, 

add_lists(X, Y, Z). 

 

% Example Query: 

% ?- add_lists([1, 2, 3], [4, 5, 6], Result). 

% Result = [5, 7, 9]. 

 

4. To Find the Factorial of a Number 

% Base case: Factorial of 0 is 1 

factorial(0, 1). 

 

% Recursive case: N! = N * (N-1)! 
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factorial(N, Result) :-  

    N > 0, 

    N1 is N - 1, 

    factorial(N1, SubResult), 

    Result is N * SubResult. 

 

% Example Query: 

% ?- factorial(5, Result). 

% Result = 120. 

 

Example Usage 

1. Sum of Two Numbers 

?- sum(10, 15, Result). 

Result = 25. 

2. Swap Two Numbers 

?- swap(7, 9, A, B). 

A = 9, 

B = 7. 

3. Add Two Lists 

?- add_lists([2, 4, 6], [1, 3, 5], Result). 

Result = [3, 7, 11]. 

4. Find Factorial 

?- factorial(4, Result). 

Result = 24. 
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