
Module 5
Inferences in FOL and Classical Planning

Contents

1. Inference in First Order Logic :

• Backward Chaining,

• Resolution

2. Classical Planning:

• Definition of Classical Planning,

• Algorithms for Planning as State-Space Search,

• Planning Graphs Inference in First Order Logic:

5.1.1Backward Chaining

• Backward chaining is a reasoning method that starts with the
goal and works backward through the inference rules to
find out whether the goal can be satisfied by the known facts.

• It's essentially goal-driven reasoning, where the system seeks
to prove the hypothesis by breaking it down into subgoals and
verifying if the premises support them.

Example

Consider the following knowledge base representing a
simple diagnostic system:

1. If a patient has a fever, it might be a cold.

2. If a patient has a sore throat, it might be strep throat.

3. If a patient has a fever and a sore throat, they should see
a doctor.

Given the facts:

•The patient has a fever.

•The patient has a sore throat.

Backward chaining would proceed as
follows:

1. Start with the goal: Should the patient see a doctor?

2. Check the third rule: Does the patient have a cold and a
sore throat? Yes.

3. Check the first and second rules: Does the patient have a
fever and sore throat? Yes.

4. The goal is satisfied: The patient should see a doctor.

Backward Chaining : Algorithm

These algorithms work backward from the goal, chaining through rules to find
known facts that support the proof.

Overview of the Algorithm
Goal: The purpose of the algorithm is to determine whether a query (goal) can be derived from

a given knowledge base (KB).

Process:

o It uses backward chaining, meaning it starts with the goal and works backward by

looking for rules or facts in the knowledge base that could satisfy the goal.

o The algorithm returns substitutions (values or variables) that make the query true.

Key Components:

o FOL-BC-ASK: This is the main function that starts the backward-chaining process by

calling FOL-BC-OR.

o FOL-BC-OR: This function checks whether the goal can be satisfied by any rule in the

KB. It iterates over applicable rules and tries to unify the goal with the rule’s conclusions.

o FOL-BC-AND: This function handles multiple sub-goals. It ensures that all sub-goals are

satisfied for the main goal to be true.

Key Terms Used

• FOL-BC-ASK: Entry point for the algorithm.

• FOL-BC-OR: Handles rules and checks if the goal is satisfied by any rule.

• FOL-BC-AND: Ensures all sub-goals are satisfied.

• FETCH-RULES-FOR-GOAL: Retrieves applicable rules for a goal.

• UNIFY: Matches terms by finding substitutions.

• Standardize Variables: Ensures variable names are unique to avoid conflict.

• θ: The substitution carried into the current function call.

• θ′: A substitution produced by solving the first sub-goal in FOL-BC-AND.

• θ′′: A substitution produced by solving the remaining sub-goals using the
updated θ′.

Key Points

• Backward chaining focuses on proving the goal by breaking it into
smaller sub-goals and matching them to rules in the KB.

• It uses unification and substitutions to ensure variable consistency.

• It recursively checks all rules until the query is satisfied or fails.

Backward Chaining Algorithm : Example

Execution Steps

Contents

1. Inference in First Order Logic :

• Backward Chaining,

• Resolution

2. Classical Planning:

• Definition of Classical Planning,

• Algorithms for Planning as State-Space Search,

• Planning Graphs Inference in First Order Logic:

De Morgan's Laws in First-Order Logic (FOL)

De Morgan's Laws in First-Order Logic (FOL) are rules that describe how negation
interacts with conjunction (∧) and disjunction (∨) in logical expressions. They also
extend to quantifiers (∀and ∃) in FOL.

Example 1 (Connectives):

Example 2 (Quantifiers):

Distributive law in First Order Logic

What is Tautology ?

• A tautology is a statement or logical formula that is always true,
regardless of the truth values of its individual components.

• Example: P∨¬P
This means "P or not P." No matter whether P is true or false, one of
them will always be true. Hence, it's a tautology

Common Tautologies in Logic:

• In essence, tautologies are statements that cannot be false and are
always true in classical logic.

Conjunctive Normal Form

• A formula is in CNF if it is a conjunction (AND) of clauses, where
each clause is a disjunction (OR) of literals.

CNF Examples

Example: CNF Sentence

• ∀ x American(x) ∧Weapon(y) ∧ Sells(x, y, z) ∧ Hostile(z) ⇒
Criminal(x) becomes, in CNF,

• ¬American(x) ∨ ¬Weapon(y) ∨ ¬Sells(x, y, z) ∨ ¬Hostile(z) ∨
Criminal(x) .

Example

We illustrate the procedure by translating the sentence

• “Everyone who loves all animals is loved by someone,” or

• ∀ x [∀ y Animal(y) ⇒ Loves(x, y)] ⇒ [∃ y Loves(y, x)] .

Steps

• Eliminate implications: ∀ x [¬∀ y ¬Animal(y) ∨ Loves(x, y)] ∨ [∃ y Loves(y, x)] .

• Move ¬ inwards: In addition to the usual rules for negated connectives, we
need rules for negated quantifiers. Thus, we have
• ¬∀ x p becomes ∃ x ¬p

• ¬∃ x p becomes ∀ x ¬p .

• Our sentence goes through the following transformations:
• ∀ x [∃ y ¬(¬Animal(y) ∨ Loves(x, y))] ∨ [∃ y Loves(y, x)] .

• ∀ x [∃ y ¬¬Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)] .

• ∀ x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)] .

• Standardize variables: For sentences like (∃ x P(x))∨(∃ x Q(x)) which use the
same variable name twice, change the name of one of the variables. This
avoids confusion later when we drop the quantifiers. Thus, we have
• ∀ x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ z Loves(z, x)] .

• Skolemize: Skolemization is the process of removing existential
quantifiers by elimination. Translate ∃ x P(x) into P(A), where A is a
new constant.
• Example :

• ∀ x [Animal(A) ∧ ¬Loves(x, A)] ∨ Loves(B, x) ,

• ∀ x [Animal(F(x)) ∧ ¬Loves(x, F(x))] ∨ Loves(G(z), x) . Here F and G are Skolem functions.

• Drop universal quantifiers: At this point, all remaining variables must
be universally quantified. Moreover, the sentence is equivalent to
one in which all the universal quantifiers have been moved to the
left. We can therefore drop the universal quantifiers:
• [Animal(F(x)) ∧ ¬Loves(x, F(x))] ∨ Loves(G(z), x) .

• Distribute ∨ over ∧:

[Animal(F(x)) ∨ Loves(G(z), x)] ∧ [¬Loves(x, F(x)) ∨ Loves(G(z), x)] .

5.1.2 Resolution

• Resolution is a fundamental inference rule used in
automated theorem proving and logic programming.

• It is based on the principle of proof by contradiction.

• Resolution combines logical sentences in the form of clauses
to derive new sentences.

• Resolution is a method in logic that can prove whether a set of
statements is unsatisfiable.

• Unsatisfiable set of statements: Means the statements can't all be
true together.

Resolution Rule

• The resolution rule states that if there are two clauses that
contain complementary literals (one positive, one negative)
then these literals can be resolved, leading to a new clause
that is inferred from the original clauses.

Example 1:

Consider two logical statements:
1. P∨Q
2. ¬P∨R

Applying resolution: Resolve the statements by eliminating P:
• P∨Q
• ¬P∨R
• Resolving P and ¬P: Q∨R

The resulting statement Q∨R is a new clause inferred from the original two.
Resolution is a key component of logical reasoning in FOL, especially in tasks
like automated theorem proving and knowledge representation.

Example 2

Clause 1: (P∨Q∨R)

Clause 2:(¬P∨¬Q∨S)

Apply Resolution

• Resolving P and ¬P: (Q∨R)∨(¬Q∨S)

• Resolving Q and ¬Q gives (RVS)

(RVS) is the resolvent.

Example 3

Note

• The empty clause derived always implies the assumed
negation(contradiction) is false.

• In the example, the derivation of the empty clause proves that "r" is
indeed a logical consequence of the premises.

Proof By Resolution Process includes the following
steps in general

1. Initial Set of Clauses (Knowledge Base)

2. Convert the Statement into Clausal Form

3. Skolemization

4. Standardize Variables

5. Unification

6. Resolution Rule

7. Iterative Application

Example

• Let's consider a simplified example of a knowledge
base for the Wumpus World scenario and
demonstrate proof by resolution to establish the
unsatisfiability of a certain statement.

• In Wumpus World, an agent explores a grid
containing a Wumpus (a monster), pits, and gold.

•Apply the resolution to prove P[1,2] is true or false.

Knowledge Base (KB)

1. W[1,1] ∨ P[1,2]

2. ¬W[1,1]∨¬P[1,2]

3. B[1,2]⇒P[1,2]

4. ¬B[1,2]⇒¬P[1,2]

Convert the Knowledge Base (KB) into CNF

Negated Conclusion:

Let's say we want to prove the negation of the
statement:

¬PitIn[1,2]

Apply Resolution:

1. W[1,1] ∨ P[1,2] , ¬P[1,2] resolves into W[1,1]

2. ¬W[1,1]∨¬P[1,2], W[1,1] resolves into ¬P[1,2]

3. ¬B[1,2] ∨ P[1,2] , ¬P[1,2] resolves into ¬B[1,2]

4. B[1,2] ∨¬P[1,2], ¬B[1,2] resolves into ¬P[1,2]

Applying resolution, we end up with: ¬P[1,2] , Which is not empty and also

there is not further any clauses to continue. This gives conclusion that our

negation conclusion is True and ¬ P[1,2] is true for the given knowledge base.

The resolution inference rule

1. Two clauses, which are assumed to be standardized apart so that
they share no variables, can be resolved if they contain
complementary literals.

2. Propositional literals are complementary if one is the negation of
the other;

3. First-order literals are complementary if one unifies with the
negation of the other.

The resolution inference rule

• Thus We have

Example1

•A Resolution proof that West is Criminal

Knowledge Base
1. American(x) ∧Weapon(y) ∧ Sells(x, y, z) ∧ Hostile(z) ⇒ Criminal(x) .

2. Owns(Nono, M1)

3. Missile (M1)

4. Missile(x) ∧ Owns(Nono, x) ⇒ Sells(West, x, Nono) .

5. Missile(x) ⇒Weapon(x)

6. Enemy(x, America) ⇒ Hostile(x) .

7. American(West) .

8. Enemy(Nono, America) .

Example2

Suppose Curiosity did not kill Tuna. We know that either Jack or Curiosity did; thus Jack must have. Now, Tuna is a cat and
cats are animals, so Tuna is an animal. Because anyone who kills an animal is loved by no one, we know that no one loves
Jack. On the other hand, Jack loves all animals, so someone loves him; so we have a contradiction. Therefore, Curiosity
killed the cat.

Proof By Resolution Process includes the following
steps in general

1. Initial Set of Clauses (Knowledge Base)

2. Convert the Statement into Clausal Form

3. Skolemization

4. Standardize Variables

5. Unification

6. Resolution Rule

7. Iterative Application

Note

• Resolution is a method in logic that can prove whether a set of
statements is unsatisfiable.

• Unsatisfiable set of statements: Means the statements can't all be
true together.

Steps in Proving Completeness

1. Transforming to Clausal Form:

2. Using Herbrand's Theorem: Herbrand's theorem says if the set of
statements is unsatisfiable, there’s a specific subset of ground
instances (statements without variables) that’s also unsatisfiable.

3. Applying Ground Resolution

4. Lifting to First-Order Logic

The lifting lemma

• There exists a clause C such that:
• C is a resolvent of C₁ and C₂ (it works at the variable level).

• C′ is a ground instance of C.

• C₁ and C₂: Two clauses that do not share variables.

• C′₁ and C′₂: Ground instances of C₁ and C₂ (created by substituting
variables with constants or terms).

• C′: A resolvent (a result of applying the resolution rule) of C′₁ and C′₂.

Handling Equality in Inference system

1. Axiomatizing Equality

2. Demodulation: Adding Inference Rules

3. Paramodulation

Axiomatizing Equality

We write rules (axioms) in the knowledge base that define how equality
works. These rules must express:

• Reflexivity: x=x

• Symmetry: x=y⇒y=x

• Transitivity: x=y∧y=z⇒x=z

Additionally, we add rules to allow substitution of equal terms in predicates
and functions. For example:

• x=y⇒(P(x)⇔P(y)) (for predicates P)

• w=y∧x=z⇒F(w,x)=F(y,z)(for functions F)

Using these axioms, standard inference methods like resolution can handle
equality reasoning (e.g., solving equations).

Demodulation: Adding Inference Rules

• If x=y (a unit clause) and a clause α contains x, we replace x with y in α.

• Demodulation simplifies expressions in one direction (e.g., x+0=x allows x+0
to simplify to x).

• Example:
Given:

• Father(Father(x))=PaternalGrandfather(x)

• Birthdate(Father(Father(Bella)), 1926)

• We use demodulation to derive:

• Birthdate(PaternalGrandfather(Bella), 1926)

Demodulation: Adding Inference Rules

Paramodulation

• A more general rule, paramodulation, extends demodulation to
handle cases where equalities are part of more complex clauses.

• Formal Rule:

• For any terms x, y, and z:
• If z appears in a clause m and x unifies with z,

• Replace x with y in m, while preserving other parts of the clause.

Paramodulation

Applications of Resolution Theorem Provers

• Hardware Design and Verification

• Software Verification and Synthesis

5.3 Classical Planning:

1. The Definition of Classical Planning
1. Representing States in Classical Planning
2. Defining Actions with Schemas
3. Planning Domains and Problems

2. Algorithms for Planning as State Space Search,
1. Forward (Progression) State-Space Search
2. Backward (Regression) Relevant-States Search
3. Heuristics for Planning

3. Planning Graphs.
1. Definition
2. Construction of Planning graphs
3. Planning Graphs for Heuristic Estimation
4. The GRAPHPLAN Algorithm

5.3.1 What is Classical Planning?

• Classical planning focuses on solving problems by identifying
sequences of actions that transition from an initial state to a goal
state

• In this approach factored representations is adopted, where a state is
expressed as a collection of variables.

• This approach uses the Planning Domain Definition Language
(PDDL), which enables concise representation of actions through
schemas, reducing redundancy.

5.3.1.1 Representing States in Classical
Planning
• States are represented as conjunctions of fluents—ground,

functionless atomic facts.

For example:

• Poor ∧ Unknown: Represents the state of a struggling agent.

• At(Truck1, Melbourne) ∧ At(Truck2, Sydney): Represents locations of
trucks in a delivery problem.

The representation follows

• Closed-world assumption: Any fluent not explicitly mentioned is
considered false.

• Unique names assumption: Different symbols (e.g., Truck1 and
Truck2) represent distinct entities.

Certain constructs are disallowed in states,
such as:
• Non-ground fluents: e.g., At(x, y).

• Negations: e.g., ¬Poor.

• Function symbols: e.g., At(Father(Fred), Sydney).

5.3.1.2 Defining Actions with Schemas

Actions are defined using schemas, which specify:

• The action name and variables.

• Precondition: The required state for the action to execute.

• Effect: The state resulting from the action.

Example

Planning Domains and Problems

• A planning domain is defined by a set of action schemas. A specific
problem within the domain includes:
• Initial state: A conjunction of ground fluents.

• Goal: A conjunction of literals, possibly containing variables treated as
existentially quantified.

• The planning problem is solved when a sequence of actions leads to
a state that satisfies the goal.
• For example:

• The state Plane(Plane1) ∧ At(Plane1, SFO) satisfies the goal At(p, SFO) ∧
Plane(p).

Limitations in Early Approaches

• Atomic State Representations

• Ground Propositional Inference

Overcoming Limitations with Factored
Representations
• Structured State Representation

• Use of PDDL (Planning Domain Definition Language):

• Improved Computational Efficiency

Example 1: Air cargo transport

This problem uses three main actions: Load, Unload, and Fly,
which operate on two primary predicates:
1. In(c, p): Indicates that cargo c is inside plane p.
2. At(x, a): Specifies that an object x (plane or cargo) is located
at airport a.

Example Solution Plan : A valid solution plan
for transporting cargo C1 and C2 is as follows:

1. Load(C1, P1, SFO): Load cargo C1 onto plane P1 at airport SFO.

2. Fly(P1, SFO, JFK): Fly plane P1 from SFO to JFK.

3. Unload(C1, P1, JFK): Unload cargo C1 from plane P1 at JFK.

4. Load(C2, P2, JFK): Load cargo C2 onto plane P2 at JFK.

5. Fly(P2, JFK, SFO): Fly plane P2 from JFK to SFO.

6. Unload(C2, P2, SFO): Unload cargo C2 from plane P2 at SFO.

Example2 : The Spare Tire Problem

In this scenario, there are only four actions available:

• Removing the spare tire from the trunk.

• Removing the flat tire from the axle.

• Mounting the spare tire onto the axle.

• Leaving the car unattended overnight.

Example 3: The Blocks World

• The blocks world is a classic planning domain often used to study
problem-solving and AI planning.

• It involves manipulating cube-shaped blocks on a table to achieve a
specified configuration.

Key Concepts: Setup, Goal and Predicates

• Setup:
• Blocks can be placed on the table or stacked on top of one another.
• Only one block can fit directly on top of another block.
• A robot arm is used to move the blocks:

• It can pick up only one block at a time.
• It cannot pick up a block that has another block on top of it.

• Goal:

The goal is defined by a specific arrangement of blocks, e.g., block A on
B and block B on C.

• Predicates:
• On(b, x): Block b is on x (where x is another block or the table).
• Clear(x): Block x is clear, meaning no other block is on it.

Key Concepts: Actions

Actions:

• Move(b, x, y): Moves block b from x to y (either another block or
the table).

• Preconditions:

• On(b, x) ∧ Clear(b) ∧ Clear(y)

• (Block b is on x, block b is clear, and the destination y is clear.)

• Effects:

• On(b, y) ∧ Clear(x) ∧ ¬On(b, x) ∧ ¬Clear(y)

• (Block b is on y, x becomes clear, b is no longer on x, and y is no
longer clear.)

Key Concepts: MoveToTable(b, x):

• Preconditions:
• On(b, x) ∧ Clear(b)

• (Block b is on x and is clear.)

• Effects:
• On(b, Table) ∧ Clear(x) ∧ ¬On(b, x)

• (Block b is now on the table, x is clear, and b is no longer on x.)

• Reinterpret Clear(x):
• "There is space on x to hold a block."

• (Under this interpretation, Clear(Table) is always true.)

The Complexity of Classical Planning

1. Key Decision Problems

2. Decidability

3. Complexity Classes

4. Practical Implications

5. Role of Heuristics

PlanSAT

• The full form of PlanSAT is Plan Satisfiability.

• It refers to the decision problem of determining whether a valid plan
exists that satisfies the constraints of a given planning problem

PSPACE

• The full form of PSPACE is Polynomial Space.

• It represents a complexity class in computational complexity theory.

• Specifically, PSPACE includes all decision problems that can be solved
using a polynomial amount of memory (space) on a deterministic
Turing machine, regardless of the time it might take.

PlanSAT Bounded PlanSAT

• PlanSAT: Determines whether there exists any plan that solves a given
planning problem.

• Bounded PlanSAT: Asks if there is a solution of length 𝑘 or less, which
can help find an optimal plan.

Decidability

• Both problems are decidable for classical planning due to the
finiteness of states. However, introducing function symbols to the
language makes the number of states infinite. In this case:

• PlanSAT becomes semidecidable: an algorithm can terminate with
the correct answer for solvable problems but might not terminate for
unsolvable ones.

• Bounded PlanSAT remains decidable even with function symbols.

• For detailed proofs, refer to Ghallab et al. (2004).

Complexity Class

• Both PlanSAT and Bounded PlanSAT belong to the complexity class
PSPACE, which includes problems solvable by a deterministic Turing
machine using polynomial space. PSPACE is broader and more
challenging than NP. Even with severe restrictions, these problems
remain complex:

• Disallowing negative effects keeps them NP-hard.

• Disallowing negative preconditions reduces PlanSAT to P

Practical Implications

• These theoretical results might seem daunting, but practical planning
rarely involves worst-case scenarios. For instance:

• In specific domains like the blocks-world or air-cargo problems,
Bounded PlanSAT is NP-complete, while PlanSAT is in P.

• This implies optimal planning is often challenging, but suboptimal
planning can be relatively easier.

• To handle such cases effectively, good search heuristics are essential.

Difference Between P and NP Problems

5.2.2 Algorithms for Planning as State-Space
Search
Two approaches to searching for a plan.

• (a) Forward (progression).

• (b) Backward (regression)

Forward (Progression) State-Space Search

• Description: Starts from the initial state and applies actions to reach
the goal.
• It explores all possible actions from the current state, leading to a large

branching factor and potential inefficiency without heuristics.

• Challenges:
• Explores irrelevant actions.

• Handles large state spaces with numerous possible states and actions.

Example:

• In an air cargo problem with 10 airports, 5 planes, and 20 cargo items:
• At each step, the search needs to evaluate thousands of possible actions like

flying planes, loading cargo, or unloading it.

• Without a heuristic, this leads to a massive search space.

Backward (Regression) Relevant-States Search

• Description: Starts from the goal and works backward by identifying
actions that can lead to the goal state.

• Advantages: Focuses only on relevant actions and avoids irrelevant
branches.

Example

• If the goal is At(C2, SFO), the algorithm considers the action
Unload(C2, p, SFO):
• Precondition: In(C2, p) ∧ At(p, SFO).

• Effect: At(C2, SFO).

• It regresses to find the predecessor state where these preconditions
are true.

Heuristics for Planning

• Purpose: Estimate the cost of reaching the goal from the current
state to guide search algorithms like A*.

• Types of Heuristics:
• Ignore Preconditions:

• Drops preconditions, making every action applicable.

• Example: Simplifies the 8-puzzle by ignoring adjacency requirements for moves.

• Ignore Delete Lists:
• Assumes actions cannot undo progress, making the problem monotonic.

• Example: In a transportation problem, unloading an item is never undone.

• State Abstraction:
• Groups states by ignoring irrelevant fluents to reduce the state space.

• Example: In air cargo, consider only packages and destinations while abstracting plane
details.

5.2.3 Planning Graphs

• A planning graph is a directed, leveled graph that represents actions
and literals in alternating layers, capturing all possible states and
actions up to a certain time step.

• Construction of a Planning Graph:
• Levels:

• S₀: Represents the initial state.
• A₀: Represents actions applicable in S₀.
• Alternates between states (S₁, S₂, ...) and actions (A₁, A₂, ...).

• Termination:
• Stops when two consecutive levels are identical (levelled off).

Example: For the problem "Have Cake and Eat
Cake Too":

• S₀: {Have(Cake)}

• A₀: {Eat(Cake), Bake(Cake)}

• S₁: {Have(Cake), Eaten(Cake)}

• Mutex Links: Highlight conflicts, e.g., eating and having the cake.

5.2.3.1 Planning Graphs for Heuristic Estimation

1. A planning graph provides valuable insights into a problem once
constructed

2. Unsolvability Check

3. Estimating Goal Costs:

4. Accuracy and Serial Graphs:

5. Estimating Conjunction Costs:
1. Max-Level Heuristic
2. Level-Sum Heuristic
3. Set-Level Heuristic

6. Planning Graphs as Relaxed Problems

5.2.3.2 The GRAPHPLAN Algorithm

• The GRAPHPLAN algorithm iteratively builds the planning graph
using the EXPAND-GRAPH function.

• When all goal literals appear in the graph without mutual exclusions
(mutex), the algorithm invokes EXTRACT-SOLUTION to search for a
valid plan.

• If the search fails, GRAPHPLAN adds another level to the graph and
retries.

• The process ends with failure if further expansion becomes futile.

Note: In the context of planning graphs used in classical planning let's
define literals, mutexes, and no-goods:

• Literals : A literal is a propositional variable (fact) that can either be
true or false. In planning graphs, literals represent the conditions or
states that are either currently true or can potentially be achieved
at a particular level of the graph.

• Mutexs : Mutexes (short for mutual exclusions) indicate pairs of
actions or literals that cannot coexist at a particular level of the
planning graph due to conflicts.

• No Goods: A no-good is a set of literals (or conditions) that are
known to be unsatisfiable. No-goods represent combinations of
literals or partial plans that cannot lead to a solution.

5.2.3.3 Termination of GRAPHPLAN

• GRAPHPLAN ensures termination and returns failure when no solution
exists.

• When to Terminate?

• The algorithm continues expanding the graph as long as new possibilities
arise:

• No-Goods: If EXTRACT-SOLUTION fails, it indicates that some goals are
unachievable and are marked as no-goods.

• Leveling-Off: Termination occurs when both the graph and the no-goods
stabilize, i.e., no new literals, actions, or mutexes are added, and no further
reduction in no-goods is possible. At this point, if no solution is found,
GRAPHPLAN terminates with failure.

Proof of Leveling-Off

• The key to proving that the graph and no-goods stabilize lies in the monotonic properties
of planning graphs:

• Literals Increase Monotonically: Once a literal appears at a level, it persists at all
subsequent levels due to persistence actions.

• Actions Increase Monotonically: If an action appears at a level, it remains in all
subsequent levels, as its preconditions (which are literals) persist.

• Mutexes Decrease Monotonically: Mutex relations never reappear once removed.
• Inconsistent Effects and Interference mutexes depend on inherent properties of actions and

persist across levels.
• Competing Needs mutexes depend on level-specific preconditions, which become achievable as

actions increase monotonically.

• No-Goods Decrease Monotonically: If a set of goals is unachievable at one level, it
remains unachievable at all previous levels, as persistence actions cannot retroactively
make them achievable.

Finite Nature of Planning Graphs

• Since actions and literals increase monotonically and are finite in
number, the graph eventually stabilizes at a level where no new
actions or literals are introduced.

• Similarly, mutexes and no-goods, which decrease monotonically and
cannot fall below zero, also stabilize.

Finite Nature in Planning Graphs:

• Monotonic Increase:

• Literals: Once a literal is introduced at a level, it persists in all
subsequent levels.

• Actions: Similarly, actions that are applicable at a level will continue
to be applicable at later levels.

• Since the set of all possible literals and actions is finite, the graph
eventually stabilizes.

Finite Nature in Planning Graphs:

• Monotonic Decrease:

• Mutexes: Mutexes decrease as more actions and literals become
reachable and interact.

• No-Goods: No-goods also decrease as more solutions are found and
fewer unsatisfiable combinations remain.

Termination Condition

• When the graph stabilizes and either:
• A goal is missing, or

• Any goal is mutex with another,

• the algorithm terminates, returning failure. This guarantees that
further expansion would not yield a solution.

5.2.4 Logic Programming

• Logic programming is a method of building systems by writing rules
and facts in a formal language.

• This concept is summed up by Robert Kowalski’s principle:
Algorithm = Logic + Control

• This means that logic specifies what the system should do, while
control defines how it should execute.

PROLOG

• Prolog is the most popular logic programming language. It’s used for
quick prototyping and tasks like:
• Writing compilers

• Parsing natural language

• Creating expert systems in fields like law, medicine, and finance

Prolog Programs

• Prolog programs consist of rules and facts (called definite clauses)
written in a special syntax.

• Variables and Constants: Variables are uppercase (e.g., X), and
constants are lowercase (e.g., john).

• Clause Structure: Instead of A ∧ B ⇒ C, Prolog writes it as C :- A, B.
For example:
• criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).

• This means: "X is a criminal if X is American, Y is a weapon, X sells Y to Z,
and Z is hostile."

• Lists: [E|L] represents a list where E is the first item, and L is the rest.

Example: Appending Lists

Here’s a Prolog program to join two lists, X and Y, into Z:

• append([],Y, Y).

• append([A|X],Y,[A|Z]) :- append(X,Y,Z).

This means:

• Appending an empty list to Y gives Y.

• To append [A|X] to Y, the result is [A|Z] if appending X to Y gives Z.

You can also use it in reverse!

• append(X,Y,[1,2]).

• This query finds pairs of lists X and Y that combine to [1,2]. The
answers are:

• X=[] and Y=[1,2]

• X=[1] and Y=[2]

• X=[1,2] and Y=[]

How Prolog Executes : Prolog works using depth-first
backward chaining

• It tries rules one by one, in the order written.

• It stops as soon as a solution is found.

• Some features make it faster but can cause issues
• Arithmetic Built-ins: It calculates results directly. For example:

• X is 4+3 → Prolog sets X = 7.

• 5 is X+Y → Fails because Prolog doesn't solve general equations.

• Side Effects: Predicates like assert (add facts) and retract (remove facts)
can behave unpredictably.

• Infinite Recursion: Prolog doesn’t check for infinite loops, so wrong rules
might cause it to hang.

5.2.4.1 Efficient Implementation of Logic
Programs
Prolog programs can be executed in two modes(Each mode has distinct
characteristics and optimizations):

1. Interpreted and

2. Compiled.

1.Interpreted Mode

• In this mode, Prolog functions like the FOL-BC-ASK algorithm,
treating the program as a knowledge base.

• Prolog interpreters include optimizations for better efficiency. Two
key improvements are:

1. Global Stack of Choice Points: Prolog uses a global stack of choice points to
track alternatives

2. Logic Variables and Trails: Prolog uses logic variables that dynamically
remember their current bindings.

2. Compiled Mode

1. Optimized Clause Matching

2. Open-Coded Unification

3. Intermediate Language
Compilation

4. High-Level Language
Translation

Noteworthy points highlight how this
compilation enhances efficiency
• Transforming Clauses into Procedures

• Trail Management for Variable Bindings

• Use of Continuations for Choice Points

Impact of Prolog Compilation

• Before the advancements by Warren and others, Prolog's
performance was too slow for practical use. However, compilers like
the Warren Abstract Machine (WAM) enabled Prolog to achieve
execution speeds competitive with C on standard benchmarks (Van
Roy, 1990).

• Prolog’s ability to express complex logic, such as planners or natural
language parsers, in just a few lines makes it ideal for prototyping
small-scale AI research projects, often surpassing C in ease of use.

Parallelism in Prolog :

• Prolog also leverages parallelism to achieve substantial speedups by
exploiting the independence of branches in logic programming:

• 1.OR-Parallelism:
• Occurs when a goal can unify with multiple clauses in the knowledge base.
• Each unification forms an independent branch of the search space, which can

be solved in parallel.

• 2.AND-Parallelism:
• Arises from solving multiple conjuncts in the body of a rule simultaneously.
• Unlike OR-parallelism, AND-parallelism is more challenging, as it requires

consistent bindings across all conjunctive branches. Communication between
branches ensures a globally valid solution.

5.2.4.2 Redundant Inference and Infinite Loops
in Prolog
• Infinite Loops in Depth-First Search

• Consider the following Prolog program, which checks if a path exists
between two points in a directed graph:
• path(X, Z) :- link(X, Z).

• path(X, Z) :- path(X, Y), link(Y, Z).

5.2.4.2 Redundant Inference and Infinite Loops
in Prolog

• Forward chaining, in contrast, avoids this issue by systematically
generating facts. Once path(a, b), path(b, c), and path(a, c) are
inferred, the process halts.

Source Book: Stuart J. Russell and Peter Norvig, Artificial Intelligence, 3rd Edition, Pearson,2015

Redundant Computations
• Another major drawback of DFS in Prolog is redundant computations, particularly in graph

problems.

• For example:

• When finding a path from A1 to J4 in a more complex graph (Figure 9.9(b)), Prolog performs 877
inferences, exploring multiple unnecessary paths, including those leading to unreachable
nodes.

• This redundancy resembles the repeated-state problem

Redundant Computations

• Forward chaining, applied to the same problem, is far more efficient:

• It generates at most n^2 path(X, Y) facts for n nodes, avoiding repeated calculations.

Source Book: Stuart J. Russell and Peter Norvig, Artificial Intelligence, 3rd Edition, Pearson,2015

Source Book: Stuart J. Russell and Peter Norvig, Artificial Intelligence, 3rd Edition, Pearson,2015

Dynamic Programming in Forward Chaining

• Forward chaining for graph search exemplifies dynamic
programming, where solutions to smaller subproblems are
incrementally combined to solve larger ones.

• This approach eliminates the inefficiencies of redundant inferences
and infinite loops inherent in Prolog's DFS, making it a more effective
strategy for certain problem domains.

5.2.4.3 Database Semantics of Prolog

• Prolog employs database semantics.

• The unique names assumption states that each Prolog constant and
ground term refers to a distinct object,

• while the closed world assumption asserts that only the sentences
entailed by the knowledge base are considered true

5.2.4.3 Database Semantics of Prolog

Example:

Course(CS, 101), Course(CS, 102), Course(CS, 106), Course(EE, 101).

• Under the unique names assumption, CS and EE are distinct, as are
the course numbers 101, 102, and 106.

• This means that there are exactly four distinct courses.

• According to the closed-world assumption, there are no other
courses, so the total number of courses is exactly four.

5.2.4.3 Database Semantics of Prolog

Example:

In FOL, the assertions would be expressed as:

Course(d, n) ⇔ (d=CS ∧ n=101) ∨ (d=CS ∧ n=102) ∨ (d=CS ∧ n=106) ∨
(d=EE ∧ n=101).

To express that there are at least four courses in FOL, we would need
to expand the equality predicate as follows:

x = y ⇔ (x=CS ∧ y=CS) ∨ (x=EE ∧ y=EE) ∨ (x=101 ∧ y=101) ∨ (x=102 ∧
y=102) ∨ (x=106 ∧ y=106).

5.2.4.4 Constraint Logic Programming

• Standard Prolog solves Constraint Satisfaction problems (CSP) using a
backtracking algorithm, suitable only for finite-domain CSPs.

• For infinite-domain CSPs, such as those involving integer or real-
valued variables, different algorithms are needed, like bounds
propagation or linear programming.

Example: Triangle Inequality

• Consider the following example, where triangle(X, Y, Z) is a predicate
that holds if the three arguments satisfy the triangle inequality:

• triangle(X, Y, Z) :- X > 0, Y > 0, Z > 0, X + Y >= Z, Y + Z >= X, X + Z >= Y.

• When we query triangle(3, 4, 5), Prolog successfully returns true.

• However, when we query triangle(3, 4, Z), no solution is found
because the subgoal Z >= 0 cannot be handled by Prolog—Prolog
cannot compare an unbound value to 0.

• The solution to the query triangle(3, 4, Z) would be the constraint 7
>= Z >= 1, which means that Z must be between 1 and 7.

Prolog Programs Examples

1. To Find the Sum of Two Numbers

2. To Swap Two Numbers

3. To Add Two Lists

4. To Find the Factorial of a Number

End of Module 5

