MACHINE LEARNING LABORATORY [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2017 - 2018)							
					SEMESTER -		40
				Subject Code	17CSL76	IA Marks	40
Number of Lecture Hours/Week	01I + 02P	Exam Marks	60				
Total Number of Lecture Hours	40	Exam Hours	03				
CREDITS – 02							
Description (If any):							
 The programs can be implemented in either JAVA or Python. For Problems 1 to 6 and 10, programs are to be developed without using the built-in 							
classes or APIs of Java/Python.							
3. Data sets can be taken from standard repositories							
(https://archive.ics.uci.edu/ml/datasets.html) or constructed by the students.							
Lab Experiments:							
1. Implement and demonstrate the FIND-Salgorithm for finding the most specific							
hypothesis based on a given set of training data samples. Read the training data from a							
.CSV file.							
2. For a given set of training data examples stored in a .CSV file, implement and							
demonstrate the Candidate-Elimination algorithm to output a description of the set							
of all hypotheses consistent with the training examples.							
3. Write a program to demonstrate the working of the decision tree based ID3							
algorithm . Use an appropriate data set for building the decision tree and apply this knowledge toclassify a new sample.							
4. Build an Artificial Neural Network by implementing the Backpropagation							
algorithm and test the same using appropriate data sets.							
5. Write a program to implement the naïve Bayesian classifier for a sample training							
data set stored as a .CSV file. Compute the accuracy of the classifier, considering few							
test data sets.							
6. Assuming a set of documents that need to be classified, use the naïve Bayesian							
Classifier model to perform this task. Built-in Java classes/API can be used to write							
the program. Calculate the acc							
7. Write a program to construct a Bayesian network considering medical data. Use this							
model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API.							
	•	-	Use the same data				
8. Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using <i>k</i> -Means algorithm. Compare the results of these two							
algorithms and comment on the quality of clustering. You can add Java/Python ML							
library classes/API in the program.							
9. Write a program to implement <i>k</i> -Nearest Neighbour algorithm to classify the iris							
data set. Print both correct and wrong predictions. Java/Python ML library classes can							
be used for this problem.							
10. Implement the non-parametric Locally Weighted Regressionalgorithm in order to							
fit data points. Select appropriate data set for your experiment and draw graphs.							
Study Experiment / Project:							
NIL							
Course outcomes: The students should be able to:							
1. Understand the implementation	on procedures fo	or the machine learning	algorithms.				

- 2. Design Java/Python programs for various Learning algorithms.
- 3. Apply appropriate data sets to the Machine Learning algorithms.
- 4. Identify and apply Machine Learning algorithms to solve real world problems.

Conduction of Practical Examination:

- All laboratory experiments are to be included for practical examination.
- Students are allowed to pick one experiment from the lot.
- Strictly follow the instructions as printed on the cover page of answer script
- Marks distribution: Procedure + Conduction + Viva:15 + 70 + 15 (100)

Change of experiment is allowed only once and marks allotted to the procedure part to be made zero.