## Machine Learning Question Bank Module3

- **1.** Define ANN. Explain the different types of ANN. Give some examples of the Applications of ANN.
- 2. Compare the Biological Neurons (Neural Network) with Artificial Neurons (Neural Network).
- **3.** Explain the working ALVINN System.
- 4. What are the appropriate problems of Neural Network?
- 5. Explain the following with examples:
  - a. Artificial Neural Networks
  - b. Perceptron
  - c. Single and Multilayer Perceptron (NN)
  - d. Activation Function
  - e. Sigmoid Threshold Unit
  - f. Error Gradient for Sigmoid unit
- 6. When one must consider Neural Network
- 7. Describe "Neural Network Representation"
- 8. With neat diagram explain the following:
  - a. Perceptron
  - b. Representational Power of Perceptron
  - c. Perceptron Training rule and Learning in Perceptron.
  - d. Gradient Descent and Delta Rule
- 9. Derive the Gradient Descent Rule for the linear unit
- **10.** Discuss "Gradient Descent Algorithm for the linear unit".
- 11. Write a note on Convergence of "Gradient Descent Training Rule"
- **12.** Discuss Remark on Gradient Descent Training Rule. What are the practical difficulties in applying gradient descent.
- 13. Explain Stochastic approximation to gradient descent.
- 14. Differentiate between Standard Gradient Descent and Stochastic Gradient Descent.
- 15. Explain with example Multilayer Neural Networks (Multilayer Perceptron).
- 16. What is Sigmoid Threshold Unit? Derive the relation for Error gradient for Sigmoid Unit.
- **17.** Write and explain Back Propagation Algorithm. Derive the following of the Backpropagation Rule:
  - a. Error at the output unit
  - b. Error at the hidden unit
  - c. Weight to be updated
- **18.** Discuss all remarks of Backpropagation Algorithm.
- **19.** What is linearly in separable problem? Design a two-layer network of perceptron to implement A OR B, A AND B & NOT A.
- **20.** Consider a multilayer feed forward neural network. Enumerate and explain steps in back propagation algorithm use to train network
- **21.** What are the steps in Back propagation algorithm? Why a Multilayer neural network is required?

Context Innovations Lab

- **22.** What is Multilayer perception? How is it trained using Back propagation? What is linear separability issue? What is the role of hidden layer?
- 23. Explain how back propagation algorithm works for multilayer feed forward network.
- 24. Explain perceptron and Delta training rule.
- **25.** Explain the differential sigmoid threshold unit.
- 26. Consider two perceptron's defined by the threshold expression w0+w1x1+w2x2>0, perceptron A has weight values w0=1, w1=2 w2=1 and perceptron B has weight values w0=0, w2=2 and w2=1.
  - a. TRUE/FALSE: Perceptron A is more general than perceptron B.
- **27.** Explain the back-propagation algorithm. Why is not likely to be trapped in local minima.
- 28. Explain Stochastic approximation to gradient Descent
- **29.** What are the advantages and limitations of gradient descent.
- **30.** Derive the Following:
  - a. Gradient Descent Rule
  - b. Back Propagation Rule

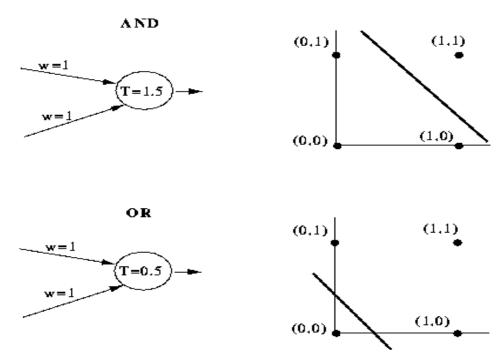



Fig: Representing OR and AND using Perceptron

## Solving XOR with a Neural Net

Linear classifiers cannot solve this b=-10  $\sigma$  ( 20x<sub>1</sub> + 20x<sub>2</sub> - 10) 20 X<sub>2</sub>  $X_1$ h<sub>1</sub> b=-30 20 20  $\sigma$  ( 20h<sub>1</sub> + 20h<sub>2</sub> - 30) 20 -20 h<sub>2</sub> X<sub>2</sub> -20 X<sub>1</sub>  $\sigma$  (-20x<sub>1</sub> - 20x<sub>2</sub> + 30) b=30  $\sigma(20^{*0} + 20^{*0} - 10) \approx 0$ σ (-20\***0** – 20\***0** + 30) ≈ **1**  $\sigma (20^{*0} + 20^{*1} - 30) \approx 0$  $\sigma(20^{*1} + 20^{*1} - 10) \approx 1$  $\sigma (-20^*1 - 20^*1 + 30) \approx 0$  $\sigma (20^*1 + 20^*0 - 30) \approx 0$  $\sigma(20*0 + 20*1 - 10) \approx 1$ σ (-20\***0** − 20\***1** + 30) ≈ **1**  $\sigma (20^{*1} + 20^{*1} - 30) \approx 1$  $\sigma(20^*1 + 20^*0 - 10) \approx 1$ σ (-20\***1** – 20\***0** + 30) ≈ **1**  $\sigma (20^{*1} + 20^{*1} - 30) \approx 1$ 

Copyright © 2014 Victor Lavrenko

3