
Module 4 

• Introduction, Bayes theorem, Bayes theorem and concept learning,
ML and LS error hypothesis, ML for predicting probabilities, Minimum
Description Length principle, Naive Bayes classifier, Bayesian belief
networks, EM algorithm

ಡಾ|| ತ್ಾಾಗರಾಜು  ಜಿ.ಎಸ್ 



4.1 Introduction 

• Probabilistic approach to inference

• Basic assumption:
• Quantities of interest are governed by probability distributions

• Optimal decisions can be made by reasoning about these probabilities together with 
observed training data



Relevance of Bayesian Learning 

Bayesian Learning is relevant for two reasons

• First reason: explicit manipulation of probabilities 
• among the most practical approaches to certain types of learning problems

• e.g. Bayes classifier is competitive with decision tree and neural network learning

• Second reason: useful perspective for understanding learning methods that 
do not explicitly manipulate probabilities 
• determine conditions under which algorithms output the most probable hypothesis 

• e.g. justification of the error functions in ANNs 

• e.g.justification of the inductive bias of decision trees



Features of Bayesian Learning  Methods 

• Each observed training example can incrementally decrease or 
increase the estimated probability that a hypothesis is correct. 

• Prior knowledge can be combined with observed data to determine 
the final probability of a hypothesis.

• Bayesian methods can accommodated hypothesis that make 
probabilities predictions. 

• New instances can be classified by combining the predictions of 
multiple hypotheses, weighted by their probabilities 

• Provides  a standard of optimal decision making against which other 
practical methods can be measured.



Practical Difficulties

• Initial knowledge of many probabilities is required

• Significant computational costs required



Use cases



Use cases
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Basic Formulas for Probabilities

• Product Rule: probability P(A  B) of a conjunction of two events A and B:

P(A  B) = P(A | B) P(B) = P(B | A) P(A)

• Sum Rule: probability of a disjunction of two events A and B:

P(A  B) = P(A) + P(B) - P(A  B) 

• Theorem of total probability: if events A1,…, An are mutually exclusive with 

, then



Conditional Probability 

Definition. The conditional probability of an event A given that an event B has occurred 

is written:   P(A|B)  and is calculated using:   

P(A|B)= P(A∩B) / P(B)  as long as P(B) > 0.

Example : 

P(A) = 4/52
P(B) = 4/51 
P(A and B) = 4/52*4/51= 0.006

ಡಾ|| ತ್ಾಾಗರಾಜು  ಜಿ.ಎಸ್  
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4.2 Bayes Theorem

• P(h) = prior (initial) probability that hypothesis h holds , before we observed any training 
data.

• P(D) = prior probability of training data D

• P(h|D) = posterior probability of h given D (it holds after we have seen the training data D)

• P(D|h) = probability of observing data D given some world in which hypothesis h holds.
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4.2.1  Maximum a posterior (MAP) hypothesis

• In many learning scenarios , the learner considers some set of candidate 
hypotheses H and is interested in finding the most probable hypotheses hЄH 
given the observed data D . 

• Any such maximally probable hypothesis is called a maximum posteriori (MAP) 
hypothesis hMAP:
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4.2.2Maximum Likelihood

• In some cases we will assume that every hypothesis in H is equally probable a priori (P(hi) 
= P(hj) for all hi in H ) hen can further simplify and need to consider the term P(D|h) is 
often called the likelihood of the data D given h and hypothesis that maximizes P(D|h) is 
called a Maximum likelihood (ML) hypothesis hML



An Example : Cancer Patient Diagnosis 

• To illustrate Bayes Rule , Consider a medical diagnosis problem in 
which there are two alternative hypotheses : 

1. That the patient has a particular form of cancer  and

2. That the patient does not.

The available data is from a particular laboratory test with two possible 
outcomes :

+ : positive 

- : negative 



14

Example  : Medical Cancer Test Details of Patient

A patient takes a lab test and the result comes back positive. The test returns a correct 
positive result in only 98% of the cases in which the disease is actually present, and a 
correct negative result in only 97% of the cases in which the disease is not present. 
Furthermore, .008 of the entire population have this cancer.

P(cancer) =      P(cancer) = 

P(+|cancer) = P(−|cancer) = 

P(+|cancer) = P(−|cancer) =

0.008 0.992

0.98 0.02

0.03 0.97
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Example  : Does patient have cancer or not?

The Maximum a posterior hypothesis for  Patient having cancer/no 
cancer  :

cancerMAP = P(+|cancer) P(cancer)  = (0.98)(0.008)  = 0.0078

cancerMAP = P(+|  cancer) P( cancer)  =(0.03)(0.992) = 0.0298
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4.3 Relation to Concept Learning

• Consider our usual concept learning task

• instance space X, hypothesis space H, training  examples D

• consider the FindS learning algorithm (outputs most specific hypothesis from the version 

space V SH,D)

• What would Bayes rule produce as the MAP hypothesis?

• Does FindS output a MAP hypothesis??



Brute Force Bayes Concept Learning 

• Assume that the learner considers some finite hypothesis space H 
defined over the instance space X , in which the task is to learn some 
target concept c: X-> {0,1}

• Assume fixed set of instances <x1,…, xm> 

• Assume D is the set of classifications: D = <c(x1),…,c(xm)> 

• Assume that the learner has given some sequence of training examples 
<<x1,d1><x2,d2>,…………………..<xm, dm>>  where xi is some instance from X 
and where di is the target value of xi (i.e di= c(xi)).
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Brute Force MAP Learning Algorithm

1. For each hypothesis h in H, calculate the posterior probability

2. Output the hypothesis hMAP with the highest posterior probability



Assumptions

The probability distribution P(h) and P(D|h) is chosen to be consistent 
with the following assumptions :

1. The training data D is noise free( i.e. di = c(xi))

2. The target concept c is contained in the hypothesis space H

3. We have no a priori reason to believe that any hypothesis is more 
probable than any other.
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The Values of P(h) and P(D|h)

•Choose P(h) to be uniform distribution   

• P(h) = 1/|H| for all h in H

•Choose P(D|h):

1 if di =h(xi) for all di in D(h consistent with D)

0 otherwise
P(D|h) =
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Two cases

• By Applying Bayes theorem 

• Case1 : When h is inconsistent with training data D:  

P(h|D)  =  0.P(h)/P(D)  = 0

• Case 2: When h is  consistent with D , we have 

P(h|D) = (1*1/|H|)/(|VSH,D|/|H|)

= 1/|VSH,D|
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To Summarize 

• To summarize , Bayes theorem implies that the posterior probability P(h|D) under our 

assumed P(h) and P(D|h) is 



Refer

• Refer the text book “ Machine Learning “ Tom M Mitchell : Page No 
159 to 16
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4.4 MAP hypothesis and Consistent Learners
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Characterizing Learning Algorithms by Equivalent MAP Learners



4.5 Maximum likelihood and Least Squared Error hypothesis

• A straightforward Bayesian analysis will show that under certain 
assumptions any learning algorithm that minimizes the squared error 
between the output hypothesis predictions and the training data will 
output a maximum likelihood hypothesis. 
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Learning A Real Valued Function

• Consider any real-valued target function f 
Training examples <xi, di>, where di is noisy training value
• di = f(xi) + ei

• ei is random variable (noise) drawn independently for each xi according to some 
Gaussian distribution with mean=0

• Then the maximum likelihood hypothesis hML is the one 
that minimizes  the sum of squared errors:
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Learning A Real Valued Function

• Maximize natural log of this instead...



Reference 

• Refer the text book “ Machine Learning “ Tom M Mitchell : Page No 
164 to 167
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4.6 Maximum Likelihood Hypothesis Learning to 
Predict Probabilities
• Consider predicting survival probability from patient data

• Training examples <xi, di>, where di is 1 or 0

• Want to train neural network to output a probability given xi (not a 0 or 1)

• In this case can show

• Weight update rule for a sigmoid unit:

where



Reference

• For Complete Derivation Refer the text book “ Machine Learning “ 
Tom M Mitchell : Page No 168 to 171



4.6 Naive Bayes classifier /Bayes Rule 

• Highly Bayesian learning method is the naïve Bayes learner often called the 
naïve Bayes Classifier . 

• Bayesian Classifier assumes that all the variables are conditionally 
independent given the value of the target variable.

• The naïve Bayes Classifier applies to learning tasks where each instance x is 
described by a conjunction of attribute values and where the target 
function f(x) can take on any value from some finite set V.

• A set of training examples of the target function is provided, and a new 
instance is presented, described by the tuple of attribute values <𝒂𝟏, 𝒂𝟐 , 
𝒂𝟑 ,------- 𝒂𝒏 >. The learner is asked to predict the target value, or 
classification, for this new instance.

ಡಾ|| ತ್ಾಾಗರಾಜು  ಜಿ.ಎಸ್  



• The Bayesian approach to classifying the new instance is to assign the 
most probable target value, 𝑉𝑀𝐴𝑃, given the attribute values <𝑎1, 𝑎2 , 
𝑎3 ,------- 𝑎𝑛 >.that describe the instance.
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Illustrative Example

• Example: Play Tennis
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Learning Phase

Outlook Play=Yes Play=No

Sunny 2/9 3/5
Overcast 4/9 0/5

Rain 3/9 2/5

P(Outlook|Play)



36

Learning Phase

Temperature Play=Yes Play=No

Hot 2/9 2/5
Mild 4/9 2/5
Cool 3/9 1/5

P(Temperature|Play)  
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Learning Phase

Humidity Play=Yes Play=No

High 3/9 4/5
Normal 6/9 1/5

P(Humidity|Play)
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Learning Phase

Wind Play=Yes Play=No

Strong 3/9 3/5
Weak 6/9 2/5

P(Wind|Play)  
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Learning Phase

Outlook Play=Yes Play=No

Sunny 2/9 3/5
Overcast 4/9 0/5

Rain 3/9 2/5

Temperature Play=Yes Play=No

Hot 2/9 2/5
Mild 4/9 2/5
Cool 3/9 1/5

Humidity Play=Yes Play=No

High 3/9 4/5
Normal 6/9 1/5

Wind Play=Yes Play=No

Strong 3/9 3/5
Weak 6/9 2/5

P(Play=Yes) = 9/14 P(Play=No) = 5/14

P(Outlook|Play) P(Temperature|Play)  

P(Humidity|Play) P(Wind|Play)  
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Example

• Test Phase

– Given a new instance, 

x’=(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong)

– Look up tables

– MAP rule

P(Outlook=Sunny|Play=No) = 3/5

P(Temperature=Cool|Play==No) = 1/5

P(Huminity=High|Play=No) = 4/5

P(Wind=Strong|Play=No) = 3/5

P(Play=No) = 5/14

P(Outlook=Sunny|Play=Yes) = 2/9

P(Temperature=Cool|Play=Yes) = 3/9

P(Huminity=High|Play=Yes) = 3/9

P(Wind=Strong|Play=Yes) = 3/9

P(Play=Yes) = 9/14

P(Yes|x’): [P(Sunny|Yes)P(Cool|Yes)P(High|Yes)P(Strong|Yes)]P(Play=Yes) = 0.0053

P(No|x’): [P(Sunny|No) P(Cool|No)P(High|No)P(Strong|No)]P(Play=No) = 0.0206

Given the fact P(Yes|x’) < P(No|x’), we label x’ to be “No”.



4.7 Event Models

• The assumptions on distributions of features are called the event model of 
the Naive Bayes classifier. 

• For discrete features like the ones encountered in document classification 
(include spam filtering), multinomial and Bernoulli distributions are 
popular.

• For Continuous feature , Gaussian naive Bayes distributions is popular.
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https://en.wikipedia.org/wiki/Multinomial_distribution
https://en.wikipedia.org/wiki/Bernoulli_distribution


1. Gaussian naive Bayes

• When dealing with continuous data, a typical assumption is that the 
continuous values associated with each class are distributed 
according to a Gaussian distribution.

• Then, the probability distribution of v given a class 

can be computed by plugging V  into the equation for a Normal 
distribution parameterized by 

ಡಾ|| ತ್ಾಾಗರಾಜು  ಜಿ.ಎಸ್  

https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution


2. Multinomial naive Bayes
Its is used when we have discrete data (e.g. movie ratings ranging 1 and 5 as each rating will have 
certain frequency to represent). In text learning we have the count of each word to predict the class or label. 
The Multinomial Naive Bayes's conditional distribution is:

ಡಾ|| ತ್ಾಾಗರಾಜು  ಜಿ.ಎಸ್  



3. Bernoulli naive Bayes

It assumes that all our features are binary such that they take only two values.
Means 0s can represent “word does not occur in the document” and 1s as "word occurs
in the document" .
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3. Bernoulli naive Bayes

It assumes that all our features are binary such that they take only two values.
Means 0s can represent “word does not occur in the document” and 1s as "word occurs
in the document" .
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Lab Program

•Assuming a set of documents that need to be
classified, use the naïve Bayesian Classifier
model to perform this task. Built-in Libraries
can be used to write the program. Calculate
the accuracy, precision, and recall for your
data set.
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4.8 Learning to Classify Text – Algorithm 

S1: LEARN_NAIVE_BAYES_TEXT (Examples, V)

S2: CLASSIFY_NAIVE_BAYES_TEXT (Doc)

• Examples is a set of text documents along with their target values. 

• V is the set of all possible target values. 

• This function (S1) learns the probability terms P(wk I vj), describing the 
probability that a randomly drawn word from a document in class vj will 
be the English word wk. It also learns the class prior probabilities P(vj).
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S1: LEARN_NAIVE_BAYES_TEXT (Examples, V)

1. collect all words and other tokens that occur in Examples

• Vocabulary  all distinct words and other tokens in Examples

2. calculate the required P(vj) and P(wk | vj) probability terms

• For each target value vj in V do

• docsj  subset of Examples for which the target value is vj

• Textj  a single document created by concatenating all members of docsj

• n  total number of words in Textj (counting duplicate words multiple times)
• for each word wk in Vocabulary

nk number of times word wk occurs in Textj

[ V: Class , W: Word, doc : Documents]
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S2:CLASSIFY_NAIVE_BAYES_TEXT (Doc)

• positions  all word positions in Doc that contain tokens found in 
Vocabulary

• Return vNB where

ಡಾ|| ತ್ಾಾಗರಾಜು  ಜಿ.ಎಸ್  



Twenty NewsGroups

• Given 1000 training documents from each group Learn to classify new 
documents according to which newsgroup it came from

• Naive Bayes: 89% classification accuracy

comp.graphics

comp.os.ms-windows.misc

comp.sys.ibm.pc.hardware

comp.sys.mac.hardware

comp.windows.x

misc.forsale

rec.autos

rec.motorcycles

rec.sport.baseball

rec.sport.hockey

alt.atheism

soc.religion.christian

talk.religion.misc

talk.politics.mideast

talk.politics.misc

talk.politics.guns

sci.space

sci.crypt

sci.electronics

sci.med

ಡಾ|| ತ್ಾಾಗರಾಜು  ಜಿ.ಎಸ್  



Learning Curve for 20 Newsgroups

• Accuracy vs. Training set size (1/3 withheld for test)
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Example : 

• In the example, we are given a
sentence “ A very close game”, a
training set of five sentences (as shown
below), and their corresponding
category (Sports or Not Sports).

• The goal is to build a Naive Bayes
classifier that will tell us which category
the sentence “ A very close game”
belongs to.

• Applying a Naive Bayes classifier, thus
the strategy would be calculating the
probability of both “A very close
game is Sports”, as well as it’s Not
Sports. The one with the higher
probability will be the result.
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Step 1: Feature Engineering

• word frequencies, i.e., counting the occurrence of every word in the 
document.

• P( a very close game) = P(a) X P(very) X P(close) X P(game)

• P(a very close game | Sports) =  P(a|Sports) X P(Very|Sports) X 
P(close|Sports) X P(game|Sports)

• P(a very close game | Not Sports) = P(a | Not Sports) x P(very | Not 
Sports) x P(close | Not Sports) x P(game | Not Sports)
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Step 2: Calculating the probabilities

• Here , the word “close” does not exist in the category Sports, 
thus P(close |Sports) = 0, leading to P(a very close game | Sports)=0.

• The probabilities are calculated using multinomial probability distribution 
function
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As seen from the results shown below, P(a very close game | Sports) gives a higher probability, suggesting that the 
sentence belongs to the Sports category. ಡಾ|| ತ್ಾಾಗರಾಜು  ಜಿ.ಎಸ್  



4.9 Bayesian Network (BAYESIAN BELIEF NETWORKS)

•Bayesian Belief networks describe conditional 

independence among subsets of variables
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Conditional Independence
• Definition: X is conditionally independent of Y given Z if the probability 

distribution governing X is independent of the value of Y given the value of Z; 
that is, if

(xi, yj, zk) P(X= xi|Y= yj, Z= zk) = P(X= xi|Z= zk)

more compactly, we write

P(X|Y, Z) = P(X|Z)

• Example: Thunder is conditionally independent of Rain, given Lightning

P(Thunder|Rain, Lightning) = P(Thunder|Lightning)

• Naive Bayes uses cond. indep. to justify

P(X, Y|Z) = P(X|Y, Z) P(Y|Z) = P(X|Z) P(Y|Z) 
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Bayesian Belief Network (1/2)

• Network represents a set of conditional independence assertions:

• Each node is asserted to be conditionally independent of its non descendants, given 
its immediate predecessors.

• Directed acyclic graph
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Bayesian Belief Network (2/2)

• Represents joint probability distribution over all variables
• e.g., P(Storm, BusTourGroup, . . . , ForestFire)

• in general,

where Parents(Yi) denotes immediate predecessors of Yi in graph

• so, joint distribution is fully defined by graph, plus the 
P(yi|Parents(Yi))
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Lab Program

•Write a program to construct a Bayesian
network considering medical data. Use this
model to demonstrate the diagnosis of
heart patients using standard Heart
Disease Data Set. You can use Python ML
library API.
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4.10 EM Algorithm 



Generating Data from Mixture of k Gaussians

• Each instance x generated by
1. Choosing one of the k Gaussians with uniform probability

2. Generating an instance at random according to that Gaussian
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Gaussian Distribution
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Gaussian Mixtures
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GMM : Example
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Expectation Maximization (EM) Algorithm 

• When to use:
• Filling in missing data in samples

• Discovering the value of latent variables

• Estimating the parameters of HMMs

• Estimating parameters of finite mixtures

• Unsupervised learning of clusters

• Semi-supervised classification and clustering
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Expectation Maximization (EM) Algorithm 

• EM is typically used to compute maximum likelihood estimates given incomplete samples.

• The EM algorithm estimates the parameters of a model iteratively.

• Starting from some initial guess, each iteration consists of 
• an E step (Expectation step) 

• an M step (Maximization step)

ಡಾ|| ತ್ಾಾಗರಾಜು  ಜಿ.ಎಸ್  



EM Algorithm 
• Given:

• Instances from X generated by mixture of k Gaussian distributions
• Unknown means <1,…,k > of the k Gaussians
• Don’t know which instance xi was generated by which Gaussian

• Determine:
• Maximum likelihood estimates of <1,…,k > 

• EM Algorithm: 

• Pick random initial h = <1, 2> then iterate
E step: Calculate the expected value E[zij] of each hidden variable zij, assuming the current hypothesis  

h = <1, 2> holds.

M step: Calculate a new maximum likelihood hypothesis h' = <'1, '2>, assuming the value taken on by each 
hidden variable zij its expected value E[zij]  calculated above. Replace h = <1, 2> by h' = <'1, '2>.
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GMM : 



GMM : Example2
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GMM : Example2
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GMM : Example2
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GMM : Example2
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Reference 

• Refer the text book “ Machine Learning “ Tom M Mitchell : Page No 
191 to 194 for detailed explanation on EM Algorithm 



4.11 K Means Algorithm

• 1. The sample space is initially partitioned into K 
clusters and the observations are randomly 
assigned to the clusters. 

• 2. For each sample: 

• Calculate the distance from the observation to 
the centroid of the cluster. 

• IF the sample is closest to its own cluster 
THEN leave it ELSE select another cluster. 

• 3. Repeat steps 1 and 2 untill no observations are 
moved from one cluster to another
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Examples of K Means
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How the K-Mean Clustering algorithm 
works?
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K-means clustering example



Lab Program

• Apply EM algorithm to cluster a set of data
stored in a .CSV file. Use the same data set
for clustering using k-Means algorithm.
Compare the results of these two
algorithms and comment on the quality of
clustering. You can add Python ML library
classes/API in the program.
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Derivation of the k –means Algorithm

• Refer the text book “ Machine Learning “ Tom M Mitchell : Page No 
195 to 196.



End of the Module 4.


