Module 4

* Introduction, Bayes theorem, Bayes theorem and concept learning,
ML and LS error hypothesis, ML for predicting probabilities, Minimum
Description Length principle, Naive Bayes classifier, Bayesian belief
networks, EM algorithm



4.1 Introduction

* Probabilistic approach to inference

* Basic assumption:
* Quantities of interest are governed by probability distributions

* Optimal decisions can be made by reasoning about these probabilities together with
observed training data



Relevance of Bayesian Learning

Bayesian Learning is relevant for two reasons

* First reason: explicit manipulation of probabilities
 among the most practical approaches to certain types of learning problems
* e.g. Bayes classifier is competitive with decision tree and neural network learning

* Second reason: useful perspective for understanding learning methods that
do not explicitly manipulate probabilities
* determine conditions under which algorithms output the most probable hypothesis
e e.g. justification of the error functions in ANNSs
e e.g.justification of the inductive bias of decision trees



Features of Bayesian Learning Methods

* Each observed training example can incrementally decrease or
increase the estimated probability that a hypothesis is correct.

* Prior knowledge can be combined with observed data to determine
the final probability of a hypothesis.

* Bayesian methods can accommodated hypothesis that make
probabilities predictions.

* New instances can be classified by combining the predictions of
multiple hypotheses, weighted by their probabilities

* Provides a standard of optimal decision making against which other
practical methods can be measured.



Practical Difficulties

* Initial knowledge of many probabilities is required
* Significant computational costs required



Use cases

Email Spam Detection Face Recognition

Categorizing News

BUSINESS & ECONOMY
Paying service charge at
hotels not mandatory

Filtering

TECHNOLOCY & SCIENCE
The ‘dangers' of being
admin of a WhatsApp group

ENTERTAINMENT
This actor stars in Raabta.

GCuess who?

Good Emails Bad Emails

IPL 2017
Preview: Bullish KKR face
depleted Lions

INDIA
Why is Aadhaar mandatory

for PAN? SC asks Centre

Context Innovations Lab




Digit Recognition
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Basic Formulas for Probabilities

* Product Rule: probability P(A A B) of a conjunction of two events A and B:
P(AAB)=P(A | B) P(B)=P(B | A) P(A)
* Sum Rule: probability of a disjunction of two events A and B:
P(A v B) =P(A) + P(B) - P(A A B)

* Theorem of total probability: if events A,..., A, are mutually exclusive with =i, P(4,) =1
,then  P(B) = 3 P(B|4;)P(4))



Conditional Probability

Definition. The conditional probability of an event A given that an event B has occurred
is written: P(A|B) and is calculated using:
P(A|B)=P(ANB)/P(B) aslongasP(B)>0.

Example :
P(A) =4/52
P(B) =4/51 p I:E] _P(AandB) _ 0.006

A P(A)  0.077 =0.078
P(A and B) = 4/52*4/51= 0.006 '

Context Innovations Lab



4.2 Bayes Theorem

P(D|h)P(h) osterior — prior X likelihood
P(D) d B evidence

P(h|D)=

e P(h) = prior (initial) probability that hypothesis h holds , before we observed any training
data.

e P(D) = prior probability of training data D
* P(h|D) = posterior probability of h given D (it holds after we have seen the training data D)
* P(D]|h) = probability of observing data D given some world in which hypothesis h holds.



4.2.1 Maximum a posterior (MAP) hypothesis

* In many learning scenarios, the learner considers some set of candidate
hypotheses H and is interested in finding the most probable hypotheses h€H
given the observed data D .

* Any such maximally probable hypothesis is called a maximum posteriori (MAP)
hypothesis h,,,:

hj.ffu:' — arg I}'{'Ileagi P(h‘D

= arg%agc P(D)

= argmax P(D|h)P(h)



4.2.2Maximum Likelihood

* In some cases we will assume that every hypothesis in H is equally probable a priori (P(h,.)
= P(h)) for all h;in H ) hen can further 5|mpI|fy and need to consider the term P(D|h) is
often called the likelihood of the data D given h and hypothesis that maximizes P(D|h) is

called a Maximum likelihood (ML) hypothesis h,,,

hip = arg E}Q&CP (D|h;)




An Example : Cancer Patient Diagnosis

* To illustrate Bayes Rule , Consider a medical diagnosis problem in
which there are two alternative hypotheses :

1. That the patient has a particular form of cancer and
2. That the patient does not.

The available data is from a particular laboratory test with two possible
outcomes :

+ : positive
- : negative



Example : Medical Cancer Test Details of Patient

A patient takes a lab test and the result comes back positive. The test returns a correct
positive result in only 98% of the cases in which the disease is actually present, and a

correct negative result in only 97% of the cases in which the disease is not present.
Furthermore, .008 of the entire population have this cancer.

P(cancer) = 0.008

P(+|cancer)=  0.98

P(—cancer)= 0992

P(—|cancer) = 0.0

P(+|—cancer) = 0.03 P(—|—cancer) = 037



Example : Does patient have cancer or not?

The Maximum a posterior hypothesis for Patient having cancer/no
cancer :

cancer,,,, = P(+|cancer) P(cancer) =(0.98)(0.008) = 0.0078

—cancer,,,, = P(+| — cancer) P(— cancer) =(0.03)(0.992) = 0.0298



4.3 Relation to Concept Learning

e Consider our usual concept learning task
* instance space X, hypothesis space H, training examples D

e consider the FindS learning algorithm (outputs most specific hypothesis from the version
space V'S, )

* What would Bayes rule produce as the MAP hypothesis?
* Does FindS output a MAP hypothesis??



Brute Force Bayes Concept Learning

* Assume that the learner considers some finite hypothesis space H
defined over the instance space X, in which the task is to learn some
target concept c: X-> {0,1}

* Assume fixed set of instances <x,..., x>
* Assume D is the set of classifications: D = <c(x,),...,¢(x,,)>

* Assume that the learner has given some sequence of training examples
<<X1,d1><X2,d2>, e renne. <Xm, dm>> where xi is some instance from X
and where di is the target value of xi (i.e di= ¢c(xi)).



Brute Force MAP Learning Algorithm

1. For each hypothesis h in H, calculate the posterior probability

PP )
P(D)

P(h|D)=

2. Output the hypothesis h,,,, with the highest posterior probability

har4p = argmax P(h|D)
heH



Assumptions

The probability distribution P(h) and P(D|h) is chosen to be consistent
with the following assumptions :

1. The training data D is noise free( i.e. di = ¢(xi))
2. The target concept c is contained in the hypothesis space H

3. We have no a priori reason to believe that any hypothesis is more
probable than any other.



The Values of P(h) and P(D|h)

* Choose P(h) to be uniform distribution
*P(h)=1/|H| forallhin H
* Choose P(D| h):

h 1ifd =h(Xi) for all diin D(h consistent with D)
P(DIh) = 0 otherwise



TwoO cases

P(D | WP(h)
P(D)

* By Applying Bayes theorem Ph|D)=

e Casel : When h is inconsistent with training data D:
P(h|D) = 0.P(h)/P(D) =0

e Case 2: When h is consistent with D, we have
P(h|D) = (1*1/|H[)/([Vss,D|/|H])
=1/|Vsu,D|



To Summarize

* To summarize , Bayes theorem implies that the posterior probability P(h|D) under our
assumed P(h) and P(D|h) is

1

if i 1s consistent with D
|V S pl

P(h|D) =

O otherwise




Refer

» Refer the text book “ Machine Learning “ Tom M Mitchell : Page No
159 to 16



4.4 MAP hypothesis and Consistent Learners

A i
P(h/D1) P(h/D1,D2)

m B

hypotheses hypotheses hypotheses

(a) (D) (¢)




Characterizing Learning Algorithms by Equivalent MAP Learners

Inductive system
Training examples D

o | Candidate Output hyvpotheses
_ Elimination -
Hwvpothesis space H Algorithm
L
Equivalent Bavesian inference system
Training examples D
-
Output hypotheses
Hwvpothesis space H ) W
B Brute torce
MAP learner
P(h) uniform ‘
P(D|h) = O if inconsistent,
= 1 if consistent

/

Prior assumpltions
made explicir




4.5 Maximum likelihood and Least Squared Error hypothesis

A straightforward Bayesian analysis will show that under certain
assumptions any learning algorithm that minimizes the squared error
between the output hypothesis predictions and the training data will
output a maximum likelihood hypothesis.



Learning A Real Valued Function

* Consider any real-valued target function f

Training examples <x; d>, where d; is noisy training value
* d.=flx)+e

* e;israndom variable (noise) drawn independently for each x; according to some
Gaussian distribution with mean=0

* Then the maximum likelihood hypothesis h,,, is the one
that minimizes the sum of squared errors:

m

_ ' )2
- har = argmin z (di — h(z;))




Learning A Real Valued Function

hyp = argmaxp(D |h)

m

argmax H p(d;|h)

heH =1
m ]_ 1 dy—=hi(x;)\2
— argmax ]| e 2

heH i=1\/27o

* Maximize natural log of this instead...

o

hﬂjL = ar%maxiz n W 5
m h($ ))

m 1 1 (d.,; — h(;v.g))z

— argmax . ——
heH =1 2 o

= argmax 3. — (d; — h(z;))’
heH i=1

= argmin Z (di — h(z:))?
heH =1



Reference

» Refer the text book “ Machine Learning “ Tom M Mitchell : Page No
164 to 167



4.6 Maximum Likelihood Hypothesis Learning to
Predict Probabilities

» Consider predicting survival probability from patient data

* Training examples <x;, d>, where d;is1 or0
* Want to train neural network to output a probability given x; (not a O or 1)

* |n this case can show

hirp = argmax fjl d;In h(x;) + (1 — d;) In(1 — h(x;))
e H 1=

* Weight update rule for a sigmoid unit:

Wik < Wik + Awﬂ;

where Awj, = nfl(d.,; — h(z:)) xiji



Reference

* For Complete Derivation Refer the text book “ Machine Learning “
Tom M Mitchell : Page No 168 to 171



4.6 Naive Bayes classifier /Bayes Rule

* Highly Bayesian learning method is the naive Bayes learner often called the
naive Bayes Classifier .

* Bayesian Classifier assumes that all the variables are conditionally
independent given the value of the target variable.

* The naive Bayes Classifier applies to learning tasks where each instance x is
described by a conjunction of attribute values and where the target
function f(x) can take on any value from some finite set V.

* A set of training examples of the target function is provided, and a new
instance is presented, described by the tuple of attribute values <a4, a, ,

as ,------- a, >. The learner is asked to predict the target value, or
classification, for this new instance.



* The Bayesian approach to classifying the new instance is to assign the

most probable target value, V,,4p, given the attribute values <a4, a, ,
az ,---—--- a, >.that describe the instance.

vmap = argmax P(vjlay,az...a,)
ijV

We can use Bayes theorem to rewrite this expression as
P(ai,az...an|v;)P(v;)

Vamrap = argmax
v,eV P(ar, as .. .a,)
= argmax P(ai,az ... a,|v;) P(v;)
ijV A

Naive Bayes classifier:

vyp = argmax P (v;) l_[ P(a:|v))

vjeV



llustrative Example

Example: Play Tennis

PlayTennis: training examples
" L

Day Outlook  Temperature = Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

34



Learning Phase

PlayTennis: training examples

Day Outlook  Temperature = Humidity Wind PlayTennis
P (Ou tlook | P1 ay) D1 Sunny Hot I—I%gh Weak No
D2 Sunny Hot High Strong No
Play= Yes Play= No D3 O\-'er.cast H .ot H l gh 1-'*»"rea k ‘1:95
D4 Rain Mild High Weak Yes
Sunny 2/ 9 3/ 5 D5 Rain Cool Normal Weak Yes
Overcast 4 /9 0 / 5 D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
Rain 3/ 9 2/ 5 D8 Sunny Mild High Weak- No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong, Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
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Learning Phase

PlayTennis: training examples

Day Outlook  Temperature  Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
P(Temperature | Play) D2 || Sunny Hot High  Strong No
D3 Overcast Hot High Weak Yes
Play=Yes Play=No _ = - r ,
D4 Rain Mild High Weak Yes
Hot 2/ 9 2/ 5 D5 Rain Cool Normal Weak Yes
Mild 4/9 2/5 D6 Rain Cool Normal Strong No
Cool 3/9 1/5 E; ':__]'E‘:-’E'] cast (_a?:o] Nm.'ma] Strong, Yes
unny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong, Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

36



Learning Phase

P(Humidity | Play)

PlayTennis: training examples

Play=Yes | Play=No
High 3/9 4/5
Normal 1 / 5

6/9

Day Outlook  Temperature = Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Owvercast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

37




P(Wind | Play)

Learning Phase

PlayTennis: training examples

Play=Yes

Play=No

Strong

3/9

3/5

Weak

6/9

2/5

Day Outlook  Temperature ~ Humidity =~ Wind | PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

38



Learning Phase

P(Outlook | Play)

P(Temperature| Play)

P(Play=Yes) = 9/14

Play=Yes | Play=No Play=Yes Play=No
Sunny 2/9 3/5 Hot 2/9 2/5
Overcast 4/9 0/5 Mild 4/9 2/5
Rain 3/9 2/5 Cool 3/9 1/5
P(Humidity | Play) P(Wind | Play)
Play=Yes | Play=No Play=Yes | Play=No
High 3/9 4/5 Strong 3/9 3/5
Normal 6/9 1/5 Weak 6/9 2/5

P(Play=No) = 5/14

39



Example

e Test Phase
— Given a new instance,

— Look up tables
P(Outlook=Sunny | Play=Yes) = 2/9 P(Outlook=Sunny | Play=No) = 3/5
P(Temperature=Cool | Play=Yes) =3/9 ~ P(Temperature=Cool | Play==No) =1/5
P(Huminity=High | Play=Yes) = 3/9 P(Huminity=High|Play=No) = 4/5

P(Wind=Strong | Play=Yes) = 3/9 P(Wind=5trong | Play=No) = 3/5
P(Play=Yes) = 9/14 P(Play=No) = 5/14
— MAP rule

[P(Sunny|Yes)P(Cool | Yes)P(High | Yes)P(Strong| Yes)|P(Play=Yes) = 0.0053
[P(Sunny|No) P(Cool | No)P(High | No)P(Strong | No)]P(Play=No) = 0.0206

40



4.7 Event Models

* The assumptions on distributions of features are called the event model of
the Naive Bayes classifier.

* For discrete features like the ones encountered in document classification
(include spam filtering), multinomial and Bernoulli distributions are
popular.

* For Continuous feature , Gaussian naive Bayes distributions is popular.



https://en.wikipedia.org/wiki/Multinomial_distribution
https://en.wikipedia.org/wiki/Bernoulli_distribution

1. Gaussian naive Bayes

* When dealing with continuous data, a typical assumption is that the
continuous values associated with each class are distributed
according to a Gaussian distribution.

* Then, the probability distribution of v givenaclass C%, p(z = v | Ck)

can be computed by plugging V into the equation for a Normal
distribution parameterized by g and O'i.

(v—pp )
1 - 2{72_

p(a?:'v\Ck): e k

/ 2
2wak



https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution

2. Multinomial naive Bayes

Its is used when we have discrete data (e.g. movie ratings ranging 1 and 5 as each rating will have
certain frequency to represent). In text learning we have the count of each word to predict the class or label.
The Multinomial Naive Bayes's conditional distribution is:

The term frequencies can then be used to compute the maximum-likelihood estimate based on the
training data to estimate the class-conditional probabilities in the multinomial model:

A th(:v,f,dij)—l—a
dewj + O -

where

e ;. A word from the feature vector x of a particular sample.

B Z tf(x;,d < wj) : The sum of raw term frequencies of word x; from all documents in the training
sample that belong to class w;.

- Z N g wj- The sum of all term frequencies in the training dataset for class w;.

e «x: An additive smoothing parameter (@ — 1 for Laplace smoothing).

e V: The size of the vocabulary (number of different words in the training set).

The class-conditional probability of encountering the text xX can be calculated as the product from the
likelihoods of the individual words (under the naive assumption of conditional independence).

m

P(x | w;) = P(x1 | wj;) - P(z2 | wj) - ... P(xzn |wj)=HP(a:i | wj)




3. Bernoulli naive Bayes

It assumes that all our features are binary such that they take only two values.
Means 0s can represent “word does not occur in the document” and 1s as "word occurs
in the document” .

p(x | Cr) = | [ P (1 — pri) ")
1=1



3. Bernoulli naive Bayes

It assumes that all our features are binary such that they take only two values.
Means 0s can represent “word does not occur in the document” and 1s as "word occurs
in the document” .

p(x | Cr) = | [ P (1 — pri) ")
1=1



Lab Program

*Assuming a set of documents that need to be
classified, use the naive Bayesian Classifier
model to perform this task. Built-in Libraries
can be used to write the program. Calculate
the accuracy, precision, and recall for your
data set.



4.8 Learning to Classify Text — Algorithm

S1: LEARN_ NAIVE_BAYES _TEXT (Examples, V)
S2: CLASSIFY_NAIVE_BAYES TEXT (Doc)

* Examples is a set of text documents along with their target values.
* Vs the set of all possible target values.

* This function (S1) learns the probability terms P(wk I v;), describing the
probability that a randomly drawn word from a document in class v; will
be the English word wk. It also learns the class prior probabilities P(v)).



S1: LEARN NAIVE BAYES TEXT (Examples, V)

[ V: Class , W: Word, doc : Documents]

1. collect all words and other tokens that occur in Examples

* Vocabulary < all distinct words and other tokens in Examples
2. calculate the required P(v;) and P(w, | v;) probability terms

* For each target value v;in V do

|docs |
. Z
P(vj ) Y | Examples|

docs; <— subset of Examples for which the target value is v;

Text; <— a single document created by concatenating all members of docs;
n < total number of words in Text; (counting duplicate words multiple times)
for each word w, in Vocabulary

N nip+1
P (w )2 |’U j) 3 n+|Vocabulary|

n, < number of times word w, occurs in Text;



S2:CLASSIFY NAIVE BAYES TEXT (Doc)

* positions <— all word positions in Doc that contain tokens found in
Vocabulary

* Return v,z where

vvp = argmax P(v;) I P(a;|v))
UHS Vv reposittrons



Twenty NewsGroups

* Given 1000 training documents from each group Learn to classify new
documents according to which newsgroup it came from

comp.graphics misc.forsale alt.atheism sci.space
comp.os.ms-windows.misc  rec.autos soc.religion.christian  sci.crypt
comp.sys.ibm.pc.hardware rec.motorcycles talk.religion.misc sci.electronics
comp.sys.mac.hardware rec.sport.baseball talk.politics.mideast sci.med
comp.windows.x rec.sport.hockey talk.politics.misc

talk.politics.guns

* Naive Bayes: 89% classification accuracy



Learning Curve for 20 Newsgroups

20News
100 1 T ol = T T Il

90
80
70
60
50
40
30 et
10 |

* Accuracy vs. Training set size (1/3 withheld for test)



Example :

In the example, we are given a
sentence “ A very close game”, a
training set of five sentences (as shown
below), and their corresponding
category (Sports or Not Sports).

The goal is to build a Naive Bayes
classifier that will tell us which category
the sentence “ A very close game”
belongs to.

Applying a Naive Bayes classifier, thus
the strategy would be calculating the
probability of both “A very close
game is Sports”, as well as it's Not
Sports. The one with the higher
probability will be the result.

Text

“A great game”
“The election was over”

“Very clean match”|

“A clean but forgettable game”

“It was a close election”

Category

Sports

Not sports

Sports

Sports

Not sports

ol a@zsrioveio 2.08°




Step 1: Feature Engineering

* word frequencies, i.e., counting the occurrence of every word in the
document.

* P( a very close game) = P(a) X P(very) X P(close) X P(game)

* P(a very close game | Sports) = P(a|Sports) X P(Very|Sports) X
P(close|Sports) X P(game|Sports)

* P(a very close game | Not Sports) = P(a | Not Sports) x P(very | Not
Sports) x P(close | Not Sports) x P(game | Not Sports)



Step 2: Calculating the probabilities

* Here , the word “close” does not exist in the category Sports,
thus P(close | Sports) = 0, leading to P(a very close game | Sports)=0.

* The probabilities are calculated using multinomial probability distribution
function

. y fl'};_-+1
P (?.U I |U ]) \ n+|Vocabulary|




Word P(word | Sports) P(word | Not Sports)
. 2+1 141
11+ 14 9+ 14
Ve 1+1 0+1
v 11+ 14 9+ 14 .
1.+
041 141 P(wklv-) Y T
I _}. ¥y : ’ ) e
close TENT Y n+|Vocabulary|
Ame 2+1 0+1
! 1+ 14 9+ 14

Pila|Sports) = Plvery|Sports) = Plclose|Sports) = Plgame|Sports) =
P Sports)
= 4.61 = 107
= 00000461

Pia Not Sports) = Plvery|Not Sports) =< Plelose|Not Sports) < Plgame|Not Sports)x
P({Not Sports)
= 1.43 = 10"
= 0.0000143

As seen from the results shown below, P(a very close game | Sports) gives a higher probability, suggesting that the

sentence belongs to the Sports category. e o 28 ot
% NATN)



4.9 Bayesian Network (BAYESIAN BELIEF NETWORKS)

* Bayesian Belief networks describe conditional
independence among subsets of variables



Conditional Independence

* Definition: X is conditionally independent of Y given Z if the probability
distribution governing X is independent of the value of Y given the value of Z;
that is, if

(Vx, v, ) P(X=x;| Y=y, Z= z,) = P(X= x;| Z= )
more compactly, we write
P(X|Y, Z) = P(X|2)

* Example: Thunder is conditionally independent of Rain, given Lightning
P(Thunder|Rain, Lightning) = P(Thunder|Lightning)

* Naive Bayes uses cond. indep. to justify
P(X, Y|2) = P(X|Y, 2) P(Y|2) = P(X|2) P(Y|2)



Bayesian Belief Network (1/2)

SB S —B S B S B
C 0.4 0.1 0.8 0.2
—C 0.6 0.9 0.2 0.8

* Network represents a set of conditional independence assertions:

* Each node is asserted to be conditionally independent of its non descendants, given
its immediate predecessors.

* Directed acyclic graph




Bayesian Belief Network (2/2)

* Represents joint probability distribution over all variables
e e.g., P(Storm, BusTourGroup, . . ., ForestFire)

° in general, P(’yh L jyﬂ.) — iﬁl P(y}g‘Pa?‘en?ﬁS(Kl))

where Parents(Y,) denotes immediate predecessors of Y, in graph

* 50, joint distribution is fully defined by graph, plus the
P(y;| Parents(Y)))
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P(S=T)
0.30

P(P=L)
P S | P(C=TIP,S)
H T 0.05
H F 0.02
L T 0.03

Dyspnoea

L F 0.001

C | P(X=pos|C) C | P(D=T|C)

T 0.90 T 0.65

F 0.20 F 0.30

FIGURE 2.1

A BN for the lung cancer problem.

Context Innovations Lab woll Zynioezny .o



Lab Program

*Write a program to construct a Bayesian
network considering medical data. Use this
model to demonstrate the diagnosis of
heart patients using standard Heart

Disease Data Set. You can use Python ML
library API.



4.10 EM Algorithm



Generating Data from Mixture of k Gaussians

p(x)

.
-—
-

* Each instance x generated by

1. Choosing one of the k Gaussians with uniform probability
2. Generating an instance at random according to that Gaussian



Gaussian Distribution

J Univariate Gaussian Distribution

(in—lw)2
,G) — 1 20'2
\\/ 2no’
mean variance

J Multi-Variate Gaussian Distribution
1

(2n]3]

mean covariance

W(X\H,Z)=

)1/2 exp{— %(X — !-‘)T > (X - l-l):

ol méﬁmzio 2.08°




Gaussian Mixtures

1 Linear super-position of Gaussians

p(x) ? RQM{ o)

Number of Gaussians
1

Mixing coefficient: weightage
for each Gaussian dist.

“o 0.5 1 % 0.5 1
1 1
- . -3 - -3
- - - . - ?_‘-'- = . ] H 5?"
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GMM : Example
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Expectation Maximization (EM) Algorithm

* When to use:

* Filling in missing data in samples
Discovering the value of latent variables
Estimating the parameters of HMMs
Estimating parameters of finite mixtures
Unsupervised learning of clusters
Semi-supervised classification and clustering




Expectation Maximization (EM) Algorithm

* EM is typically used to compute maximum likelihood estimates given incomplete samples.

 The EM algorithm estimates the parameters of a model iteratively.
e Starting from some initial guess, each iteration consists of

* an E step (Expectation step)
e an M step (Maximization step)




EM Algorithm

* Given:
* Instances from X generated by mixture of k Gaussian distributions
* Unknown means <z,...,14 > of the k Gaussians
¢ Don’t know which instance x; was generated by which Gaussian

* Determine:
¢ Maximum likelihood estimates of <z,..., 14, >

 EM Algorithm:

* Pick random initial h = <y, 1,> then iterate

E step: Calculate the expected value E[z;] of each hidden variable z;, assuming the current hypothesis

ij)

h=<u,, 1> holds. Els] — p(x = xilp = p))
[Z’U] - 2 - _ —
=1 _p(il’? - xtlﬂ — ﬂ'n)
6_201':- (i=pj)?

L /... 2
$2_) e 2 i)

M step: Calculate a new maximum likelihood hypothesis h'=<u';, 1',>, assuming the value taken on by each
hidden variable z; its expected value E[z;] calculated above. Replace h = <u, 1,> by h' =<y, 1')>.

ity Blzi] @i
oty Bz
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GMM

(x,=p,)"
EM: P "’":/’_Ta; "{ = }

P(x, | b)P(b)

b=Pblx)=
U P(x, 1B)P(b)+ P(x, la)P(a)

a,=Plalx)=1-b,

bx +b,x, +..+b x,

b+b,+..+b,
bi(x, =) +.+b(x, -u)
b+b,+..+b,

o =

b

ax, + d, X, + ...+ a.X,

;'tu -

a,+a,+..+4a,

32 . 2
----l-l-lnll-u(rz (l](«t] = !l(’) + ...+ (,n(_‘" s !l,,;)

a +a,+..+a,

could also estimate priors:
Pb)=(by+ b, +...b,)/n
P(a)=1-P(b)
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GMM : Example2

ANEMIA PATIENTS AND CONTROLS
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GMM : Example2

EM ITERATION 1 EM [TERATION 3
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. Example2

EM [TERATION 5 EM ITERATION 10
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GMM : Example2

EM ITERATION 15 EM ITERATION 25
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Reference

» Refer the text book “ Machine Learning “ Tom M Mitchell : Page No
191 to 194 for detailed explanation on EM Algorithm



4.11 K Means Algorithm

* 1. The sample space is initially partitioned into K
clusters and the observations are randomly
assigned to the clusters.

e 2. For each sample:

e (Calculate the distance from the observation to
the centroid of the cluster.

* |F the sample is closest to its own cluster
THEN leave it ELSE select another cluster.

* 3. Repeat steps 1 and 2 untill no observations are
moved from one cluster to another

Basic Algorithm of K-means

Algorithm 1 Basic K-means Algorithm.

1: Select K points as the initial centroids.

2: repeat

3:  Form K clusters by assigning all points to the closest centroid.
4:  Recompute the centroid of each cluster.

5: until The centroids don’t change

Distance functions

k
/ )
Euclidean Z (\xf - .1})
i=1
k
Manhattan Z X, —V;
i=l1

Yq

f

k
Minkowski Z-(‘T:‘ -V,
i=1



Details of K-means

[. Initial centroids are often chosen randomly.
= Clusters produced vary from one run to another

2. The centroid 1s (typically) the mean of the points in the cluster.

3.*Closeness’ 1s measured by Euclidean distance, cosine similarity, correlation,
etc.

4. K-means will converge for common similarity measures mentioned above.

5. Most of the convergence happens in the first few iterations.
- Often the stopping condition is changed to 'Until relatively few points
change clusters’
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Euclidean Distance

—

x,
Voo

9

d(i,j)=

Ty, —x . [P x —x
12 ]2 Ip Jp

A simple example: Find the distance between two points, the original
and the point (3,4)

d (0,4)=+3+4> =5

ol méﬁmaio 2.08°
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Update Centroid

We use the following equation to calculate the n dimensional
centroid point amid k n-dimensional points

k k k
Z xlst, Z x2nd, Z xnth,

i=1

CP(x,,x,....x,) = (- — =l PR r )

Example: Find the centroid of 3 2D points, (2,4), (5,2)
and (8,9)

24548 4+2+9

S 4
3 iy

CP = ( )=(3.3)
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Examples of K Means

e
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How the K-Mean Clustering algorithm

works?

—

X1+ X+ X3 Vit 2t s

3 3



https://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjdxaGonIDZAhXEupQKHV__AToQjRwIBw&url=https://www.quora.com/What-is-the-centroid&psig=AOvVaw1SQMZRn4cynW9OvHF_iad1&ust=1517420015923483
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Start

Number of
Cluster K

Centroid

Distance objects to
centroids

¥

Grouping based on
minimum distance

Process Flow of K-means

No object +
move |—+ End
. group? |

Iterate until stabfe (cluster centers converge):
1. Determine the centroid coordinate.

2. Determine the distance of each object to the
centroids.

3. Group the object based on minimum
distance (find the closest centroid)




K-means clustering example

Initial Centroids Initial Partition
i - I.‘
oWy - s J e
:‘ r
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- . * %_. . .
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: L “i Ty - : :
o ’ v

lteration Number 20
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Lab Program

. Apply EM algorithm to cluster a set of data

stored in a .CSV file. Use the same data set
for clustering using k-Means algorithm.
Compare the results of these two
algorithms and comment on the quality of
clustering. You can add Python ML library
classes/API in the program.



Derivation of the k —means Algorithm

» Refer the text book “ Machine Learning “ Tom M Mitchell : Page No
195 to 196.



End of the Module 4.



