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Syllabus :  
Inference in First Order Logic: Backward Chaining, Resolution  
Classical Planning: Definition of Classical Planning, Algorithms for Planning as 
State-Space Search, Planning Graphs  
Chapter 9-9.4, 9.5  
Chapter 10- 10.1,10.2,10.3 

 

 

 

Topics:  

1. Inference in First Order Logic 

a. Backward Chaining,  

b. Resolution 

2. Classical Planning 

a. Definition of Classical Planning 

b. Algorithms for Planning as State Space Search 

c. Planning Graphs 
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Backward Chaining 
Backward chaining is a reasoning method that starts with the goal and works 

backward through the inference rules to find out whether the goal can be 

satisfied by the known facts.  

It's essentially goal-driven reasoning, where the system seeks to prove the 

hypothesis by breaking it down into subgoals and verifying if the premises 

support them. 

Example : Consider the following knowledge base representing a simple 

diagnostic system: 

1. If a patient has a fever, it might be a cold. 

2. If a patient has a sore throat, it might be strep throat. 

3. If a patient has a fever and a sore throat, they should see a doctor. 

 

Given the facts: 

• The patient has a fever. 

• The patient has a sore throat. 

 

Backward chaining would proceed as follows: 

• Start with the goal: Should the patient see a doctor? 

• Check the third rule: Does the patient have a cold and a sore throat? Yes. 

• Check the first and second rules: Does the patient have a fever and sore 

throat? Yes. 

• The goal is satisfied: The patient should see a doctor. 

 

Backward chaining is useful when there is a specific goal to be achieved, and the 

system can efficiently backtrack through the inference rules to determine 

whether the goal can be satisfied. 
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Backward Chaining: Algorithm 
These algorithms work backward from the goal, chaining through rules to find 

known facts that support the proof. 

 

Source Book: Stuart J. Russell and Peter Norvig, Artificial Intelligence, 3rd Edition, Pearson,2015 

 

Overview of the Algorithm 

1. Goal: 

o The purpose of the algorithm is to determine whether a query 

(goal) can be derived from a given knowledge base (KB). 

2. Process: 

o It uses backward chaining, meaning it starts with the goal and 

works backward by looking for rules or facts in the knowledge 

base that could satisfy the goal. 

o The algorithm returns substitutions (values or variables) that make 

the query true. 

3. Key Components: 

o FOL-BC-ASK: This is the main function that starts the backward-

chaining process by calling FOL-BC-OR. 
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o FOL-BC-OR: This function checks whether the goal can be 

satisfied by any rule in the KB. It iterates over applicable rules and 

tries to unify the goal with the rule’s conclusions. 

o FOL-BC-AND: This function handles multiple sub-goals. It 

ensures that all sub-goals are satisfied for the main goal to be true. 

4. Key Terminology: 

o FOL-BC-ASK: Entry point for the algorithm. 

o FOL-BC-OR: Handles rules and checks if the goal is satisfied by 

any rule. 

o FOL-BC-AND: Ensures all sub-goals are satisfied. 

o FETCH-RULES-FOR-GOAL: Retrieves applicable rules for a 

goal. 

o UNIFY: Matches terms by finding substitutions. 

o Standardize Variables: Ensures variable names are unique to avoid 

conflict. 

o θ: The substitution carried into the current function call. 

o θ′: A substitution produced by solving the first sub-goal in FOL-BC-

AND. 

o θ′′: A substitution produced by solving the remaining sub-goals 

using the updated θ′. 
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Detailed Algorithm Steps 

Step 1: FOL-BC-ASK(KB, query): 

 Start with the query and call FOL-BC-OR. 

 Example: For Ancestor(John, Sam), call: 

o FOL-BC-OR(KB, Ancestor(John, Sam), { }). 

 

Step 2: FOL-BC-OR(KB, goal, θ): 

 Fetch all rules from the KB that could produce the goal. 

 For each rule: 

1. Standardize Variables: Make rule variables unique to avoid 

conflicts. 

2. Unify rhs and goal: Match the conclusion of the rule (rhs) 

with the current goal using Unify. This updates θ. 

3. Call FOL-BC-AND: Recursively evaluate the conditions (lhs) of 

the rule with the updated θ. 

 Yield θ′: Each substitution that satisfies the rule is yielded back to the 

caller. 

 

Step 3: FOL-BC-AND(KB, goals, θ): 

 Handles multiple sub-goals (goals) produced from the rule's conditions. 

1. If goals is empty, yield θ because all sub-goals are satisfied. 

2. Otherwise: 

o Split goals into first and rest. 

o Call FOL-BC-OR for the first goal. 

o For each result (θ′) from FOL-BC-OR: 

 Recursively solve rest using FOL-BC-AND with the 

updated θ′. 

 Yield θ′′, the result of solving all sub-goals. 
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Step-by-Step Explanation with Example 

Let’s use the following Knowledge Base (KB) and query. 

Knowledge Base: 

1. Parent(x, y) ⇒ Ancestor(x, y) (Rule 1) 
2. Parent(x, z) ∧ Ancestor(z, y) ⇒ Ancestor(x, y) (Rule 2) 
3. Parent(John, Mary) (Fact) 
4. Parent(Mary, Sam) (Fact) 

Query: Ancestor(John, Sam) 

 

Execution Steps 

Step 1: FOL-BC-ASK 

 Query: Ancestor(John, Sam) 
 Calls: FOL-BC-OR(KB, Ancestor(John, Sam), { }). 

 

Step 2: FOL-BC-OR 

 Goal: Ancestor(John, Sam) 
 Fetch rules for Ancestor: 

1. Rule 1: Parent(x, y) ⇒ Ancestor(x, y) 
2. Rule 2: Parent(x, z) ∧ Ancestor(z, y) ⇒ Ancestor(x, y) 

Case 1: Use Rule 1 

 lhs = Parent(x, y), rhs = Ancestor(x, y). 

 Unify Ancestor(John, Sam) with Ancestor(x, y): 
o Substitution: θ = {x=John, y=Sam}. 

 Sub-goal: Parent(John, Sam). 

 

Step 3: FOL-BC-AND 

 Goals: [Parent(John, Sam)] 
 Calls: FOL-BC-OR(KB, Parent(John, Sam), {x=John, y=Sam}). 

 

Step 4: FOL-BC-OR 
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 Goal: Parent(John, Sam) 
 Check the KB: 

o Facts: Parent(John, Mary) (no match for Sam). 
o Rule 1 fails. 

 
Case 2: Use Rule 2 

 lhs = Parent(x, z) ∧ Ancestor(z, y), rhs = Ancestor(x, y). 

 Unify Ancestor(John, Sam) with Ancestor(x, y): 
o Substitution: θ = {x=John, y=Sam}. 

 Sub-goals: 
o goals = [Parent(John, z), Ancestor(z, Sam)]. 

 

Step 5: FOL-BC-AND 

 Goals: [Parent(John, z), Ancestor(z, Sam)]. 

1. First sub-goal (Parent(John, z)): 

o Calls: FOL-BC-OR(KB, Parent(John, z), θ). 

o Matches: Parent(John, Mary). 
o Substitution: {z=Mary}. 
o Update θ′: {x=John, y=Sam, z=Mary}. 

2. Second sub-goal (Ancestor(z, Sam)): 

o Calls: FOL-BC-OR(KB, Ancestor(Mary, Sam), θ′). 
o Unify with Rule 1: Parent(x, y) ⇒ Ancestor(x, y). 
o Sub-goal: Parent(Mary, Sam). 

 

Step 6: FOL-BC-AND 

 Goal: [Parent(Mary, Sam)]. 
 Matches fact: Parent(Mary, Sam). 
 Substitution: {x=Mary, y=Sam}. 
 Satisfies all sub-goals. 

 

Final Result 

 Combine all substitutions: 

o {x=John, y=Sam, z=Mary}. 
 The query Ancestor(John, Sam) is true. 
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Resolution 

Resolution is a fundamental inference rule used in automated theorem proving 

and logic programming. It is based on the principle of proof by contradiction.  

Resolution combines logical sentences in the form of clauses to derive new 

sentences.  

The resolution rule states that if there are two clauses that contain 

complementary literals (one positive, one negative) then these literals can be 

resolved, leading to a new clause that is inferred from the original clauses. 

 

Example1: 

Consider two logical statements: 

1. P∨Q 

2. ¬P∨R 

Applying resolution: Resolve the statements by eliminating P:  

• P∨Q 

• ¬P∨R 

Resolving P and ¬P:  Q∨R 

The resulting statement Q∨R is a new clause inferred from the original two.  

 

Resolution is a key component of logical reasoning in FOL, especially in tasks like 

automated theorem proving and knowledge representation. 

 

Example2:  

Clause 1: (P∨Q∨R) 

Clause 2:(¬P∨¬Q∨S) 

To resolve these clauses, we look for complementary literals. In this case, P and 

¬P are complementary. 

So, we can resolve these two clauses by removing the complementary literals 

and  combining the remaining literals:  (P∨Q∨R) and ((¬P∨¬Q∨S) 

Resolving  P and  ¬P gives: (Q∨R)∨(¬Q∨S) 

This is the resolvent. 
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Conjunctive Normal Form  

A formula is in CNF if it is a conjunction (AND) of clauses, where each clause is 

a disjunction (OR) of literals.  

CNF Examples 
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Proof By Resolution Process includes the following steps in general 

1. Initial Set of Clauses (Knowledge Base) 

2. Negate the Conclusion:  

3. Apply Resolution 

4. Continue Resolving 

5. Conclusion 

6. Termination  

 

Example 1:  

Let's consider a simplified example of a knowledge base for the Wumpus World 

scenario and demonstrate proof by resolution to establish the unsatisfiability of 

a certain statement.  

In Wumpus World, an agent explores a grid containing a Wumpus (a monster), 

pits, and gold. Apply the resolution to prove   P[1,2]. 

 Knowledge Base (KB) 

1. W[1,1] ∨ P[1,2]  

2. ¬W[1,1]∨¬P[1,2]  

3. B[1,2]⇒P[1,2]  

4. ¬B[1,2]⇒¬P[1,2] 

 Convert the Knowledge Base (KB) into CNF 

 

 Negated Conclusion:   

Let's say we want to prove the negation of the statement:  ¬PitIn[1,2] 

 Apply Resolution: 

1. W[1,1] ∨ P[1,2] , ¬P[1,2]  resolves into W[1,1] 

2. ¬W[1,1]∨¬P[1,2], W[1,1] resolves into ¬P[1,2] 
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3. ¬B[1,2] ∨ P[1,2] , ¬P[1,2] resolves into ¬B[1,2] 

4. B[1,2] ∨¬P[1,2], ¬B[1,2] resolves into ¬P[1,2] 

Applying resolution, we end up with:  ¬P[1,2] , Which is not empty and also 

there is not further any clauses to continue. This gives conclusion that our 

negation conclusion is False and P[1,2]  is true for the given knowledge base. 

 

Example 2:  

 

 

A grammar for conjunctive normal form 
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Conjunctive normal form for first-order logic:  

As in the propositional case, first-order resolution requires that sentences be in 

conjunctive normal form (CNF)—that is, a conjunction of clauses, where each 

clause is a disjunction of literals. 

Literals can contain variables, which are assumed to be universally quantified.  

For example, the sentence  

• ∀ x American(x) ∧ Weapon(y) ∧ Sells(x, y, z) ∧ Hostile(z) ⇒ Criminal(x) 

becomes, in CNF,  

¬American(x) ∨ ¬Weapon(y) ∨ ¬Sells(x, y, z) ∨ ¬Hostile(z) ∨ Criminal(x) 

Every sentence of first-order logic can be converted into an inferentially 

equivalent CNF sentence. The procedure for conversion to CNF is similar to the 

propositional case, The principal difference arises from the need to eliminate 

existential quantifiers. 

We illustrate the procedure by translating the sentence  

“Everyone who loves all animals is loved by someone,”  

or  

∀ x [∀ y Animal(y) ⇒ Loves(x, y)] ⇒ [∃ y Loves(y, x)] . 

 

Steps 

• Eliminate implications: ∀ x [¬∀ y ¬Animal(y) ∨ Loves(x, y)] ∨ [∃ y 

Loves(y, x)] . 

• Move ¬ inwards: In addition to the usual rules for negated connectives, 

we need rules for negated quantifiers. Thus, we have  

• ¬∀ x p becomes ∃ x ¬p  

• ¬∃ x p becomes ∀ x ¬p .  

• Our sentence goes through the following transformations:  

• ∀ x [∃ y ¬(¬Animal(y) ∨ Loves(x, y))] ∨ [∃ y Loves(y, x)] .  

• ∀ x [∃ y ¬¬Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)] .  

• ∀ x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)] . 
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• Standardize variables: For sentences like (∃ x P(x))∨(∃ x Q(x)) which use 

the same variable name twice, change the name of one of the variables. 

This avoids confusion later when we drop the quantifiers. Thus, we have  

• ∀ x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ z Loves(z, x)] . 

• Skolemize: Skolemization is the process of removing existential 

quantifiers by elimination. Translate ∃ x P(x) into P(A), where A is a new 

constant. 

• Example :  

• ∀ x [Animal(A) ∧ ¬Loves(x, A)] ∨ Loves(B, x) ,  

• ∀ x [Animal(F(x)) ∧ ¬Loves(x, F(x))] ∨ Loves(G(z), x) . Here F 

and G are Skolem functions. 

• Drop universal quantifiers: At this point, all remaining variables must be 

universally quantified. Moreover, the sentence is equivalent to one in 

which all the universal quantifiers have been moved to the left. We can 

therefore drop the universal quantifiers:  

• [Animal(F(x)) ∧ ¬Loves(x, F(x))] ∨ Loves(G(z), x) .  

• Distribute ∨ over ∧:  

[Animal(F(x)) ∨ Loves(G(z), x)] ∧ [¬Loves(x, F(x)) ∨ Loves(G(z), x)] . 
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The resolution inference rule 

• Two clauses, which are assumed to be standardized apart so that they 

share no variables, can be resolved if they contain complementary 

literals.  

• Propositional literals are complementary if one is the negation of the 

other;  

• first-order literals are complementary if one unifies with the negation of 

the other. 

• Thus We have 
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Suppose Curiosity did not kill Tuna. We know that either Jack or 

Curiosity did; thus Jack must have. Now, Tuna is a cat and cats are 

animals, so Tuna is an animal. Because anyone who kills an animal is 

loved by no one, we know that no one loves Jack. On the other hand, 

Jack loves all animals, so someone loves him; so we have a 

contradiction. Therefore, Curiosity killed the cat.  
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Summary 

1. Forward chaining starts with known facts and moves forward to reach 

conclusions,  

2. Backward chaining starts with the goal and moves backward to verify if 

the goal can be satisfied, and  

3. Resolution is an inference rule used to derive new clauses by combining 

existing ones.  

These techniques are essential for reasoning and inference in First-Order Logic 

systems. 
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Completeness of resolution 

Resolution is a method in logic that can prove whether a set of statements is 

unsatisfiable. If the statements are unsatisfiable (i.e., there’s no way they can all 

be true at once), resolution will eventually find a contradiction. 

 Unsatisfiable set of statements: Means the statements can't all be true 

together. 

 Contradiction: A clear proof that the statements conflict with each other. 

Key Idea 

If a set of statements is unsatisfiable, resolution can always derive a contradiction, 

proving unsatisfiability. This doesn’t mean resolution finds all logical 

consequences—it’s focused on checking contradictions. 

 

Steps in Proving Completeness 

1. Transforming to Clausal Form: 

Any logical statement can be converted into a standard form called 

Conjunctive Normal Form (CNF). This is the foundation for using 

resolution. 

2. Using Herbrand's Theorem: 

Herbrand's theorem says if the set of statements is unsatisfiable, there’s a 

specific subset of ground instances (statements without variables) that’s 

also unsatisfiable. 

3. Applying Ground Resolution: 

For these ground instances, propositional resolution (which works with 

statements without variables) can find the contradiction. 

4. Lifting to First-Order Logic: 

A "lifting lemma" proves that if there’s a resolution proof for the ground 

instances, there’s also one for the original statements with variables. This 

ensures resolution works for first-order logic, not just simple ground 

statements. 

Structure of a completeness proof for resolution is illustrated in the figure 
below: 
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What Are Ground Terms and Herbrand's Universe? 

 Ground terms: Statements with no variables, created by substituting 

constants or functions. 

 Herbrand Universe: A collection of all possible ground terms that can 

be built from the constants and functions in the given statements. 

 Saturation: Generating all possible combinations of ground terms in the 

statements. 

Herbrand's theorem ensures we only need to check a finite subset of these terms 

to find a contradiction. 

 

Why is the Lifting Lemma Important? 

The lifting lemma connects proofs for ground terms to proofs for first-order logic. It "lifts" 

results from simpler cases (propositional logic) to more general cases (with variables). This 

step is essential to show resolution's power in first-order logic. 

 

The Conclusion 

If a set of statements is unsatisfiable: 

 Resolution finds a contradiction using a finite number of steps. 

 This proof works for both simple ground statements and complex first-

order logic. 
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This makes resolution a powerful tool in automated theorem proving! 

The Lifting Lemma Explained 

The lifting lemma is a principle that allows us to "lift" a resolution proof from 

specific ground instances (statements without variables) to general first-order 

logic (statements with variables). Here's how it works: 

 C₁ and C₂: Two clauses that do not share variables. 

 C′₁ and C′₂: Ground instances of C₁ and C₂ (created by substituting 

variables with constants or terms). 

 C′: A resolvent (a result of applying the resolution rule) of C′₁ and C′₂. 

The lemma states: 

There exists a clause C such that: 

1. C is a resolvent of C₁ and C₂ (it works at the variable level). 

2. C′ is a ground instance of C. 

In simpler terms, if resolution works for specific ground instances, we can 

always find a corresponding proof for the original first-order clauses. 

 

Example 

Let’s illustrate with an example: 

1. Original clauses with variables: 

o C1=¬P(x,F(x,A))∨¬Q(x,A)∨R(x,B) 

o  C2=¬N(G(y),z)∨P(H(y),z) 

2. Ground instances (after substituting variables with specific terms): 

o C′1=¬P(H(B),F(H(B),A))∨¬Q(H(B),A)∨R(H(B),B) 

C′2=¬N(G(B),F(H(B),A))∨P(H(B),F(H(B),A)) 

3. Resolvent of the ground instances: 

o C′=¬N(G(B),F(H(B),A))∨¬Q(H(B),A)∨R(H(B),B) 

4. Lifted clause (with variables): 

o C=¬N(G(y),F(H(y),A))∨¬Q(H(y),A)∨R(H(y),B)  

Here, C′ is a ground instance of C, showing how the lifting lemma bridges 

ground-level proofs to general first-order logic. 
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This lemma is crucial because it ensures that resolution proofs for specific cases 

(ground terms) can be generalized to more complex first-order logic, making the 

method powerful and versatile. 

Handling Equality in Inference Systems 

So far, inference methods don't naturally handle statements like x=y. To deal 

with equality, we can take one of three approaches. 

 

1. Axiomatizing Equality 

We write rules (axioms) in the knowledge base that define how equality works. 

These rules must express: 

 Reflexivity: x=x 

 Symmetry: x=y⇒y=x 

 Transitivity: x=y∧y=z⇒x=z 

Additionally, we add rules to allow substitution of equal terms in predicates and 

functions. For example: 

 x=y⇒(P(x)⇔P(y)) (for predicates P) 

 w=y∧x=z⇒F(w,x)=F(y,z)(for functions F) 

Using these axioms, standard inference methods like resolution can handle 

equality reasoning (e.g., solving equations). However, this approach can 

generate many unnecessary conclusions, making it inefficient. 

 

2. Demodulation: Adding Inference Rules 

Instead of axioms, we can add specific inference rules like demodulation to 

handle equality. 

How it works: 

 If x=y (a unit clause) and a clause α contains x, we replace x with y in α. 

 Demodulation simplifies expressions in one direction (e.g., x+0=x allows 

x+0 to simplify to x, but not vice versa). 

Example: 

Given: 
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 Father(Father(x))=PaternalGrandfather(x) 

 Birthdate(Father(Father(Bella)), 1926) 

We use demodulation to derive: 

 Birthdate(PaternalGrandfather(Bella), 1926) 

 

3. Paramodulation 

A more general rule, paramodulation, extends demodulation to handle cases 

where equalities are part of more complex clauses. 

How it works: 

 If x=y appears as part of a clause and a term z in another clause unifies 

with x, substitute y for x in z. 

Formal Rule: 

 For any terms x, y, and z: 

o If z appears in a clause mmm and x unifies with z, 

o Replace x with y in m, while preserving other parts of the clause. 

 

Summary 

 Axiomatization defines equality with explicit rules but can be inefficient. 

 Demodulation simplifies terms by replacing variables with their equal 

counterparts in one direction. 

 Paramodulation generalizes equality handling for complex clauses. 

These methods provide efficient ways to incorporate equality reasoning into 

inference systems. 

More formally we have  
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Resolution Strategies 

Resolution inference is guaranteed to find a proof if one exists, but some 

strategies can make the process more efficient. Below are key strategies and 

their applications. 

 

Unit Preference 

 Focuses on resolving clauses where one is a unit clause (a single literal). 

 Resolving a unit clause (e.g., P) with a longer clause (e.g., ¬P∨¬Q∨R) 

results in a shorter clause (¬Q∨R). 

 This strategy, first applied in 1964, dramatically improved the efficiency 

of propositional inference. 

 Unit Resolution: A restricted form of this strategy, requiring every 

resolution step to involve a unit clause. 

o Complete for Horn Clauses: Proofs resemble forward chaining. 

o Incomplete in General: Not suitable for all forms of knowledge 

bases. 

 Example: The OTTER theorem prover employs a best-first search with 

a heuristic that assigns “weights” to clauses, favoring shorter ones (e.g., 

unit clauses). 

 

Set of Support 

 Restricts resolutions to involve at least one clause from a predefined set 

of support. 

 The set of support typically includes the negated query or clauses likely 

to lead to a proof. 

 Resolutions add their results to this set, significantly reducing the search 

space if the set is small. 
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 This strategy is complete if the remaining sentences in the knowledge 

base are satisfiable. 

 Advantages: 

o Generates goal-directed proof trees, which are easier for humans 

to interpret. 

 

Input Resolution 

 In this strategy, resolutions always involve one of the original input 

clauses (from the knowledge base or the query). 

 Example: Modus Ponens in Horn knowledge bases is an input resolution 

strategy, as it combines an implication from the KB with other sentences. 

 Linear Resolution: A generalization where PPP and QQQ can be 

resolved if PPP is either an input clause or an ancestor of QQQ in the 

proof tree. 

o Complete for Linear Resolution: Particularly useful in structured 

proofs. 

 

Subsumption 

 Eliminates redundant sentences in the knowledge base that are 

subsumed by more general sentences. 

 Example: If P(x) is in the KB, there’s no need to add P(A) or P(A)∨Q(B). 

 Benefits: 

o Reduces the size of the knowledge base. 

o Keeps the search space manageable. 

 

Applications of Resolution Theorem Provers 

Resolution theorem provers are widely used in the synthesis and verification of 

both hardware and software systems. 

1. Hardware Design and Verification 

 Axioms describe the interactions between signals and circuit components. 

 Example: Logical reasoners have verified entire CPUs, including timing 

properties. 

 AURA Theorem Prover: Used to design highly compact circuits. 
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2. Software Verification and Synthesis 

 Similar to reasoning about actions, axioms define the preconditions and 

effects of program statements. 

 Algorithm Synthesis: 

o Deductive synthesis constructs programs to meet specific criteria. 

o Although fully automated synthesis is not yet practical for general-

purpose programming, hand-guided synthesis has successfully 

created sophisticated algorithms. 

 Verification Tools: Systems like the SPIN model checker are used to 

verify programs such as: 

o Remote spacecraft control systems. 

o Algorithms like RSA encryption and Boyer–Moore string 

matching. 

 

Summary 

Resolution strategies like unit preference, set of support, input resolution, and 

subsumption improve proof efficiency by focusing on relevance, reducing 

redundancy, and constraining the search space. Applications in hardware and 

software demonstrate their importance in real-world problem-solving. 
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5.3 Classical Planning: 

 

Syllabus: Definition of Classical Planning, Algorithms for Planning as State-

Space Search, Planning Graphs. 

5.3.1 The Definition of Classical Planning 

Classical planning focuses on solving problems by identifying sequences of 

actions that transition from an initial state to a goal state. In this approach factored 

representations is adopted, where a state is expressed as a collection of 

variables. This approach uses the Planning Domain Definition Language 

(PDDL), which enables concise representation of actions through schemas, 

reducing redundancy. For instance, instead of defining individual actions for all 

possible combinations, a single action schema in PDDL can represent multiple 

actions by using variables. 

5.3.1.1 Representing States in Classical Planning 

States are represented as conjunctions of fluents—ground, functionless 

atomic facts. For example: 

 Poor ∧ Unknown: Represents the state of a struggling agent. 
 At(Truck1, Melbourne) ∧ At(Truck2, Sydney): Represents locations of 

trucks in a delivery problem. 

The representation follows: 

1. Closed-world assumption: Any fluent not explicitly mentioned is 
considered false. 

2. Unique names assumption: Different symbols (e.g., Truck1 and Truck2) 
represent distinct entities. 

Certain constructs are disallowed in states, such as: 

 Non-ground fluents: e.g., At(x, y). 
 Negations: e.g., ¬Poor. 
 Function symbols: e.g., At(Father(Fred), Sydney). 

States can be manipulated as either conjunctions of fluents (using logical 

inference) or sets of fluents (using set operations). 
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5.3.1.2 Defining Actions with Schemas 

Actions are defined using schemas, which specify: 

 The action name and variables. 
 Precondition: The required state for the action to execute. 
 Effect: The state resulting from the action. 

 

For example, an action schema for flying a plane is: 
 

Action(Fly(p, from, to), 

   PRECOND: At(p,from)∧Plane(p) ∧ Airport(from) ∧ Airport(to), 

    EFFECT: ¬At(p, from) ∧ At(p, to)) 

 

From this schema, specific actions can be instantiated by substituting variable 

values.  

For instance: 
 

Action(Fly(P1, SFO, JFK), 

    PRECOND: At(P1, SFO) ∧ Plane(P1) ∧ Airport(SFO) ∧ 
Airport(JFK), 

    EFFECT: ¬At(P1, SFO) ∧ At(P1, JFK)) 

 

An action is applicable in a state if its preconditions are satisfied. When 

executed, the resulting state is determined by: 

 Removing fluents in the delete list (negative effects). 
 Adding fluents in the add list (positive effects). 

 

For example, executing Fly(P1, SFO, JFK) in a state would remove At(P1, 

SFO) and add At(P1, JFK). 

5.3.1.3 Planning Domains and Problems 
 

A planning domain is defined by a set of action schemas. A specific problem 

within the domain includes: 

1. Initial state: A conjunction of ground fluents. 
2. Goal: A conjunction of literals, possibly containing variables treated as 

existentially quantified. 
The planning problem is solved when a sequence of actions leads to a state that 

satisfies the goal.  

For example: 

 The state Plane(Plane1) ∧ At(Plane1, SFO) satisfies the goal At(p, SFO) ∧ 
Plane(p). 
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5.3.1.4 Limitations in Early Approaches: 

1. Atomic State Representations (Chapter 3 Problem-Solving Agent): 
o States are treated as indivisible entities, leading to a lack of structure in 

representations. 

o This approach relies heavily on domain-specific heuristics for effective 

problem-solving, limiting its generalizability and requiring significant manual 

tuning for each domain. 

2. Ground Propositional Inference (Chapter 7 Hybrid Propositional Logic Agent): 
o Uses domain-independent heuristics, reducing the need for manual tuning. 

o However, it relies on ground (variable-free) propositional inference, which 

becomes computationally infeasible with large state spaces or a high number 

of actions. 

o Example: In the Wumpus World, a simple move action must account for all 

possible orientations, time steps, and grid locations, causing a combinatorial 

explosion in the number of actions. 

 

5.3.1.5 Overcoming Limitations with Factored Representations: 

1. Structured State Representation: 
o States are expressed as collections of variables, enabling a more structured and 

compact representation. 

o This approach captures relationships and dependencies between state 

components, improving efficiency and scalability. 

2. Use of PDDL (Planning Domain Definition Language): 
o Action Schemas: Introduced to reduce redundancy by representing actions with 

variables rather than enumerating all possible instances. 

Example: Instead of defining actions for every plane and airport combination, a 

single schema can describe the action of flying a plane between airports. 

o Domain Independence: PDDL allows concise and reusable descriptions of 

actions and states, supporting various domains without customization. 

3. Improved Computational Efficiency: 
o By focusing on factored representations and logical reasoning over variables, 

the new approach avoids the combinatorial explosion seen in propositional 

logic. 

o This scalability makes classical planning applicable to complex domains with 

numerous states and actions. 

 

Summary of Improvement: The transition from atomic and ground representations to 

factored representations with PDDL enables classical planning to handle larger, more 

complex problems with greater efficiency and flexibility. This advancement overcomes the 

scalability challenges of earlier approaches while reducing dependency on domain-specific 

heuristics. 
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5.3.1.6 Example : Air cargo transport 

 

The air cargo transport problem, illustrated in Figure 10.1, involves transporting 

cargo between airports by loading, unloading, and flying planes. This problem 

uses three main actions: Load, Unload, and Fly, which operate on two primary 

predicates: 

1. In(c, p): Indicates that cargo c is inside plane p. 
2. At(x, a): Specifies that an object x (plane or cargo) is located at airport 

a. 

To ensure the correct maintenance of the At predicates, special care is required. 

When a plane flies from one airport to another, all cargo inside the plane must 

also move with it. While first-order logic can easily quantify over all objects 

within the plane, basic PDDL lacks universal quantifiers. Therefore, a different 

solution is adopted: 

 Cargo ceases to be At any location once it is loaded into a plane (it is 
considered In the plane). 

 The cargo becomes At the destination airport only when it is unloaded 
from the plane. 

Thus, At(x, a) effectively signifies "available for use at a given location." 
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Example Solution Plan : A valid solution plan for transporting cargo C1 

and C2 is as follows: 

1. Load(C1, P1, SFO): Load cargo C1 onto plane P1 at airport SFO. 
2. Fly(P1, SFO, JFK): Fly plane P1 from SFO to JFK. 
3. Unload(C1, P1, JFK): Unload cargo C1 from plane P1 at JFK. 
4. Load(C2, P2, JFK): Load cargo C2 onto plane P2 at JFK. 
5. Fly(P2, JFK, SFO): Fly plane P2 from JFK to SFO. 
6. Unload(C2, P2, SFO): Unload cargo C2 from plane P2 at SFO. 

Handling Spurious Actions : The problem can also involve spurious actions, 

such as Fly(P1, JFK, JFK), which would be a no-op but can produce 

contradictory effects (e.g., both At(P1, JFK) and ¬At(P1, JFK)). While 

such issues are often ignored in practice because they rarely lead to incorrect 

plans, the proper way to prevent them is by adding inequality preconditions, 

ensuring that the departure (from) and arrival (to) airports are different. 

In the context of the air cargo transport problem, SFO and JFK refer to airport 

codes: 

 SFO: San Francisco International Airport 

 JFK: John F. Kennedy International Airport (located in New York City) 

These are commonly used IATA airport codes to represent specific locations in 

transportation and logistics scenarios. In this problem, they are used as example 

locations for cargo and planes. 

5.3.1.7 Example: The Spare Tire Problem 

Imagine the task of changing a flat tire, as shown in Figure 10.2. The goal is to 

replace the flat tire on the car's axle with a good spare tire. Initially, the flat tire 

is mounted on the axle, and the spare tire is in the trunk. For simplicity, this 

problem is abstracted—there are no challenges like stubborn lug nuts or other 

real-world complications. 

In this scenario, there are only four actions available: 

1. Removing the spare tire from the trunk. 
2. Removing the flat tire from the axle. 
3. Mounting the spare tire onto the axle. 
4. Leaving the car unattended overnight. 
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It is assumed that leaving the car unattended in a dangerous neighborhood 

results in all the tires disappearing. A valid solution to this problem would be 

the sequence: 
[Remove(Flat, Axle), Remove(Spare, Trunk), PutOn(Spare, Axle)]. 

 

 

5.3.1.8 Example: The Blocks World 

The blocks world is a classic planning domain often used to study problem-solving and AI 

planning. It involves manipulating cube-shaped blocks on a table to achieve a specified 

configuration. 

Key Concepts: 

1. Setup: 
o Blocks can be placed on the table or stacked on top of one another. 
o Only one block can fit directly on top of another block. 
o A robot arm is used to move the blocks: 

 It can pick up only one block at a time. 
 It cannot pick up a block that has another block on top of it. 

2. Goal: 
o The goal is defined by a specific arrangement of blocks, e.g., block A on B and block 

B on C. 

3. Predicates: 
o On(b, x): Block b is on x (where x is another block or the table). 
o Clear(x): Block x is clear, meaning no other block is on it. 

4. Actions: 
o Move(b, x, y): Moves block b from x to y (either another block or the table). 

 Preconditions: 
On(b, x) ∧ Clear(b) ∧ Clear(y) 
(Block b is on x, block b is clear, and the destination y is clear.) 
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 Effects: 
On(b, y) ∧ Clear(x) ∧ ¬On(b, x) ∧ ¬Clear(y) 
(Block b is on y, x becomes clear, b is no longer on x, and y is no longer 
clear.) 

5. Issues and Solutions: 
o Problem: The initial action schema does not handle the table correctly: 

 When moving a block from or to the table, the Clear(Table) predicate is 
mishandled. 

 For example: 
 Clear(Table) should always be true, as the table always has 

space. 
 However, the original schema treats the table like a block, leading to 

incorrect interpretations. 
o Fixes: 

 Introduce a new action, MoveToTable(b, x): 
 Preconditions: 

On(b, x) ∧ Clear(b) 
(Block b is on x and is clear.) 

 Effects: 
On(b, Table) ∧ Clear(x) ∧ ¬On(b, x) 
(Block b is now on the table, x is clear, and b is no longer on x.) 

 Reinterpret Clear(x): 
"There is space on x to hold a block." 
(Under this interpretation, Clear(Table) is always true.) 

6. Optional Optimization: 
o To prevent redundant use of Move(b, x, Table) instead of MoveToTable(b, x): 

 Add the predicate Block(y) to the Move action's precondition. 
 This ensures Move is only used for moving blocks between other blocks, not 

the table. 

By making these adjustments, the blocks world planner becomes more accurate and efficient, 

avoiding unnecessary computational overhead. 
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5.3.1.9 The Complexity of Classical Planning 

In this subsection we consider the theoretical complexity of planning and 

distinguish two decision problems. PlanSAT is the question of whether there 

exists any plan that solves a planning problem. Bounded PlanSAT asks whether 

there is a solution of length k or less; this can be used to find an optimal plan. 

1. Key Decision Problems: 

o PlanSAT: Determines whether a solution (plan) exists for a given 
planning problem. 

o Bounded PlanSAT: Checks if a solution of length ≤ k exists, often used 
to find optimal plans. 

2. Decidability: 

o Both PlanSAT and Bounded PlanSAT are decidable for classical 
planning because the state space is finite. 

o When function symbols are added (creating an infinite state space): 
 PlanSAT becomes semidecidable: it terminates for solvable 

problems but may not terminate for unsolvable ones. 
 Bounded PlanSAT remains decidable even with function 

symbols. 
3. Complexity Classes: 

o Both problems are in PSPACE, a complexity class harder than NP, 
requiring polynomial space to solve. 

o Even with restrictions: 
 Without negative effects, both problems are NP-hard. 
 Without negative preconditions, PlanSAT reduces to the easier 

class P. 
4. Practical Implications: 

o Although the worst-case scenarios are complex, real-world problems 
in specific domains (e.g., blocks world, air cargo) are often simpler. 
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 For many domains: 
 Bounded PlanSAT is NP-complete (hard for optimal 

planning). 
 PlanSAT is in P (easier for suboptimal solutions). 

5. Role of Heuristics: 

o Classical planning's advantage lies in the development of domain-
independent heuristics, which perform well on practical problems. 

o This contrasts with systems based on first-order logic, which struggle 
to create effective heuristics. 

In summary, while planning problems can be theoretically hard, domain-specific 

scenarios and effective heuristics often simplify practical implementations. 
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5.3.2 Algorithms for Planning as State-Space Search 

Two approaches to searching for a plan. (a) Forward (progression) search through 

the space of states, starting in the initial state and using the problem’s actions to 

search forward for a member of the set of goal states. (b) Backward (regression) 

search through sets of relevant states, starting at the set of states representing the 

goal and using the inverse of the actions to search backward for the initial state. 

Forward (Progression) State-Space Search 

 Description: Starts from the initial state and applies actions to reach the 
goal. 

o It explores all possible actions from the current state, leading to a 
large branching factor and potential inefficiency without heuristics. 

 Challenges: 
1. Explores irrelevant actions. 
2. Handles large state spaces with numerous possible states and 

actions. 
 Example: 

In an air cargo problem with 10 airports, 5 planes, and 20 cargo items: 
o At each step, the search needs to evaluate thousands of possible 

actions like flying planes, loading cargo, or unloading it. 
o Without a heuristic, this leads to a massive search space. 

 

 

Backward (Regression) Relevant-States Search 

 Description: Starts from the goal and works backward by identifying 
actions that can lead to the goal state. 

 Advantages: Focuses only on relevant actions and avoids irrelevant 
branches. 
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 Example: 
If the goal is At(C2, SFO), the algorithm considers the action 
Unload(C2, p, SFO): 

o Precondition: In(C2, p) ∧ At(p, SFO). 
o Effect: At(C2, SFO). 

It regresses to find the predecessor state where these 
preconditions are true. 

 

 

Heuristics for Planning 

 Purpose: Estimate the cost of reaching the goal from the current state to 
guide search algorithms like A*. 

 Types of Heuristics: 
1. Ignore Preconditions: 

 Drops preconditions, making every action applicable. 
 Example: Simplifies the 8-puzzle by ignoring adjacency 

requirements for moves. 
2. Ignore Delete Lists: 

 Assumes actions cannot undo progress, making the problem 
monotonic. 

 Example: In a transportation problem, unloading an item is 
never undone. 

3. State Abstraction: 
 Groups states by ignoring irrelevant fluents to reduce the 

state space. 
 Example: In air cargo, consider only packages and 

destinations while abstracting plane details. 

Figure 10.6 diagrams part of the state space for two planning problems using 
the ignore-delete-lists heuristic. The dots represent states and the edges 
actions, and the height of each dot above the bottom plane represents the 
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heuristic value. States on the bottom plane are solutions. In both these 
problems, there is a wide path to the goal. There are no dead ends, so no need 
for backtracking; a simple hill climbing search will easily find a solution to these 
problems (although it may not be an optimal solution). 

 

 

5.3.3 Planning Graphs 

Definition: 

A planning graph is a directed, leveled graph that represents actions and literals 

in alternating layers, capturing all possible states and actions up to a certain time 

step. 

 

Construction of a Planning Graph: 

1. Levels: 
o S₀: Represents the initial state. 
o A₀: Represents actions applicable in S₀. 
o Alternates between states (S₁, S₂, ...) and actions (A₁, A₂, ...). 

2. Termination: 
o Stops when two consecutive levels are identical (leveled off). 
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Example:  For the problem "Have Cake and Eat Cake Too": 

o S₀: {Have(Cake)} 
o A₀: {Eat(Cake), Bake(Cake)} 
o S₁: {Have(Cake), Eaten(Cake)} 
o Mutex Links: Highlight conflicts, e.g., eating and having the cake. 

 

Figure 10.8 Eaten(Cake) ¬ ¬ Have(Cake) Eaten(Cake) Eaten(Cake). The planning 
graph for the “have cake and eat cake too” problem up to level S2. Rectangles 
indicate actions (small squares indicate persistence actions), and straight lines 
indicate preconditions and effects. Mutex links are shown as curved gray lines. 
Not all mutex links are shown, because the graph would be too cluttered. In 
general, if two literals are mutex at Si, then the persistence actions for those 
literals will be mutex at Ai and we need not draw that mutex link. 

 

Fig 10.8 
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Planning Graphs for Heuristic Estimation 

 Level Cost: The level at which a literal first appears in the graph 
estimates the cost to achieve it. 

o Example: Have(Cake) appears at S₀; Eaten(Cake) appears 
at S₁. 

 Heuristic Approaches: 
1. Max-Level Heuristic: Maximum level cost of individual goals 

(admissible but less accurate). 
2. Level-Sum Heuristic: Sum of level costs (not admissible but 

practical). 
3. Set-Level Heuristic: Level at which all goals appear without mutual 

exclusion (accurate and admissible). 

 

The GRAPHPLAN Algorithm 

The GRAPHPLAN algorithm. GRAPHPLAN calls EXPAND-GRAPH to add a 

level until either a solution is found by EXTRACT-SOLUTION, or no solution 

is possible. 

 

Description: 

GRAPHPLAN uses planning graphs to extract a valid plan or determine that none exists. 

Steps: 

1. Expand Graph: Build levels of the planning graph until all goals are 
present and non-mutex. 

2. Extract Solution: Search for a valid plan using actions from the graph. 
3. Iterate: If a solution is not found, expand the graph further. 
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Example: 

For the spare tire problem: 

 Initial State (S₀): At(Spare, Trunk) ∧ At(Flat, Axle). 
 Goal: At(Spare, Axle). 
 Plan Extraction: 

o A₀: Remove(Flat, Axle) ∧ Remove(Spare, Trunk). 
o A₁: PutOn(Spare, Axle). 

 

Planning Graph Mutex Relations and EXTRACT-SOLUTION 

Mutex Relations in Planning Graphs 

1. Interference: 

o Example: Remove(Flat, Axle) and LeaveOvernight are mutex 
because: 

 Remove(Flat, Axle) requires At(Flat, Axle) as a 
precondition. 

 LeaveOvernight negates At(Flat, Axle) as an effect. 
2. Competing Needs: 

o Example: PutOn(Spare, Axle) and Remove(Flat, Axle) are mutex 
because: 

 PutOn(Spare, Axle) requires At(Flat, Axle) as a 
precondition. 

 Remove(Flat, Axle) negates At(Flat, Axle). 
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3. Inconsistent Support: 

o Example: At(Spare, Axle) and At(Flat, Axle) in S₂ are 
mutex because: 

 PutOn(Spare, Axle is required to achieve At(Spare, 
Axle). 

 It conflicts with the persistence of At(Flat, Axle). 

These mutex relations ensure conflicts like placing two objects in the 

same location are detected. 

 

EXTRACT-SOLUTION Algorithm 

Purpose: Determines if a solution exists by analyzing goals and resolving 

conflicts in the planning graph. 

 

Process: 

1. Initial State: 

o Start at the last level (Sₙ) of the planning graph with a set of 
unsatisfied goals. 

2. Actions Available: 

o At level Sᵢ, choose a conflict-free subset of actions from Aᵢ₋₁: 
 Actions whose effects cover the current goals. 
 Actions where neither the actions nor their preconditions 

are mutex. 
3. Goal State: 

o Reach S₀ where all goals are satisfied. 
4. Cost: 

o Each action has a cost of 1. 

 

Example Solution: Spare Tire Problem 

1. Start at S₂: Goal is At(Spare, Axle). 

o Only action: PutOn(Spare, Axle). 
o Leads to S₁ with goals: 

 At(Spare, Ground) 
 ¬At(Flat, Axle). 
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2. At S₁: 

o At(Spare, Ground) is achieved by Remove(Spare, Trunk). 
o ¬At(Flat, Axle) is achieved by Remove(Flat, Axle). 
o Conflict: LeaveOvernight is mutex with Remove(Spare, Trunk). 

3. Reach S₀: Goals are At(Spare, Trunk) and At(Flat, Axle). 

Both are present. 

o Solution: 
 A₀: Remove(Spare, Trunk), Remove(Flat, 

Axle). 
 A₁: PutOn(Spare, Axle). 

 

No-Good States 

 If no solution is found for a specific (level, goals) pair, mark it as 
no-good. 

 Prevent redundant searches by storing and reusing no-good results. 

 

Greedy Heuristic for Backward Search 

1. Select Literal: Start with the literal with the highest level cost. 
2. Choose Action: Prefer actions with simpler preconditions (sum or max 

level cost of preconditions is smallest). 

This approach provides efficient guidance to resolve goals during backward 

search. 

 

 

Termination of GRAPHPLAN 

Monotonic Properties: 

1. Literals: Increase monotonically across levels (once added, they persist). 
2. Actions: Increase monotonically with available preconditions. 
3. Mutexes: Decrease monotonically as conflicts resolve. 
4. No-Goods: Decrease as solutions become unachievable. 
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Guarantee of Termination: 

 The graph levels off when no new literals, actions, or mutexes are 
added. 

 If goals remain unreachable after leveling off, GRAPHPLAN terminates 
with failure. 

Termination of GRAPHPLAN (Simplified Rewrite) 

The GRAPHPLAN algorithm guarantees termination and correctly reports 

failure when no solution exists. Below is an explanation of why this is true. 

 

Why Can’t We Stop at Leveling Off? 

A planning graph "levels off" when two consecutive levels are identical, 

indicating that no new literals, actions, or mutexes are added. However, leveling 

off does not always mean a solution is present: 

 Example: 
In an air cargo problem with one plane and n pieces of cargo at airport 
A, destined for airport B: 

o A single piece of cargo can be transported in three steps: Load, 
Fly, Unload. 

o The graph levels off at level 4, but a full solution requires 4n - 1 
steps (accounting for return trips to pick up additional cargo). 

 

How Long Should We Expand the Graph? 

 EXTRACT-SOLUTION Failure: 
If the function fails to find a solution, it marks certain goal sets as no-
goods (unachievable sets of goals). 

o Continue expanding if fewer no-goods might exist at the next 
level. 

o Stop expanding when both the graph and the no-goods have 
leveled off, as no further solutions can emerge. 

 

Proof of Termination 
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Certain properties of planning graphs ensure they will always level off: 

1. Literals Increase Monotonically: 

o Once a literal appears at a level, it persists in all subsequent levels 
due to persistence actions (no-op actions that maintain literals). 

2. Actions Increase Monotonically: 

o If an action’s preconditions are present at a level, the action 
appears at that level and all subsequent levels. 

3. Mutexes Decrease Monotonically: 

o Mutexes (mutual exclusions) never reappear once resolved. 
o Reason: If actions or literals are mutex at a level, they remain so in 

prior levels. However, as more actions and literals appear, 
mutexes naturally decrease. 

4. No-Goods Decrease Monotonically: 

o A goal set marked as a no-good at one level cannot become 
achievable in previous levels. 

o Proof by Contradiction: If a no-good set was achievable at an 
earlier level, persistence actions could extend it to the current 
level, contradicting its status as a no-good. 

 

Key Termination Point 

 Finite Properties: 
o The number of actions and literals is finite. 
o Eventually, there will be a level where the number of actions, 

literals, mutexes, and no-goods remains unchanged. 
 Final Check: 

o If any goal is missing or mutex with another goal, the GRAPHPLAN 
algorithm terminates and returns failure. 

 

Conclusion 

The monotonic properties of planning graphs—literals and actions increasing, 

mutexes and no-goods decreasing—ensure that the graph levels off in finite 

time. At this point, GRAPHPLAN either finds a solution or confirms that none 

exists. For additional details, refer to Ghallab et al. (2004). 
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Logic Programming 
 Logic Programming:  

Logic programming is a method of building systems by writing rules and facts 

in a formal language. Problems are solved by reasoning based on this 

knowledge. This concept is summed up by Robert Kowalski’s principle: 

Algorithm = Logic + Control 
This means that logic specifies what the system should do, while control defines 

how it should execute. 

PROLOG 

Prolog is the most popular logic programming language. It’s used for quick 

prototyping and tasks like: 

 Writing compilers 

 Parsing natural language 

 Creating expert systems in fields like law, medicine, and finance 

Prolog Programs 

Prolog programs consist of rules and facts (called definite clauses) written in a 

special syntax. Here’s what makes Prolog different: 

1. Variables and Constants: Variables are uppercase (e.g., X), and 

constants are lowercase (e.g., john). 

2. Clause Structure: Instead of A ∧ B ⇒ C, Prolog writes it as C :- 

A, B. For example: 

criminal(X) :- american(X), weapon(Y), 

sells(X,Y,Z), hostile(Z). 

This means: "X is a criminal if X is American, Y is a weapon, X sells Y 

to Z, and Z is hostile." 

3. Lists: [E|L] represents a list where E is the first item, and L is the rest. 

Example: Appending Lists 

Here’s a Prolog program to join two lists, X and Y, into Z: 
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append([],Y,Y).   

append([A|X],Y,[A|Z]) :- append(X,Y,Z). 

This means: 

1. Appending an empty list to Y gives Y. 

2. To append [A|X] to Y, the result is [A|Z] if appending X to Y gives Z. 

You can also use it in reverse! For example, asking: 

append(X,Y,[1,2]). 

This query finds pairs of lists X and Y that combine to [1,2]. The answers are: 

 X=[] and Y=[1,2] 

 X=[1] and Y=[2] 

 X=[1,2] and Y=[] 

 

How Prolog Executes 

Prolog works using depth-first backward chaining: 

 It tries rules one by one, in the order written. 

 It stops as soon as a solution is found. 

 Some features make it faster but can cause issues: 

o Arithmetic Built-ins: It calculates results directly. For example: 

 X is 4+3 → Prolog sets X = 7. 

 5 is X+Y → Fails because Prolog doesn't solve general 

equations. 

o Side Effects: Predicates like assert (add facts) and retract 

(remove facts) can behave unpredictably. 

o Infinite Recursion: Prolog doesn’t check for infinite loops, so 

wrong rules might cause it to hang. 

 

Design Philosophy 

Prolog balances declarative logic (what should happen) with execution 

efficiency (how it runs). While not perfect, it’s a powerful tool for certain types 

of tasks! 
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Efficient Implementation of Logic Programs 

Prolog programs can run in two ways: interpreted mode and compiled mode. 

Here's how Prolog handles efficiency and parallel processing: 

 

How Prolog Works 

1. Interpreted Mode 
o In this mode, Prolog works like a problem-solving engine. It 

searches for solutions step by step in the program (called the 

knowledge base). 

o Prolog uses optimizations to speed things up, like: 

 Choice Points: A global stack keeps track of alternative paths 

when solving a problem. This makes execution faster and 

debugging easier. 

 Trail: When Prolog assigns a value to a variable, it 

remembers it in a "trail." If the current path fails, Prolog can 

quickly undo these assignments to try other options. 

2. Compiled Mode 
o In compiled mode, Prolog creates a specialized program for a 

specific task. This avoids repetitive work, like searching for rules, 

and makes it faster. 

o Compilers like the Warren Abstract Machine (WAM) optimize 

Prolog code by turning it into an intermediate language that can be 

executed more efficiently. 

 

Key Features of Prolog Execution 

1. Efficiency 
o Prolog’s interpreters are slower because they repeatedly analyze 

and match rules. 

o Compiled Prolog eliminates this overhead by directly using a 

tailored procedure for each rule. 

2. Choice Points and Continuations 
o Choice Points: Prolog keeps track of decisions made during 

problem-solving. If a path fails, it can backtrack to an earlier 

decision. 

o Continuations: These help Prolog keep track of "what to do next" 

when a solution is found. This ensures all possible solutions are 

explored efficiently. 
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3. Parallelization 
o OR-Parallelism: Prolog can explore multiple possible solutions 

simultaneously when a goal can match multiple rules. 

o AND-Parallelism: It can work on different parts of a problem 

(called conjuncts) at the same time. However, this is more complex 

because all parts need to agree on variable values. 

 

Why Prolog Is Useful 

 Prolog’s design lets it quickly handle tasks like planning, natural 

language processing, and AI research. 

 Thanks to optimization techniques, Prolog programs can run as fast as C 

for many tasks, while being easier to write for logic-based problems. 

In short, Prolog uses smart techniques like choice points, trails, and 

parallelization to solve problems efficiently. This makes it ideal for rapid 

prototyping in AI and other fields. 
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The pseudocode in the image describes how the Append predicate works when 

compiled into an optimized form. Here’s a breakdown of each part in simple 

terms: 

 

Purpose 

The Append(ax, y, az, continuation) procedure is designed to 

combine two lists (ax and y) to produce a new list az, while allowing further 

execution through a continuation (a function that specifies "what to do next"). 
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Key Components 

1. Trail Setup 
o trail ← GLOBAL-TRAIL-POINTER() 

 A trail is used to keep track of variable bindings. This helps 

Prolog undo (or "unbind") variable assignments if a path 

fails and backtracking is required. 

2. Base Case 
o if ax = [] and UNIFY(y, az) then 

CALL(continuation) 

 If ax (the first list) is empty, the result (az) should match y. 

 Prolog unifies the values of y and az and executes the next 

step using the continuation. 

3. Backtracking Preparation 
o RESET-TRAIL(trail) 

 If the base case fails, the trail is reset to undo bindings made 

during the failed attempt. This prepares Prolog to try the 

next possible solution. 

4. Recursive Case 
o a, x, z ← NEW-VARIABLE(), NEW-VARIABLE(), 

NEW-VARIABLE() 

 New variables (a, x, and z) are created to handle the 

decomposition of ax (splitting it into a head element a and 

the rest x). 

o if UNIFY(ax, [a | x]) and UNIFY(az, [a | z]) 

then APPEND(x, y, z, continuation) 

 The algorithm checks: 

1. If ax can be broken into a head (a) and tail (x), and 

2. If az can be built from a followed by z. 

 If both conditions are met, the procedure recursively calls 

itself to append the rest of the list (x) with y, building up the 

final result (z). 

5. Continuation Execution 
o After finding a valid solution, the continuation is called. It ensures 

the program continues with the next steps based on the solution 

found. 

 

Explanation of Figure 

 NEW-VARIABLE: Creates fresh variables to avoid conflicts with existing ones. 

 CALL(continuation): Executes the continuation, ensuring the program progresses. 
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 RESET-TRAIL: Cleans up variable bindings if a solution fails, enabling 

backtracking. 

 

Summary: The Append predicate in the pseudocode is an optimized version of 

appending two lists. It uses: 

1. Choice Points to explore alternatives. 

2. Trail Management to undo changes when backtracking. 

3. Continuations to handle the next steps in execution. 

This approach allows efficient execution and flexibility in handling multiple 

solutions. 

 

Redundant Inference and Infinite Loops in Prolog 

Key Issue: Prolog’s use of depth-first search can cause two major problems 

when working with graphs: 

1. Infinite Loops 

2. Redundant Computations 

 

1. Infinite Loops 

 Prolog uses depth-first backward chaining to answer queries. 

 In some cases, Prolog keeps following paths indefinitely, creating infinite 

loops. 

Example of Infinite Loops 

The program checks if a path exists between two nodes using this logic: 

path(X, Z) :- link(X, Z).           % Base case: 

Direct link exists 

path(X, Z) :- path(X, Y), link(Y, Z). % Recursive 

case: Connect through another node 

 For a graph like in Figure 9.9(a) (nodes A → B → C), asking Prolog if 

path(a, c) exists: 
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o If the base case is checked first, Prolog finds the path without 

issues. This is shown in Figure 9.10(a). 

o If the recursive case is checked first (i.e., the order of the clauses 

is reversed), Prolog follows paths indefinitely. This is shown in 

Figure 9.10(b). 

 
Source Book: Stuart J. Russell and Peter Norvig, Artificial Intelligence, 3rd Edition, Pearson,2015 
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Why It Happens: 

Depth-first search keeps exploring deeper paths without checking if a solution 

already exists or if the current path is looping. 
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2. Redundant Computations 

Even when there are no infinite loops, Prolog’s depth-first search can waste 

time by repeatedly calculating the same paths. 

Example of Redundancy 

In Figure 9.9(b), finding a path from A1 to J4 requires 877 inferences because 

Prolog keeps checking all possible paths, even those that don’t lead to the goal. 

Most of these paths are unnecessary. 

Comparison with Forward Chaining: 

 Forward Chaining: 
o It computes all paths once and stores the results (dynamic 

programming). For the same problem, forward chaining only 

requires 62 inferences. 

 Depth-First Backward Chaining: 

o It doesn’t remember previously computed results, leading to 

repeated calculations. 

 

Solutions to Prolog’s Problems 

1. Memoization 
o Cache solutions to subproblems (subgoals) as they are found. 

o If a subgoal is encountered again, use the cached result instead of 

recomputing it. 

2. Tabled Logic Programming 
o Combines the goal-directed nature of backward chaining with the 

efficiency of forward chaining. 

o It avoids infinite loops and redundant calculations by remembering 

results (similar to dynamic programming). 

 

Benefits of Tabled Logic Programming 

 Complete for Datalog Knowledge Bases: 
o Ensures all valid solutions are found without infinite loops. 

 Efficient: 
o Reduces redundant computations by caching results. 
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However, it cannot handle predicates with potentially infinite objects (e.g., 

father(X, Y) for all possible pairs of people). 

 
 

Database Semantics of Prolog 

Prolog uses a special way of interpreting facts called database semantics, 

which is simpler and more efficient than full first-order logic (FOL). Here's how 

it works: 

 

1. Unique Names Assumption 

 In Prolog, every constant or ground term refers to a unique, distinct 

object. 

o Example: CS and EE are different, just as 101, 102, and 106 are 

all different. 

 

2. Closed World Assumption 

 Prolog assumes that only the facts explicitly stated in the knowledge 

base are true. 

 If something isn’t in the knowledge base, Prolog assumes it is false. 

o For instance, if the Prolog facts are: 

Course(CS, 101),  

Course(CS, 102),  

Course(CS, 106),  

Course(EE, 101). 

 This means there are exactly four courses. 

 Prolog assumes there are no other courses unless stated 

explicitly. 
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Comparison with First-Order Logic (FOL) 

 In FOL, the same facts would mean: 

o At least one course exists. 

o There might be more courses that aren’t mentioned. 

 In Prolog, however, the closed world assumption guarantees that there 

are exactly four courses. 

 

Why Prolog is Simpler 

1. Prolog Assumptions Make It Efficient: 

o Prolog doesn't allow for uncertainty (e.g., unmentioned courses). 

This keeps reasoning simpler and faster. 

2. Prolog Doesn't Handle "False" Assertions: 

o Unlike FOL, you can’t directly state that something is false in 

Prolog. 

 

How This Works Mathematically 

If we convert the Prolog facts into FOL, we would write something like: 

Course(d, n) ⇔ (d=CS ∧ n=101) ∨ (d=CS ∧ n=102) ∨ 
(d=CS ∧ n=106) ∨ (d=EE ∧ n=101). 

 This expresses the idea that exactly four courses exist, but the process 

becomes more complicated. 

 

Practical Takeaway 

 Use Prolog for database-like problems: 

o If the problem can be described with database semantics (unique 

names + closed world), Prolog is simpler and more efficient. 

o Translating everything into FOL and reasoning with a full theorem 

prover is more powerful but slower and less practical. 

 



Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT. 
 
 

In short, Prolog’s database semantics make it less expressive than FOL but 

much more efficient for certain tasks, such as reasoning about a fixed set of 

known facts. 

Constraint Logic Programming (CLP)

 

1. What is Constraint Logic Programming (CLP)? 

CLP is a type of logic programming that combines logic rules with constraints. 

Unlike standard Prolog, which only works with finite solutions, CLP can handle 

more complex problems, including those with infinite domains like integers or 

real numbers. 

 

2. How Prolog Handles Constraints 

 Standard Prolog solves problems using backtracking (exploring 

possibilities one by one), which works for finite-domain problems. 

o Example: If three colors are allowed, the query diff(Q, SA) 

(Queensland and South Australia must have different colors) will 

have six possible solutions. 

 But Prolog fails with infinite-domain problems, like checking conditions 

involving integers or real numbers. 

 

3. Example Problem: Triangle Inequality 

Let’s define a rule to check if three numbers can form a triangle: 

triangle(X, Y, Z) :-  

    X > 0, Y > 0, Z > 0,  

    X + Y >= Z, Y + Z >= X, X + Z >= Y. 

 If you ask Prolog triangle(3, 4, 5), it works because all values are 

known. 

 But if you ask triangle(3, 4, Z), Prolog fails because it cannot 

handle unbound variables in comparisons like Z >= 0. 
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4. How CLP Solves This 

 CLP allows variables to remain constrained instead of fully defined. 

 For the query triangle(3, 4, Z), the result will be: 

o 7 >= Z >= 1 (Z must be between 1 and 7 to form a triangle). 

This makes CLP more powerful than standard Prolog for solving constraint 

satisfaction problems (CSPs). 

 

5. CLP Algorithms 

 CLP uses specialized algorithms to solve different types of constraints. 

o Example: For real-valued variables and linear inequalities, CLP 

might use linear programming. 

 Unlike Prolog's default depth-first backtracking, CLP systems use more 

advanced techniques like: 

o Heuristic conjunct ordering: Solving the simplest part of the 

problem first. 

o Backjumping: Skipping unnecessary steps when a dead-end is 

reached. 

o Cutset conditioning: Breaking problems into smaller, manageable 

parts. 

 

6. Flexibility of CLP Systems 

 CLP systems allow more control over how problems are solved: 

o Programmers can write rules to specify the order in which 

constraints are checked. 

o For example, they can choose to first solve constraints with the 

fewest unknowns. 

 Tools like the MRS language enable this level of customization. 

 

CLP combines the best of logic programming, constraint-solving, and database 

techniques to solve problems more efficiently, especially for those involving 

constraints on variables (like ranges or inequalities). It’s more flexible and 

powerful than standard Prolog for complex scenarios. 

 


