
Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

AI_Module5

Syllabus :
Inference in First Order Logic: Backward Chaining, Resolution
Classical Planning: Definition of Classical Planning, Algorithms for Planning as
State-Space Search, Planning Graphs
Chapter 9-9.4, 9.5
Chapter 10- 10.1,10.2,10.3

Topics:

1. Inference in First Order Logic

a. Backward Chaining,

b. Resolution

2. Classical Planning

a. Definition of Classical Planning

b. Algorithms for Planning as State Space Search

c. Planning Graphs

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Backward Chaining
Backward chaining is a reasoning method that starts with the goal and works

backward through the inference rules to find out whether the goal can be

satisfied by the known facts.

It's essentially goal-driven reasoning, where the system seeks to prove the

hypothesis by breaking it down into subgoals and verifying if the premises

support them.

Example : Consider the following knowledge base representing a simple

diagnostic system:

1. If a patient has a fever, it might be a cold.

2. If a patient has a sore throat, it might be strep throat.

3. If a patient has a fever and a sore throat, they should see a doctor.

Given the facts:

• The patient has a fever.

• The patient has a sore throat.

Backward chaining would proceed as follows:

• Start with the goal: Should the patient see a doctor?

• Check the third rule: Does the patient have a cold and a sore throat? Yes.

• Check the first and second rules: Does the patient have a fever and sore

throat? Yes.

• The goal is satisfied: The patient should see a doctor.

Backward chaining is useful when there is a specific goal to be achieved, and the

system can efficiently backtrack through the inference rules to determine

whether the goal can be satisfied.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Backward Chaining: Algorithm
These algorithms work backward from the goal, chaining through rules to find

known facts that support the proof.

Source Book: Stuart J. Russell and Peter Norvig, Artificial Intelligence, 3rd Edition, Pearson,2015

Overview of the Algorithm

1. Goal:

o The purpose of the algorithm is to determine whether a query

(goal) can be derived from a given knowledge base (KB).

2. Process:

o It uses backward chaining, meaning it starts with the goal and

works backward by looking for rules or facts in the knowledge

base that could satisfy the goal.

o The algorithm returns substitutions (values or variables) that make

the query true.

3. Key Components:

o FOL-BC-ASK: This is the main function that starts the backward-

chaining process by calling FOL-BC-OR.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

o FOL-BC-OR: This function checks whether the goal can be

satisfied by any rule in the KB. It iterates over applicable rules and

tries to unify the goal with the rule’s conclusions.

o FOL-BC-AND: This function handles multiple sub-goals. It

ensures that all sub-goals are satisfied for the main goal to be true.

4. Key Terminology:

o FOL-BC-ASK: Entry point for the algorithm.

o FOL-BC-OR: Handles rules and checks if the goal is satisfied by

any rule.

o FOL-BC-AND: Ensures all sub-goals are satisfied.

o FETCH-RULES-FOR-GOAL: Retrieves applicable rules for a

goal.

o UNIFY: Matches terms by finding substitutions.

o Standardize Variables: Ensures variable names are unique to avoid

conflict.

o θ: The substitution carried into the current function call.

o θ′: A substitution produced by solving the first sub-goal in FOL-BC-

AND.

o θ′′: A substitution produced by solving the remaining sub-goals

using the updated θ′.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Detailed Algorithm Steps

Step 1: FOL-BC-ASK(KB, query):

 Start with the query and call FOL-BC-OR.

 Example: For Ancestor(John, Sam), call:

o FOL-BC-OR(KB, Ancestor(John, Sam), { }).

Step 2: FOL-BC-OR(KB, goal, θ):

 Fetch all rules from the KB that could produce the goal.

 For each rule:

1. Standardize Variables: Make rule variables unique to avoid

conflicts.

2. Unify rhs and goal: Match the conclusion of the rule (rhs)

with the current goal using Unify. This updates θ.

3. Call FOL-BC-AND: Recursively evaluate the conditions (lhs) of

the rule with the updated θ.

 Yield θ′: Each substitution that satisfies the rule is yielded back to the

caller.

Step 3: FOL-BC-AND(KB, goals, θ):

 Handles multiple sub-goals (goals) produced from the rule's conditions.

1. If goals is empty, yield θ because all sub-goals are satisfied.

2. Otherwise:

o Split goals into first and rest.

o Call FOL-BC-OR for the first goal.

o For each result (θ′) from FOL-BC-OR:

 Recursively solve rest using FOL-BC-AND with the

updated θ′.

 Yield θ′′, the result of solving all sub-goals.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Step-by-Step Explanation with Example

Let’s use the following Knowledge Base (KB) and query.

Knowledge Base:

1. Parent(x, y) ⇒ Ancestor(x, y) (Rule 1)
2. Parent(x, z) ∧ Ancestor(z, y) ⇒ Ancestor(x, y) (Rule 2)
3. Parent(John, Mary) (Fact)
4. Parent(Mary, Sam) (Fact)

Query: Ancestor(John, Sam)

Execution Steps

Step 1: FOL-BC-ASK

 Query: Ancestor(John, Sam)
 Calls: FOL-BC-OR(KB, Ancestor(John, Sam), { }).

Step 2: FOL-BC-OR

 Goal: Ancestor(John, Sam)
 Fetch rules for Ancestor:

1. Rule 1: Parent(x, y) ⇒ Ancestor(x, y)
2. Rule 2: Parent(x, z) ∧ Ancestor(z, y) ⇒ Ancestor(x, y)

Case 1: Use Rule 1

 lhs = Parent(x, y), rhs = Ancestor(x, y).

 Unify Ancestor(John, Sam) with Ancestor(x, y):
o Substitution: θ = {x=John, y=Sam}.

 Sub-goal: Parent(John, Sam).

Step 3: FOL-BC-AND

 Goals: [Parent(John, Sam)]
 Calls: FOL-BC-OR(KB, Parent(John, Sam), {x=John, y=Sam}).

Step 4: FOL-BC-OR

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

 Goal: Parent(John, Sam)
 Check the KB:

o Facts: Parent(John, Mary) (no match for Sam).
o Rule 1 fails.

Case 2: Use Rule 2

 lhs = Parent(x, z) ∧ Ancestor(z, y), rhs = Ancestor(x, y).

 Unify Ancestor(John, Sam) with Ancestor(x, y):
o Substitution: θ = {x=John, y=Sam}.

 Sub-goals:
o goals = [Parent(John, z), Ancestor(z, Sam)].

Step 5: FOL-BC-AND

 Goals: [Parent(John, z), Ancestor(z, Sam)].

1. First sub-goal (Parent(John, z)):

o Calls: FOL-BC-OR(KB, Parent(John, z), θ).

o Matches: Parent(John, Mary).
o Substitution: {z=Mary}.
o Update θ′: {x=John, y=Sam, z=Mary}.

2. Second sub-goal (Ancestor(z, Sam)):

o Calls: FOL-BC-OR(KB, Ancestor(Mary, Sam), θ′).
o Unify with Rule 1: Parent(x, y) ⇒ Ancestor(x, y).
o Sub-goal: Parent(Mary, Sam).

Step 6: FOL-BC-AND

 Goal: [Parent(Mary, Sam)].
 Matches fact: Parent(Mary, Sam).
 Substitution: {x=Mary, y=Sam}.
 Satisfies all sub-goals.

Final Result

 Combine all substitutions:

o {x=John, y=Sam, z=Mary}.
 The query Ancestor(John, Sam) is true.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Source Book: Stuart J. Russell and Peter Norvig, Artificial Intelligence, 3rd Edition, Pearson,2015

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Resolution

Resolution is a fundamental inference rule used in automated theorem proving

and logic programming. It is based on the principle of proof by contradiction.

Resolution combines logical sentences in the form of clauses to derive new

sentences.

The resolution rule states that if there are two clauses that contain

complementary literals (one positive, one negative) then these literals can be

resolved, leading to a new clause that is inferred from the original clauses.

Example1:

Consider two logical statements:

1. P∨Q

2. ¬P∨R

Applying resolution: Resolve the statements by eliminating P:

• P∨Q

• ¬P∨R

Resolving P and ¬P: Q∨R

The resulting statement Q∨R is a new clause inferred from the original two.

Resolution is a key component of logical reasoning in FOL, especially in tasks like

automated theorem proving and knowledge representation.

Example2:

Clause 1: (P∨Q∨R)

Clause 2:(¬P∨¬Q∨S)

To resolve these clauses, we look for complementary literals. In this case, P and

¬P are complementary.

So, we can resolve these two clauses by removing the complementary literals

and combining the remaining literals: (P∨Q∨R) and ((¬P∨¬Q∨S)

Resolving P and ¬P gives: (Q∨R)∨(¬Q∨S)

This is the resolvent.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Conjunctive Normal Form

A formula is in CNF if it is a conjunction (AND) of clauses, where each clause is

a disjunction (OR) of literals.

CNF Examples

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Proof By Resolution Process includes the following steps in general

1. Initial Set of Clauses (Knowledge Base)

2. Negate the Conclusion:

3. Apply Resolution

4. Continue Resolving

5. Conclusion

6. Termination

Example 1:

Let's consider a simplified example of a knowledge base for the Wumpus World

scenario and demonstrate proof by resolution to establish the unsatisfiability of

a certain statement.

In Wumpus World, an agent explores a grid containing a Wumpus (a monster),

pits, and gold. Apply the resolution to prove P[1,2].

 Knowledge Base (KB)

1. W[1,1] ∨ P[1,2]

2. ¬W[1,1]∨¬P[1,2]

3. B[1,2]⇒P[1,2]

4. ¬B[1,2]⇒¬P[1,2]

 Convert the Knowledge Base (KB) into CNF

 Negated Conclusion:

Let's say we want to prove the negation of the statement: ¬PitIn[1,2]

 Apply Resolution:

1. W[1,1] ∨ P[1,2] , ¬P[1,2] resolves into W[1,1]

2. ¬W[1,1]∨¬P[1,2], W[1,1] resolves into ¬P[1,2]

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

3. ¬B[1,2] ∨ P[1,2] , ¬P[1,2] resolves into ¬B[1,2]

4. B[1,2] ∨¬P[1,2], ¬B[1,2] resolves into ¬P[1,2]

Applying resolution, we end up with: ¬P[1,2] , Which is not empty and also

there is not further any clauses to continue. This gives conclusion that our

negation conclusion is False and P[1,2] is true for the given knowledge base.

Example 2:

A grammar for conjunctive normal form

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Conjunctive normal form for first-order logic:

As in the propositional case, first-order resolution requires that sentences be in

conjunctive normal form (CNF)—that is, a conjunction of clauses, where each

clause is a disjunction of literals.

Literals can contain variables, which are assumed to be universally quantified.

For example, the sentence

• ∀ x American(x) ∧ Weapon(y) ∧ Sells(x, y, z) ∧ Hostile(z) ⇒ Criminal(x)

becomes, in CNF,

¬American(x) ∨ ¬Weapon(y) ∨ ¬Sells(x, y, z) ∨ ¬Hostile(z) ∨ Criminal(x)

Every sentence of first-order logic can be converted into an inferentially

equivalent CNF sentence. The procedure for conversion to CNF is similar to the

propositional case, The principal difference arises from the need to eliminate

existential quantifiers.

We illustrate the procedure by translating the sentence

“Everyone who loves all animals is loved by someone,”

or

∀ x [∀ y Animal(y) ⇒ Loves(x, y)] ⇒ [∃ y Loves(y, x)] .

Steps

• Eliminate implications: ∀ x [¬∀ y ¬Animal(y) ∨ Loves(x, y)] ∨ [∃ y

Loves(y, x)] .

• Move ¬ inwards: In addition to the usual rules for negated connectives,

we need rules for negated quantifiers. Thus, we have

• ¬∀ x p becomes ∃ x ¬p

• ¬∃ x p becomes ∀ x ¬p .

• Our sentence goes through the following transformations:

• ∀ x [∃ y ¬(¬Animal(y) ∨ Loves(x, y))] ∨ [∃ y Loves(y, x)] .

• ∀ x [∃ y ¬¬Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)] .

• ∀ x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)] .

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

• Standardize variables: For sentences like (∃ x P(x))∨(∃ x Q(x)) which use

the same variable name twice, change the name of one of the variables.

This avoids confusion later when we drop the quantifiers. Thus, we have

• ∀ x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ z Loves(z, x)] .

• Skolemize: Skolemization is the process of removing existential

quantifiers by elimination. Translate ∃ x P(x) into P(A), where A is a new

constant.

• Example :

• ∀ x [Animal(A) ∧ ¬Loves(x, A)] ∨ Loves(B, x) ,

• ∀ x [Animal(F(x)) ∧ ¬Loves(x, F(x))] ∨ Loves(G(z), x) . Here F

and G are Skolem functions.

• Drop universal quantifiers: At this point, all remaining variables must be

universally quantified. Moreover, the sentence is equivalent to one in

which all the universal quantifiers have been moved to the left. We can

therefore drop the universal quantifiers:

• [Animal(F(x)) ∧ ¬Loves(x, F(x))] ∨ Loves(G(z), x) .

• Distribute ∨ over ∧:

[Animal(F(x)) ∨ Loves(G(z), x)] ∧ [¬Loves(x, F(x)) ∨ Loves(G(z), x)] .

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

The resolution inference rule

• Two clauses, which are assumed to be standardized apart so that they

share no variables, can be resolved if they contain complementary

literals.

• Propositional literals are complementary if one is the negation of the

other;

• first-order literals are complementary if one unifies with the negation of

the other.

• Thus We have

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Suppose Curiosity did not kill Tuna. We know that either Jack or

Curiosity did; thus Jack must have. Now, Tuna is a cat and cats are

animals, so Tuna is an animal. Because anyone who kills an animal is

loved by no one, we know that no one loves Jack. On the other hand,

Jack loves all animals, so someone loves him; so we have a

contradiction. Therefore, Curiosity killed the cat.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Summary

1. Forward chaining starts with known facts and moves forward to reach

conclusions,

2. Backward chaining starts with the goal and moves backward to verify if

the goal can be satisfied, and

3. Resolution is an inference rule used to derive new clauses by combining

existing ones.

These techniques are essential for reasoning and inference in First-Order Logic

systems.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Completeness of resolution

Resolution is a method in logic that can prove whether a set of statements is

unsatisfiable. If the statements are unsatisfiable (i.e., there’s no way they can all

be true at once), resolution will eventually find a contradiction.

 Unsatisfiable set of statements: Means the statements can't all be true

together.

 Contradiction: A clear proof that the statements conflict with each other.

Key Idea

If a set of statements is unsatisfiable, resolution can always derive a contradiction,

proving unsatisfiability. This doesn’t mean resolution finds all logical

consequences—it’s focused on checking contradictions.

Steps in Proving Completeness

1. Transforming to Clausal Form:

Any logical statement can be converted into a standard form called

Conjunctive Normal Form (CNF). This is the foundation for using

resolution.

2. Using Herbrand's Theorem:

Herbrand's theorem says if the set of statements is unsatisfiable, there’s a

specific subset of ground instances (statements without variables) that’s

also unsatisfiable.

3. Applying Ground Resolution:

For these ground instances, propositional resolution (which works with

statements without variables) can find the contradiction.

4. Lifting to First-Order Logic:

A "lifting lemma" proves that if there’s a resolution proof for the ground

instances, there’s also one for the original statements with variables. This

ensures resolution works for first-order logic, not just simple ground

statements.

Structure of a completeness proof for resolution is illustrated in the figure
below:

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

What Are Ground Terms and Herbrand's Universe?

 Ground terms: Statements with no variables, created by substituting

constants or functions.

 Herbrand Universe: A collection of all possible ground terms that can

be built from the constants and functions in the given statements.

 Saturation: Generating all possible combinations of ground terms in the

statements.

Herbrand's theorem ensures we only need to check a finite subset of these terms

to find a contradiction.

Why is the Lifting Lemma Important?

The lifting lemma connects proofs for ground terms to proofs for first-order logic. It "lifts"

results from simpler cases (propositional logic) to more general cases (with variables). This

step is essential to show resolution's power in first-order logic.

The Conclusion

If a set of statements is unsatisfiable:

 Resolution finds a contradiction using a finite number of steps.

 This proof works for both simple ground statements and complex first-

order logic.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

This makes resolution a powerful tool in automated theorem proving!

The Lifting Lemma Explained

The lifting lemma is a principle that allows us to "lift" a resolution proof from

specific ground instances (statements without variables) to general first-order

logic (statements with variables). Here's how it works:

 C₁ and C₂: Two clauses that do not share variables.

 C′₁ and C′₂: Ground instances of C₁ and C₂ (created by substituting

variables with constants or terms).

 C′: A resolvent (a result of applying the resolution rule) of C′₁ and C′₂.

The lemma states:

There exists a clause C such that:

1. C is a resolvent of C₁ and C₂ (it works at the variable level).

2. C′ is a ground instance of C.

In simpler terms, if resolution works for specific ground instances, we can

always find a corresponding proof for the original first-order clauses.

Example

Let’s illustrate with an example:

1. Original clauses with variables:

o C1=¬P(x,F(x,A))∨¬Q(x,A)∨R(x,B)

o C2=¬N(G(y),z)∨P(H(y),z)

2. Ground instances (after substituting variables with specific terms):

o C′1=¬P(H(B),F(H(B),A))∨¬Q(H(B),A)∨R(H(B),B)

C′2=¬N(G(B),F(H(B),A))∨P(H(B),F(H(B),A))

3. Resolvent of the ground instances:

o C′=¬N(G(B),F(H(B),A))∨¬Q(H(B),A)∨R(H(B),B)

4. Lifted clause (with variables):

o C=¬N(G(y),F(H(y),A))∨¬Q(H(y),A)∨R(H(y),B)

Here, C′ is a ground instance of C, showing how the lifting lemma bridges

ground-level proofs to general first-order logic.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

This lemma is crucial because it ensures that resolution proofs for specific cases

(ground terms) can be generalized to more complex first-order logic, making the

method powerful and versatile.

Handling Equality in Inference Systems

So far, inference methods don't naturally handle statements like x=y. To deal

with equality, we can take one of three approaches.

1. Axiomatizing Equality

We write rules (axioms) in the knowledge base that define how equality works.

These rules must express:

 Reflexivity: x=x

 Symmetry: x=y⇒y=x

 Transitivity: x=y∧y=z⇒x=z

Additionally, we add rules to allow substitution of equal terms in predicates and

functions. For example:

 x=y⇒(P(x)⇔P(y)) (for predicates P)

 w=y∧x=z⇒F(w,x)=F(y,z)(for functions F)

Using these axioms, standard inference methods like resolution can handle

equality reasoning (e.g., solving equations). However, this approach can

generate many unnecessary conclusions, making it inefficient.

2. Demodulation: Adding Inference Rules

Instead of axioms, we can add specific inference rules like demodulation to

handle equality.

How it works:

 If x=y (a unit clause) and a clause α contains x, we replace x with y in α.

 Demodulation simplifies expressions in one direction (e.g., x+0=x allows

x+0 to simplify to x, but not vice versa).

Example:

Given:

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

 Father(Father(x))=PaternalGrandfather(x)

 Birthdate(Father(Father(Bella)), 1926)

We use demodulation to derive:

 Birthdate(PaternalGrandfather(Bella), 1926)

3. Paramodulation

A more general rule, paramodulation, extends demodulation to handle cases

where equalities are part of more complex clauses.

How it works:

 If x=y appears as part of a clause and a term z in another clause unifies

with x, substitute y for x in z.

Formal Rule:

 For any terms x, y, and z:

o If z appears in a clause mmm and x unifies with z,

o Replace x with y in m, while preserving other parts of the clause.

Summary

 Axiomatization defines equality with explicit rules but can be inefficient.

 Demodulation simplifies terms by replacing variables with their equal

counterparts in one direction.

 Paramodulation generalizes equality handling for complex clauses.

These methods provide efficient ways to incorporate equality reasoning into

inference systems.

More formally we have

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Resolution Strategies

Resolution inference is guaranteed to find a proof if one exists, but some

strategies can make the process more efficient. Below are key strategies and

their applications.

Unit Preference

 Focuses on resolving clauses where one is a unit clause (a single literal).

 Resolving a unit clause (e.g., P) with a longer clause (e.g., ¬P∨¬Q∨R)

results in a shorter clause (¬Q∨R).

 This strategy, first applied in 1964, dramatically improved the efficiency

of propositional inference.

 Unit Resolution: A restricted form of this strategy, requiring every

resolution step to involve a unit clause.

o Complete for Horn Clauses: Proofs resemble forward chaining.

o Incomplete in General: Not suitable for all forms of knowledge

bases.

 Example: The OTTER theorem prover employs a best-first search with

a heuristic that assigns “weights” to clauses, favoring shorter ones (e.g.,

unit clauses).

Set of Support

 Restricts resolutions to involve at least one clause from a predefined set

of support.

 The set of support typically includes the negated query or clauses likely

to lead to a proof.

 Resolutions add their results to this set, significantly reducing the search

space if the set is small.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

 This strategy is complete if the remaining sentences in the knowledge

base are satisfiable.

 Advantages:

o Generates goal-directed proof trees, which are easier for humans

to interpret.

Input Resolution

 In this strategy, resolutions always involve one of the original input

clauses (from the knowledge base or the query).

 Example: Modus Ponens in Horn knowledge bases is an input resolution

strategy, as it combines an implication from the KB with other sentences.

 Linear Resolution: A generalization where PPP and QQQ can be

resolved if PPP is either an input clause or an ancestor of QQQ in the

proof tree.

o Complete for Linear Resolution: Particularly useful in structured

proofs.

Subsumption

 Eliminates redundant sentences in the knowledge base that are

subsumed by more general sentences.

 Example: If P(x) is in the KB, there’s no need to add P(A) or P(A)∨Q(B).

 Benefits:

o Reduces the size of the knowledge base.

o Keeps the search space manageable.

Applications of Resolution Theorem Provers

Resolution theorem provers are widely used in the synthesis and verification of

both hardware and software systems.

1. Hardware Design and Verification

 Axioms describe the interactions between signals and circuit components.

 Example: Logical reasoners have verified entire CPUs, including timing

properties.

 AURA Theorem Prover: Used to design highly compact circuits.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

2. Software Verification and Synthesis

 Similar to reasoning about actions, axioms define the preconditions and

effects of program statements.

 Algorithm Synthesis:

o Deductive synthesis constructs programs to meet specific criteria.

o Although fully automated synthesis is not yet practical for general-

purpose programming, hand-guided synthesis has successfully

created sophisticated algorithms.

 Verification Tools: Systems like the SPIN model checker are used to

verify programs such as:

o Remote spacecraft control systems.

o Algorithms like RSA encryption and Boyer–Moore string

matching.

Summary

Resolution strategies like unit preference, set of support, input resolution, and

subsumption improve proof efficiency by focusing on relevance, reducing

redundancy, and constraining the search space. Applications in hardware and

software demonstrate their importance in real-world problem-solving.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

5.3 Classical Planning:

Syllabus: Definition of Classical Planning, Algorithms for Planning as State-

Space Search, Planning Graphs.

5.3.1 The Definition of Classical Planning

Classical planning focuses on solving problems by identifying sequences of

actions that transition from an initial state to a goal state. In this approach factored

representations is adopted, where a state is expressed as a collection of

variables. This approach uses the Planning Domain Definition Language

(PDDL), which enables concise representation of actions through schemas,

reducing redundancy. For instance, instead of defining individual actions for all

possible combinations, a single action schema in PDDL can represent multiple

actions by using variables.

5.3.1.1 Representing States in Classical Planning

States are represented as conjunctions of fluents—ground, functionless

atomic facts. For example:

 Poor ∧ Unknown: Represents the state of a struggling agent.
 At(Truck1, Melbourne) ∧ At(Truck2, Sydney): Represents locations of

trucks in a delivery problem.

The representation follows:

1. Closed-world assumption: Any fluent not explicitly mentioned is
considered false.

2. Unique names assumption: Different symbols (e.g., Truck1 and Truck2)
represent distinct entities.

Certain constructs are disallowed in states, such as:

 Non-ground fluents: e.g., At(x, y).
 Negations: e.g., ¬Poor.
 Function symbols: e.g., At(Father(Fred), Sydney).

States can be manipulated as either conjunctions of fluents (using logical

inference) or sets of fluents (using set operations).

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

5.3.1.2 Defining Actions with Schemas

Actions are defined using schemas, which specify:

 The action name and variables.
 Precondition: The required state for the action to execute.
 Effect: The state resulting from the action.

For example, an action schema for flying a plane is:

Action(Fly(p, from, to),

 PRECOND: At(p,from)∧Plane(p) ∧ Airport(from) ∧ Airport(to),

 EFFECT: ¬At(p, from) ∧ At(p, to))

From this schema, specific actions can be instantiated by substituting variable

values.

For instance:

Action(Fly(P1, SFO, JFK),

 PRECOND: At(P1, SFO) ∧ Plane(P1) ∧ Airport(SFO) ∧
Airport(JFK),

 EFFECT: ¬At(P1, SFO) ∧ At(P1, JFK))

An action is applicable in a state if its preconditions are satisfied. When

executed, the resulting state is determined by:

 Removing fluents in the delete list (negative effects).
 Adding fluents in the add list (positive effects).

For example, executing Fly(P1, SFO, JFK) in a state would remove At(P1,

SFO) and add At(P1, JFK).

5.3.1.3 Planning Domains and Problems

A planning domain is defined by a set of action schemas. A specific problem

within the domain includes:

1. Initial state: A conjunction of ground fluents.
2. Goal: A conjunction of literals, possibly containing variables treated as

existentially quantified.
The planning problem is solved when a sequence of actions leads to a state that

satisfies the goal.

For example:

 The state Plane(Plane1) ∧ At(Plane1, SFO) satisfies the goal At(p, SFO) ∧
Plane(p).

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

5.3.1.4 Limitations in Early Approaches:

1. Atomic State Representations (Chapter 3 Problem-Solving Agent):
o States are treated as indivisible entities, leading to a lack of structure in

representations.

o This approach relies heavily on domain-specific heuristics for effective

problem-solving, limiting its generalizability and requiring significant manual

tuning for each domain.

2. Ground Propositional Inference (Chapter 7 Hybrid Propositional Logic Agent):
o Uses domain-independent heuristics, reducing the need for manual tuning.

o However, it relies on ground (variable-free) propositional inference, which

becomes computationally infeasible with large state spaces or a high number

of actions.

o Example: In the Wumpus World, a simple move action must account for all

possible orientations, time steps, and grid locations, causing a combinatorial

explosion in the number of actions.

5.3.1.5 Overcoming Limitations with Factored Representations:

1. Structured State Representation:
o States are expressed as collections of variables, enabling a more structured and

compact representation.

o This approach captures relationships and dependencies between state

components, improving efficiency and scalability.

2. Use of PDDL (Planning Domain Definition Language):
o Action Schemas: Introduced to reduce redundancy by representing actions with

variables rather than enumerating all possible instances.

Example: Instead of defining actions for every plane and airport combination, a

single schema can describe the action of flying a plane between airports.

o Domain Independence: PDDL allows concise and reusable descriptions of

actions and states, supporting various domains without customization.

3. Improved Computational Efficiency:
o By focusing on factored representations and logical reasoning over variables,

the new approach avoids the combinatorial explosion seen in propositional

logic.

o This scalability makes classical planning applicable to complex domains with

numerous states and actions.

Summary of Improvement: The transition from atomic and ground representations to

factored representations with PDDL enables classical planning to handle larger, more

complex problems with greater efficiency and flexibility. This advancement overcomes the

scalability challenges of earlier approaches while reducing dependency on domain-specific

heuristics.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

5.3.1.6 Example : Air cargo transport

The air cargo transport problem, illustrated in Figure 10.1, involves transporting

cargo between airports by loading, unloading, and flying planes. This problem

uses three main actions: Load, Unload, and Fly, which operate on two primary

predicates:

1. In(c, p): Indicates that cargo c is inside plane p.
2. At(x, a): Specifies that an object x (plane or cargo) is located at airport

a.

To ensure the correct maintenance of the At predicates, special care is required.

When a plane flies from one airport to another, all cargo inside the plane must

also move with it. While first-order logic can easily quantify over all objects

within the plane, basic PDDL lacks universal quantifiers. Therefore, a different

solution is adopted:

 Cargo ceases to be At any location once it is loaded into a plane (it is
considered In the plane).

 The cargo becomes At the destination airport only when it is unloaded
from the plane.

Thus, At(x, a) effectively signifies "available for use at a given location."

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Example Solution Plan : A valid solution plan for transporting cargo C1

and C2 is as follows:

1. Load(C1, P1, SFO): Load cargo C1 onto plane P1 at airport SFO.
2. Fly(P1, SFO, JFK): Fly plane P1 from SFO to JFK.
3. Unload(C1, P1, JFK): Unload cargo C1 from plane P1 at JFK.
4. Load(C2, P2, JFK): Load cargo C2 onto plane P2 at JFK.
5. Fly(P2, JFK, SFO): Fly plane P2 from JFK to SFO.
6. Unload(C2, P2, SFO): Unload cargo C2 from plane P2 at SFO.

Handling Spurious Actions : The problem can also involve spurious actions,

such as Fly(P1, JFK, JFK), which would be a no-op but can produce

contradictory effects (e.g., both At(P1, JFK) and ¬At(P1, JFK)). While

such issues are often ignored in practice because they rarely lead to incorrect

plans, the proper way to prevent them is by adding inequality preconditions,

ensuring that the departure (from) and arrival (to) airports are different.

In the context of the air cargo transport problem, SFO and JFK refer to airport

codes:

 SFO: San Francisco International Airport

 JFK: John F. Kennedy International Airport (located in New York City)

These are commonly used IATA airport codes to represent specific locations in

transportation and logistics scenarios. In this problem, they are used as example

locations for cargo and planes.

5.3.1.7 Example: The Spare Tire Problem

Imagine the task of changing a flat tire, as shown in Figure 10.2. The goal is to

replace the flat tire on the car's axle with a good spare tire. Initially, the flat tire

is mounted on the axle, and the spare tire is in the trunk. For simplicity, this

problem is abstracted—there are no challenges like stubborn lug nuts or other

real-world complications.

In this scenario, there are only four actions available:

1. Removing the spare tire from the trunk.
2. Removing the flat tire from the axle.
3. Mounting the spare tire onto the axle.
4. Leaving the car unattended overnight.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

It is assumed that leaving the car unattended in a dangerous neighborhood

results in all the tires disappearing. A valid solution to this problem would be

the sequence:
[Remove(Flat, Axle), Remove(Spare, Trunk), PutOn(Spare, Axle)].

5.3.1.8 Example: The Blocks World

The blocks world is a classic planning domain often used to study problem-solving and AI

planning. It involves manipulating cube-shaped blocks on a table to achieve a specified

configuration.

Key Concepts:

1. Setup:
o Blocks can be placed on the table or stacked on top of one another.
o Only one block can fit directly on top of another block.
o A robot arm is used to move the blocks:

 It can pick up only one block at a time.
 It cannot pick up a block that has another block on top of it.

2. Goal:
o The goal is defined by a specific arrangement of blocks, e.g., block A on B and block

B on C.

3. Predicates:
o On(b, x): Block b is on x (where x is another block or the table).
o Clear(x): Block x is clear, meaning no other block is on it.

4. Actions:
o Move(b, x, y): Moves block b from x to y (either another block or the table).

 Preconditions:
On(b, x) ∧ Clear(b) ∧ Clear(y)
(Block b is on x, block b is clear, and the destination y is clear.)

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

 Effects:
On(b, y) ∧ Clear(x) ∧ ¬On(b, x) ∧ ¬Clear(y)
(Block b is on y, x becomes clear, b is no longer on x, and y is no longer
clear.)

5. Issues and Solutions:
o Problem: The initial action schema does not handle the table correctly:

 When moving a block from or to the table, the Clear(Table) predicate is
mishandled.

 For example:
 Clear(Table) should always be true, as the table always has

space.
 However, the original schema treats the table like a block, leading to

incorrect interpretations.
o Fixes:

 Introduce a new action, MoveToTable(b, x):
 Preconditions:

On(b, x) ∧ Clear(b)
(Block b is on x and is clear.)

 Effects:
On(b, Table) ∧ Clear(x) ∧ ¬On(b, x)
(Block b is now on the table, x is clear, and b is no longer on x.)

 Reinterpret Clear(x):
"There is space on x to hold a block."
(Under this interpretation, Clear(Table) is always true.)

6. Optional Optimization:
o To prevent redundant use of Move(b, x, Table) instead of MoveToTable(b, x):

 Add the predicate Block(y) to the Move action's precondition.
 This ensures Move is only used for moving blocks between other blocks, not

the table.

By making these adjustments, the blocks world planner becomes more accurate and efficient,

avoiding unnecessary computational overhead.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

5.3.1.9 The Complexity of Classical Planning

In this subsection we consider the theoretical complexity of planning and

distinguish two decision problems. PlanSAT is the question of whether there

exists any plan that solves a planning problem. Bounded PlanSAT asks whether

there is a solution of length k or less; this can be used to find an optimal plan.

1. Key Decision Problems:

o PlanSAT: Determines whether a solution (plan) exists for a given
planning problem.

o Bounded PlanSAT: Checks if a solution of length ≤ k exists, often used
to find optimal plans.

2. Decidability:

o Both PlanSAT and Bounded PlanSAT are decidable for classical
planning because the state space is finite.

o When function symbols are added (creating an infinite state space):
 PlanSAT becomes semidecidable: it terminates for solvable

problems but may not terminate for unsolvable ones.
 Bounded PlanSAT remains decidable even with function

symbols.
3. Complexity Classes:

o Both problems are in PSPACE, a complexity class harder than NP,
requiring polynomial space to solve.

o Even with restrictions:
 Without negative effects, both problems are NP-hard.
 Without negative preconditions, PlanSAT reduces to the easier

class P.
4. Practical Implications:

o Although the worst-case scenarios are complex, real-world problems
in specific domains (e.g., blocks world, air cargo) are often simpler.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

 For many domains:
 Bounded PlanSAT is NP-complete (hard for optimal

planning).
 PlanSAT is in P (easier for suboptimal solutions).

5. Role of Heuristics:

o Classical planning's advantage lies in the development of domain-
independent heuristics, which perform well on practical problems.

o This contrasts with systems based on first-order logic, which struggle
to create effective heuristics.

In summary, while planning problems can be theoretically hard, domain-specific

scenarios and effective heuristics often simplify practical implementations.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

5.3.2 Algorithms for Planning as State-Space Search

Two approaches to searching for a plan. (a) Forward (progression) search through

the space of states, starting in the initial state and using the problem’s actions to

search forward for a member of the set of goal states. (b) Backward (regression)

search through sets of relevant states, starting at the set of states representing the

goal and using the inverse of the actions to search backward for the initial state.

Forward (Progression) State-Space Search

 Description: Starts from the initial state and applies actions to reach the
goal.

o It explores all possible actions from the current state, leading to a
large branching factor and potential inefficiency without heuristics.

 Challenges:
1. Explores irrelevant actions.
2. Handles large state spaces with numerous possible states and

actions.
 Example:

In an air cargo problem with 10 airports, 5 planes, and 20 cargo items:
o At each step, the search needs to evaluate thousands of possible

actions like flying planes, loading cargo, or unloading it.
o Without a heuristic, this leads to a massive search space.

Backward (Regression) Relevant-States Search

 Description: Starts from the goal and works backward by identifying
actions that can lead to the goal state.

 Advantages: Focuses only on relevant actions and avoids irrelevant
branches.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

 Example:
If the goal is At(C2, SFO), the algorithm considers the action
Unload(C2, p, SFO):

o Precondition: In(C2, p) ∧ At(p, SFO).
o Effect: At(C2, SFO).

It regresses to find the predecessor state where these
preconditions are true.

Heuristics for Planning

 Purpose: Estimate the cost of reaching the goal from the current state to
guide search algorithms like A*.

 Types of Heuristics:
1. Ignore Preconditions:

 Drops preconditions, making every action applicable.
 Example: Simplifies the 8-puzzle by ignoring adjacency

requirements for moves.
2. Ignore Delete Lists:

 Assumes actions cannot undo progress, making the problem
monotonic.

 Example: In a transportation problem, unloading an item is
never undone.

3. State Abstraction:
 Groups states by ignoring irrelevant fluents to reduce the

state space.
 Example: In air cargo, consider only packages and

destinations while abstracting plane details.

Figure 10.6 diagrams part of the state space for two planning problems using
the ignore-delete-lists heuristic. The dots represent states and the edges
actions, and the height of each dot above the bottom plane represents the

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

heuristic value. States on the bottom plane are solutions. In both these
problems, there is a wide path to the goal. There are no dead ends, so no need
for backtracking; a simple hill climbing search will easily find a solution to these
problems (although it may not be an optimal solution).

5.3.3 Planning Graphs

Definition:

A planning graph is a directed, leveled graph that represents actions and literals

in alternating layers, capturing all possible states and actions up to a certain time

step.

Construction of a Planning Graph:

1. Levels:
o S₀: Represents the initial state.
o A₀: Represents actions applicable in S₀.
o Alternates between states (S₁, S₂, ...) and actions (A₁, A₂, ...).

2. Termination:
o Stops when two consecutive levels are identical (leveled off).

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Example: For the problem "Have Cake and Eat Cake Too":

o S₀: {Have(Cake)}
o A₀: {Eat(Cake), Bake(Cake)}
o S₁: {Have(Cake), Eaten(Cake)}
o Mutex Links: Highlight conflicts, e.g., eating and having the cake.

Figure 10.8 Eaten(Cake) ¬ ¬ Have(Cake) Eaten(Cake) Eaten(Cake). The planning
graph for the “have cake and eat cake too” problem up to level S2. Rectangles
indicate actions (small squares indicate persistence actions), and straight lines
indicate preconditions and effects. Mutex links are shown as curved gray lines.
Not all mutex links are shown, because the graph would be too cluttered. In
general, if two literals are mutex at Si, then the persistence actions for those
literals will be mutex at Ai and we need not draw that mutex link.

Fig 10.8

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Planning Graphs for Heuristic Estimation

 Level Cost: The level at which a literal first appears in the graph
estimates the cost to achieve it.

o Example: Have(Cake) appears at S₀; Eaten(Cake) appears
at S₁.

 Heuristic Approaches:
1. Max-Level Heuristic: Maximum level cost of individual goals

(admissible but less accurate).
2. Level-Sum Heuristic: Sum of level costs (not admissible but

practical).
3. Set-Level Heuristic: Level at which all goals appear without mutual

exclusion (accurate and admissible).

The GRAPHPLAN Algorithm

The GRAPHPLAN algorithm. GRAPHPLAN calls EXPAND-GRAPH to add a

level until either a solution is found by EXTRACT-SOLUTION, or no solution

is possible.

Description:

GRAPHPLAN uses planning graphs to extract a valid plan or determine that none exists.

Steps:

1. Expand Graph: Build levels of the planning graph until all goals are
present and non-mutex.

2. Extract Solution: Search for a valid plan using actions from the graph.
3. Iterate: If a solution is not found, expand the graph further.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Example:

For the spare tire problem:

 Initial State (S₀): At(Spare, Trunk) ∧ At(Flat, Axle).
 Goal: At(Spare, Axle).
 Plan Extraction:

o A₀: Remove(Flat, Axle) ∧ Remove(Spare, Trunk).
o A₁: PutOn(Spare, Axle).

Planning Graph Mutex Relations and EXTRACT-SOLUTION

Mutex Relations in Planning Graphs

1. Interference:

o Example: Remove(Flat, Axle) and LeaveOvernight are mutex
because:

 Remove(Flat, Axle) requires At(Flat, Axle) as a
precondition.

 LeaveOvernight negates At(Flat, Axle) as an effect.
2. Competing Needs:

o Example: PutOn(Spare, Axle) and Remove(Flat, Axle) are mutex
because:

 PutOn(Spare, Axle) requires At(Flat, Axle) as a
precondition.

 Remove(Flat, Axle) negates At(Flat, Axle).

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

3. Inconsistent Support:

o Example: At(Spare, Axle) and At(Flat, Axle) in S₂ are
mutex because:

 PutOn(Spare, Axle is required to achieve At(Spare,
Axle).

 It conflicts with the persistence of At(Flat, Axle).

These mutex relations ensure conflicts like placing two objects in the

same location are detected.

EXTRACT-SOLUTION Algorithm

Purpose: Determines if a solution exists by analyzing goals and resolving

conflicts in the planning graph.

Process:

1. Initial State:

o Start at the last level (Sₙ) of the planning graph with a set of
unsatisfied goals.

2. Actions Available:

o At level Sᵢ, choose a conflict-free subset of actions from Aᵢ₋₁:
 Actions whose effects cover the current goals.
 Actions where neither the actions nor their preconditions

are mutex.
3. Goal State:

o Reach S₀ where all goals are satisfied.
4. Cost:

o Each action has a cost of 1.

Example Solution: Spare Tire Problem

1. Start at S₂: Goal is At(Spare, Axle).

o Only action: PutOn(Spare, Axle).
o Leads to S₁ with goals:

 At(Spare, Ground)
 ¬At(Flat, Axle).

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

2. At S₁:

o At(Spare, Ground) is achieved by Remove(Spare, Trunk).
o ¬At(Flat, Axle) is achieved by Remove(Flat, Axle).
o Conflict: LeaveOvernight is mutex with Remove(Spare, Trunk).

3. Reach S₀: Goals are At(Spare, Trunk) and At(Flat, Axle).

Both are present.

o Solution:
 A₀: Remove(Spare, Trunk), Remove(Flat,

Axle).
 A₁: PutOn(Spare, Axle).

No-Good States

 If no solution is found for a specific (level, goals) pair, mark it as
no-good.

 Prevent redundant searches by storing and reusing no-good results.

Greedy Heuristic for Backward Search

1. Select Literal: Start with the literal with the highest level cost.
2. Choose Action: Prefer actions with simpler preconditions (sum or max

level cost of preconditions is smallest).

This approach provides efficient guidance to resolve goals during backward

search.

Termination of GRAPHPLAN

Monotonic Properties:

1. Literals: Increase monotonically across levels (once added, they persist).
2. Actions: Increase monotonically with available preconditions.
3. Mutexes: Decrease monotonically as conflicts resolve.
4. No-Goods: Decrease as solutions become unachievable.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Guarantee of Termination:

 The graph levels off when no new literals, actions, or mutexes are
added.

 If goals remain unreachable after leveling off, GRAPHPLAN terminates
with failure.

Termination of GRAPHPLAN (Simplified Rewrite)

The GRAPHPLAN algorithm guarantees termination and correctly reports

failure when no solution exists. Below is an explanation of why this is true.

Why Can’t We Stop at Leveling Off?

A planning graph "levels off" when two consecutive levels are identical,

indicating that no new literals, actions, or mutexes are added. However, leveling

off does not always mean a solution is present:

 Example:
In an air cargo problem with one plane and n pieces of cargo at airport
A, destined for airport B:

o A single piece of cargo can be transported in three steps: Load,
Fly, Unload.

o The graph levels off at level 4, but a full solution requires 4n - 1
steps (accounting for return trips to pick up additional cargo).

How Long Should We Expand the Graph?

 EXTRACT-SOLUTION Failure:
If the function fails to find a solution, it marks certain goal sets as no-
goods (unachievable sets of goals).

o Continue expanding if fewer no-goods might exist at the next
level.

o Stop expanding when both the graph and the no-goods have
leveled off, as no further solutions can emerge.

Proof of Termination

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Certain properties of planning graphs ensure they will always level off:

1. Literals Increase Monotonically:

o Once a literal appears at a level, it persists in all subsequent levels
due to persistence actions (no-op actions that maintain literals).

2. Actions Increase Monotonically:

o If an action’s preconditions are present at a level, the action
appears at that level and all subsequent levels.

3. Mutexes Decrease Monotonically:

o Mutexes (mutual exclusions) never reappear once resolved.
o Reason: If actions or literals are mutex at a level, they remain so in

prior levels. However, as more actions and literals appear,
mutexes naturally decrease.

4. No-Goods Decrease Monotonically:

o A goal set marked as a no-good at one level cannot become
achievable in previous levels.

o Proof by Contradiction: If a no-good set was achievable at an
earlier level, persistence actions could extend it to the current
level, contradicting its status as a no-good.

Key Termination Point

 Finite Properties:
o The number of actions and literals is finite.
o Eventually, there will be a level where the number of actions,

literals, mutexes, and no-goods remains unchanged.
 Final Check:

o If any goal is missing or mutex with another goal, the GRAPHPLAN
algorithm terminates and returns failure.

Conclusion

The monotonic properties of planning graphs—literals and actions increasing,

mutexes and no-goods decreasing—ensure that the graph levels off in finite

time. At this point, GRAPHPLAN either finds a solution or confirms that none

exists. For additional details, refer to Ghallab et al. (2004).

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Logic Programming
 Logic Programming:

Logic programming is a method of building systems by writing rules and facts

in a formal language. Problems are solved by reasoning based on this

knowledge. This concept is summed up by Robert Kowalski’s principle:

Algorithm = Logic + Control
This means that logic specifies what the system should do, while control defines

how it should execute.

PROLOG

Prolog is the most popular logic programming language. It’s used for quick

prototyping and tasks like:

 Writing compilers

 Parsing natural language

 Creating expert systems in fields like law, medicine, and finance

Prolog Programs

Prolog programs consist of rules and facts (called definite clauses) written in a

special syntax. Here’s what makes Prolog different:

1. Variables and Constants: Variables are uppercase (e.g., X), and

constants are lowercase (e.g., john).

2. Clause Structure: Instead of A ∧ B ⇒ C, Prolog writes it as C :-

A, B. For example:

criminal(X) :- american(X), weapon(Y),

sells(X,Y,Z), hostile(Z).

This means: "X is a criminal if X is American, Y is a weapon, X sells Y

to Z, and Z is hostile."

3. Lists: [E|L] represents a list where E is the first item, and L is the rest.

Example: Appending Lists

Here’s a Prolog program to join two lists, X and Y, into Z:

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

append([],Y,Y).

append([A|X],Y,[A|Z]) :- append(X,Y,Z).

This means:

1. Appending an empty list to Y gives Y.

2. To append [A|X] to Y, the result is [A|Z] if appending X to Y gives Z.

You can also use it in reverse! For example, asking:

append(X,Y,[1,2]).

This query finds pairs of lists X and Y that combine to [1,2]. The answers are:

 X=[] and Y=[1,2]

 X=[1] and Y=[2]

 X=[1,2] and Y=[]

How Prolog Executes

Prolog works using depth-first backward chaining:

 It tries rules one by one, in the order written.

 It stops as soon as a solution is found.

 Some features make it faster but can cause issues:

o Arithmetic Built-ins: It calculates results directly. For example:

 X is 4+3 → Prolog sets X = 7.

 5 is X+Y → Fails because Prolog doesn't solve general

equations.

o Side Effects: Predicates like assert (add facts) and retract

(remove facts) can behave unpredictably.

o Infinite Recursion: Prolog doesn’t check for infinite loops, so

wrong rules might cause it to hang.

Design Philosophy

Prolog balances declarative logic (what should happen) with execution

efficiency (how it runs). While not perfect, it’s a powerful tool for certain types

of tasks!

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Efficient Implementation of Logic Programs

Prolog programs can run in two ways: interpreted mode and compiled mode.

Here's how Prolog handles efficiency and parallel processing:

How Prolog Works

1. Interpreted Mode
o In this mode, Prolog works like a problem-solving engine. It

searches for solutions step by step in the program (called the

knowledge base).

o Prolog uses optimizations to speed things up, like:

 Choice Points: A global stack keeps track of alternative paths

when solving a problem. This makes execution faster and

debugging easier.

 Trail: When Prolog assigns a value to a variable, it

remembers it in a "trail." If the current path fails, Prolog can

quickly undo these assignments to try other options.

2. Compiled Mode
o In compiled mode, Prolog creates a specialized program for a

specific task. This avoids repetitive work, like searching for rules,

and makes it faster.

o Compilers like the Warren Abstract Machine (WAM) optimize

Prolog code by turning it into an intermediate language that can be

executed more efficiently.

Key Features of Prolog Execution

1. Efficiency
o Prolog’s interpreters are slower because they repeatedly analyze

and match rules.

o Compiled Prolog eliminates this overhead by directly using a

tailored procedure for each rule.

2. Choice Points and Continuations
o Choice Points: Prolog keeps track of decisions made during

problem-solving. If a path fails, it can backtrack to an earlier

decision.

o Continuations: These help Prolog keep track of "what to do next"

when a solution is found. This ensures all possible solutions are

explored efficiently.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

3. Parallelization
o OR-Parallelism: Prolog can explore multiple possible solutions

simultaneously when a goal can match multiple rules.

o AND-Parallelism: It can work on different parts of a problem

(called conjuncts) at the same time. However, this is more complex

because all parts need to agree on variable values.

Why Prolog Is Useful

 Prolog’s design lets it quickly handle tasks like planning, natural

language processing, and AI research.

 Thanks to optimization techniques, Prolog programs can run as fast as C

for many tasks, while being easier to write for logic-based problems.

In short, Prolog uses smart techniques like choice points, trails, and

parallelization to solve problems efficiently. This makes it ideal for rapid

prototyping in AI and other fields.

Source Book: Stuart J. Russell and Peter Norvig, Artificial Intelligence, 3rd Edition, Pearson,2015

The pseudocode in the image describes how the Append predicate works when

compiled into an optimized form. Here’s a breakdown of each part in simple

terms:

Purpose

The Append(ax, y, az, continuation) procedure is designed to

combine two lists (ax and y) to produce a new list az, while allowing further

execution through a continuation (a function that specifies "what to do next").

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Key Components

1. Trail Setup
o trail ← GLOBAL-TRAIL-POINTER()

 A trail is used to keep track of variable bindings. This helps

Prolog undo (or "unbind") variable assignments if a path

fails and backtracking is required.

2. Base Case
o if ax = [] and UNIFY(y, az) then

CALL(continuation)

 If ax (the first list) is empty, the result (az) should match y.

 Prolog unifies the values of y and az and executes the next

step using the continuation.

3. Backtracking Preparation
o RESET-TRAIL(trail)

 If the base case fails, the trail is reset to undo bindings made

during the failed attempt. This prepares Prolog to try the

next possible solution.

4. Recursive Case
o a, x, z ← NEW-VARIABLE(), NEW-VARIABLE(),

NEW-VARIABLE()

 New variables (a, x, and z) are created to handle the

decomposition of ax (splitting it into a head element a and

the rest x).

o if UNIFY(ax, [a | x]) and UNIFY(az, [a | z])

then APPEND(x, y, z, continuation)

 The algorithm checks:

1. If ax can be broken into a head (a) and tail (x), and

2. If az can be built from a followed by z.

 If both conditions are met, the procedure recursively calls

itself to append the rest of the list (x) with y, building up the

final result (z).

5. Continuation Execution
o After finding a valid solution, the continuation is called. It ensures

the program continues with the next steps based on the solution

found.

Explanation of Figure

 NEW-VARIABLE: Creates fresh variables to avoid conflicts with existing ones.

 CALL(continuation): Executes the continuation, ensuring the program progresses.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

 RESET-TRAIL: Cleans up variable bindings if a solution fails, enabling

backtracking.

Summary: The Append predicate in the pseudocode is an optimized version of

appending two lists. It uses:

1. Choice Points to explore alternatives.

2. Trail Management to undo changes when backtracking.

3. Continuations to handle the next steps in execution.

This approach allows efficient execution and flexibility in handling multiple

solutions.

Redundant Inference and Infinite Loops in Prolog

Key Issue: Prolog’s use of depth-first search can cause two major problems

when working with graphs:

1. Infinite Loops

2. Redundant Computations

1. Infinite Loops

 Prolog uses depth-first backward chaining to answer queries.

 In some cases, Prolog keeps following paths indefinitely, creating infinite

loops.

Example of Infinite Loops

The program checks if a path exists between two nodes using this logic:

path(X, Z) :- link(X, Z). % Base case:

Direct link exists

path(X, Z) :- path(X, Y), link(Y, Z). % Recursive

case: Connect through another node

 For a graph like in Figure 9.9(a) (nodes A → B → C), asking Prolog if

path(a, c) exists:

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

o If the base case is checked first, Prolog finds the path without

issues. This is shown in Figure 9.10(a).

o If the recursive case is checked first (i.e., the order of the clauses

is reversed), Prolog follows paths indefinitely. This is shown in

Figure 9.10(b).

Source Book: Stuart J. Russell and Peter Norvig, Artificial Intelligence, 3rd Edition, Pearson,2015

Source Book: Stuart J. Russell and Peter Norvig, Artificial Intelligence, 3rd Edition, Pearson,2015

Why It Happens:

Depth-first search keeps exploring deeper paths without checking if a solution

already exists or if the current path is looping.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

2. Redundant Computations

Even when there are no infinite loops, Prolog’s depth-first search can waste

time by repeatedly calculating the same paths.

Example of Redundancy

In Figure 9.9(b), finding a path from A1 to J4 requires 877 inferences because

Prolog keeps checking all possible paths, even those that don’t lead to the goal.

Most of these paths are unnecessary.

Comparison with Forward Chaining:

 Forward Chaining:
o It computes all paths once and stores the results (dynamic

programming). For the same problem, forward chaining only

requires 62 inferences.

 Depth-First Backward Chaining:

o It doesn’t remember previously computed results, leading to

repeated calculations.

Solutions to Prolog’s Problems

1. Memoization
o Cache solutions to subproblems (subgoals) as they are found.

o If a subgoal is encountered again, use the cached result instead of

recomputing it.

2. Tabled Logic Programming
o Combines the goal-directed nature of backward chaining with the

efficiency of forward chaining.

o It avoids infinite loops and redundant calculations by remembering

results (similar to dynamic programming).

Benefits of Tabled Logic Programming

 Complete for Datalog Knowledge Bases:
o Ensures all valid solutions are found without infinite loops.

 Efficient:
o Reduces redundant computations by caching results.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

However, it cannot handle predicates with potentially infinite objects (e.g.,

father(X, Y) for all possible pairs of people).

Database Semantics of Prolog

Prolog uses a special way of interpreting facts called database semantics,

which is simpler and more efficient than full first-order logic (FOL). Here's how

it works:

1. Unique Names Assumption

 In Prolog, every constant or ground term refers to a unique, distinct

object.

o Example: CS and EE are different, just as 101, 102, and 106 are

all different.

2. Closed World Assumption

 Prolog assumes that only the facts explicitly stated in the knowledge

base are true.

 If something isn’t in the knowledge base, Prolog assumes it is false.

o For instance, if the Prolog facts are:

Course(CS, 101),

Course(CS, 102),

Course(CS, 106),

Course(EE, 101).

 This means there are exactly four courses.

 Prolog assumes there are no other courses unless stated

explicitly.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

Comparison with First-Order Logic (FOL)

 In FOL, the same facts would mean:

o At least one course exists.

o There might be more courses that aren’t mentioned.

 In Prolog, however, the closed world assumption guarantees that there

are exactly four courses.

Why Prolog is Simpler

1. Prolog Assumptions Make It Efficient:

o Prolog doesn't allow for uncertainty (e.g., unmentioned courses).

This keeps reasoning simpler and faster.

2. Prolog Doesn't Handle "False" Assertions:

o Unlike FOL, you can’t directly state that something is false in

Prolog.

How This Works Mathematically

If we convert the Prolog facts into FOL, we would write something like:

Course(d, n) ⇔ (d=CS ∧ n=101) ∨ (d=CS ∧ n=102) ∨
(d=CS ∧ n=106) ∨ (d=EE ∧ n=101).

 This expresses the idea that exactly four courses exist, but the process

becomes more complicated.

Practical Takeaway

 Use Prolog for database-like problems:

o If the problem can be described with database semantics (unique

names + closed world), Prolog is simpler and more efficient.

o Translating everything into FOL and reasoning with a full theorem

prover is more powerful but slower and less practical.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

In short, Prolog’s database semantics make it less expressive than FOL but

much more efficient for certain tasks, such as reasoning about a fixed set of

known facts.

Constraint Logic Programming (CLP)

1. What is Constraint Logic Programming (CLP)?

CLP is a type of logic programming that combines logic rules with constraints.

Unlike standard Prolog, which only works with finite solutions, CLP can handle

more complex problems, including those with infinite domains like integers or

real numbers.

2. How Prolog Handles Constraints

 Standard Prolog solves problems using backtracking (exploring

possibilities one by one), which works for finite-domain problems.

o Example: If three colors are allowed, the query diff(Q, SA)

(Queensland and South Australia must have different colors) will

have six possible solutions.

 But Prolog fails with infinite-domain problems, like checking conditions

involving integers or real numbers.

3. Example Problem: Triangle Inequality

Let’s define a rule to check if three numbers can form a triangle:

triangle(X, Y, Z) :-

 X > 0, Y > 0, Z > 0,

 X + Y >= Z, Y + Z >= X, X + Z >= Y.

 If you ask Prolog triangle(3, 4, 5), it works because all values are

known.

 But if you ask triangle(3, 4, Z), Prolog fails because it cannot

handle unbound variables in comparisons like Z >= 0.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

4. How CLP Solves This

 CLP allows variables to remain constrained instead of fully defined.

 For the query triangle(3, 4, Z), the result will be:

o 7 >= Z >= 1 (Z must be between 1 and 7 to form a triangle).

This makes CLP more powerful than standard Prolog for solving constraint

satisfaction problems (CSPs).

5. CLP Algorithms

 CLP uses specialized algorithms to solve different types of constraints.

o Example: For real-valued variables and linear inequalities, CLP

might use linear programming.

 Unlike Prolog's default depth-first backtracking, CLP systems use more

advanced techniques like:

o Heuristic conjunct ordering: Solving the simplest part of the

problem first.

o Backjumping: Skipping unnecessary steps when a dead-end is

reached.

o Cutset conditioning: Breaking problems into smaller, manageable

parts.

6. Flexibility of CLP Systems

 CLP systems allow more control over how problems are solved:

o Programmers can write rules to specify the order in which

constraints are checked.

o For example, they can choose to first solve constraints with the

fewest unknowns.

 Tools like the MRS language enable this level of customization.

CLP combines the best of logic programming, constraint-solving, and database

techniques to solve problems more efficiently, especially for those involving

constraints on variables (like ranges or inequalities). It’s more flexible and

powerful than standard Prolog for complex scenarios.

