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5.1.1Backward Chaining

• Backward chaining is a reasoning method that starts with the 
goal and works backward through the inference rules to 
find out whether the goal can be satisfied by the known facts. 

• It's essentially goal-driven reasoning, where the system seeks 
to prove the hypothesis by breaking it down into subgoals and 
verifying if the premises support them.



Example

Consider the following knowledge base representing a 
simple diagnostic system:

1. If a patient has a fever, it might be a cold.

2. If a patient has a sore throat, it might be strep throat.

3. If a patient has a fever and a sore throat, they should see 
a doctor.



Given the facts:

•The patient has a fever.

•The patient has a sore throat.



Backward chaining would proceed as 
follows:

1. Start with the goal: Should the patient see a doctor?

2. Check the third rule: Does the patient have a cold and a 
sore throat? Yes.

3. Check the first and second rules: Does the patient have a 
fever and sore throat? Yes.

4. The goal is satisfied: The patient should see a doctor.



Backward Chaining : Algorithm

These algorithms work backward from the goal, chaining through rules to find 
known facts that support the proof.



Overview of the Algorithm
Goal: The purpose of the algorithm is to determine whether a query (goal) can be derived from 

a given knowledge base (KB).

Process:

o It uses backward chaining, meaning it starts with the goal and works backward by 

looking for rules or facts in the knowledge base that could satisfy the goal.

o The algorithm returns substitutions (values or variables) that make the query true.

Key Components:

o FOL-BC-ASK: This is the main function that starts the backward-chaining process by 

calling FOL-BC-OR.

o FOL-BC-OR: This function checks whether the goal can be satisfied by any rule in the 

KB. It iterates over applicable rules and tries to unify the goal with the rule’s conclusions.

o FOL-BC-AND: This function handles multiple sub-goals. It ensures that all sub-goals are 

satisfied for the main goal to be true.



Key Terms Used

• FOL-BC-ASK: Entry point for the algorithm.

• FOL-BC-OR: Handles rules and checks if the goal is satisfied by any rule.

• FOL-BC-AND: Ensures all sub-goals are satisfied.

• FETCH-RULES-FOR-GOAL: Retrieves applicable rules for a goal.

• UNIFY: Matches terms by finding substitutions.

• Standardize Variables: Ensures variable names are unique to avoid conflict.

• θ: The substitution carried into the current function call.

• θ′: A substitution produced by solving the first sub-goal in FOL-BC-AND.

• θ′′: A substitution produced by solving the remaining sub-goals using the 
updated θ′.



Key Takeaways

• Backward chaining focuses on proving the goal by breaking it into 
smaller sub-goals and matching them to rules in the KB.

• It uses unification and substitutions to ensure variable consistency.

• It recursively checks all rules until the query is satisfied or fails.



Step-by-Step Explanation with Example



Execution Steps















De Morgan's Laws in First-Order Logic (FOL)

De Morgan's Laws in First-Order Logic (FOL) are rules that describe how negation 
interacts with conjunction (∧) and disjunction (∨) in logical expressions. They also 
extend to quantifiers (∀and ∃) in FOL.





Example 1 (Connectives):



Example 2 (Quantifiers):



Distributive law in First Order Logic





What is Tautology ?

• A tautology is a statement or logical formula that is always true, 
regardless of the truth values of its individual components.

• Example: P∨¬P
This means "P or not P." No matter whether P is true or false, one of 
them will always be true. Hence, it's a tautology



Common Tautologies in Logic:

• In essence, tautologies are statements that cannot be false and are 
always true in classical logic.



Conjunctive Normal Form 

• A formula is in CNF if it is a conjunction (AND) of clauses, where 
each clause is a disjunction (OR) of literals. 



CNF Examples





Example:  CNF Sentence

• ∀ x American(x) ∧ Weapon(y) ∧ Sells(x, y, z) ∧ Hostile(z) ⇒
Criminal(x) becomes, in CNF, 

• ¬American(x) ∨ ¬Weapon(y) ∨ ¬Sells(x, y, z) ∨ ¬Hostile(z) ∨
Criminal(x) . 



Example  

We illustrate the procedure by translating the sentence 

• “Everyone who loves all animals is loved by someone,” or 

• ∀ x [∀ y Animal(y) ⇒ Loves(x, y)] ⇒ [∃ y Loves(y, x)] .



Steps

• Eliminate implications: ∀ x [¬∀ y ¬Animal(y) ∨ Loves(x, y)] ∨ [∃ y Loves(y, x)] .

• Move ¬ inwards: In addition to the usual rules for negated connectives, we 
need rules for negated quantifiers. Thus, we have 
• ¬∀ x p becomes ∃ x ¬p 

• ¬∃ x p becomes ∀ x ¬p . 

• Our sentence goes through the following transformations: 
• ∀ x [∃ y ¬(¬Animal(y) ∨ Loves(x, y))] ∨ [∃ y Loves(y, x)] . 

• ∀ x [∃ y ¬¬Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)] . 

• ∀ x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)] .

• Standardize variables: For sentences like (∃ x P(x))∨(∃ x Q(x)) which use the 
same variable name twice, change the name of one of the variables. This 
avoids confusion later when we drop the quantifiers. Thus, we have 
• ∀ x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ z Loves(z, x)] .



• Skolemize: Skolemization is the process of removing existential 
quantifiers by elimination. Translate ∃ x P(x) into P(A), where A is a 
new constant.
• Example : 

• ∀ x [Animal(A) ∧ ¬Loves(x, A)] ∨ Loves(B, x) , 

• ∀ x [Animal(F(x)) ∧ ¬Loves(x, F(x))] ∨ Loves(G(z), x) . Here F and G are Skolem functions.

• Drop universal quantifiers: At this point, all remaining variables must 
be universally quantified. Moreover, the sentence is equivalent to one 
in which all the universal quantifiers have been moved to the left. We 
can therefore drop the universal quantifiers: 
• [Animal(F(x)) ∧ ¬Loves(x, F(x))] ∨ Loves(G(z), x) . 

• Distribute ∨ over ∧: 

[Animal(F(x)) ∨ Loves(G(z), x)] ∧ [¬Loves(x, F(x)) ∨ Loves(G(z), x)] .



5.1.2 Resolution

• Resolution is a fundamental inference rule used in automated 
theorem proving and logic programming. 

• It is based on the principle of proof by contradiction. 

• Resolution combines logical sentences in the form of clauses 
to derive new sentences. 



Resolution Rule

• The resolution rule states that if there are two clauses that 
contain complementary literals (one positive, one negative) 
then these literals can be resolved, leading to a new clause 
that is inferred from the original clauses.



Example 1:

Consider two logical statements:
1. P∨Q
2. ¬P∨R

Applying resolution: Resolve the statements by eliminating P: 
• P∨Q
• ¬P∨R
• Resolving P and ¬P: Q∨R

The resulting statement Q∨R is a new clause inferred from the original two. 
Resolution is a key component of logical reasoning in FOL, especially in tasks 
like automated theorem proving and knowledge representation.



Example 2

Clause 1: (P∨Q∨R)

Clause 2:(¬P∨¬Q∨S)

Apply Resolution

• Resolving P and ¬P: (Q∨R)∨(¬Q∨S)

• Resolving Q and ¬Q gives (RVS)

This is the resolvent.



Example 3



Proof By Resolution Process includes the following 
steps in general

1. Initial Set of Clauses (Knowledge Base)

2. Negate the Conclusion: 

3. Apply Resolution

4. Continue Resolving

5. Conclusion

6. Termination



Example 

• Let's consider a simplified example of a knowledge base for the 
Wumpus World scenario and demonstrate proof by resolution to 
establish the unsatisfiability of a certain statement. 

• In Wumpus World, an agent explores a grid containing a Wumpus (a 
monster), pits, and gold. Apply the resolution to prove   P[1,2].



Knowledge Base (KB)

1. W[1,1] ∨ P[1,2] 

2. ¬W[1,1]∨¬P[1,2] 

3. B[1,2]⇒P[1,2] 

4. ¬B[1,2]⇒¬P[1,2]



Convert the Knowledge Base (KB) into CNF



Negated Conclusion:  

Let's say we want to prove the negation of the 
statement:

¬PitIn[1,2]



Apply Resolution:

1. W[1,1] ∨ P[1,2] , ¬P[1,2]  resolves into W[1,1]

2. ¬W[1,1]∨¬P[1,2], W[1,1] resolves into ¬P[1,2]

3. ¬B[1,2] ∨ P[1,2] , ¬P[1,2] resolves into ¬B[1,2]

4. B[1,2] ∨¬P[1,2], ¬B[1,2] resolves into ¬P[1,2]

Applying resolution, we end up with:  ¬P[1,2] , Which is not empty and also 

there is not further any clauses to continue. This gives conclusion that our 

negation conclusion is False and P[1,2] is true for the given knowledge base.



The resolution inference rule

• Two clauses, which are assumed to be standardized apart so that 
they share no variables, can be resolved if they contain 
complementary literals. 

• Propositional literals are complementary if one is the negation of 
the other; 

• First-order literals are complementary if one unifies with the 
negation of the other.



The resolution inference rule

• Thus We have







Suppose Curiosity did not kill Tuna. We know that either Jack or Curiosity did; thus Jack must have. Now, Tuna is a cat and 
cats are animals, so Tuna is an animal. Because anyone who kills an animal is loved by no one, we know that no one loves 
Jack. On the other hand, Jack loves all animals, so someone loves him; so we have a contradiction. Therefore, Curiosity 
killed the cat. 



Summary 

1. Forward chaining starts with known facts and moves 
forward to reach conclusions, 

2. Backward chaining starts with the goal and moves backward 
to verify if the goal can be satisfied, and 

3. Resolution is an inference rule used to derive new clauses 
by combining existing ones. 

These techniques are essential for reasoning and inference 
in First-Order Logic systems.


