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Propositional Logic

• Propositional logic, also known as sentential logic or 
propositional calculus, is a branch of formal logic that deals 
with the logical relationships between propositions (statements 
or sentences) without considering the internal structure of the 
propositions. 

• In propositional logic, propositions are considered as atomic 
units, and logical operations are applied to these propositions 
to form more complex statements.

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240 
[Source Book: Stuart J. Russell and Peter Norvig, Artificial 

Intelligence, 3rd Edition, Pearson,2015]



Some key elements and concepts in 
propositional logic:
1.Propositions: These are statements that can be either true or false. Propositions 

are represented by variables, typically denoted by letters (p, q, r, etc.).

2.Logical Connectives: These are symbols that combine propositions to form more 
complex statements. The main logical connectives in propositional logic include:

1. Conjunction (∧): Represents "and." The compound proposition "p ∧ q" is true only when both p 
and q are true.

2. Disjunction (∨): Represents "or." The compound proposition "p ∨ q" is true when at least one of 
p or q is true.

3. Negation (¬): Represents "not." The compound proposition "¬p" is true when p is false.
4. Implication (→): Represents "if...then." The compound proposition "p → q" is false only when p 

is true and q is false.
5. Biconditional (↔): Represents "if and only if." The compound proposition "p ↔ q" is true when 

p and q have the same truth value.

3.Truth Tables: Truth tables are used to systematically list all possible truth values for 
a compound proposition based on the truth values of its constituent propositions. 
Truth tables help determine the truth conditions for complex statements.

4.Logical Equivalence: Two propositions are logically equivalent if they have the 
same truth values for all possible combinations of truth values of their component 
propositions. Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240 
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Propositions Examples-

The examples of propositions are-

• 7 + 4 = 10

• Apples are black.

• Narendra Modi is president of India.

• Two and two makes 5.

• 2016 will be the lead year.

• Delhi is in India.



The examples of atomic propositions are-

• p : Sun rises in the east.

• q : Sun sets in the west.

• r : Apples are red.

• s : Grapes are green.



Compound Propositions-

• P : Sun rises in the east and Sun sets in the west.

• Q : Apples are red and Grapes are green.



Statements That Are Not Propositions-

Following kinds of statements are not propositions-

• Command

• Question

• Exclamation

• Inconsistent

• Predicate or Proposition Function



Following statements are not propositions-

• Close the door. (Command)

• Do you speak French? (Question)

• What a beautiful picture! (Exclamation)

• I always tell lie. (Inconsistent)

• P(x) : x + 3 = 5 (Predicate)



Properties of PL

1. Propositional logic is a declarative language because its semantics is based on a 
truth relation between sentences and possible worlds. 

2. It also has sufficient expressive power to deal with partial information, using 
disjunction and negation. 

3. Propositional logic is a compositional language, where in  a sentence is a 
function of the meaning of its parts. 

• For example, the meaning of “S1,4 ∧ S1,2” is related to the meanings of 
“S1,4” and “S1,2.”



Drawbacks of Propositional Logic

• We can only represent information as either true or false in 
propositional logic.

• Expressive power of  Propositional logic is very limited and lacks to 
describe an environment with many objects

• If you want to represent complicated sentences or natural 
language statements, PL is not sufficient.

• Examples: PL is not enough to represent the sentences 
below, so we require powerful logic (such as FOL).

1.I love mankind. It’s the people I can’t stand!

2.I like to eat mangos.



What is First Order Logic (FOL)?

1.FOL is also called predicate logic. A much more expressive 
language than the propositional logic. It is a powerful language 
used to develop information about an object and express the 
relationship between objects.

2.FOL not only assumes that does the world contains facts (like 
PL does), but it also assumes the following:

1.Objects: A, B, people, numbers, colors, wars, theories, squares, pit, 
etc.

2.Relations: It is unary relation such as red, round, sister of, brother of, 
etc.

3.Function: father of, best friend, third inning of, end of, etc.







Objects Relations and Functions

• Objects: people, houses, numbers, theories, Ronald McDonald, 
colors, baseball games, wars, centuries ... 

• Relations: these can be unary relations or properties such as red, 
round, bogus, prime, multistoried ..., or more general n-ary relations 
such as brother of, bigger than, inside, part of, has color, occurred 
after, owns, comes between, ... 

• Functions: father of, best friend, third inning of, one more than, 
beginning of ..



Examples

• “One plus two equals three.” 
• Objects: one, two, three, one plus two; 
• Relation: equals; 
• Function: plus. (“One plus two” is a name for the object that is obtained by 

applying the function “plus” to the objects “one” and “two.” “Three” is 
another name for this object.) 

• “Squares neighboring the wumpus are smelly.” 
• Objects: wumpus, squares; 
• Property: smelly; 
• Relation: neighboring. 

• “Evil King John ruled England in 1200.” 
• Objects: John, England, 1200; 
• Relation: ruled; 
• Properties: evil, king.



Constant 1, 2, A, John, Mumbai, cat,....

Variables x, y, z, a, b,....

Predicates Brother, Father, >, <,Sister, Father.......

Function sqrt, LeftLegOf, Sqrt, LessThan, Sin(θ).......

Connectives ∧, ∨, ¬, ⇒, ⇔

Equality ==

Quantifier ∀, ∃

Basic Elements of FOL



Syntax and Semantics of FOL

1.Models for first-order logic

2.Symbols and interpretations

3.Terms

4.Atomic sentences

5.Complex sentences 

6.Quantifiers: Universal quantification (∀) /Existential quantification (∃)

7.Equality

8.An alternative semantics? : Data base Semantics



Models for FOL (Key Characteristics)

A model in first-order logic is an interpretation that specifies: what each 
predicate means and the entities that can instantiate the variables.

• They have objects in them! 

• The domain of a model is the set of objects or domain elements it 
contains. 

• The domain is required to be nonempty—every possible world must 
contain at least one object

• The objects in the model may be related in various ways.

• Models in first-order logic require total functions, that is, there must 
be a value for every input tuple





Five objects: 
1. Richard the Lionheart, King of England from 1189 to 1199; 
2. His younger brother, the evil King John, who ruled from 1199 

to 1215; 
3. The left legs of Richard and John; and
4. Crown

Tuple : The brotherhood relation in this model is the set 
{ <Richard the Lionheart, King John>, <King John, Richard the 
Lionheart> } .

Two binary relations : “brother” and “on head” relations 
are binary relations

Three unary relations/ properties : Person, King and 
Crown

One unary Function: Left Leg



Syntax of FOL 

• Symbols: The basic syntactic elements of first-order logic are the symbols 
that stand for objects, relations, and functions. The symbols, therefore, 
come in three kinds: 

1. Constant symbols, which stand for objects; 
2. Predicate symbols, which stand for relations; and 
3. Function symbols, which stand for functions. 

• Convention : Symbols will begin with uppercase letters. 
• Example

• Constant symbols Richard and John; 
• Predicate symbols Brother , OnHead, Person, King, and Crown; and 
• the function symbol LeftLeg. 

• Arity : Each predicate and function symbol comes with an arity that fixes 
the number of arguments



Syntax of FOL 

• Interpretation: specifies exactly which objects, relations and 
functions are referred to by the constant, predicate, and function 
symbols.

• Examples :
• Richard refers to Richard the Lionheart 
• John refers to the evil King John.
• Brother refers to the brotherhood relation
• OnHead refers to the “on head” relation that holds between the crown and 

King John;
• Person, King, and Crown refer to the sets of objects that are persons, kings, 

and crowns
• LeftLeg refers to the “left leg” function



The syntax of first-
order logic with 
equality, specified in 
Backus–Naur form



Syntax and Semantics of FOL

1.Models for first-order logic

2.Symbols and interpretations

3.Terms

4.Atomic sentences

5.Complex sentences 

6.Quantifiers: Universal quantification (∀) /Existential quantification (∃)

7.Equality

8.An alternative semantics? : Data base Semantics





3.Terms

• A term is a logical expression that refers to an object. Constant 
symbols are terms.

• It is not always convenient to have a distinct symbol to name every 
object. 

• Example : “King John’s left leg” rather than giving a name to his leg.

• This is what function symbols are for: instead of using a constant symbol, we 
use LeftLeg(John).

• In the general case, a complex term is formed by a function symbol 
followed by a parenthesized list of terms as arguments to the 
function symbol.( It is not a subroutine or function call)



3.Terms

• Formal Semantics : Consider a term f(t1,... ,tn). 

• The function symbol f refers to some function in the model (call it F); the 
argument terms refer to objects in the domain (call them d1,... ,dn); 

• Example : LeftLeg(John): 

• The LeftLeg function symbol refers to the function and John refers to King 
John, then LeftLeg(John) refers to King John’s left leg.



4.Atomic sentences

• An atomic sentence (or atom for short) is formed from a predicate 
symbol optionally followed by a parenthesized list of terms, such a

• Brother (Richard, John) : This states, that Richard the Lionheart is 
the brother of King John.

• Atomic sentences can have complex terms as arguments:
• Married(Father (Richard), Mother (John)) : states that Richard 

the Lionheart’s father is married to King John’s mother



5.Complex Sentences

• We can use logical connectives to construct more complex 
sentences, with the same syntax and semantics as in 
propositional calculus

• Example : Here are four sentences that are true in the model 
1. ¬Brother (LeftLeg(Richard), John) 
2. Brother (Richard, John) ∧ Brother (John, Richard) 
3. King(Richard) ∨ King(John) 
4. ¬King(Richard) ⇒ King(John) 



6. Quantifiers

• Quantifiers are essential for expressing statements 
about collections of objects or individuals in a precise 
and concise manner within first-order logic. 

• There are two main quantifiers: 

1. the existential quantifier (∃) and 

2. the universal quantifier (∀).



6. Quantifiers: Universal quantification (∀)

Universal Quantifier (∀): Denoted by the symbol "∀".

• It asserts that a predicate or condition is true for all 
instances of a variable in a given domain.

• For example, the statement "∀x P(x)" asserts that the 
predicate P(x) is true for all x in the domain.

• By convention, variables are lowercase letters. 

• A variable is a term all by itself, and as such can also serve as 
the argument of a function—for example, LeftLeg(x). 

• A term with no variables is called a ground term.



6. Universal Quantifiers: Examples

•∀ x King(x) ⇒ Person(x) .



6. Universal Quantifiers: Examples

• The universally quantified sentence ∀ x King(x) ⇒ Person(x) is true in the 
original model if the sentence King(x) ⇒ Person(x) is true under each of the 
five extended interpretations. 

• That is, the universally quantified sentence is equivalent to asserting the 
following five sentences: 

1. Richard the Lionheart is a king ⇒ Richard the Lionheart is a person. 

2. King John is a king ⇒ King John is a person. 

3. Richard’s left leg is a king ⇒ Richard’s left leg is a person. 

4. John’s left leg is a king ⇒ John’s left leg is a person. 

5. The crown is a king ⇒ the crown is a person



6. Universal Quantifiers: Examples

• A common mistake, made frequently even by diligent 
readers who have read this paragraph several times, is to use 
conjunction instead of implication. 

• The sentence ∀ x King(x) ∧ Person(x) would be equivalent to 
asserting 

1. Richard the Lionheart is a king ∧ Richard the Lionheart is a 
person, 

2. King John is a king ∧ King John is a person, 

3. Richard’s left leg is a king ∧ Richard’s left leg is a person,



6. Quantifiers: Existential quantification (∃)

• Denoted by the symbol "∃".

• It asserts that there exists at least one instance 
of a variable that satisfies a given predicate or 
condition.

• For example, the statement "∃x P(x)" asserts 
that there exists at least one x such that the 
predicate P(x) is true.



6. Quantifiers: Existential quantification (∃)

• To say, for example, that King John has a crown on his head, we write 
∃ x Crown(x) ∧ OnHead(x, John) . 

• ∃x is pronounced “There exists an x such that ...” or “For some x...”



6. Quantifiers: Existential quantification (∃)

• Intuitively, the sentence ∃ x P says that P is true for at least one 
object x. 

• That is, at least one of the following is true: 

1. Richard the Lionheart is a crown ∧ Richard the Lionheart is on 
John’s head; 

2. King John is a crown ∧ King John is on John’s head; 

3. Richard’s left leg is a crown ∧ Richard’s left leg is on John’s head; 

4. John’s left leg is a crown ∧ John’s left leg is on John’s head; 

5. The crown is a crown ∧ the crown is on John’s head



6. Quantifiers: Existential quantification (∃)

• Using ⇒with ∃ usually leads to a very weak statement, indeed.

• Consider the following sentence: ∃ x Crown(x) ⇒ OnHead(x, John) .

• Applying the semantics, we see that the sentence says that at least 
one of the following assertions is true: 

1. Richard the Lionheart is a crown ⇒ Richard the Lionheart is on 
John’s head; 

2. King John is a crown ⇒ King John is on John’s head; 

3. Richard’s left leg is a crown ⇒ Richard’s left leg is on John’s head;



6. 1 : Nested Quantifiers

• Nested quantifiers in First-Order Logic (FOL) refer to situations 
where quantifiers are used within the scope of other quantifiers in a 
logical expression. 

• This nesting allows for the expression of more complex relationships 
and properties involving multiple variables.

• The universal quantifier (∀) and the existential quantifier (∃), both 
can be used in nested configurations.



6. 1 : Nested Quantifiers : Examples and 
Interpretations

1. ∀x ∃y P(x,y):
• This statement means "for every x, there exists a y such that the property 

P(x,y) holds."

• It asserts a universal condition on x and, for each x, an existential condition 
on y.

2. ∃x ∀y P(x,y):
• This statement means "there exists an x such that for every y, the 

property P(x,y) holds."

• It asserts the existence of a particular x for which a universal statement 
about y is true.



6. 1 : Nested Quantifiers : Examples and 
Interpretations

• Importance of Order : The order of nested quantifiers is crucial 
because it can change the meaning of a statement. 

• For instance, the two examples given above have significantly different 
meanings due to the order of quantification. 

• In general, changing the order of quantifiers in a statement with 
nested quantifiers will result in a statement that expresses a different 
property or relationship.



6. 1 : Nested Quantifiers : Examples and 
Interpretations

• Example: "for every natural number, there exists a prime 
number greater than it" 

• (∀x ∈ ℕ, ∃y (y > x ∧ Prime(y))) 



6. 1 : Nested Quantifiers : Examples and 
Interpretations

• “Everybody loves somebody” : ∀ x ∃ y Loves(x,y) 

• “There is someone who is loved by everyone,”: ∃ y ∀ x Loves(x,y)

• The order of quantification is therefore very important. It becomes 
clearer if we insert parentheses. 

• ∀ x (∃ y Loves(x,y)) says that everyone has a particular property, namely, 
the property that they love someone



6. 1 : Nested Quantifiers : Connections 
between ∀ and ∃

• The two quantifiers are actually intimately connected with 
each other, through negation. 

• Asserting that everyone dislikes Parsnips is the same as 
asserting there does not exist someone who likes them, and 
vice versa:

•∀ x ¬Likes(x,Parsnips ) is equivalent to ¬∃ x Likes(x,Parsnips) 



6. 1 : Nested Quantifiers : Connections 
between ∀ and ∃

• “Everyone likes ice cream” means that there is no one who 
does not like ice cream:

•∀ x Likes(x,IceCream) is equivalent to 

¬∃ x ¬Likes(x,IceCream) .



6. 2 : De Morgans Rules for quantified and unquantified 
sentences

•∀ x ¬P ≡ ¬∃ x P                    ¬(P ∨ Q) ≡ ¬P ∧ ¬Q

• ¬∀ x P ≡ ∃ x ¬P                     ¬(P ∧ Q) ≡ ¬P ∨ ¬Q

•∀ x P ≡ ¬∃ x ¬P                       P ∧ Q ≡ ¬(¬P ∨ ¬Q)

•∃ x P ≡ ¬∀ x ¬P                      P ∨ Q ≡ ¬(¬P ∧ ¬Q) .



7.Equality

• In First-Order Logic (FOL), equality is a fundamental concept that 
allows the expression of the notion that two terms denote the same 
object. 

• Syntax: In the syntax of FOL, an equality statement typically 
looks like a = b where a and b are terms in the logic. Terms 
can be variables, constants, or any expression that refers to 
objects in the domain of discourse.

• Semantics: The semantics of equality states that a = b is true if 
and only if a and b refer to the same object in the domain of 
discourse.



7.Equality: Examples

• Father (John)= Henry says that the object referred to by 
Father (John) and the object referred to by Henry are the 
same.

• To say that Richard has at least two brothers, we would write 

• ∃ x,y Brother (x, Richard) ∧ Brother (y, Richard) ∧ ¬(x = y) .



8.Any Alternative Semantics : Database 
Semantics
• One proposal that is very popular in database systems works as 

follows. 

• First, we insist that every constant symbol refer to a distinct object—
the so-called unique-names assumption. 

• Second, we assume that atomic sentences not known to be true are 
in fact false—the closed-world assumption. 

• Finally, we invoke domain closure, meaning that each model contains 
no more domain elements than those named by the constant 
symbols.





4.1.c Using First Order Logic

• In this section, we discuss systematic 
representations of some simple domains. 

• In knowledge representation, a domain is just some 
part of the world about which we wish to express 
some knowledge.



Assertions and queries in first-order logic

• Sentences are added to a knowledge base using TELL, exactly as in 
propositional logic. Such sentences are called assertions

• We can ask questions of the knowledge base using ASK. Questions asked 
with ASK are called queries or goals.



Examples

TELL(KB, King(John)) .
TELL(KB, Person(Richard)) .
TELL(KB, ∀ x King(x) ⇒ Person(x)) .

ASK(KB, King(John))
ASK(KB, Person(John)) 
ASK(KB, ∃ x Person(x)) . 



ASKVARS : Substitution or binding List

• ASKVARS(KB, Person(x)) yields a stream of answers. In this case there will 
be two answers: {x/John} and {x/Richard}. Such an answer is called a 
substitution or binding list. It will bind the variables to specific values. 

• Note: if KB has been told King(John) ∨ King(Richard), then there is no 
binding to x for the query ∃ x King(x), even though the query is true.



Example: The domain of family relationships, or 
kinship domain

• This domain includes facts such as 
• “Elizabeth is the mother of Charles” and 
• “Charles is the father of William” and rules such as 
• “One’s grandmother is the mother of one’s parent.”

• Clearly, the objects in our domain are people. We have two unary 
predicates, Male and Female. 

• Kinship relations—parenthood, brotherhood, marriage, and so on—are 
represented by binary predicates: Parent, Sibling, Brother , Sister , Child, 
Daughter , Son, Spouse, Wife, Husband, Grandparent, Grandchild , Cousin, 
Aunt, and Uncle.



• One’s mother is one’s female parent: ∀m,c Mother (c)= m ⇔ Female(m) ∧ Parent(m,c) .
• One’s husband is one’s male spouse: ∀w,h Husband(h,w) ⇔Male(h) ∧ Spouse(h,w) .
• Male and female are disjoint categories: ∀ x Male(x) ⇔ ¬Female(x) .
• Parent and child are inverse relations: ∀ p,c Parent(p,c) ⇔ Child(c,p)
• A grandparent is a parent of one’s parent: 

∀ g,c Grandparent(g,c) ⇔∃ p Parent(g,p) ∧ Parent(p,c) .
• A sibling is another child of one’s parents: 

∀ x,y Sibling(x,y) ⇔ x 6= y ∧ ∃ p Parent(p,x) ∧ Parent(p,y) .

Axioms : Each of these sentences can be viewed as an axiom of the kinship domain. They 
provide the basic factual information from which useful conclusions can be derived. Our kinship 
axioms are also definitions; they have the form ∀ x,y P(x,y) ⇔… The axioms define the Mother 
function and the Husband, Male, Parent, Grandparent, and Sibling predicates in terms of 
other predicates.
Some are theorems—that is, they are entailed by the axioms. For example, consider the 
assertion that siblinghood is symmetric: ∀ x,y Sibling(x,y) ⇔ Sibling(y,x) . 



Numbers

NatNUM 
We describe here the theory of natural numbers or non-negative integers.Natural
numbers are defined recursively
• 0 is a natural number : NatNum(0) . 
• For every object n, if n is a natural number, then S(n) is a natural number : 
∀ n NatNum(n) ⇒ NatNum(S(n)) 

So the natural numbers are 0, S(0), S(S(0)), and so on.

Axioms 
∀ n, 0 ≠ S(n) . 
∀m,n m ≠ n ⇒ S(m) ≠ S(n) .
Note : We can also write S(n) as n + 1



Numbers

Definition : Addition is defined in terms of the successor function:

• ∀m NatNum(m) ⇒ + (0,m) = m . 
• ∀m,n NatNum(m) ∧ NatNum(n) ⇒ + (S(m),n) = S(+(m,n)) 

or
• ∀m,n NatNum(m) ∧ NatNum(n) ⇒ (m + 1) + n = (m + n) + 1

Note : The use of infix notation(like m+1,m+n,etc) is an example of syntactic 
sugar, that is, an extension to or abbreviation of the standard syntax that does not 
change the semantics.



Sets

• The domain of sets is also fundamental to mathematics as well as to 
commonsense reasoning. We will use the normal vocabulary of set 
theory as syntactic sugar. 

• The empty set is a constant written as { }. 
• There is one unary predicate, Set, which is true of sets. 
• The binary predicates are x∈ s (x is a member of set s) and s1 ⊆ s2 (set 

s1 is a subset, not necessarily proper, of set s2). 
• The binary functions are 

• s1 ∩ s2 (the intersection of two sets), 
• s1 ∪ s2 (the union of two sets), and 
• {x|s} (the set resulting from adjoining element x to set s).



One possible set of axioms of Sets is as follows:

1. The only sets are the empty set and those made by adjoining something to a 
set:
• ∀ s Set(s) ⇔ (s = { }) ∨ (∃ x,s2 Set(s2) ∧ s = {x|s2})

2. The empty set has no elements adjoined into it. In other words, there is no 
way to decompose { } into a smaller set and an element:
• ¬∃ x,s {x|s} = { } .

3. Adjoining an element already in the set has no effect: 
• ∀ x,s x∈ s ⇔ s = {x|s} .   

4. The only members of a set are the elements that were adjoined into it. We 
express this recursively, saying that x is a member of s if and only if s is equal 
to some set s2 adjoined with some element y, where either y is the same as x 
or x is a member of s2: 
• ∀ x,s x∈ s ⇔∃ y,s2 (s = {y|s2} ∧ (x = y ∨ x∈ s2)) .



One possible set of axioms of Sets is as follows:

5. A set is a subset of another set if and only if all of the first set’s members are 
members of the second set: 
• ∀ s1,s2 s1 ⊆ s2 ⇔ (∀ x x∈ s1 ⇒ x∈ s2) .

6. Two sets are equal if and only if each is a subset of the other: 
• ∀ s1,s2 (s1 = s2) ⇔ (s1 ⊆ s2 ∧ s2 ⊆ s1) . 

7. An object is in the intersection of two sets if and only if it is a member of both 
sets: 

• ∀ x,s1,s2 x∈ (s1 ∩ s2) ⇔ (x∈ s1 ∧ x∈s2) .

8. An object is in the union of two sets if and only if it is a member of either set: 
• ∀ x,s1,s2 x∈ (s1 ∪ s2) ⇔ (x∈ s1 ∨ x∈s2) . 



Lists

• Lists are similar to sets. The differences are that lists are ordered and the same 
element can appear more than once in a list. 

• Nil is the constant list with no elements; 
• Cons, Append, First, and Rest are functions; and 
• Find is the predicate that does for lists what Member does for sets. 
• List? is a predicate that is true only of lists. 
• The empty list is []. 
• The term Cons(x,y), where y is a nonempty list, is written [x|y]. 
• The term Cons(x, Nil) (i.e., the list containing the element x) is written as [x]. 
• A list of several elements, such as [A,B,C], corresponds to the nested term Cons(A, 

Cons(B, Cons(C, Nil))). 



Wumpus World
• The wumpus agent receives a percept vector with five elements. A typical percept 

sentence would be 
• Percept([Stench, Breeze, Glitter , None, None], 5) .

• Here, Percept is a binary predicate, and Stench and so on are constants placed in a 
list

• The actions in the wumpus world can be represented by logical terms: 
• Turn(Right), Turn(Left), Forward, Shoot, Grab, Climb .

• To determine which is best, the agent program executes the query 
• ASKVARS(∃ a BestAction(a, 5)) ,  
• which returns a binding list such as {a/Grab}. The agent program can then return 

Grab as the action to take
• The raw percept data implies certain facts about the current state. For example: 

• ∀ t,s,g,m,c Percept([s, Breeze,g,m,c],t) ⇒ Breeze(t) , 
• ∀ t,s,b,m,c Percept([s,b, Glitter ,m,c],t) ⇒ Glitter (t) ,

and so on. These rules exhibit a trivial form of the reasoning process called perception,



Wumpus World
• Simple “reflex” behavior can also be implemented by quantified implication 

sentences. 
• For example, we have ∀ t Glitter (t) ⇒ BestAction(Grab,t) .

• Adjacency of any two squares can be defined as 
∀ x,y,a,b Adjacent([x,y], [a,b]) ⇔

(x = a ∧ (y = b − 1 ∨ y = b + 1)) ∨ (y = b ∧ (x = a − 1 ∨ x = a + 1))

• We can then say that objects can only be at one location at a time: 
∀ x,s1,s2,t At(x,s1,t) ∧ At(x,s2,t) ⇒ s1 = s2

• Given its current location, the agent can infer properties of the square from 
properties of its current percept. For example, if the agent is at a square and 
perceives a breeze, then that square is breezy: 

∀ s,t At(Agent,s,t) ∧ Breeze(t) ⇒ Breezy(s) .



Wumpus World

• The agent can deduce where the pits are (and where the wumpus is)
∀ s Breezy(s) ⇔∃ r Adjacent(r,s) ∧ Pit(r) .

• Axiom : 
∀ t HaveArrow(t + 1) ⇔ (HaveArrow(t) ∧ ¬Action(Shoot,t)) .



Knowledge Engineering in First Order Logic

• The overall process of constructing a knowledge base, known as 
knowledge engineering

• Knowledge engineering projects can vary in many ways, but they all 
generally include the following steps

1. Identify the Task
2. Assemble Relevant Knowledge
3. Decide on Vocabulary
4. Encode General Knowledge
5. Encode Specific Problem Instances
6. Pose Queries and Get Answers
7. Debug the Knowledge Base



The Electronic Circuits Domain
In this section, we will create an ontology and knowledge base to help us understand digital circuits, following the 

seven steps of knowledge engineering.

Fig : A digital circuit C1, purporting to be a one-bit full adder. The first two inputs are the 

two bits to be added, and the third input is a carry bit. The first output is the sum, and the 

second output is a carry bit for the next adder. The circuit contains two XOR gates, two 

ANDgates, and one OR gate.



1. Identify the Task

Our main tasks include:

• Checking if the circuit adds correctly.

• Finding out what the output of gate A2 is when all inputs are high.

• Identifying which gates are connected to the first input terminal.

• Looking for feedback loops in the circuit. There are also more detailed 
analyses involving timing delays, circuit area, power consumption, 
and production cost. Each of these requires additional knowledge.



2. Assemble Relevant Knowledge

Digital circuits consist of wires and gates.

• Signals travel along wires to the input terminals of gates, which then 
produce output signals on another terminal.

• Gates can be of four types: AND, OR, XOR (each with two inputs), and 
NOT (with one input).

• We focus on the connections between terminals, not the wires 
themselves. For our analysis, the size, shape, and cost of 
components are not relevant.

• If we were debugging faulty circuits, we would need to consider 
wires, since a faulty wire can affect the signals.



3. Decide on Vocabulary

• Gates: Each gate is represented as an object with a name, e.g., Gate(X1), 
and its type is defined using a function, like Type(X1)=XOR.

• Circuits: Represented by a predicate, e.g., Circuit(C1).

• Terminals: Identified using a predicate, e.g., Terminal(x). Each gate can 
have input and output terminals, denoted by functions In(1,X1) and 
Out(1,X1).

• Connectivity: Represented by a predicate Connected, which connects 
terminals, e.g., Connected(Out(1,X1),In(1,X2)).

• Signal Values: We can use a predicate On(t) to check if a signal is on, but 
it's easier to use objects 1 and 0 with a function Signal(t) to represent 
signal values.



4. Encode General Knowledge of the Domain









5.Encode the Specific Problem Instance



6. Pose Queries to the Inference Procedure



7. Debug the Knowledge Base

• For example, suppose we forget to assert that 1≠ 0. Suddenly, the 
system will be unable to prove any outputs for the circuit, except for the 
input cases 000 and 110. 
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Propositional Versus First Order Inference, 

1. Inference rules for quantifiers

2. Reduction to propositional inference



1. Inference rules for quantifiers 

• Consider axiom stating that all greedy kings are evil: 
• ∀ x King(x) ∧ Greedy(x) ⇒ Evil(x) . 

• Then it seems quite permissible to infer any of the following 
sentences: 

• King(John) ∧ Greedy(John) ⇒ Evil(John) 

• King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard) 

• King(Father (John)) ∧ Greedy(Father (John)) ⇒ Evil(Father (John)) .

• ---------------------



a) The rule of Universal Instantiation (UI for short)

• The rule of Universal Instantiation (UI for short) says that we can 
infer any sentence obtained by substituting a ground term (a term 
without variables) for the variable. 

• To write out the inference rule formally, we use SUBST(θ, α) denote 
the result of applying the substitution θ to the sentence α. Then the 
rule is written



b) The rule for Existential Instantiation

• In the rule for Existential Instantiation, the variable is replaced by a 
single new constant symbol. The formal statement is as follows: for 
any sentence α, variable v, and constant symbol k that does not 
appear elsewhere in the knowledge base,



2. Reduction to propositional inference  
( Propositionalization)

• The existentially quantified sentence can be replaced by one 
instantiation, and  universally quantified sentence can be replaced by 
the set of all possible instantiations. 

• For example, suppose our knowledge base contains just the 
sentences 

FOL Inference Propositional logic Inference 



Modus Ponens

• Modus Ponens, also known as "the law of detachment", is a 
fundamental rule of logic in propositional reasoning. It states that:

• If a conditional statement is true (e.g., "If P, then Q") and the 
antecedent (P) is true, then the consequent (Q) must also be true.

• Formal Representation
• Premise 1: P→Q (If P then Q)

• Premise 2: P (P is true)

• Conclusion: Q (Therefore, Q is true)



Example

• Premise 1: If it rains, the ground will be wet. (P→Q)

• Premise 2: It rains. (P)

• Conclusion: The ground will be wet. (Q)



Unification

• Generalized Modus Ponens is a lifted version of Modus Ponens—it raises Modus 
Ponens from ground (variable-free) propositional logic to first-order logic.

• Generalized Modus Ponens: For atomic sentences pi , pi ′ , and q, where there is a 
substitution θ



Unification

Example :
UNIFY(Knows(John, x), Knows(John, Jane)) = {x/Jane} 
UNIFY(Knows(John, x), Knows(y, Bill)) = {x/Bill, y/John} 
UNIFY(Knows(John, x), Knows(y, Mother (y))) = {y/John, x/Mother (John)} 
UNIFY(Knows(John, x), Knows(x,Elizabeth)) = fail .



Unification

• In first-order logic, unification is a process used to find a common 

instantiation for two predicates or terms such that they become 

identical. 

• A substitution, on the other hand, is a mapping of variables to 

terms. 



Unification Algorithm



Unification is the process of finding a substitution that makes two logical expressions identical. The algorithm 
takes two expressions, x and y, and attempts to find a substitution (θ) that makes them identical.
Here's a breakdown of how the algorithm works:

Base case: If the substitution θ is already marked as a failure, then it returns failure 
immediately.
Identity check: If x and y are identical, it means no further unification is needed, and the 
current substitution θ can be returned.
Variable check: If x is a variable, it calls the UNIFY-VAR function with x as the variable and y as 
the expression. If y is a variable, it calls UNIFY-VAR with y as the variable and x as the 
expression.
Compound expression check: If both x and y are compound expressions, it recursively calls 
UNIFY on their arguments and operators.
List check: If both x and y are lists, it recursively calls UNIFY on their first elements and their 
remaining elements.
Failure case: If none of the above conditions are met, it returns failure, indicating that x and y 
cannot be unified.
The UNIFY-VAR function is used when one of the expressions (x or y) is a variable. It attempts 
to create a substitution based on the variable and the expression it's being unified with.



The UNIFY-VAR function is used when one of the expressions (x or y) is a variable. It attempts 
to create a substitution based on the variable and the expression it's being unified with.

Substitution check: If the substitution already contains a mapping for the variable, it 
recursively calls UNIFY with the mapped value and the expression x.

Reverse substitution check: If the expression is already in the substitution, it recursively calls 
UNIFY with the variable and the mapped value.

Occur check: Checks for a possible occurrence of the variable in the expression, preventing 
infinite loops, and returns failure if such an occurrence is detected.

Substitution addition: If none of the above cases apply, it adds a new mapping to the 
substitution, indicating that the variable is unified with the expression.

Overall, the algorithm systematically traverses through the expressions, handling variables, compounds, lists, and checking 
for failures, until it either finds a successful substitution or determines that unification is not possible.



• Overall, the algorithm systematically traverses through the
• expressions,
• handling variables, 
• Compound statements, 
• lists, and 
• checking for failures, 

• until it either finds a successful substitution or determines that 
unification is not possible.



Example

Suppose we have the following two predicates:
1. Predicate P(x,y)
2. Predicate Q(f(z),a)
Here, 
• P and Q are predicates, 
• x, y, and z are variables, and 
• f and a are constants.
Now, let's say we want to unify   P(x,y) with Q(f(z),a). 
We can use the given algorithm for unification to find a substitution that makes these two 
predicates identical.
1. Initially, θ is empty.
2. Start unifying the predicates:     P(x,y) and Q(f(z),a)

Since P and Q are different, they can't be unified directly.
3. Unify the arguments:   Unify x with f(z) and y with a



4. Unify x with f(z): 
• x is a variable, f(z) is a compound term.
• Call UNIFY-VAR(x, f(z), θ):

• Add x/f(z) to θ
• θ={x/f(z)}

5. Unify y with a:
• y is a variable, a is a constant.
• Call UNIFY-VAR(y, a, θ):

• Add y/a to θ
• θ={x/f(z),y/a}

6.Finally, return θ:
θ={x/f(z),y/a}

So, the resulting substitution θ makes P(x,y) and Q(f(z),a) identical:
P(x,y){x/f(z),y/a}=Q(f(z),a)



Storage and retrieval

• Underlying the TELL and ASK functions used to inform and interrogate a 
knowledge base are the more primitive STORE and FETCH functions. 
STORE(s) stores a sentence s into the knowledge base and FETCH(q) returns 
all unifiers such that the query q unifies with some.

• Given a sentence to be stored, it is possible to construct indices for all 
possible queries that unify with it. For the fact Employs(IBM , Richard), the 
queries are 

• Employs(IBM , Richard)       Does IBM employ Richard? 

• Employs(x, Richard)             Who employs Richard? 

• Employs(IBM , y)                  Whom does IBM employ? 

• Employs(x, y)                         Who employs whom?





Forward Chaining:

• Forward chaining is a reasoning method ,  starts with the 
known facts and uses inference rules to derive new 
conclusions until the goal is reached or no further inferences 
can be made. 

• In essence, it proceeds forward from the premises to the 
conclusion.



Example : Consider the following knowledge base representing a 
simple diagnostic system:
1.If a patient has a fever, it might be a cold.

2.If a patient has a sore throat, it might be strep throat.

3.If a patient has a fever and a sore throat, they should see a doctor.

Given the facts:
• The patient has a fever.
• The patient has a sore throat.

• Forward chaining would proceed as follows:

1.Check the first rule: Fever? Yes. Proceed.

2.Check the second rule: Sore throat? Yes. Proceed.

3.Apply the third rule: The patient has a fever and sore throat, thus they 
should see a doctor.

Forward chaining is suitable for situations where there is a large amount 
of known information and the goal is to derive conclusions.



Forward Chaining, 

• Start with the atomic sentences in the knowledge base and apply 
Modus Ponens in the forward direction, adding new atomic 
sentences, until no further inferences can be made. 

• First-order definite clauses : A definite clause either is atomic or is an 
implication whose antecedent is a conjunction of positive literals 
and whose consequent is a single positive literal. The following are 
first-order definite clauses: 

• King(x) ∧ Greedy(x) ⇒ Evil(x) . 

• King(John) . 

• Greedy(y) .



Forward Chaining, 

• Unlike propositional literals, first-order literals can include variables, 
in which case those variables are assumed to be universally 
quantified.

• Consider the following problem: The law says that it is a crime for 
an American to sell weapons to hostile nations. The country Nono, 
an enemy of America, has some missiles, and all of its missiles were 
sold to it by Colonel West, who is American.

• We will prove that West is a criminal.



First, we will represent these facts as first-order definite clauses.
1. “. . . it is a crime for an American to sell weapons to hostile nations”: 

• American(x) ∧Weapon(y) ∧ Sells(x, y, z) ∧ Hostile(z) ⇒ Criminal(x) .
2. “Nono . . . has some missiles.” 

• The sentence ∃ x Owns(Nono, x)∧Missile(x) is transformed into two definite 
clauses by Existential Instantiation, introducing a new constant M1: 
• Owns(Nono, M1) 
• Missile  (M1) 

3. “All of its missiles were sold to it by Colonel West”: 
• Missile(x) ∧ Owns(Nono, x) ⇒ Sells(West, x, Nono) . 

4. We will also need to know that missiles are weapons: 
• Missile(x) ⇒Weapon(x)

5. and we must know that an enemy of America counts as “hostile”: 
• Enemy(x, America) ⇒ Hostile(x) . 

6. “West, who is American . . .”: 
• American(West) . 

7. “The country Nono, an enemy of America . . .”: 
• Enemy(Nono, America) . 



From these inferred facts, we can conclude that Colonel West is indeed a 

criminal since he sold missiles to a hostile nation, which is Nono.

“. . . it is a crime for an American to sell weapons to hostile nations”: 
• American(West) ∧Weapon(Missile) ∧ Sells(West, Missile, Nono) ∧

Hostile(Nono) ⇒ Criminal(West) .



• This knowledge base contains no function symbols and is 
therefore an instance of the class of Datalog knowledge bases. 

• Datalog is a language that is restricted to first-order definite 
clauses with no function symbols. 

• Datalog gets its name because it can represent the type of 
statements typically made in relational databases.

DATALOG 



Forward Chaining Algorithm: Example





Explanation of Algorithm

• This algorithm is an implementation of Forward Chaining 
with a goal-directed query mechanism, specifically 
designed for First-Order Logic (FOL) knowledge bases. 

• It's called Forward Chaining with Ask (FOL-FC-ASK). Let's 
break down the steps:



Algorithm:
1. Inputs:

• KB: The knowledge base, which consists of a set of first-order definite clauses.
• α: The query, which is an atomic sentence.

2. Loop until no new sentences are inferred:
• Initialize new as an empty set.

3. Iterate through each rule in the knowledge base:
• Standardize the variables in the rule (ensuring variable names are unique).
• For each substitution θ that makes the antecedent of the rule (`p1 ∧ ... ∧ pn`) match some subset 

of the KB:
1. Apply the substitution to the consequent of the rule (`q`) to generate a new sentence `q'`.
2. Check if `q'` unifies with some sentence already in the KB or `new`. If not, add `q'` to `new`.
3. Attempt to unify `q'` with the query `α`. If unification succeeds (resulting in a substitution φ), return φ. 
4. Update the knowledge base: 

• Add the sentences in `new` to the KB
5. Repeat the loop until no new sentences are inferred or until the query is proven or disproven.

4. Output:

•If the query is proven, return the substitution that makes it true.

•If the query is disproven (i.e., it cannot be proven true), return false.



A simple forward-chaining algorithm





Summary 

1. Forward chaining starts with known facts and moves 
forward to reach conclusions, 

2. Backward chaining starts with the goal and moves backward 
to verify if the goal can be satisfied, and (Module 5)

3. Resolution is an inference rule used to derive new clauses 
by combining existing ones. (Module 5)

These techniques are essential for reasoning and inference 
in First-Order Logic systems.


