
Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

1 | P a g e

AI_Module4

Syllabus : First Order Logic: Representation Revisited, Syntax and Semantics

of First Order logic, Using First Order logic, Knowledge Engineering In First-Order

Logic , Inference in First Order Logic: Propositional Versus First Order Inference,

Unification, Forward Chaining

Chapter 8- 8.1, 8.2, 8.3, 8.4 Chapter 9- 9.1, 9.2, 9.3

Topics:

1. First Order Logic:

a. Representation Revisited,

b. Syntax and Semantics of First Order Logic,

c. Using First Order Logic.

d. Knowledge Engineering in First Order Logic

2. Inference in First Order Logic:

a. Propositional Versus First Order Inference,

b. Unification,

c. Forward Chaining,

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

2 | P a g e

4.1 First Order Logic

4.1.a Representation of First Order Logic Revisited

This section explores representation languages and motivates the development

of first-order logic, which is more expressive than propositional logic.

Programming Languages: Common programming languages (like C++, Java,

and Lisp) are a major type of formal language. Programs represent computational

processes and can use data structures to store facts.

o Example: A 4x4 array can represent a game environment (like
Wumpus World).

o Statement: World[2,2]←Pit means there is a pit at square [2,2].

Programming languages do not automatically derive new facts; updates depend
on specific procedures created by the programmer.

Procedural vs. Declarative:

o Procedural approach: Updates to data structures require domain-
specific knowledge and are not generalizable.

o Declarative approach: In propositional logic, knowledge and reasoning
are separate and can apply universally across domains.

Limitations of Data Structures: It’s hard to express complex statements in
programming languages.

o Example: Saying “There is a pit in [2,2] or [3,1]” is not
straightforward.

Programs can usually only store one value per variable and may not handle
partial information well.

Compositionality: Propositional logic is declarative because it connects

sentences with possible truths. It can express partial information using logical

operations (like disjunction and negation).

Compositionality means the meaning of a statement depends on the meanings
of its parts.

o Example: In "S1,4 ∧ S1,2," the meaning depends on "S1,4" and
"S1,2."

o It's odd if different meanings are assigned to parts that do not relate
to each other.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

3 | P a g e

Need for First-Order Logic: Propositional logic struggles to describe complex

environments.

o Example: In propositional logic, you must create separate rules for
each square (like B1,1 ⇔ (P1,2 ∨ P2,1)).

o In contrast, natural language can easily say, "Squares adjacent to pits
are breezy," making it more efficient for concise descriptions.

Language Thought:

Natural languages, like English or Spanish, are very expressive. In the fields of
linguistics and philosophy, natural language is often seen as a way to represent
knowledge. If we could understand its rules completely, natural language could
help us build systems that can reason and understand vast amounts of written
information. Today, natural language is seen as more of a communication tool
than a way to represent pure facts.

For example, if someone says, "Look!" we understand their intent by combining

the word with the context (like spotting Superman). But on its own, the word

"Look!" doesn’t convey much information and needs context.

This limitation makes it hard to store natural language sentences in knowledge

systems, as they would also need to store the context to fully capture meaning.

Another issue is ambiguity; some words have multiple meanings. As Pinker

(1995) explained, people might think of the season "spring" or a metal coil,

showing that words alone don't always capture clear meanings.

Sapir-Whorf Hypothesis and Language's Influence on Thought

 Sapir-Whorf Hypothesis: This hypothesis suggests that the language we

speak influences how we see and understand the world. According to

Whorf (1956), people use language to divide and categorize their experiences,

based on shared understanding in their language community.

 Language Shapes Perception: Different languages categorize concepts

differently. For example, French has two words, "chaise" and "fauteuil," for

what English speakers call "chair." However, English speakers can still

understand the idea of "fauteuil" (like an "open-arm chair"), questioning how

much language shapes thinking. Whorf’s ideas were based on observation, but

studies since have used data from anthropology, psychology, and

neuroscience to explore this theory.

 Memory and Language:

o Experiment by Wanner (1974): Participants could recall the meaning

of sentences better than the exact words. This suggests that people

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

4 | P a g e

process language in a nonverbal way, focusing more on meaning than

specific words.

 Language and Spatial Orientation:

o The Australian Aboriginal language Guugu Yimithirr doesn’t use

terms for "front," "back," "left," or "right." Instead, it uses absolute

directions (north, south, etc.). This affects behavior: Guugu

Yimithirr speakers are better at navigating using cardinal directions,

while English speakers rely on relative directions.

 Influence of Grammar and Vocabulary:

o Grammatical gender can influence perception. Example: The word

"bridge" is masculine in Spanish, leading speakers to describe it as

strong and towering, but feminine in German, where it’s described as

elegant and fragile.

o Vocabulary can change perception too. In a study by Loftus and

Palmer (1974), participants viewed a car accident and estimated higher

speeds when the word "smashed" was used instead of "contacted,"

showing how word choice impacts perception.

Logic, Language, and Thought Representation

 First-Order Logic and CNF: In logic, forms like “¬(A ∨ B)” and “¬A ∧ ¬B”

mean the same thing when stored in Canonical Normal Form (CNF).CNF helps

systems recognize these forms as identical, even if they look different on the

surface.

 Brain and Word Recognition with fMRI: Until recently, it wasn’t possible

to know if the brain processed information in a similar way. However, studies by

Mitchell et al. (2008) have shown that fMRI can identify patterns when people

see certain words. By scanning brain images of people shown words like "celery"

or "airplane," a computer could predict the word they were shown with 77%

accuracy. Remarkably, this system even worked with words and people the

program had never seen before, suggesting some common brain representation of

words across people.

 Importance of Representation Forms in Reasoning: In logic, the specific

way information is represented doesn’t change the facts derived from it. But in

practical reasoning, some representations are faster or more efficient. For tasks

like learning from experience, the form of representation matters. Simpler, more

concise representations can lead to faster conclusions and are often chosen by

learning programs.

 Language’s Role in Learning and Decision-Making: When a learning

system encounters multiple valid explanations, it usually picks the simplest one.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

5 | P a g e

This is known as the principle of choosing the most succinct theory. Since the

language used impacts how theories are represented, language ultimately

influences thought and learning processes.

Note: fMRI stands for functional Magnetic Resonance Imaging, a type of brain scan used

to measure and map brain activity. Unlike regular MRI, which shows the structure of the

brain, fMRI detects changes in blood flow to different areas of the brain, which increases in

regions that are more active. Here’s how it works:

1. Blood Flow and Brain Activity: When a specific brain region is active (e.g., during

thinking, moving, or sensing), it requires more oxygen, which is carried by the blood.

fMRI detects these changes in blood oxygen levels.

2. Mapping Activity: fMRI produces images showing which parts of the brain are

working harder at any given moment. This allows researchers to see which areas are

involved in various tasks like speaking, seeing, or remembering.

3. Applications: fMRI is widely used in research to understand how different parts of

the brain function, to study brain disorders, and even to explore how people process

language, memory, and emotions.

Since fMRI is non-invasive (it doesn’t require surgery or radiation), it’s a safe and popular

tool for studying brain activity in real time.

Combining Formal and Natural Languages in Logic:

1. Using Objects, Relations, and Functions: We can create a logic system

that’s based on propositional logic (clear and context-independent) and add

ideas from natural language. This allows us to express things more naturally

but avoids ambiguity. For example:

 Objects: Things like people, houses, numbers, colors, etc.

 Relations: Connections between objects, like “brother of,” “bigger than,”

or “has color.”

 Functions: Operations with a single output for each input, like “father of”

or “one more than.”

Examples:

o “One plus two equals three” uses objects (numbers), a relation (equals),

and a function (plus).

o “Squares neighboring the wumpus are smelly” has objects (squares,

wumpus), a property (smelly), and a relation (neighboring).

2. Ontological and Epistemological Commitments in Logic:

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

6 | P a g e

Ontological Commitment: What a logic system assumes exists in the

world.

o Propositional logic: Assumes simple facts are either true or false.

o First-order logic: Assumes objects and relations exist in the world.

o Temporal logic: Adds the idea of time.

o Higher-order logic: Treats relations and functions as objects.

Epistemological Commitment: What a logic system allows you to believe

about these facts.

o Propositional and first-order logic: Allows true/false/unknown

beliefs.

o Probability and fuzzy logic: Allows degrees of belief, from 0 to 1

(like a 75% chance).

The ontological and epistemological commitments of five different logics are
summarized in the following Figure:

Fig: Formal languages and their ontological and epistemological commitments.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

7 | P a g e

Properties of Propositional Logic

1. Propositional logic is a declarative language because its semantics is based

on a truth relation between sentences and possible worlds.

2. It also has sufficient expressive power to deal with partial information,

using disjunction and negation.

3. Propositional logic has a third property that is desirable in representation
languages, namely, compositionality. In a compositional language, the

meaning of a sentence is a function of the meaning of its parts.
For example, the meaning of “S1,4 ∧ S1,2” is related to the meanings of “S1,4”

and “S1,2.”

Drawbacks of Propositional Logic

• Propositional logic (PL) is declarative and assumes the world contains facts,
so it guides us on how to represent information in a logical form and draw
conclusions.

• We can only represent information as either true or false in propositional
logic.

• Expressive power of Propositional logic is very limited and lacks to describe
an environment with many objects

• If you want to represent complicated sentences or natural language
statements, PL is not sufficient.

• Examples: PL is not enough to represent the sentences below, so we require
powerful logic (such as FOL).

1. I love mankind. It’s the people I can’t stand!
2. I like to eat mangos.

What is First Order Logic (FOL)?

1. FOL is also called predicate logic. A much more expressive language than
the propositional logic. It is a powerful language used to develop
information about an object and express the relationship between
objects.

2. FOL not only assumes that does the world contains facts (like PL does),

but it also assumes the following:

1. Objects: A, B, people, numbers, colors, wars, theories, squares, pit,
etc.

2. Relations: It is unary relation such as red, round, sister of, brother
of, etc.

3. Function: father of, best friend, third inning of, end of, etc.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

8 | P a g e

Some of the Examples for First Order Logic Sentences

Example1:

FOL: Likes(John,IceCream)

English: John likes ice cream.

FOL: Person(Mary)

English: Mary is a person.

FOL: ∀x (Person(x)→Mortal(x))

English: All persons are mortal.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

9 | P a g e

FOL: ∃x (Student(x)∧Enrolled(x,Math))

English: There exists a student who is enrolled in Math.

FOL: FatherOf(John,Mary)

English: John is the father of Mary.

FOL: ∀x ∀y (BrotherOf(x,y)→SiblingOf(x,y))

English: If x is the brother of y, then x is a sibling of y.

FOL: Red(Apple)

English: The apple is red.

FOL: ∃x (Book(x)∧Author(x,J.K. Rowling))

English: There exists a book written by J.K. Rowling.

FOL: Adjacent(Square(1,1),Square(1,2))

English: Square (1,1) is adjacent to Square (1,2).

FOL: ∀x (Animal(x)→∃y ParentOf(y,x))

English: Every animal has a parent.

Example 2:

Here are 25 complex examples of First-Order Logic (FOL) that make use of

quantifiers (Universal ∀ and Existential ∃) and logical connectives (such as

conjunction ∧ and, disjunction ∨, negation ¬, implication →, and equivalence

↔):

1. ∀x (Human(x)→Mortal(x))

English: All humans are mortal.

2. ∃x (Human(x)∧¬Mortal(x))

English: There exists a human who is not mortal.

3. ∀x (Dog(x)→∃y (OwnerOf(y,x)))

English: Every dog has an owner.

4. ∀x ∃y (Likes(x,y)∧Animal(y))

English: Everyone likes some animal.

5. ∃x (Person(x)∧∀y (Person(y)→Knows(x,y)))

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

10 | P a g e

English: There exists a person who knows every other person.

6. ∀x ∃y (BrotherOf(x,y)→¬SiblingOf(x,y))

English: For every person, there exists a brother who is not a sibling of them.

7. ∃x ∀y (Owns(x,y)→Car(y))

English: There exists someone who owns every car.

8. ∀x ∃y (WorksAt(x,y)→City(y))

English: For every person, there exists a city where they work.

9. ∀x (Adult(x)→∃y (ChildOf(y,x)))

English: Every adult has a child.

10. ∃x ∃y (Loves(x,y)∧¬Loves(y,x))

English: There exists someone who loves someone else, but the other person does not love

them back.

11. ∀x (Infected(x)→∃y (Doctor(y)∧Treats(y,x)))

English: Every infected person has a doctor who treats them.

12. ∃x ∀y (Owns(x,y)→Car(y))

English: There exists someone who owns every car.

13. ∀x ∃y (ParentOf(y,x)→Human(y))

English: Every child has a parent who is human.

14. ∀x (Student(x)→∃y (Course(y)∧Enrolled(x,y)))

English: Every student is enrolled in at least one course.

15. ∃x (Person(x)∧∀y (Person(y)→Loves(x,y)))

English: There is a person who loves every other person.

16. ∀x (HasCar(x)→∃y (Car(y)∧Owns(x,y)))

English: Every person who has a car owns a car.

17. ∃x ∀y (Animal(x)∧FriendOf(x,y)→Human(y))

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

11 | P a g e

English: There exists an animal who is friends with every human.

18. ∀x ∀y (Knows(x,y)→Knows(y,x))

English: If x knows y, then y knows x.

19. ∃x ∃y (City(x)∧City(y)∧¬SameCity(x,y))

English: There exist two cities that are not the same.

20. ∀x (Person(x)→∃y (ParentOf(y,x)∧Human(y)))

English: Every person has a human parent.

21. ∃x ∃y (Loves(x,y)∧¬Loves(y,x))

English: There is someone who loves someone, but that person doesn't love them back.

22. ∀x (Student(x)→∃y (Classroom(y)∧Enrolled(x,y)))

English: Every student is enrolled in a classroom.

23. ∀x ∃y (Animal(x)∧InZoo(x,y))

English: Every animal is in a zoo.

24. ∃x ∃y (BankAccount(x)∧Deposit(y,x))

English: There exists a bank account in which money is deposited.

25. ∀x (Cat(x)→∃y (Pet(y)∧Owns(x,y)))

English : Every cat has a pet that someone owns.

These examples showcase how First-Order Logic uses quantifiers and connectives to form

complex and nuanced statements about the world, capturing relationships, properties, and

conditions in a formal way.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

12 | P a g e

Basic Elements of FOL

The basic elements of First-Order Logic (FOL) are the fundamental components

used to express statements and form logical expressions. These elements allow

us to describe objects, relations, and functions within a domain of discourse. The

key components are as follows:

1. Objects (Domain Elements)

 Definition: Objects represent the entities or things in the domain of

discourse.

 Example: People, animals, numbers, cars, etc.

 Example in FOL: John, Alice, 5, Dog.

2. Predicates (Relations or Properties)

 Definition: Predicates represent relationships between objects or

properties of objects. They are used to express assertions about the domain.

 Example: "is a sibling," "is greater than," "is a teacher," "is red."

 Example in FOL:

o Sibling(John,Alice) → "John is a sibling of Alice."

o GreaterThan(5,3) → "5 is greater than 3."

o Red(Car) → "The car is red."

3. Constants

 Definition: Constants represent specific, fixed objects in the domain of

discourse. Unlike variables, constants refer to a particular object and do not

change.

 Example: John, Alice, 7, Earth, 3.

 Example in FOL:

o Human(John) → "John is a human."

o Animal(Dog) → "Dog is an animal."

4. Variables

 Definition: Variables represent arbitrary objects in the domain of

discourse. They are placeholders that can take any value from the domain.

 Example: x, y, z.

 Example in FOL:

o Sibling(x,y) → "x is a sibling of y" (where x and y are variables

representing any individuals in the domain).

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

13 | P a g e

5. Quantifiers

 Definition: Quantifiers express how many objects in the domain satisfy a

given property. The two main types of quantifiers are:

o Universal Quantifier (∀): Indicates that a statement is true for all

objects in the domain.

o Existential Quantifier (∃): Indicates that there exists at least one

object in the domain for which the statement is true.

 Examples:

o Universal Quantifier: ∀x (Human(x)→Mortal(x)) → "All humans

are mortal."

o Existential Quantifier: ∃x (Dog(x)∧HasOwner(x))→ "There exists

a dog that has an owner."

6. Functions

 Definition: Functions map objects to other objects. They are operations or

processes that produce a unique result for each input.

 Example: "father of," "plus," "best friend," "age of."

 Example in FOL:

o FatherOf(John) → "Father of John."

o Plus(3,4)=7 → "3 plus 4 equals 7."

7. Logical Connectives

 Definition: Logical connectives are used to combine simpler statements

into more complex ones. These include:

o Negation (¬): Represents "not."

o Conjunction (∧): Represents "and."

o Disjunction (∨): Represents "or."

o Implication (→): Represents "if... then..."

o Biconditional (↔): Represents "if and only if."

 Examples:

o Negation: ¬Sibling(John,Alice)→ "John is not a sibling of Alice."

o Conjunction: Sibling(John,Alice)∧Age(John,25) → "John is a

sibling of Alice, and John is 25 years old."

o Disjunction: Dog(x)∨Cat(x) → "x is either a dog or a cat."

o Implication: Human(x)→Mortal(x) → "If x is a human, then x is

mortal."

o Biconditional: Sibling(x,y)↔Sibling(y,x) → "x is a sibling of y if

and only if y is a sibling of x."

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

14 | P a g e

8. Terms

 Definition: A term is an expression used to refer to objects. Terms can be

variables, constants, or function applications.

 Examples:

o Constant: John, Alice.

o Variable: x, y.

o Function: FatherOf(John).

9. Atomic Formulas

 Definition: An atomic formula is a basic statement in FOL that consists of

a predicate applied to terms (which can be objects or variables).

 Example:

o Cat(Tom) → "Tom is a cat."

o Loves(John,Alice) → "John loves Alice."

10. Well-formed Formula (WFF)

 Definition: A well-formed formula is a logical expression that follows the

syntax rules of the logic system, using predicates, terms, logical

connectives, quantifiers, and variables.

 Example:

o ∀x (Human(x)→Mortal(x)) → "All humans are mortal."

These elements, including Constants, allow us to express complex logical

statements and build reasoning systems within First-Order Logic. Constants are

key in identifying specific objects within the domain and help make logical

expressions more concrete and specific.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

15 | P a g e

4.1.b Syntax and Semantics of FOL

1. Models for first-order logic

2. Symbols and interpretations

3. Terms

4. Atomic sentences

5. Complex sentences

6. Quantifiers: Universal quantification (∀) /Existential quantification (∃)

7. Equality

8. An alternative semantics? : Data base Semantics

4.1.b.1 Models for FOL

A model in first-order logic is an interpretation that specifies: what each

predicate means and the entities that can instantiate the variables.

 The entities that can instantiate the variables form the domain of discourse or

universe, which is usually required to be a nonempty set.

 A model for a first-order language is similar to a truth assignment for

propositional logic. It provides all the information needed to determine the truth

value of each sentence in the language. Key Characteristics of Models for FOL

are as follows:

• They have objects in them!

• The domain of a model is the set of objects or domain elements it

contains.

• The domain is required to be nonempty—every possible world must

contain at least one object

• The objects in the model may be related in various ways.

• Models in first-order logic require total functions, that is, there must be a

value for every input tuple

Example: Consider the figure below which illustrates the model containing five

objects, two binary relations, three unary relations and one unary functions.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

16 | P a g e

Five objects:

1. Richard the Lionheart, King of England from 1189 to 1199;

2. His younger brother, the evil King John, who ruled from 1199 to 1215;

3. The left legs of Richard and John; and

4. Crown

Tuple: The brotherhood relation in this model is the set { <Richard the Lionheart,

King John>, <King John, Richard the Lionheart> } .

Two binary relations: “brother” and “on head” relations are binary relations

Three unary relations/ properties: Person, King and Crown

One unary Function: Left Leg

In summary: A model in first-order logic consists of a set of objects and an

interpretation that maps constant symbols to objects, predicate symbols to

relations on those objects, and function symbols to functions on those objects.

Just as with propositional logic, entailment, validity, and so on are defined in

terms of all possible models

4.1.b.2 Symbols and Interpretation

 First-order logic uses symbols to represent: Objects, Relations and Functions

 Types of Symbols: There are three main types of symbols:

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

17 | P a g e

 Constant Symbols: Represent specific objects (e.g., Richard, John).

 Predicate Symbols: Represent relationships between objects (e.g.,

Brother, OnHead, Person, King, Crown).

 Function Symbols: Represent functions that connect objects (e.g.,

LeftLeg).

 Naming Convention: All symbols start with uppercase letters.

 Choice of Names: Users can choose the names of these symbols freely, similar

to how they choose proposition symbols.

 Arity: Each predicate and function symbol has an arity, which indicates the

number of arguments it takes.

 Models and Interpretations in First-Order Logic:

Determining Truth: Just like in propositional logic, every model must

provide the information needed to decide if a sentence is true or false.

 Components of a Model: A model consists of:

o Objects: The things being referred to.

o Relations: How these objects are connected.

o Functions: The operations that relate objects to one another.

 Each model also includes an interpretation, which defines what each

constant, predicate, and function symbol refers to.

 Example of Interpretation: Here’s an example of an interpretation (known

as the intended interpretation):

o Richard refers to Richard the Lionheart.

o John refers to the evil King John.

o Brother refers to the relationship of brotherhood.

o OnHead describes the relationship between the crown and King

John (i.e., the crown is on King John’s head).

o Person, King, and Crown refer to groups of objects that are

people, kings, and crowns, respectively.

o LeftLeg refers to the function that identifies the left leg.

Multiple Interpretations: There are many possible interpretations for the

symbols in a model. For example, one interpretation could map Richard to the

crown and John to King John’s left leg.

 Possible Interpretations Count: If there are five objects in a model, there can

be 25 possible interpretations just for the constant symbols Richard and John.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

18 | P a g e

Not every object needs a name; for instance, the crown and legs might not be

named in the intended interpretation.

Objects with Multiple Names: An object can have several names. For example,

both Richard and John could refer to the crown.

Understanding Confusion: This concept can be tricky, but remember that,

similar to propositional logic, you can have models where statements like

"Cloudy" and "Sunny" are both true. The knowledge base helps eliminate

models that don’t fit with what we know.

Summary of a Model:

A model in first-order logic includes:

 A set of objects.

 An interpretation that:

o Maps constant symbols to objects.

o Maps predicate symbols to relations between those objects.

o Maps function symbols to functions involving those objects.

Models and Combinations: Just like in propositional logic, terms like

entailment and validity are defined based on all possible models. Models can

have varying numbers of objects, from one to infinity.

 For example, if there are two constant symbols and one object, both

symbols must refer to that same object, but this can still apply with more

objects.

 If there are more objects than constant symbols, some objects will not have

names.

 Feasibility of Checking Models:

 The number of possible models is unlimited, making it impractical to

check entailment by listing all models in first-order logic.

 Even when limiting the number of objects, the number of combinations can

be very large.

 For instance, in a case with six or fewer objects, there are 137,506,194,466

possible models.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

19 | P a g e

The syntax of first-order logic with equality, specified in Backus–Naur form

Fig: Some members of the set of all models for a language with two constant

symbols, R and J, and one binary relation symbol. The interpretation of each

constant symbol is shown by a gray arrow. Within each model, the related

objects are connected by arrows.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

20 | P a g e

4.1.b.3: Terms

What is a Term?: A term is a logical expression that represents an object.

Constant symbols are specific types of terms that name particular objects.

Using Function Symbols: Instead of naming every object with a constant

symbol, we can use function symbols. For example, instead of saying “the left

leg of King John,” we use LeftLeg(John).

Complex Terms: A complex term is created by a function symbol followed by

a list of terms in parentheses (e.g., f(t1, t2)). Remember, a complex term is just a

more complicated name; it is not a function or a subroutine that gives back a

value.

Reasoning About Terms: We can discuss concepts like “everyone has a left leg”

without needing to define what LeftLeg means.This reasoning is different from

programming, where you need a defined subroutine to return a value.

Understanding the Semantics of Terms: The semantics of a term like f(t1,

t2,...,tn) works as follows:

 The function symbol f refers to a specific function in the model (let’s call

it F).

 The argument terms (like t1, t2) refer to objects in the domain (let's call

them d1, d2).

 The entire term refers to the object that results from applying the function

F to the objects d1, d2, etc.

 Example: If LeftLeg refers to a function in our model, and John refers to King

John, then LeftLeg(John) represents King John’s left leg.

 Role of Interpretation: The interpretation helps determine what each term

refers to within the model.

4.1.b.4: Atomic Sentences

Combining Terms and Predicate Symbols: We can combine terms (for

objects) and predicate symbols (for relations) to create atomic sentences.

What is an Atomic Sentence?: An atomic sentence (or atom) is made up of:

o A predicate symbol

o An optional list of terms in parentheses

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

21 | P a g e

Example: Brother(Richard, John) states that Richard the Lionheart is the

brother of King John.

Complex Terms in Atomic Sentences: Atomic sentences can also use complex

terms as arguments.

Example: Married(Father(Richard), Mother(John)) means that

Richard’s father is married to John’s mother.

Truth of Atomic Sentences: An atomic sentence is true in a model if: The

relation described by the predicate symbol holds true for the objects referred to

by the terms.

4.1.b.5: Complex Sentences

Building Complex Sentences: We can use logical connectives (like NOT, AND,

OR, and IMPLIES) to create more complex sentences in first-order logic. These

connectives follow the same rules (syntax and semantics) as in propositional

calculus.

Examples of Complex Sentences: Here are four sentences that are true in a

specific model based on our intended interpretation:

1. ¬Brother(LeftLeg(Richard), John): It is not true that Richard's left leg

is the brother of John.

2. Brother(Richard, John) ∧ Brother(John, Richard): Richard is the

brother of John and John is the brother of Richard.

3. King(Richard) ∨ King(John): Either Richard is a king or John is a king.

4. ¬King(Richard) ⇒ King(John): If Richard is not a king, then John is a

king.

4.1.b.6: Quantifiers: Universal quantification (∀) /Existential

quantification (∃)

Understanding Quantifiers: Quantifiers help express properties of groups of

objects instead of naming each one. There are two main types of quantifiers in

first-order logic:

 Universal Quantifier (∀): Indicates a property applies to all objects.

 Existential Quantifier (∃): Indicates a property applies to at least one
object.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

22 | P a g e

Universal Quantification (∀): It allows us to state general rules. For example:

The statement “All kings are persons” is written as:

 ∀x King(x) ⇒ Person(x)
This means: “For all x, if x is a king, then x is a person.”
The symbol x is a variable that represents any object, and it is usually a
lowercase letter.
Existential Quantification (∃): This quantifier is used to state that something

exists without naming it. For example: The statement “King John has a crown

on his head” can be expressed as:

o ∃x Crown(x) ∧ OnHead(x, John)
o This means: “There exists an x such that x is a crown and x is on King

John’s head.”
The symbol ∃x is pronounced “There exists an x such that...”

Nested Quantifiers: We can use multiple quantifiers together, either of the

same type or mixed. For example:

o “Brothers are siblings” can be written as:∀x ∀y Brother(x,y) ⇒
Sibling(x,y)

o “Everybody loves somebody” means: ∀x ∃y Loves(x,y) (for every person
x, there exists someone y that x loves).

o “There is someone who is loved by everyone” means:∃y ∀x Loves(x,y)
(there exists someone y who is loved by every person x).

Importance of Order: The order of quantifiers matters, For example:

 ∀x (∃y Loves(x,y)): Every person loves someone.
 ∃y (∀x Loves(x,y)): There is someone who is loved by everyone.

Using the same variable name for different quantifiers can be confusing. It’s
best to use different names.

Connections Between ∀ and ∃: Universal and existential quantifiers are linked

through negation:

 “Everyone dislikes parsnips” is equivalent to “There is no one who likes
parsnips”:

o ∀x ¬Likes(x, Parsnips) ≡ ¬∃x Likes(x, Parsnips).
 “Everyone likes ice cream” is equivalent to “There is no one who does

not like ice cream”:
o ∀x Likes(x, IceCream) ≡ ¬∃x ¬Likes(x, IceCream).

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

23 | P a g e

These relationships follow De Morgan’s Laws for quantified sentences:

 ∀x ¬P ≡ ¬∃x P
 ¬∀x P ≡ ∃x ¬P
 ∀x P ≡ ¬∃x ¬P
 ∃x P ≡ ¬∀x ¬P
 ¬(P ∨ Q) ≡ ¬P ∧ ¬Q
 ¬(P ∧ Q) ≡ ¬P ∨ ¬Q

Quantifiers are essential for expressing general rules and properties about

objects in first-order logic. Understanding how to use universal (∀) and existential

(∃) quantifiers, their nesting, and their connection through negation is crucial for

effective reasoning in logic.

4.1.b.7: Equality

Using Equality in Atomic Sentences: In first-order logic, we can create atomic

sentences using the equality symbol (=) to indicate that two terms refer to the

same object.

 Example: Father(John) = Henry means that the object represented by
Father(John) is the same as the object represented by Henry.

Determining Truth of Equality: The truth of an equality sentence is determined

by checking if the two terms refer to the same object in a given interpretation.

Negation of Equality: The equality symbol can also be used with negation (¬) to

assert that two terms are not the same object.

 Example: To express that Richard has at least two brothers, we can write:
∃x, y Brother(x, Richard) ∧ Brother(y, Richard) ∧ ¬(x = y)

This states that there exist two different brothers (x and y) of Richard.

Common Mistake: The sentence ∃x, y Brother(x, Richard) ∧ Brother(y,

Richard) does not correctly indicate that Richard has at least two brothers. This

sentence could be true even if Richard only has one brother.

 For example, if both x and y are assigned to King John, the sentence would
still be true.

Importance of Negating Equality: The addition of ¬(x = y) ensures that x and

y are different, which is necessary to confirm that Richard has at least two

brothers.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

24 | P a g e

Abbreviation: Sometimes, the notation x ≠ y is used as shorthand for saying ¬(x

= y). However, it’s important to be clear about their meanings.

Equality in first-order logic is a powerful tool for stating facts about objects. By
using the equality symbol, we can express when two terms refer to the same
object or ensure that they refer to different ones. Being careful with the use of
negation is essential for accurately conveying relationships between objects.

4.1.b.8: An alternative semantics? : Data base Semantics

Expressing Relationships: Suppose we want to express that Richard has two

brothers, John and Geoffrey. We might write:

Brother (John, Richard) ∧ Brother (Geoffrey, Richard).

However, this statement has some problems:

o It could be true even if Richard only has one brother.

o It doesn’t exclude the possibility of Richard having more brothers

besides John and Geoffrey.

Correct Expression: To accurately convey that "Richard’s brothers are John and

Geoffrey," we need a more detailed expression:

Brother(John, Richard) ∧ Brother(Geoffrey, Richard) ∧ John ≠ Geoffrey

∧ ∀x Brother(x, Richard) ⇒ (x = John ∨ x = Geoffrey).

This ensures: John and Geoffrey are indeed the only brothers of Richard.

Challenges with First-Order Logic: This detailed expression is longer and more

complex than how we naturally speak, making it easy to make mistakes when

translating knowledge into first-order logic. Such errors can lead to unexpected

results in logical reasoning systems.

Database Semantics Proposal: To simplify logical expressions, a method called

database semantics is proposed, which involves three key ideas:

 Unique-Names Assumption: Each constant symbol refers to a different

object.

 Closed-World Assumption: If something is not known to be true, it is

assumed to be false.

 Domain Closure: A model includes only the objects mentioned by the

constant symbols—no additional objects.

Benefits of Database Semantics:

 Under this system, the earlier expression correctly indicates that Richard’s

brothers are John and Geoffrey.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

25 | P a g e

 Database semantics is also commonly used in logic programming and

database systems.

Possible Models: In database semantics, there are limited possible models for a

situation. For instance:

 With two objects, there are 16 different combinations of relationships that can

satisfy the conditions, much fewer than the infinite possibilities in standard

first-order logic.

Choosing the Right Approach: There is no single "correct" way to interpret

logic. The best choice depends on:

o How clear and simple it is to express the knowledge.

o How easy it is to create logical rules from that knowledge.

Database semantics works well when we are sure of the identities of all objects

and have all relevant facts. However, it can be tricky when details are unclear.

Figure below shows some of the models, ranging from the model with no tuples

satisfying the relation to the model with all tuples satisfying the relation. With

two objects, there are four possible two-element tuples, so there are 24 =16

different subsets of tuples that can satisfy the relation. Thus, there are 16

possible models in all—a lot fewer than the infinitely many models for the

standard first-order semantics.

Fig: Some members of the set of all models for a language with two constant

symbols, R and J, and one binary relation symbol, under database semantics.

The interpretation of the constant symbols is fixed, and there is a distinct object

for each constant symbol.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

26 | P a g e

4.1.c Using First Order Logic

Purpose of First-Order Logic: Now that we have a detailed logical language,

we can start using it effectively. The best way to understand this is by looking at

examples.

Understanding Domains: In knowledge representation, a domain is simply a

specific area or topic about which we want to express knowledge.

Examples of domains: family relationships, numbers, sets, lists, and the

Wumpus world.

TELL/ASK Interface: Before exploring domains, we will introduce the

TELL/ASK interface for interacting with a knowledge base:

 TELL: Adds new information to the knowledge base.

 ASK: Queries the knowledge base to retrieve information.

Example Domains: We’ll examine different simple domains in turn:

 Family relationships

 Numbers

 Sets and lists

 The Wumpus world (a common problem-solving environment)

Advanced Example: In the next section, we’ll look at a more detailed example:

electronic circuits.

4.1.c.1 Assertions and Queries in First-Order Logic

Assertions (TELL): Statements we add to a knowledge base (KB) using TELL.

These statements are called assertions.

o Example assertions:
 TELL(KB, King(John)) – asserts that John is a king.
 TELL(KB, Person(Richard)) – asserts that Richard is a person.
 TELL(KB, ∀x King(x) ⇒ Person(x)) – asserts that all kings are

people.

Queries (ASK):

o ASK lets us check if something is true in the KB. These questions are called
queries or goals.

 Example: ASK(KB, King(John)) returns true if John is indeed a
king in the KB.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

27 | P a g e

o Logical Entailment: Queries that follow logically from the KB should
return true.

 Example: If we’ve asserted that John is a king and that all
kings are people, then ASK(KB, Person(John)) will also return
true.

Quantified Queries:

We can use ASK with existential quantifiers to see if there exists an example that

fits the query.

o Example: ASK(KB, ∃x Person(x)) returns true if there is at least one
person in the KB.

However, this is a general answer and doesn’t provide the specific values
that make the query true.

ASKVARS: ASKVARS helps us find specific values (substitutions) that satisfy

a query.

o Example: ASKVARS(KB, Person(x)) will return {x/John} and {x/Richard},
showing both John and Richard satisfy the query.

o Substitution (Binding List): This list of values for variables that makes the
query true is called a substitution or binding list.

Limitations in First-Order Logic:

o ASKVARS works well with KBs made only of Horn clauses, where variables
can always bind to specific values to make queries true.

o In first-order logic, some queries may be true without binding any
variables.

Example: If TELL(KB, King(John) ∨ King(Richard)) is in KB, then ASK(KB,
∃x King(x)) is true, but we don’t have a specific binding for x.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

28 | P a g e

4.1.c.2 The Kinship Domain in First-Order Logic

Kinship Domain Basics:

 This domain represents family relationships like parenthood, siblinghood,

marriage, etc.

 Objects are people, and we use predicates to represent relationships and

attributes.

Predicates:

 Unary predicates (describe one property about a person):

o Male(x), Female(x)

 Binary predicates (describe relationships between two people):

o Parent (x, y), Sibling (x, y), Brother (x, y), Sister (x, y), Child

(x, y), Daughter (x, y), Son (x, y), Spouse (x, y), Wife (x, y),

Husband (x, y), Grandparent (x, y), Grandchild (x, y), Cousin

(x, y), Aunt (x, y), Uncle(x, y)

Functions for Unique Relationships:

 Functions like Mother(x) and Father(x) define unique relationships

(e.g., every person has exactly one mother and one father).

Defining Relationships:

 Mother: "One’s mother is one’s female parent."

o Example: ∀m, c Mother(c) = m ⇔ Female(m) ∧ Parent(m, c)

 Husband: "One’s husband is one’s male spouse."

o Example: ∀w, h Husband(h, w) ⇔ Male(h) ∧ Spouse(h, w)

 Mutually Exclusive: "Male and Female are disjoint (a person can’t be

both)."

o Example: ∀x Male(x) ⇔ ¬Female(x)

 Parent and Child Relationship:

o Example: ∀p, c Parent(p, c) ⇔ Child(c, p)

 Grandparent: "A grandparent is a parent of one’s parent."

o Example: ∀g, c Grandparent (g, c) ⇔ ∃p Parent (g, p) ∧ Parent

(p, c)

 Sibling: "A sibling is another child of the same parents."

o Example: ∀x, y Sibling (x, y) ⇔ x ≠ y ∧ ∃p Parent (p, x) ∧

Parent (p, y)

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

29 | P a g e

Axioms and Theorems:

 Axioms are basic, foundational statements about relationships. For

example, the rule defining siblings is an axiom.

 Theorems are statements that can be logically derived from axioms.

o Example: Sibling relationships are symmetric (if A is a sibling of

B, then B is a sibling of A): ∀x, y Sibling(x, y) ⇔ Sibling(y, x)

Including Facts and Missing Axioms:

 Not all axioms define concepts; some provide general information

without being complete definitions (e.g., Person(x) doesn’t have a full

definition).

 Facts like Male(Jim) or Spouse(Jim, Laura) can help solve specific

questions (like confirming family relationships).

 If expected answers aren’t obtained, it often means an axiom is missing

from the system.

4.1.c.3 Numbers, Sets, and Lists in First-Order Logic

Natural Numbers and Peano Axioms

Natural Numbers: These are non-negative whole numbers (like 0, 1, 2, 3, etc.)

that we can define using simple rules, called the Peano axioms, which help

explain how numbers and addition work.

To define natural numbers, we need:

 A rule, NatNum, that tells us if something is a natural number.
 The number 0 as a starting point.
 A rule called S (successor), which helps us create the next number by

adding 1 each time.

The Peano Axioms define natural numbers as follows:

1. 0 is a natural number: We say NatNum(0) is true.
2. Each natural number has a successor: If n is a natural number, then S(n)

(which is n + 1) is also a natural number.

So, starting from 0, we get 0, S(0), S(S(0)),... which gives 0, 1, 2,....

Additional rules (or axioms) for successors:

 0 is not the successor of any number: This helps us prevent backward
counting (e.g., 0 ≠ S(n)).

 If two numbers are equal, their successors are also equal: If m = n, then
S(m) = S(n).

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

30 | P a g e

We also need axioms to constrain the successor function:
 ∀n 0≠S(n).
 ∀m,n m≠n ⇒ S(m)≠S(n).
Now we can define addition in terms of the successor function:
 ∀m NatNum(m) ⇒ +(0,m)=m.
 ∀m,n NatNum(m)∧NatNum(n) ⇒ +(S(m),n) = S(+(m,n)).

Defining Addition with the Successor Function

To define addition with the Peano rules:

1. Adding 0 to any natural number keeps it the same: For any number m,
m + 0 = m.

2. Adding a successor: If we add S(m) (or m + 1) to n, it is the same as taking
S(m + n).

We can also use infix notation for readability, which means writing m + n instead

of +(m, n).

For example:

 m + 1 means we are adding 1 to m.
 The addition axiom using infix notation looks like (m + 1) + n = (m + n) +

1.
This builds addition as a repeated application of the successor function.

Infix Notation and Syntactic Sugar

 Infix Notation as Syntactic Sugar: Using symbols like + in expressions

(e.g., m + n) is an example of "syntactic sugar." Syntactic sugar is a way

to simplify or abbreviate the language we use without changing the actual

meaning (or semantics). For instance, we could write +(m, n) instead of

m + n, but m + n is easier to read.

 Desugaring: Any statement using syntactic sugar can be rewritten (or

"desugared") back into the more basic, formal logic form without losing

its meaning.

Building Up Math Concepts

Once we define addition with Peano axioms, we can easily build other math

operations:

 Multiplication as repeated addition.
 Exponentiation as repeated multiplication.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

31 | P a g e

 We can also define division, remainders, and even concepts like prime
numbers.

So, all of number theory can be constructed using just one constant (0), one

function (successor), one predicate (NatNum), and four axioms. This

foundation supports advanced applications like cryptography.

Sets and Set Theory

 Sets: Sets are also fundamental in math and common sense. Using sets, we

can define number theory and represent collections of elements, including

the empty set. We build up sets by adding elements, finding intersections

(common elements), and unions (combined elements).

 Set Theory Notation as Syntactic Sugar: We use familiar symbols in set

theory as syntactic sugar for clarity. For instance:

o {} represents the empty set.
o Set(x) tells us if something is a set.
o x ∈ s means x is an element of set s.
o s1 ⊆ s2 means set s1 is a subset of s2.
o s1 ∩ s2 and s1 ∪ s2 are the intersection and union of sets s1 and

s2, respectively.
o {x | s} represents a new set created by adding x to s.

One possible set of axioms is as follows:

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

32 | P a g e

Lists

 Definition of Lists:

 Lists are similar to sets but have some key differences:

o Ordered: The order of elements in a list matters.

o Duplicates: The same element can appear multiple times in a list.

 Vocabulary Used:

 Nil: Represents an empty list (no elements).

 Cons: A function used to add an element to the front of a list.

 Append: A function used to join two lists together.

 First: A function that retrieves the first element of a list.

 Rest: A function that retrieves all elements of a list except the first one.

 Find: A predicate that checks if an element is in a list (similar to how

Member works for sets).

 List?: A predicate that checks if something is a list.

 Syntactic Sugar:

 Just like with sets, we often use simpler notation when writing about lists:

o The empty list is written as [].

o Cons(x, y) (where y is a non-empty list) is written as [x|y].

o Cons(x, Nil) (the list containing only the element x) is written

as [x].

o A list with several elements, such as [A, B, C], corresponds to

the nested structure Cons(A, Cons(B, Cons(C, Nil))).

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

33 | P a g e

4.1.c.4 Wumpus World

Overview of the Wumpus World:

 The Wumpus World is a common example used in artificial intelligence to
illustrate how an agent can perceive its environment and make decisions
based on that information.

 Propositional logic axioms were discussed in Chapter 7, but first-order
axioms provide a more concise and clear way to express the necessary
information.

Agent Perception:

 The Wumpus agent receives a percept vector with five elements,
indicating what it perceives in the environment.

 Each percept must be recorded with the time it was observed to avoid
confusion. For example:

o Example Percept Sentence: Percept([Stench, Breeze,

Glitter, None, None], 5)
 This means at time 5, the agent perceives a stench, breeze,

and glitter, with no other percepts.
 Actions in the Wumpus World can be represented logically:

o Actions: Turn(Right), Turn(Left), Forward, Shoot,
Grab, Climb

Determining Best Action:

 The agent uses a query to find the best action to take:
o Example Query: ASKVARS(∃a BestAction(a, 5))
o This returns a binding list, like {a/Grab}, indicating the agent

should grab.

Logical Implications:

 The percept data leads to certain facts about the current state:
o Example Sentences:

 ∀t,s,g,m,c Percept([s, Breeze, g, m, c],
t) ⇒ Breeze(t)

 ∀t,s,b,m,c Percept([s, b, Glitter, m, c],
t) ⇒ Glitter(t)

 This is a simple reasoning process called perception and will be explored
further in Chapter 24.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

34 | P a g e

Reflex Behavior:

 Reflex actions can be implemented using quantified implications:
o Example: ∀t Glitter(t) ⇒ BestAction(Grab, t)

 This implies if the agent perceives glitter at time t, the best
action is to grab.

Representing the Environment:

 Objects in the Wumpus World include squares, pits, and the Wumpus.
 Instead of naming each square (e.g., Square1, Square2), we use lists to

represent their coordinates:
o Example of Adjacency:

 ∀x,y,a,b Adjacent([x,y],[a,b]) ⇔ (x = a

∧ (y = b-1 ∨ y = b+1)) ∨ (y = b ∧ (x = a-
1 ∨ x = a+1))

 Pits: Use a unary predicate Pit to indicate where pits are located.
 Wumpus: Represented simply by a constant, Wumpus.
 The agent’s location is tracked over time:

o Example: At(Agent, s, t) means the agent is at square s at
time t.

 The Wumpus's location can be fixed:
o Example: ∀t At(Wumpus, [2,2], t)

Properties of Squares:

 An object can only occupy one location at a time:
o Example: ∀x,s1,s2,t At(x,s1,t) ∧ At(x,s2,t) ⇒ s1

= s2
 From its location and percepts, the agent can infer properties of its

environment:
o Example:

 If the agent is at a square and perceives a breeze, then that
square is breezy:

 ∀s,t At(Agent, s, t) ∧ Breeze(t) ⇒
Breezy(s)

Deducing Locations:

 By identifying breezy and non-breezy squares, the agent can infer where
pits and the Wumpus are located:

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

35 | P a g e

o Example Axiom: ∀s Breezy(s) ⇔ ∃r Adjacent(r,s) ∧
Pit(r)

 First-order logic allows for more concise rules without needing separate
axioms for each square or time step:

o Example:
 For the arrow: ∀t HaveArrow(t+1) ⇔

(HaveArrow(t) ∧ ¬Action(Shoot, t))

The first-order logic framework allows for more efficient and clear
representations of the Wumpus World, making it easier to manage the agent's
perception, actions, and the environment.

4.1.d Knowledge Engineering in First Order Logic

The previous section demonstrated how to use first-order logic to represent

knowledge in three simple areas. This section focuses on the overall process of

constructing a knowledge base, known as knowledge engineering. A knowledge

engineer is a person who studies a specific domain, identifies key concepts, and

creates a formal representation of the objects and relationships within that

domain.

To illustrate the knowledge engineering process, we will use an electronic circuit

domain that should already be somewhat familiar, allowing us to focus on the

representation aspects. The method we use is suitable for creating specialized

knowledge bases with clearly defined domains and known types of queries.

Knowledge engineering projects can vary in many ways, but they all generally

include the following steps:

1. Identify the Task: The knowledge engineer defines what questions the

knowledge base will answer and what facts are needed for each problem. For

example, in the wumpus world, does the knowledge base need to decide on

actions (like moving or grabbing) or just provide information about the

environment (like the presence of pits or wumpus)? This step is similar to the

PEAS process for designing agents discussed in Chapter 2.

2. Assemble Relevant Knowledge: The knowledge engineer may already be an

expert in the field or may need to collaborate with experts to gather the

necessary information, a process known as knowledge acquisition. At this

stage, knowledge is not formally represented. The goal is to understand the

knowledge base's scope based on the task and how the domain functions.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

36 | P a g e

o For the wumpus world, which has a defined set of rules, identifying

relevant knowledge is straightforward. For example, the adjacency of

squares needs to be known, but this was not explicitly stated in the

wumpus-world rules. In real-world domains, determining what knowledge

is relevant can be complex, such as deciding if a VLSI simulation needs to

consider stray capacitances and skin effects.

3. Decide on Vocabulary: The engineer translates important concepts into

logical names, including predicates, functions, and constants. This involves

stylistic decisions that can significantly affect the project's success. For

example, should pits be represented as objects or as a unary predicate on

squares? Should the agent’s orientation be a function or a predicate? Should

the wumpus’s location depend on time? The choices made form the ontology

of the domain, which describes what exists without detailing their specific

properties or relationships.

4. Encode General Knowledge: The knowledge engineer writes axioms for all

vocabulary terms. This clarifies the meanings and allows experts to verify the

content. This step often uncovers misunderstandings or gaps, requiring a

return to step 3 for revisions.

For example, if the knowledge base includes a diagnostic rule for finding the

wumpus, such as:

∀s Smelly(s)⇒Adjacent(Home(Wumpus),s)

If this is not a biconditional, the agent will never be able to prove the absence

of wumpuses.

5. Encode Specific Problem Instances:

o With a well-thought-out ontology, this step should be straightforward. It

involves creating simple atomic sentences about instances of concepts

already in the ontology. For example, if the wumpus is located at a specific

square, the engineer would represent this as a statement like At(Wumpus,

[2, 2], t) for some time t. For logical agents, problem instances come from

sensors, while a “disembodied” knowledge base receives additional

sentences like traditional programs receive input data.

6. Pose Queries and Get Answers:

o This is the rewarding part, where the inference procedure uses the axioms

and specific facts to derive useful information. For example, the engineer

might ask, "What is the best action to take at time 5?" This step eliminates

the need for a custom solution algorithm, as the knowledge base can derive

conclusions on its own.

7. Debug the Knowledge Base:

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

37 | P a g e

o Initially, the answers to queries may not match expectations. While the

answers reflect the knowledge base's content, they may not be what the

user anticipates. For example, if an axiom is missing, some queries may

not be answerable. Debugging may involve identifying gaps or weak

axioms by recognizing where reasoning stops unexpectedly. Missing or

weak axioms can lead to incomplete conclusions; for example, a statement

like: ∀xNumOfLegs(x,4)⇒Mammal(x) is false for reptiles, amphibians,

and, more importantly, tables. The falsehood of this sentence can be

determined independently of the rest of the knowledge base. In contrast, a

typical programming error, like: offset=position+1, cannot be assessed

without context, such as whether "offset" refers to the current position or

the next one, or if the value of "position" changes elsewhere in the program.

To better understand this seven-step process, we will apply it to an extended

example in the domain of electronic circuits.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

38 | P a g e

8.4.2 The Electronic Circuits Domain

In this section, we will create an ontology and knowledge base to help us

understand digital circuits, following the seven steps of knowledge engineering.

Fig : A digital circuit C1, purporting to be a one-bit full adder. The first two inputs are the

two bits to be added, and the third input is a carry bit. The first output is the sum, and the

second output is a carry bit for the next adder. The circuit contains two XOR gates, two

ANDgates, and one OR gate.

1. Identify the Task

We need to analyze digital circuits, like the one shown in Figure 8.6. Our main

tasks include:

 Checking if the circuit adds correctly.
 Finding out what the output of gate A2 is when all inputs are high.
 Identifying which gates are connected to the first input terminal.
 Looking for feedback loops in the circuit. There are also more detailed

analyses involving timing delays, circuit area, power consumption, and
production cost. Each of these requires additional knowledge.

2. Assemble Relevant Knowledge

Digital circuits consist of wires and gates.

 Signals travel along wires to the input terminals of gates, which then
produce output signals on another terminal.

 Gates can be of four types: AND, OR, XOR (each with two inputs), and
NOT (with one input).

 We focus on the connections between terminals, not the wires
themselves. For our analysis, the size, shape, and cost of components
are not relevant.

 If we were debugging faulty circuits, we would need to consider wires,
since a faulty wire can affect the signals.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

39 | P a g e

3. Decide on Vocabulary

We will discuss circuits, terminals, signals, and gates. Here’s how we will

represent them:

 Gates: Each gate is represented as an object with a name, e.g.,
Gate(X1), and its type is defined using a function, like
Type(X1)=XOR.

 Circuits: Represented by a predicate, e.g., Circuit(C1).
 Terminals: Identified using a predicate, e.g., Terminal(x). Each gate

can have input and output terminals, denoted by functions In(1,X1)
and Out(1,X1).

 Connectivity: Represented by a predicate Connected, which connects
terminals, e.g., Connected(Out(1,X1),In(1,X2)).

 Signal Values: We can use a predicate On(t) to check if a signal is on,
but it's easier to use objects 1 and 0 with a function Signal(t) to
represent signal values.

4. Encode General Knowledge of the Domain

We can establish clear rules for our ontology. Here are the key axioms:

1. If two terminals are connected, they have the same signal:

2. Each terminal’s signal is either 1 or 0

3. Connectivity is commutative:

4. There are four types of gates:

5. An AND gate outputs 0 if any input is 0:

6. An OR gate outputs 1 if any input is 1:

7. An XOR gate outputs 1 if inputs are different:

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

40 | P a g e

8. A NOT gate's output is different from its input:

9. AND, OR, and XOR gates have two inputs and one output; NOT gates
have one input and one output.

10. A circuit has terminals up to its input and output capacity:

11. Gates, terminals, signals, and gate types are all distinct.

12. All gates are also circuits:

5.Encode the Specific Problem Instance

We describe the circuit from Figure as circuit C1:

 Circuit: Circuit(C1) ∧ Arity(C1,3,2)
 Gates:

o Gate(X1) ∧ Type(X1)=XOR
o Gate(X2) ∧ Type(X2)=XOR
o Gate(A1) ∧ Type(A1)=AND
o Gate(A2) ∧ Type(A2)=AND
o Gate(O1) ∧ Type(O1)=OR

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

41 | P a g e

 Connections:

6. Pose Queries to the Inference Procedure

This final query will return a complete input–output table for the device, which

can be used to check that it does in fact add its inputs correctly. This is a simple

example of circuit verification.

7. Debug the Knowledge Base

We can perturb the knowledge base in various ways to see what kinds of

erroneous behaviors emerge. For example, suppose we fail to read Section 8.2.8

and hence forget to assert that 1≠ 0. Suddenly, the system will be unable to

prove any outputs for the circuit, except for the input cases 000 and 110. We

can pinpoint the problem by asking for the outputs of each gate. For example,

we can ask

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

42 | P a g e

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

43 | P a g e

4.2 Inference in First Order Logic

4.2.1 Propositional Versus First Order Inference

a) Inference rules for quantifiers

b) Reduction to propositional inference

4.2.1.a) Inference Rules for Quantifiers

Let us begin with universal quantifiers. Suppose our knowledge base contains

the standard folkloric axiom stating that all greedy kings are evil:

∀ x King(x) ∧ Greedy(x) ⇒ Evil(x) .

Then it seems quite permissible to infer any of the following sentences:

• King(John) ∧ Greedy(John) ⇒ Evil(John)

• King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)

• King(Father (John)) ∧ Greedy(Father (John)) ⇒ Evil(Father (John)) .

• ---------------------

a) The rule of Universal Instantiation (UI for short)

The rule of Universal Instantiation (UI for short) says that we can infer any

sentence obtained by substituting a ground term (a term without variables) for

the variable.

To write out the inference rule formally, we use SUBST(θ, α) denote the result

of applying the substitution θ to the sentence α. Then the rule is written

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

44 | P a g e

b) The rule for Existential Instantiation

In the rule for Existential Instantiation, the variable is replaced by a single new

constant symbol. The formal statement is as follows: for any sentence α,

variable v, and constant symbol k that does not appear elsewhere in the

knowledge base,

Existential Sentences and Existential Instantiation:

Existential Sentences: These sentences state that there is at least one object that

meets a certain condition.

Existential Instantiation: This rule lets us assign a unique name to an object that

meets the condition in an existential sentence. However, this name should not

already belong to any other object.

Skolem Constants: In logic, the new name we give to satisfy an existential

condition is called a Skolem constant. This is part of a larger process called

skolemization.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

45 | P a g e

Application Rules:

 Universal Instantiation: Can be applied repeatedly to derive various

conclusions.

 Existential Instantiation: Applied only once. Afterward, we can discard

the original existentially quantified sentence.

Example of Discarding an Existential Sentence: Suppose we have the

existential sentence ∃x Kill(x, Victim), which states that someone killed the

victim. By Existential Instantiation, we could assign the name "Murderer" to the

unknown person, resulting in the sentence Kill(Murderer, Victim). At this point,

we no longer need ∃x Kill(x, Victim) because we now have a specific term,

“Murderer,” to refer to the person who committed the act.

Inferential Equivalence: Although the knowledge base isn’t exactly the same

after applying Existential Instantiation, it remains inferentially equivalent. This

means the revised knowledge base will be satisfiable under the same conditions

as the original one.

4.2.1.b) Reduction to propositional inference

(Propositionalization)

Once we have rules for inferring non quantified sentences from quantified

sentences, it becomes possible to reduce first-order inference to propositional

inference. By applying rules that derive non quantified (propositional) sentences

from quantified ones, we can simplify first-order inference to propositional

inference, making it easier to solve. The first idea is that Replacing Quantified

Sentences as follows:

 Existential Quantifiers: A single instantiation replaces an existentially

quantified sentence.

 Universal Quantifiers: A universally quantified sentence is replaced by all

possible instantiations.

Example: Given a knowledge base with:

o ∀x (King(x) ∧ Greedy(x) ⇒ Evil(x))

o King(John)

o Greedy(John)

o Brother(Richard, John)

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

46 | P a g e

 By applying Universal Instantiation (UI) to the quantified sentence, we

substitute each variable x with ground terms (like "John" or "Richard"):

o King(John) ∧ Greedy(John) ⇒ Evil(John)

o King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)

 After this, we can treat each atomic sentence (e.g., King(John),

Greedy(John)) as a proposition and apply propositional logic techniques to

make inferences, such as concluding Evil(John).

Complete Propositionalization: Every first-order knowledge base can be

propositionalized so that entailment is preserved. This method makes it possible

to determine if a sentence can be entailed (i.e., proven) from a first-order

knowledge base.

Infinite Instantiations Problem: If the knowledge base includes function

symbols, the ground-term substitutions could be infinite (e.g., using Father could

produce terms like Father(Father(Father(John)))). This makes it difficult for

propositional algorithms to handle an infinitely large set of sentences.

Herbrand’s Theorem (1930): Jacques Herbrand proved that if a sentence is

entailed by the knowledge base, only a finite subset of these substitutions is

needed for the proof. We can organize the process by generating terms gradually:

 Start with constant symbols (e.g., Richard, John).

 Move to terms of depth 1 (e.g., Father(Richard)).

 Then terms of depth 2, and so on, until a proof is found.

Completeness of the Approach: This propositionalization approach is complete,

meaning any entailed sentence can be proved even though the space of possible

models is infinite.

Challenges – Semidecidability:

 If a sentence is not entailed, there is no way to know for sure; the proof

process might continue indefinitely.

 This resembles the halting problem in Turing machines, where we can't

always know if a process will end.

 The entailment problem in first-order logic is semidecidable:

o Algorithms exist that confirm when a sentence is entailed (saying

“yes”).

o However, no algorithm can reliably say “no” for every non-entailed

sentence.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

47 | P a g e

Example : For example, suppose our knowledge base contains just the

sentences

Modus Ponens

Modus Ponens, also known as "the law of detachment", is a fundamental rule

of logic in propositional reasoning. It states that:

If a conditional statement is true (e.g., "If P, then Q") and the antecedent

(P) is true, then the consequent (Q) must also be true.

Formal Representation

1. Premise 1: P→Q (If P then Q)

2. Premise 2: P (P is true)

3. Conclusion: Q (Therefore, Q is true)

Example

1. Premise 1: If it rains, the ground will be wet. (P→Q)

2. Premise 2: It rains. (P)

3. Conclusion: The ground will be wet. (Q)

Why It's Important

Modus Ponens is essential because it allows us to draw conclusions from known

facts and rules. It is widely used in:

 Mathematics

 Computer Science

 Philosophy

 Artificial Intelligence

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

48 | P a g e

4.2.2 Unification (and Lifting)

• Generalized Modus Ponens is a lifted version of Modus Ponens—it raises

Modus Ponens from ground (variable-free) propositional logic to first-order

logic.

• Generalized Modus Ponens: For atomic sentences pi , pi ′ , and q, where

there is a substitution θ

Example : Suppose we have a query AskVars(Knows(John, x)): whom does John

know? Answers to this query can be found by finding all sentences in the

knowledge base that unify with Knows(John, x). Here are the results of

unification with four different sentences that might be in the knowledge base:

UNIFY(Knows(John, x), Knows(John, Jane)) = {x/Jane}

UNIFY(Knows(John, x), Knows(y, Bill)) = {x/Bill, y/John}

UNIFY(Knows(John, x), Knows(y, Mother (y))) = {y/John, x/Mother (John)}

UNIFY(Knows(John, x), Knows(x,Elizabeth)) = fail .

In first-order logic, unification is a process used to find a common instantiation

for two predicates or terms such that they become identical.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

49 | P a g e

• It's a fundamental operation in logic programming and automated

reasoning, allowing for the comparison and integration of different

logical expressions.

• Unification is essential for tasks such as theorem proving, pattern

matching, and resolution in logic-based systems.

A substitution, on the other hand, is a mapping of variables to terms.

• It's essentially a set of assignments that replaces variables in logical

expressions with specific terms, thereby creating a new expression

that may be simpler or more specific than the original one.

• Substitutions are used to represent the results of unification and are

crucial for maintaining consistency and correctness in logical

inference.

Unification Algorithm

Unification is the process of finding a substitution that makes two logical

expressions identical. The algorithm takes two expressions, x and y, and

attempts to find a substitution (θ) that makes them identical.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

50 | P a g e

Here's a breakdown of how the algorithm works:

Base case: If the substitution θ is already marked as a failure, then it returns

failure immediately.

Identity check: If x and y are identical, it means no further unification is needed,

and the current substitution θ can be returned.

Variable check: If x is a variable, it calls the UNIFY-VAR function with x as the

variable and y as the expression. If y is a variable, it calls UNIFY-VAR with y as

the variable and x as the expression.

Compound expression check: If both x and y are compound expressions, it

recursively calls UNIFY on their arguments and operators.

List check: If both x and y are lists, it recursively calls UNIFY on their first

elements and their remaining elements.

Failure case: If none of the above conditions are met, it returns failure,

indicating that x and y cannot be unified.

The UNIFY-VAR function is used when one of the expressions (x or y) is a

variable. It attempts to create a substitution based on the variable and the

expression it's being unified with.

Substitution check: If the substitution already contains a mapping for the

variable, it recursively calls UNIFY with the mapped value and the expression x.

Reverse substitution check: If the expression is already in the substitution, it

recursively calls UNIFY with the variable and the mapped value.

Occur check: Checks for a possible occurrence of the variable in the expression,

preventing infinite loops, and returns failure if such an occurrence is detected.

Substitution addition: If none of the above cases apply, it adds a new mapping

to the substitution, indicating that the variable is unified with the expression.

Overall, the algorithm systematically traverses through the

• expressions,
• handling variables,
• Compound statements,
• lists, and
• checking for failures,

• until it either finds a successful substitution or determines that unification is
not possible.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

51 | P a g e

Example: Suppose we have the following two predicates:
1. Predicate P(x,y)

2. Predicate Q(f(z),a)

Here,

• P and Q are predicates,

• x, y, and z are variables, and

• f and a are constants.

Now, let's say we want to unify P(x,y) with Q(f(z),a).

We can use the given algorithm for unification to find a substitution that makes

these two predicates identical.

1. Initially, θ is empty.

2. Start unifying the predicates: P(x,y) and Q(f(z),a)

 Since P and Q are different, they can't be unified directly.

3. Unify the arguments: Unify x with f(z) and y with a

4. Unify x with f(z):

• x is a variable, f(z) is a compound term.

• Call UNIFY-VAR(x, f(z), θ):

• Add x/f(z) to θ

• θ={x/f(z)}

5. Unify y with a:

• y is a variable, a is a constant.

• Call UNIFY-VAR(y, a, θ):

• Add y/a to θ

• θ={x/f(z),y/a}

6.Finally, return θ:

 θ={x/f(z),y/a}

So, the resulting substitution θ makes P(x,y) and Q(f(z),a) identical:

 P(x,y){x/f(z),y/a}=Q(f(z),a)

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

52 | P a g e

Rules for unification in First-Order Logic (FOL):

1. If both terms are identical, unification succeeds.

 Example: a=a or P(x,y)=P(x,y)

o No substitution is required, as the terms are already identical.

2. If one term is a variable, unify it with the other term.

 Variable Rule: A variable can be unified with:

o A constant (e.g., x=a)

o Another variable (e.g., x=y)

o A function or compound term (e.g., x=f(y))

 Conditions:
o The variable must not appear in the term it is unified with (to

prevent circular definitions, called the occurs-check).

 Example:
o x and f(a) unify as {x→f(a)}.

o x and x unify with no substitution needed.

3. If both terms are constants, unification succeeds only if they are the

same.

 Example:

o a and a: Succeeds.

o a and b: Fails (different constants).

4. If both terms are compound expressions (functions or predicates), unify

their components.

 Conditions:

o The outer operators (function or predicate names) must match.

o The number of arguments must be the same.

o Their arguments must unify recursively.

 Example:
o f(x,b) and f(a,y):

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

53 | P a g e

 Unify x with a ({x→a}.

 Unify b with y ({y→b}.

 Result: {x→a,y→b}.

5. If both terms are lists, unify their elements pair by pair.

 Unify the first elements, then unify the rest of the lists recursively.

 Example:
o [x,y] and [a,b]:

 Unify x with a.

 Unify y with b.

 Result: {x→a,y→b}.

6. Unification fails if:

 Two terms are of different types:

o Example: A constant and a function (e.g., a and f(x).

 Their structures are incompatible:

o Example: f(a,b) and g(a,b) (different operators).

 A variable would need to unify with itself through a compound term

(occurs-check):

o Example: x and f(x) fail to unify (circular dependency).

Summary of Unification Rules:

1. Identical Terms: No substitution needed.

2. Variable Unification: Substitute the variable with the other term,

ensuring no circular dependency.

3. Constant Unification: Succeed only if they are the same.

4. Compound Unification: Match operators and unify arguments

recursively.

5. List Unification: Unify elements pair by pair.

6. Failure Cases: Occurs-check violations, incompatible types, or

mismatched structures.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

54 | P a g e

Storage and retrieval:

Underlying the TELL and ASK functions used to inform and interrogate a

knowledge base are the more primitive STORE and FETCH functions. STORE(s)

stores a sentence s into the knowledge base and FETCH(q) returns all unifiers

such that the query q unifies with some.

Given a sentence to be stored, it is possible to construct indices for all possible

queries that unify with it. For the fact Employs(IBM , Richard), the queries are

Employs(IBM , Richard) Does IBM employ Richard?

Employs(x, Richard) Who employs Richard?

Employs(IBM , y) Whom does IBM employ?

Employs(x, y) Who employs whom?

These queries form a subsumption lattice, as shown in Figure 9.2(a). The lattice

has some interesting properties. For example, the child of any node in the lattice

is obtained from its parent by a single substitution; and the “highest” common

descendant of any two nodes is the result of applying their most general unifier.

The portion of the lattice above any ground fact can be constructed

systematically (Exercise 9.5). A sentence with repeated constants has a slightly

different lattice, as shown in Figure 9.2(b). Function symbols and variables in the

sentences to be stored introduce still more interesting lattice structures.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

55 | P a g e

4.2.3 Forward Chaining

Forward chaining is a reasoning method , starts with the known facts and uses

inference rules to derive new conclusions until the goal is reached or no further

inferences can be made.

In essence, it proceeds forward from the premises to the conclusion.

Example : Consider the following knowledge base representing a simple

diagnostic system:

1. If a patient has a fever, it might be a cold.

2. If a patient has a sore throat, it might be strep throat.

3. If a patient has a fever and a sore throat, they should see a doctor.

Given the facts:

• The patient has a fever.

• The patient has a sore throat.

• Forward chaining would proceed as follows:

1. Check the first rule: Fever? Yes. Proceed.

2. Check the second rule: Sore throat? Yes. Proceed.

3. Apply the third rule: The patient has a fever and sore throat, thus they

should see a doctor.

Forward chaining is suitable for situations where there is a large amount of

known information and the goal is to derive conclusions.

Forward chaining Start with the atomic sentences in the knowledge base and

apply Modus Ponens in the forward direction, adding new atomic sentences,

until no further inferences can be made.

First-order definite clauses : A definite clause either is atomic or is an

implication whose antecedent is a conjunction of positive literals and whose

consequent is a single positive literal. The following are first-order definite

clauses:

• King(x) ∧ Greedy(x) ⇒ Evil(x) .

• King(John) .

• Greedy(y) .

Unlike propositional literals, first-order literals can include variables, in which

case those variables are assumed to be universally quantified.

Consider the following problem: The law says that it is a crime for an American

to sell weapons to hostile nations. The country Nono, an enemy of America, has

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

56 | P a g e

some missiles, and all of its missiles were sold to it by Colonel West, who is

American.

We will prove that West is a criminal.

First, we will represent these facts as first-order definite clauses.

1. “. . . it is a crime for an American to sell weapons to hostile nations”:

• American(x) ∧ Weapon(y) ∧ Sells(x, y, z) ∧ Hostile(z) ⇒ Criminal(x)

.

2. “Nono . . . has some missiles.”

• The sentence ∃ x Owns(Nono, x)∧Missile(x) is transformed into

two definite clauses by Existential Instantiation, introducing a

new constant M1:

• Owns(Nono, M1)

• Missile (M1)

3. “All of its missiles were sold to it by Colonel West”:

• Missile(x) ∧ Owns(Nono, x) ⇒ Sells(West, x, Nono) .

4. We will also need to know that missiles are weapons:

• Missile(x) ⇒ Weapon(x)

5. and we must know that an enemy of America counts as “hostile”:

• Enemy(x, America) ⇒ Hostile(x) .

6. “West, who is American . . .”:

• American(West) .

7. “The country Nono, an enemy of America . . .”:

• Enemy(Nono, America) .

From these inferred facts, we can conclude that Colonel West is indeed a

criminal since he sold missiles to a hostile nation, which is Nono.

“. . . it is a crime for an American to sell weapons to hostile nations”:

American(West) ∧ Weapon(Missile) ∧ Sells(West, Missile, Nono) ∧

Hostile(Nono) ⇒ Criminal(West) .

DATALOG :

• This knowledge base contains no function symbols and is therefore an

instance of the class of Datalog knowledge bases.

• Datalog is a language that is restricted to first-order definite clauses with

no function symbols.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

57 | P a g e

• Datalog gets its name because it can represent the type of statements

typically made in relational databases.

A simple forward-chaining algorithm

Explanation of Algorithm :

This algorithm is an implementation of Forward Chaining with a goal-directed

query mechanism, specifically designed for First-Order Logic (FOL) knowledge

bases.

It's called Forward Chaining with Ask (FOL-FC-ASK). Let's break down the steps:

Algorithm:

1. Inputs:

• KB: The knowledge base, which consists of a set of first-order

definite clauses.

• α: The query, which is an atomic sentence.

2. Loop until no new sentences are inferred:

• Initialize new as an empty set.

3. Iterate through each rule in the knowledge base:

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

58 | P a g e

• Standardize the variables in the rule (ensuring variable names are

unique).

• For each substitution θ that makes the antecedent of the rule (`p1

∧ ... ∧ pn`) match some subset of the KB:

1. Apply the substitution to the consequent of the rule (`q`) to

generate a new sentence `q'`.

2. Check if `q'` unifies with some sentence already in the KB or

`new`. If not, add `q'` to `new`.

3. Attempt to unify `q'` with the query `α`. If unification

succeeds (resulting in a substitution φ), return φ.

4. Update the knowledge base:

• Add the sentences in `new` to the KB

5. Repeat the loop until no new sentences are inferred or until

the query is proven or disproven.

4. Output:

• If the query is proven, return the substitution that makes it true.

• If the query is disproven (i.e., it cannot be proven true), return false.

Detailed Explanation of Forward Chaining Algorithm with

Example

The provided algorithm is a Forward Chaining implementation for first-order logic (FOL).

It attempts to derive a query (α) from a given knowledge base (KB) of definite clauses using

substitutions.

Explanation of the Algorithm
1. Inputs:

o KB: A set of first-order definite clauses (facts and rules).
o α: The query, an atomic sentence.

2. Initialization:

o new: A set of new inferences made during each iteration.
3. Outer Loop: Repeats until no new sentences are inferred:

o Initialize new as an empty set.
4. Inner Loop: For each rule in KB:

o The rule is of the form (p₁ ∧ ... ∧ pₙ) ⇒ q.
o Standardize the variables in the rule to avoid conflicts.

5. Inference Check: For every possible substitution θ:

o Check if θ makes (p₁ ∧ ... ∧ pₙ) true using facts from the KB.
o If true:

 Apply θ to the conclusion q to get q'.
 If q' is not already in KB or new, add it to new.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

59 | P a g e

6. Unification Check: For the current inference q':

o Check if q' unifies with the query α.

o If unification is successful, return the substitution ϕ.
7. Update Knowledge Base:

o Add all new inferences (new) to KB.
8. Termination:

o If no inference unifies with the query α, return false.

Example1

Knowledge Base (KB):
1. Parent(John, Mary)

2. Parent(Mary, Alice)
3. Parent(x, y) ∧ Parent(y, z) ⇒ Grandparent(x, z)

Query (α):
Grandparent(John, Alice)

Step-by-Step Execution:
1. Iteration 1:

o Rule: Parent(x, y) ∧ Parent(y, z) ⇒ Grandparent(x, z)

o Possible substitutions:

 For x=John, y=Mary from Parent(John, Mary).

 For y=Mary, z=Alice from Parent(Mary, Alice).
 Combined substitution θ = {x=John, y=Mary, z=Alice}

satisfies the premise.
o Conclusion: Apply θ to Grandparent(x, z) →

Grandparent(John, Alice).

o Add Grandparent(John, Alice) to new.

2. Unification:

o Grandparent(John, Alice) unifies with α.

o Return substitution ϕ = {x=John, z=Alice}.

Output:
The algorithm returns the substitution {x=John, z=Alice}, indicating that John is

indeed the grandparent of Alice.

Key Points:
 Forward chaining starts with facts and rules in the KB, making inferences step-by-

step until it proves or disproves the query.
 It is data-driven, unlike backward chaining, which is goal-driven.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

60 | P a g e

Example2

Example3:

The connection between pattern matching and constraint satisfaction is indeed

very strong. Each conjunct can be interpreted as a constraint on the variables it

encompasses; for instance, Missile(x) acts as a unary constraint on x. Building on

this concept, we can represent every finite-domain constraint satisfaction problem

(CSP) as a single definite clause alongside some associated ground facts.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

61 | P a g e

Consider the map-coloring problem illustrated in Figure 9.5(a). An equivalent

formulation as a single definite clause is provided in Figure 9.5(b). It is clear that

the conclusion Colorable() can only be inferred if the CSP has a solution. Since

CSPs generally include 3-SAT problems as specific cases, we can deduce that

matching a definite clause against a set of facts is NP-hard.

It may appear discouraging that forward chaining involves an NP-hard matching

problem in its inner loop. However, there are three ways to alleviate this concern:

1. We can remind ourselves that most rules in real-world knowledge bases

are small and simple, similar to the rules in our crime example, rather than

large and complex like the CSP formulation in Figure 9.5. In database

contexts, it is common to assume that both the sizes of rules and the arities

of predicates are limited by a constant. Thus, the focus shifts to data

complexity—the complexity of inference based on the number of ground

facts in the knowledge base. It is relatively easy to show that the data

complexity of forward chaining is polynomial.

2. We can examine subclasses of rules where matching is efficient.

Essentially, every Datalog clause can be regarded as defining a CSP,

meaning that matching will be tractable when the corresponding CSP is

tractable. For example, if the constraint graph—the graph with variables as

nodes and constraints as edges—forms a tree, the CSP can be solved in

linear time. This same result applies to rule matching. For instance, if we

remove South Australia from the map in Figure 9.5, the resulting clause

can be expressed as:

Diff(wa,nt)∧Diff(nt,q)∧Diff(q,nsw)∧Diff(nsw,v)⇒Colorable()

This corresponds to the reduced CSP depicted in Figure 6.12 on page 224.

Algorithms designed for solving tree-structured CSPs can be directly applied to

the problem of rule matching.

3. We can work on eliminating redundant rule-matching attempts in the

forward-chaining algorithm, as will be detailed next.

Incremental Forward Chaining Summary

Incremental forward chaining improves upon traditional forward chaining by

avoiding redundant rule matching. In the original forward chaining example,

rules could repeatedly match against known facts, such as the rule Missile(x) ⇒

Weapon(x) matching against Missile(M1) even when Weapon(M1) was already

inferred. To eliminate this redundancy, an incremental algorithm checks a rule

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

62 | P a g e

only if its premise includes a conjunct that unifies with a newly inferred fact from

the previous iteration. This method maintains efficiency while generating the

same set of facts.

With appropriate indexing, rules that can be triggered by a given fact can be easily

identified, allowing for a system to update dynamically as new facts are

introduced. Typically, only a small subset of rules is activated by a new fact,

which means a lot of unnecessary work occurs when constructing partial matches

with unsatisfied premises. For instance, a partial match is created on the first

iteration but discarded when it fails to succeed until the next iteration. It is more

efficient to retain and complete these partial matches as new facts come in.

The Rete algorithm addresses this issue by pre-processing rules into a dataflow

network where each node represents a literal from a rule premise. This network

captures variable bindings, allowing for the filtering of matches and reducing

recomputation. Rete networks have become crucial in production systems—early

forward-chaining systems like XCON (R1)—which utilized thousands of rules to

configure computer components for customers.

Production systems are also implemented in cognitive architectures, where they

model human reasoning. In these systems, productions interact with working

memory, allowing for real-time operation even with millions of rules.

A final inefficiency in forward chaining arises from its intrinsic nature, as it

generates all allowable inferences based on known facts, regardless of their

relevance to the current goal. For example, if a knowledge base contains unrelated

facts about eating habits and missile prices, irrelevant conclusions may arise. To

mitigate this, alternatives such as backward chaining can be used, or forward

chaining can be restricted to a subset of rules. Additionally, in deductive

databases, forward chaining is tailored to only consider relevant variable bindings

through a technique called magic sets. This approach rewrites the rule set using

goal-related information to constrain the variables being considered, focusing the

inference process on pertinent facts and enhancing efficiency.

XXXXXXXXXXXXXXXXXX_End of the Module No: 4_XXXXXXXXXXXXXXXXXXXX

