
Module3 Notes (Pointwise) 

Syllabus: Artificial Neural Networks: Introduction, Neural Network representation, 
Appropriate problems, Perceptron, Backpropagation algorithm.  
 

3.0 Introduction 

• Neural network learning methods provide a robust approach to 
approximating real-valued, discrete-valued, and vector-valued target 
functions. 

• For certain types of problems, such as learning to interpret complex real-
world sensor data, artificial neural networks are among the most effective 
learning methods currently known. 

• For example, the Backpropagation Algorithm described in this chapter has 
proven surprisingly successful in many practical problem such as learning to 
recognize 

• handwritten characters (LeCun et al. 1989),  
• learning to recognize spoken words (Lang et al. 1990), and  
• learning to recognize faces (Cottrell 1990).  

 

3.1. 1 Biological Motivation 

• When we say "Neural Networks", we mean artificial Neural Networks (ANN). 

The idea of ANN is based on biological neural networks like the brain.  

• Brain is a complex web of interconnected neurons . There are 

1011 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑎𝑛𝑑 𝑒𝑎𝑐ℎ 𝑛𝑒𝑢𝑟𝑜𝑛 𝑖𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 1004  𝑛𝑒𝑢𝑟𝑜𝑛𝑠  

• The basic structure of a neural network is the neuron. A neuron in biology 

consists of three major parts: the soma (cell body), the dendrites, and the 

axon. 

• The dendrites branch off from the soma in a tree-like way and getting thinner 

with every branch.  

• They receive signals (impulses) from other neurons at synapses.  

 



 

 

 

 

 

 

 

 

 

 



3.1.2 Artificial Neural Network 

• A neural network is made up of simple processing unit called neurons. A 

neural net can be viewed as massively parallel distributed processor which 

acquires experimental knowledge from its environment through a learning 

process.  

• The acquired knowledge is stored in the form of inter neuron connection 

strengths , known as synaptic weights 

 

Types of ANN 

Feed Forward Neural Network 

 

 

 



 

 

Some Activation functions of a neuron 

 

 

Biological Neural Network Artificial Neural Network  

Soma Node 

Dendrites Input  

Axon Output 

Synapse Output 

Slow Speed  (Switching Speed : 𝟏𝟎−𝟑 
seconds) 

Fast Speed  ( Switching Speed :𝟏𝟎−𝟏𝟎 
seconds) 

𝟏𝟎𝟏𝟏 𝒏𝒆𝒖𝒓𝒐𝒏𝒔  A dozen to 100 thousands neurons  

 

 

3.2. Neural Network Representation 

• A prototypical example of ANN learning is provided by Pomerleau's (1993) 

system ALVINN, which uses a learned ANN to steer an autonomous vehicle 

driving at normal speeds on public highways. 

• The input to the neural network is a 30 x 32 grid of pixel intensities obtained 

from a forward-pointed camera mounted on the vehicle. 



• The network output is the direction in which the vehicle is steered. The ANN 

is trained to mimic the observed steering commands of a human driving the 

vehicle for approximately 5 minutes. ALVINN has used its learned networks 

to successfully drive at speeds up to 70 miles per hour and for distances of 

90 miles on public highways (driving in the left lane of a divided public 

highway, with other vehicles present). 

Example : 

• Figure illustrates the neural network representation used in one version of 

the ALVINN system, 

• There are four units that receive inputs directly from all of the 30 x 32 pixels 

in the image. These are called "hidden“ units because their output is 

available only within the network and is not available as part of the global 

network output. 

• The network structure of ALVINN is typical of many ANNs. Here the individual 

units are interconnected in layers that form a directed acyclic graph. In 

general, ANNs can be graphs with many types of structures-acyclic or cyclic, 

directed or undirected. 

 

 

 



3.3. APPROPRIATE PROBLEMS FOR NEURAL NETWORK LEARNING 

ANN learning is well-suited to problems in the following cases:  
• Instances are represented by many attribute-value pairs  
• The target function output may be discrete-valued, real-valued, or a vector 

of several real- or discrete-valued attributes 
• The training examples may contain errors. ANN learning methods are quite 

robust to noise in the training data. 
• Long training times are acceptable. 
• Fast evaluation of the learned target function may be required. 
• The ability of humans to understand the learned target function is not 

important. 
 

3.4. Perceptron 

• A perceptron is a feedforward network with one output neuron that learns 
a separating hyper plane in a pattern space. The percepron is used where in 
the data is linearly separable.  

• One type of ANN system is based on a unit called a perceptron, illustrated in 
Figure 

• A perceptron takes a vector of real-valued inputs, calculates a linear 
combination of these inputs, then outputs a 1 if the result is greater than 
some threshold and -1 otherwise 
 

 

 



3.4.1 Representational Power of Perceptron 

• We can view the perceptron as representing a hyperplane decision surface 

in the n-dimensional space of instances (i.e., points). The perceptron outputs 

a 1 for instances lying on one side of the hyperplane and outputs a -1 for 

instances lying on the other side, as illustrated in Figure  

• The equation for this decision hyperplane is w.x= 0. 

• Some sets of positive and negative examples cannot be separated by any 

hyperplane. Those that can be separated are called linearly separable sets of 

examples. 

• Perceptrons can represent all of the primitive boolean functions AND, 

OR,NAND (NOT AND), and NOR (NOT OR).  

• Unfortunately, however, some boolean functions cannot be represented by 

a single perceptron, such as the XOR function whose value is 1 if and only if 

x1# x2. 

 

 

 

 

 

 

 



 

Limitations of Single-Layer Perceptron: 
Well, there are two major problems: 

• Single-Layer Percpetrons cannot classify non-linearly separable data points.  
• Complex problems, that involve a lot of parameters cannot be solved by Single-Layer 

Perceptrons. 

Single-Layer Perceptron’s cannot classify non-linearly separable data points. Let us 

understand this by taking an example of XOR gate. Consider the diagram below: 

 



Here, you cannot separate the high and low points with a single straight line. But, we can 
separate it by two straight lines. Consider the diagram below:  

 

3.4.2 The Perceptron Training Rule 

• Perceptron Training Rule : The Learning problem is to determine a weight 

vector that causes the perceptron to produce the correct +1 or -1 output for 

each of the given training example. At each step the system weights are 

modified to reduced the error. 

• The Perceptron Learning Theorem (Rosenblatt, 1960): Given enough 

training examples, there is an algorithm that will learn any linearly separable 

function. 

• Theorem 1 (Minsky and Papert, 1969):The perceptron rule converges to 

weights that correctly classify all training examples provided the given data 

set represents a function that is  linearly separable 

 

Learning in Perceptron 

 

 



 

 

4.3 Gradient Descent and the Delta Rule 

• The perceptron rule fail to converge if the examples are not linearly 

separable 

• The second rule called delta rule is designed to overcome this difficulty . 

• If the training examples are not linearly separable, the delta rule converges 

toward a best-fit approximation to the target concept. 

• The key idea behind the delta rule is to use gradient descent to search the 

hypothesis space of possible weight vectors to find the weights that best 

fit the training examples 

Gradient Descent and the Delta Rule 

• The delta training rule is best understood by considering the task of training 

an unthreshold perceptron ; that is a linear unit for which the output O is 

given by  

 

• The measure for the training error of a hypothesis (weight vector) 

 

 

 



VISUALIZING THE HYPOTHESIS SPACE 

• To understand the gradient descent algorithm, it is helpful to visualize the 

entire hypothesis space of possible weight vectors and their associated E 

values, as illustrated in Figure . 

 

 



Convergence 

 

 

Remark 

• Gradient descent is an important general paradigm for learning. It is a 

strategy for searching through a large or infinite hypothesis space that can 

be applied whenever  

1. The hypothesis space contains continuously parameterized 

hypotheses (e.g., the weights in a linear unit), and 

2. The error can be differentiated with respect to these hypothesis 

parameters.  

• The key practical difficulties in applying gradient descent are  

1. Converging to a local minimum can sometimes be quite slow (i.e., it 

can require many thousands of gradient descent steps), and  

2. If there are multiple local minima in the error surface, then there is 

no guarantee that the procedure will find the global minimum. 

 

 

 



STOCHASTIC APPROXIMATION TO GRADIENT DESCENT 

• One common variation on gradient descent intended to alleviate these 

difficulties is called incremental gradient descent, or alternatively stochastic 

gradient descent. 

• Modified training rule  

:  

     Where t, o and xi are the target value , unit output and the ith input for the 

training example in the question. 

• Error Function:  

 
        Where td and od are the target value and the unit output value for training 

example d. Stochastic gradient descent iterates over the training example d in D at 

each iteration altering the weights according to the gradient w.r.t to Ed.  

 

Standard Gradient descent and Stochastic Gradient Descent 

Standard Gradient descent  Stochastic Gradient Descent  

The error is summed over all 

examples before updating weights,  

The  weights are updated upon examining each 

training example 

More computation per weight 

update step.  

Less Computation  per weight update Step  

Step Size is Larger  Step Size is Smaller  

 

 

 

 



Incremental (Stochastic) Gradient Descent 

 

 

3.5. MULTILAYER NETWORKS AND THE BACKPROPAGATION 

ALGORITHM 

 

What is Multi-Layer Perceptron? 

As you know our brain is made up of millions of neurons, so a Neural Network is really 
just a composition of Perceptrons, connected in different ways and operating on different 
activation functions. 

Consider the diagram below: 

 



• Input Nodes – The Input nodes provide information from the outside world to the 
network and are together referred to as the “Input Layer”. No computation is 
performed in any of the Input nodes – they just pass on the information to the 
hidden nodes. 

• Hidden Nodes – The Hidden nodes have no direct connection with the 
outside world (hence the name “hidden”). They perform computations and transfer 
information from the input nodes to the output nodes. A collection of hidden nodes 
forms a “Hidden Layer”. While a network will only have a single input layer and a 
single output layer, it can have zero or multiple Hidden Layers. A Multi-Layer 
Perceptron has one or more hidden layers. 

• Output Nodes – The Output nodes are collectively referred to as the “Output 
Layer” and are responsible for computations and transferring information from the 
network to the outside world. 

Suppose we have data of a football team, Chelsea. The data contains three columns. The last 

column tells whether Chelsea won the match or they lost it. The other two columns are about, 

goal lead in the first half and possession in the second half. Possession is the amount of time for 

which the team has the ball in percentage. So, if I say that a team has 50% possession in one 

half (45 minutes), it means that, the team had ball for 22.5 minutes out of 45 minutes.  

 

Goal Lead in First Half Possession in Second Half Won or Lost (1,0)? 

0 80% 1 

0 35%  0 

1 42% 1 

2 20% 0 

-1 75% 1 

The Final Result column, can have two values 1 or 0 indicating whether Chelsea won the 
match or not. For example, we can see that if there is a 0 goal lead in the first half and in 
next half Chelsea has 80% possession, then Chelsea wins the match. 

Now, suppose, we want to predict whether Chelsea will win the match or not, if the goal 
lead in the first half is 2 and the possession in the second half is 32%. 

This is a binary classification problem where a multi layer Perceptron can learn from the 
given examples (training data) and make an informed prediction given a new data point. 
We will see below how a multi layer perceptron learns such relationships. The process by 
which a Multi Layer Perceptron learns is called the Backpropagation algorithm 

 

 

 

 

 

https://www.edureka.co/blog/backpropagation/


Consider the diagram below: 

 

 

Forward Propagation: 
Here, we will propagate forward, i.e. calculate the weighted sum of the inputs and add 
bias. In the output layer we will use the softmax function to get the probabilities of Chelsea 
winning or loosing.  

If you notice the diagram, winning probability is 0.4 and loosing probability is 0.6. But, 
according to our data, we know that when goal lead in the first half is 1 and possession 
in the second half is 42% Chelsea will win. Our network has made wrong prediction.  

If we see the error (Comparing the network output with target), it is 0.6 and -0.6. 

Backward Propagation and Weight Updation:  

We calculate the total error at the output nodes and propagate these errors back through 
the network using Backpropagation to calculate the gradients. Then we use an 
optimization method such as Gradient Descent to ‘adjust’ all weights in the network with 
an aim of reducing the error at the output layer.  

Let me explain you how the gradient descent optimizer works: 

Step – 1: First we calculate the error, consider the equation below: 

 



Step-2 : Based on the error we got, it will calculate the rate of change of error w.r.t change in the 

weights.  

 

Step – 3: Now, based on this change in weight, we will calculate the new weight value. 

If we now input the same example to the network again, the network should perform better 
than before since the weights have now have been adjusted to minimize the error in 
prediction. Consider the example below, As shown in Figure, the errors at the output 
nodes now reduce to [0.2, -0.2] as compared to [0.6, -0.4] earlier. This means that our 
network has learnt to correctly classify our first training example.  

 

 

 

 

 



What is Backpropagation? 
The Backpropagation algorithm looks for the minimum value of the error function in weight 
space using a technique called the delta rule or gradient descent. The weights that 
minimize the error function is then considered to be a solution to the learning problem.  

How Backpropagation Works? 
Consider the below Neural Network: 

 

The above network contains the following: 

• two inputs 
• two hidden neurons 
• two output neurons 
• two biases 

Below are the steps involved in Backpropagation: 

• Step – 1: Forward Propagation 
• Step – 2: Backward Propagation  
• Step – 3: Putting all the values together and calculating the updated weight value 

Step – 1: Forward Propagation  

We will start by propagating forward. 



 

We will repeat this process for the output layer neurons, using the output from the hidden layer 

neurons as inputs. 

 

Now, let’s see what is the value of the error: 

 

 



Step – 2: Backward Propagation 

Now, we will propagate backwards. This way we will try to reduce the error by changing 
the values of weights and biases. 

Consider W5, we will calculate the rate of change of error w.r.t change in weight W5. 

 

Since we are propagating backwards, first thing we need to do is, calculate the change in 
total errors w.r.t the output O1 and O2. 

 

 

Now, we will propagate further backwards and calculate the change in output O1 w.r.t to 
its total net input. 

 

Let’s see now how much does the total net input of O1 changes w.r.t  W5? 

 

Step – 3: Putting all the values together and calculating the updated weight value 

Now, let’s put all the values together: 

 



Let’s calculate the updated value of W5: 

 

• Similarly, we can calculate the other weight values as well. 
• After that we will again propagate forward and calculate the output. Again, we will 

calculate the error. 
• If the error is minimum we will stop right there, else we will again propagate 

backwards and update the weight values. 
• This process will keep on repeating until error becomes minimum. 

 

An example 

• For example, a typical multilayer network and decision surface is depicted in 
Figure 

• Here the speech recognition task involves distinguishing among 10 possible 
vowels, all spoken in the context of "h-d" (i.e., "hid," "had,“ "head," "hood," etc.). 

• This network was trained to recognize 1 of 10 vowel sounds occurring in the 
context “h d” (e.g. “head”, “hid”). 

• The inputs have been obtained from a spectral analysis of sound. 
• The 10 network outputs correspond to the 10 possible vowel sounds. The net- 

work prediction is the output whose value is the highest. 

 



 

 

• This plot illustrates the highly non-linear decision surface represented by the 

learned network. 

• Points shown on the plot are test examples distinct from the examples used 

to train the network. 

 

Sigmoid Threshold Unit 

 

 



Error Gradient for the Sigmoid Unit 

 

Back Propagation Algorithm for Feed Forward networks 

 

 

 



Derivation of the Backpropagation rule, 

 

 

 

 

 

 



 

 

 

 



3.6. REMARKS ON THE BACKPROPAGATION ALGORITHM 

• Convergence and Local Minima 

• Representational Power of Feedforward Networks (Boolean , Continous and 

Arbitrary) 

• Hypothesis Space Search and Inductive Bias 

• Hidden Layer Representations 

• Generalization, Overfitting, and Stopping Criterion 

 

Convergence of Backpropagation for NNs of Sigmoid units 

 

 

 

 

 

 

 

 

 



More on Backpropagation 

 

Stopping Criteria when Training ANNs and Overfitting 

 

 

 

 

 



Learning Hidden Layer Representations 

 

 

 



 

 



 

 

7. Alternative Error Functions 

 

 

 

 



Question Bank  

 

Module -3 Questions.  

1) What is Artificial Neural Network?  
2) What are the type of problems in which Artificial Neural  Network can be applied.  
3) Explain the concept of a Perceptron with a neat diagram.  
4) Discuss the Perceptron training rule.  
5) Under what conditions the perceptron rule fails and it becomes necessary to apply the  
delta rule   
6) What do you mean by Gradient Descent?  
7) Derive the Gradient Descent Rule.  
8) What are the conditions in which Gradient Descent is applied.  
9) What are the difficulties in applying Gradient Descent.  
10) Differentiate between Gradient Descent and Stochastic Gradient Descent  
11) Define Delta Rule.  
12) Derive the Backpropagation rule considering the training rule for Output Unit weights  
and Training Rule for Hidden Unit weights  
13) Write the algorithm for Back propagation.  
14) Explain how to learn Multilayer Networks using Gradient Descent Algorithm.  

15) What is Squashing Function? 
 

Question Bank Set 2  

 

1. Define ANN.  Explain the different types of ANN. Give some examples of the Applications of ANN. 

2. Compare the Biological Neurons (Neural Network) with Artificial Neurons (Neural Network). 

3. Explain the working ALVINN System. 

4. What are the appropriate problems of Neural Network? 
5. Explain the following with examples:   

a. Artificial Neural Networks  

b. Perceptron 

c. Single and Multilayer Perceptron (NN) 

d. Activation Function  

e. Sigmoid Threshold Unit  

f. Error Gradient for Sigmoid unit 

6. When one must consider Neural Network  

7. Describe “Neural Network Representation”  

8. With neat diagram explain the following:  

a. Perceptron  

b. Representational Power of Perceptron  



c. Perceptron Training rule and Learning in Perceptron.   

d. Gradient Descent and Delta Rule 

9. Derive the Gradient Descent Rule for the linear unit  

10. Discuss “Gradient Descent Algorithm for the linear unit”. 

11. Write a note on Convergence of “Gradient Descent Training Rule “  

12. Discuss Remark on Gradient Descent Training Rule. What are the practical difficulties in 

applying gradient descent.  

13. Explain Stochastic approximation to gradient descent. 

14. Differentiate between Standard Gradient Descent and Stochastic Gradient Descent. 

15. Explain with example Multilayer Neural Networks (Multilayer Perceptron). 

16. What is Sigmoid Threshold Unit? Derive the relation for Error gradient for Sigmoid Unit.  

17. Write and explain Back Propagation Algorithm. Derive the following of the 

Backpropagation Rule:  

a. Error at the output unit  

b. Error at the hidden unit  

c. Weight to be updated  

18. Discuss all remarks of Backpropagation Algorithm. 

19. What is linearly in separable problem? Design a two-layer network of perceptron to 

implement A OR B  , A AND B & NOT A.  
20. Consider a multilayer feed forward neural network. Enumerate and explain steps in back 

propagation algorithm use to train network 

21. What are the steps in Back propagation algorithm? Why a Multilayer neural network is 

required?  

22. What is Multilayer perception? How is it trained using Back propagation? What is linear 

separability issue? What is the role of hidden layer? 

23.  Explain how back propagation algorithm works for multilayer feed forward network. 

24. Explain perceptron and Delta training rule. 

25. Explain the differential sigmoid threshold unit. 

26. Consider two perceptron’s defined by the threshold expression w0+w1x1+w2x2>0 , 

perceptron A has weight values w0=1 , w1= 2 w2 = 1  and perceptron B has weight values  

w0 = 0 , w2 = 2 and w2 = 1.  

a. TRUE/FALSE: Perceptron A is more general than perceptron B. 

27. Explain the back-propagation algorithm. Why is not likely to be trapped in local minima.  

28. Explain Stochastic approximation to gradient Descent  

29. What are the advantages and limitations of gradient descent. 

30. Derive the Following: 

a. Gradient Descent Rule  

b. Back Propagation Rule  

 



 

 


