
Module1 Notes (Pointwise) 

Syllabus: Introduction: Well posed learning problems, Designing a Learning system, 
Perspective and Issues in Machine Learning.  Concept Learning: Concept learning 
task, Concept learning as search, Find-S algorithm, Version space, Candidate 
Elimination algorithm, Inductive Bias.  
 

1.0 What is Machine Learning ? 

Machine learning is an application of artificial intelligence (AI) that provides 

systems the ability to automatically learn and improve from experience without 

being explicitly programmed.  

• Machine learning focuses on the development of computer programs that can 

access data and use it learn for themselves.  

• The process of learning begins with observations or data, such as examples, direct 

experience, or instruction, in order to look for patterns in data and make better 

decisions in the future based on the examples that we provide.  

• The primary aim is to allow the computers learn automatically without human 

intervention or assistance and adjust actions accordingly. 

 

1.0.1 Some successful applications of machine learning 

• Learning to recognize spoken words (Lee, 1989; Waibel, 1989).  

• Learning to drive an autonomous vehicle (Pomerleau, 1989).  

• Learning to classify new astronomical structures (Fayyad et al., 1995).  

• Learning to play world-class backgammon (Tesauro 1992, 1995). 

1.0.2 Why is Machine Learning Important? 

• Some tasks cannot be defined well, except by examples (e.g., recognizing 
people). 

• Relationships and correlations can be hidden within large amounts of data. 
Machine Learning/Data Mining may be able to find these relationships.  

• Human designers often produce machines that do not work as well as 
desired in the environments in which they are used. 



• The amount of knowledge available about certain tasks might be too large 
for explicit encoding by humans (e.g., medical diagnostic).  

• Environments change over time.  

• New knowledge about tasks is constantly being discovered by humans. It 
may be difficult to continuously re-design systems “by hand”. 

 

1.0.3 Some disciplines of their influence on machine learning 

• Artificial intelligence  

• Bayesian methods  

• Computational complexity theory  

• Control theory  

• Information theory  

• Philosophy  

• Psychology and neurobiology 

 • Statistics  

 

1.0.4 Areas of Influence for Machine Learning  

Statistics: How best to use samples drawn from unknown probability distributions 

to help decide from which distribution some new sample is drawn? •  

Brain Models: Non-linear elements with weighted inputs (Artificial Neural 

Networks) have been suggested as simple models of biological neurons. 

Adaptive Control Theory: How to deal with controlling a process having unknown 

parameters that must be estimated during operation? 

Psychology: How to model human performance on various learning tasks?  

Artificial Intelligence: How to write algorithms to acquire the knowledge humans 

are able to acquire, at least, as well as humans?  

Evolutionary Models: How to model certain aspects of biological evolution to 

improve the performance of computer programs? 

 

 



1.0.5 : Types of Machine Learning  

 

 

 



1.2 Well-Posed Learning Problems:  

The study of Machine learning is about writing software that improves its own 

performance with experience  

Definition [Mitchell]: A computer program is said to learn from experience E with 

respect to some class of tasks T and performance measure P, if its performance at 

tasks in T, as measured by P, improves with experience E. 

Example1 : A Checkers Learning Problem 

•Task T = Playing checkers  

•Performance Measure P = Percentage of games won against opponent  

•Training Experience E = Playing practice games against itself 

 

Example2: A Handwriting Recognition Learning Problem 

•Task T = Recognizing and classifying handwritten words  

• Performance Measure P = Percentage of words correctly classified  

• Training Experience E = A database of handwritten words with given classification 

 

Example3 : A Robot driving learning program 

• Task T = Driving on public four lane highways using vision sensors  

• Performance Measure P = Average distance handled before error (as judged by 

human overseas)   

• Training Experience E = A sequences of images and steering commands recorded 

while observing a human driver. 

 

1.3. DESIGNING A LEARNING SYSTEM  
 

Steps to design a learning system  

0. Problem Description  

1. Choosing the Training Experience  

2. Choosing the Target Function  

3. Choosing a Representation for the Target Function  

4. Choosing a Function Approximation Algorithm  



1. ESTIMATING TRAINING VALUES  

2. ADJUSTING THE WEIGHTS  

5. The Final Design 

 

 

1.3.0 Problem Description:  

 

A Checker Learning Problem 

• Task T: Playing Checkers  

• Performance Measure P: Percent of games won against opponents  

• Training Experience E: To be selected ==> Games Played against itself 

 

1.3.1 Choosing the Training Experience  

 

• Will the training experience provide direct or indirect feedback?  

• Direct Feedback: system learns from examples of individual checkers board 

states and the correct move for each  

• Indirect Feedback: Move sequences and final outcomes of various games 

played  

• Credit assignment problem: Value of early states must be inferred 

from the outcome 

• Degree to which the learner controls the sequence of training examples 

• Teacher selects informative boards and gives correct move  

• Learner proposes board states that it finds particularly confusing.  Teacher 

provides correct moves 

 • Learner controls board states and (indirect) training classifications 

• How well the training experience represents the distribution of examples over 

which the final system performance P will be measured  

• If training the checkers program consists only of experiences played against 

itself, it may never encounter crucial board states that are likely to be played 

by the human checkers champion  

• Most theory of machine learning rests on the assumption that the 

distribution of training examples is identical to the distribution of test 

examples 

 



Partial Design of Checkers Learning Program 

• A checkers learning problem:  

• Task T: playing checkers  

• Performance measure P: percent of games won in the world tournament  

• Training experience E: games played against itself 

 

• Remaining choices  

• The exact type of knowledge to be learned 

 • A representation for this target knowledge  

• A learning mechanism 

 

1.3.2 Choosing the Target Function 

 

• Assume that you can determine legal moves 

• Program needs to learn the best move from among legal moves  

• Defines large search space known a priori  

•  target function: ChooseMove: B → M  

• ChooseMove is difficult to learn given indirect training  

• Alternative target function  

• An evaluation function that assigns a numerical score to any given board 

state  

• V : B →  R   ( where Ris the set of real numbers)  

• V(b) for an arbitrary board state b in B 

 • if b is a final board state that is won, then V(b) = 100 

 • if b is a final board state that is lost, then V(b) = -100 

 • if b is a final board state that is drawn, then V(b) = 0  

• if b is not a final state, then V(b) = V(b '), where b' is the best final 

board state that can be achieved starting from b and playing optimally 

until the end of the game 

 

• V(b) gives a recursive definition for board state b  

• Not usable because not efficient to compute except is first three trivial 

cases  

• nonoperational definition 

 



 • Goal of learning is to discover an operational description of V  

• Learning the target function is often called function approximation,  

• Referred to as V ˆ 

 

1.3.3 Choosing a Representation for the Target Function 

• Choice of representations involve trade offs  

• Pick a very expressive representation to allow close approximation to the ideal 

target function V 

 • More expressive, more training data required to choose among alternative 

hypotheses  

• Use linear combination of the following board features: 

 • x1: the number of black pieces on the board  

• x2: the number of red pieces on the board  

• x3: the number of black kings on the board  

• x4: the number of red kings on the board  

• x5: the number of black pieces threatened by red (i.e. which can be captured on 

red's next turn)  

• x6: the number of red pieces threatened by black 

 
 
Partial Design of Checkers Learning Program 

 

A checkers learning problem:  

• Task T: playing checkers 

 • Performance measure P: percent of games won in the world tournament  

• Training experience E: games played against itself  

• Target Function: V: Board → R  

• Target function representation 

 
 

 

 

 

 



3.4. Choosing a Function Approximation Algorithm 

 

To learn     we require a set of training examples describing the board b and the 

training value Vtrain(b)  

• Ordered pair<b, Vtrain(b)> 

 
3.4.1 Estimating Training Values 

Need to assign specific scores to intermediate board states  

• Approximate intermediate board state b using the learner's current 

approximation of the next board state following b 

 
• Simple and successful approach  

• More accurate for states closer to end states 

 

3.4.1 Adjusting the Weights 

• Choose the weights wi to best fit the set of training examples 

 • Minimize the squared error E between the train values and the values predicted 

by the hypothesis 

 
• Require an algorithm that  

• will incrementally refine weights as new training examples become 
available  
• will be robust to errors in these estimated training values  

• Least Mean Squares (LMS) is one such algorithm 

LMS Weight Update Rule 

 

 



3.5 Final Design 

 

 

 

Summary of choices in designing the checkers learning program 

 



1.4.0 Perspectives and Issues in Machine Learning 

1.4.1 Perspectives in Machine Learning 

• One useful perspective on machine learning is that it involves searching a very large space of 

possible hypotheses to determine one that best fits the observed data and any prior knowledge 

held by the learner.  

• For example, consider the space of hypotheses that could in principle be output by the above 

checkers learner. This hypothesis space consists of all evaluation functions that can be 

represented by some choice of values for the weights wo through w6. The learner's task is thus 

to search through this vast space to locate the hypothesis that is most consistent with  

• the available training examples. The LMS algorithm for fitting weights achieves this goal by 

iteratively tuning the weights, adding a correction to each weight each time the hypothesized 

evaluation function predicts a value that differs from the training value. This algorithm works well 

when the hypothesis representation considered by the learner defines a continuously 

parameterized space of potential hypotheses. 

 

1.4.2 Issues in Machine Learning (i.e., Generalization) 

• What algorithms exist for learning general target functions from specific training examples? In 

what settings will particular algorithms converge to the desired function, given sufficient training 

data? Which algorithms perform best for which types of problems and representations?  

• How much training data is sufficient? What general bounds can be found to relate the 

confidence in learned hypotheses to the amount of training experience and the character of the 

learner's hypothesis space? 

 • When and how can prior knowledge held by the learner guide the process of generalizing from 

examples? Can prior knowledge be helpful even when it is only approximately correct? • What is 

the best strategy for choosing a useful next training experience, and how does the choice of this 

strategy alter the complexity of the learning problem?  

• What is the best way to reduce the learning task to one or more function approximation 

problems? Put another way, what specific functions should the system attempt to learn? Can this 

process itself be automated?  

• How can the learner automatically alter its representation to improve its ability to represent 

and learn the target function? 

 

 



Question Bank 

1. Define Machine Learning. Discuss with examples Why Machine Learning is Important.  
2. Discuss with examples some useful applications of machine learning 
3. Explain how some areas/disciplines have influenced the Machine learning.  
4. Define Learning Program for a given Problem. Describe the following problems with respect to 
Tasks, Performance and Experience:  

 1. Checkers Learning Problems  
2. Handwritten Recognition Problem  
3. Robot Driving Learning Problem  

5. Describe in detail all the steps involved in designing a Learning Systems  
6. Discuss the Perspective and Issues in Machine Learning. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2.1 What is a Concept? 
 

• A Concept is a subset of objects or events defined over a larger set [Example: The concept 
of a bird is the subset  of all objects (i.e., the set of all things or all animals) that belong to 
the category of bird.] 

 
 
 
 
 
 
 
 
 

• Alternatively, a concept is a boolean-valued function defined over this larger set 
[Example: a function defined over all animals whose value is true for birds and false for 
every other animal]. 

 
2.1 What is Concept-Learning? 
 

• Given a set of examples labeled as members or non-members of a concept, concept-
learning consists of automatically inferring the general definition of this concept. 

• In other words, concept-learning consists of approximating a boolean-valued function 
from training examples of its input and output.  

 
2.1 A CONCEPT LEARNING TASK 
 

• Consider the example task of learning the target concept "days on which my friend Aldo 
enjoys his favorite water sport.“ 

• Table describes a set of example days, each represented by a set of attributes.  
• The attribute EnjoySport indicates whether or not Aldo enjoys his favorite water sport on 

this day.  
• The task is to learn to predict the value of EnjoySport for an arbitrary day, based on the 

values of its other attributes.  
• Database: 

Day Sky AirTemp Humidity Wind Water Forecast EnjoySport 

1  Sunny Warm Normal  Strong Warm Same Yes 

2 Sunny  Warm High Strong Warm Same Yes 

3 Rainy  Cold High Strong Warm Change No 

4 Sunny  Warm High Strong Cool Change YEs 

Things 

Animals 

Bir

ds 

Car

s 



Chosen Hypothesis Representation: 

Conjunction of constraints on each attribute where: 

•  “?” means “any value is acceptable” 

•   “0” means “no value is acceptable” 

• Example of a hypothesis: <?, Cold, High, ?, ?, ?>    (If the air temperature is cold and the 
humidity high then it is a good day for water sports) 

•  Goal: To infer the “best” concept-description from the set of all possible hypotheses 
(“best” means “which best generalizes to all (known or unknown) elements of the 
instance space” concept-learning is an ill-defined task)   

• The most general hypothesis-that every day is a good day for water sports, positive 
example-is represented by   <?, ?, ?, ?, ?, ?>  and  

• The most specific possible hypothesis-that no day is a positive example-is represented 
by  <0,0,0,0,0,0> 

 

 
2.1 Example of a Concept Learning 

• Concept: Good Days for Water Sports     (values: Yes, No) 
•  Attributes/Features: 

• Sky (values: Sunny, Cloudy, Rainy) 
• AirTemp (values: Warm, Cold) 
• Humidity (values: Normal, High) 
• Wind (values: Strong, Weak) 



• Water (Warm, Cool) 
• Forecast (values: Same, Change) 

•  Example of a Training Point: 
  <Sunny, Warm, High, Strong, Warm, Same, Yes> 
 
Terminology and Notation 

• The set of items over which the concept is defined is called the set of instances (denoted 
by X)  

• The concept to be learned is called the Target Concept (denoted by c: X--> {0,1}) 
• The set of Training Examples is a set of instances, x, along with their target concept value 

c(x). 
• Members of the concept (instances for which c(x)=1) are called positive examples. 
• Nonmembers of the concept (instances for which c(x)=0) are called negative examples. 
• H represents the set of all possible hypotheses. H is determined by the human designer’s 

choice of a hypothesis representation. 
• The goal of concept-learning is to find a hypothesis h:X --> {0,1} such that h(x)=c(x) for 

all x in X. 
 
The inductive learning hypothesis : Any hypothesis found to approximate the target function 
well over a sufficiently large set of training examples will also approximate the target function 
well over other unobserved examples.  
 
Number of Instances, Concepts, Hypotheses 
 

• Sky: Sunny, Cloudy, Rainy 
• AirTemp: Warm, Cold 
• Humidity: Normal, High 
• Wind: Strong, Weak 
• Water: Warm, Cold 
• Forecast: Same, Change 

#distinct instances : 3*2*2*2*2*2 = 96 
#distinct concepts : 296 
#syntactically distinct hypotheses : 5*4*4*4*4*4=5120 
#semantically distinct hypotheses : 1+4*3*3*3*3*3=973 
 
 
2.2 CONCEPT LEARNING AS SEARCH 
 

• Concept Learning can be viewed as the task of searching through a large space of 
hypotheses implicitly defined by the hypothesis representation. 

•  Selecting a Hypothesis Representation is an important step since it restricts (or biases) 
the space that can be searched. [For example, the hypothesis “If the air temperature is 
cold or the humidity high then it is a good day for water sports” cannot be expressed in 
our chosen representation.] 



General to Specific Ordering of Hypotheses 
• Definition: Let hj and hk be boolean-valued functions defined over X.  

Then hj is more-general-than-or-equal-to hk  iff   For all x in X, [(hk(x) = 1) --> (hj(x)=1)] 
• Example:  

• h1 = <Sunny,?,?,Strong,?,?> 
• h2 = <Sunny,?,?,?,?,?> 

   Every instance that are classified as positive by h1 will also be classified as positive by h2 in our 
example data set. Therefore h2 is more general than h1. 

• We also use the ideas of  “strictly”-more-general-than, and more-specific-than 
(illustration [Mitchell, p. 25]) 

 

 
 
 

 



 
 
Instance, Hypotheses and ”more general” 
 
 

 
 
 



2.3 Find-S, a Maximally Specific Hypothesis Learning Algorithm 
 

1. Initialize h to the most specific hypothesis in H 
2. For each positive training instance x 

• For each attribute constraint ai in h 
     If the constraint ai in h is satisfied by x  then do nothing 
           else replace ai in h by the next more general constraint that is satisfied by x 

3. Output hypothesis h 
 
 
Hypothesis Space Search by Find-S 
 

 
 
 
Properties of Find-S 
 

• Hypothesis space described by conjunctions of attributes 
• Find-S will output the most specific hypothesis within H that is consistent with the 

positive training examples 
• The output hypothesis will also be consistent with the negative examples, provided the 

target concept is contained in H. 
 
Complaints about Find-S 

• Can’t tell if the learner has converged to the target concept, in the sense that it is unable 
to determine whether it has found the only hypothesis consistent with the training 
examples. 

• Can’t tell when training data is inconsistent, as it ignores negative training examples. 
• Why prefer the most specific hypothesis? 
• What if there are multiple maximally specific hypothesis? 



2.4 Version Spaces 
• A hypothesis h is consistent with a set of training examples D of target concept if and 

only if h(x)=c(x) for each training example <x,c(x)> in D. 

        Consistent(h,D) := <x,c(x)>D  h(x)=c(x) 
• The version space, VSH,D , with respect to hypothesis space H, and training set D, is the 

subset of hypotheses from H consistent with all training examples: 

          VSH,D = {h  H | Consistent(h,D) } 
 

List-Then Eliminate Algorithm 
 

1. VersionSpace  a list containing every   hypothesis in H 
2. For each training example <x,c(x)> 
 remove from VersionSpace any hypothesis that is inconsistent with the training  

              example h(x)  c(x)  
3. Output the list of hypotheses in VersionSpace  
 

Example Version Space 

 
 
Representing Version Spaces 

• The general boundary, G, of version space VSH,D is the set of 
maximally general members. 

• The specific boundary, S, of version space VSH,D is the set of 
maximally specific members. 

• Every member of the version space lies between these boundaries 

  VSH,D = {h  H| ( s  S) ( g  G) (g  h  s) 

 where x  y means x is more general or equal than y 



2.6 Candidate Elimination Algorithm 
• The CANDIDATE-ELIMINATION algorithm computes the version space 

containing all hypotheses from H that are consistent with an observed 
sequence of training examples.  

• It begins by initializing the version space to the set of all hypotheses in H; 
that is, by initializing the G boundary set to contain the most general 
hypothesis in H  

                 Go  {(?, ?, ?, ?, ?, ?)}  
• and initializing the S boundary set to contain the most specific (least general) 

hypothesis 
                So  {(ø, ø, ø, ø, ø, ø)}  

Candidate Elimination Algorithm 

G  maximally general hypotheses in H 

S  maximally specific hypotheses in H 
For each training example d=<x,c(x)> 
 
Case 1 : If d is a positive example 
Remove from G any hypothesis that is inconsistent with d 
For each hypothesis s in S that is not consistent with d 

• Remove s from S. 
• Add to S all minimal generalizations h of s such that  

• h consistent with d 
• Some member of G is more general than h 

• Remove from S any hypothesis that is more general than 
another hypothesis in S 

Case 2: If d is a negative example 
Remove from S any hypothesis that is inconsistent with d 
For each hypothesis g in G that is not consistent with d  

• remove g from G. 

• Add to G all minimal specializations h of g such that  
o h consistent with d 
o Some member of S is more specific than h 

• Remove from G any hypothesis that is less general than another 
hypothesis in G 



An Illustrative Example 
Figure  traces the CANDIDATE-ELIMINATION algorithm applied to the 
first two training examples from  table 
 

 
 
Trace1 

 
 
 



Trace 2: 

 
 
Trace3 

 
 
 
 



Final Version Space:  

 
 
REMARKS ON VERSION SPACES AND CANDIDATE-ELIMINATION 
 

1. Will the CANDIDATE-ELIMINATION Algorithm Converge to the Correct Hypothesis?  
2. What Training Example Should the Learner Request Next?  
3. How Can Partially Learned Concepts Be Used?  

 
 
 
2.6 Inductive Bias 
 
Inductive Bias I: A Biased Hypothesis Space 

 
Given our previous choice of the hypothesis space representation, no hypothesis is consistent 
with the above database: we have BIASED the learner to consider only conjunctive hypotheses  
 
 
Inductive Bias II: An Unbiased Learner 
 



• Idea: Choose H that expresses every teachable concept, that means H is the set of all 
possible subsets of X called the power set P(X) 

• |X|=96, |P(X)|=296 ~ 1028  distinct concepts 
• H = disjunctions, conjunctions, negations 

• e.g. <Sunny Warm Normal ? ? ?> v <? ? ? ? ? Change>  
• H surely contains the target concept. 

 
Inductive Bias II: An Unbiased Learner 
 

• In order to solve the problem caused by the bias of the hypothesis space, we can remove 
this bias and allow the hypotheses to represent every possible subset of instances. The 
previous database could then be expressed as: <Sunny, ?,?,?,?,?> v <Cloudy,?,?,?,?,?,?>  

• However, such an unbiased learner is not able to generalize beyond the observed 
examples!!!! All the non-observed examples will be well-classified by half the 
hypotheses of the version space and misclassified by the other half. 

 
 
Inductive Bias II: An Unbiased Learner 
What are S and G in this case? 
 
Assume positive examples (x1, x2, x3) and    negative examples (x4, x5) 
 
S : { (x1 v x2 v x3) }  
 

G : {  (x4 v x5) } 
 
The only examples that are classified are the training   examples themselves. In other words in 
order to learn  the target concept one would have to present every single  instance in X as a 
training example. 
Each unobserved instance will be classified positive by precisely half the hypothesis in VS and 
negative by the other half. 
 
Inductive Bias III: The Futility of Bias-Free Learning  
 

• Fundamental Property of Inductive Learning  A learner that makes no a priori assumptions 
regarding the identity of the target concept has no rational basis for classifying any 
unseen instances. 

• We constantly have recourse to inductive biases Example: we all know that the sun will 
rise tomorrow. Although we cannot deduce that it will do so based on the fact that it rose 
today, yesterday, the day before, etc., we do take this leap of faith or use this inductive 
bias, naturally! 

 
 
 



Inductive Bias 
 
Consider: 

• Concept learning algorithm L 
• Instances X, target concept c 
• Training examples Dc={<x,c(x)>} 
• Let L(xi,Dc ) denote the classification assigned to instance xi by L after training on 

Dc. 
Definition: 
The inductive bias of L is any minimal set of assertions B such that for any target concept c and 
corresponding training data Dc  

 (xi  X)[B  Dc  xi] |-- L(xi, Dc)  
Where A |-- B means that A logically entails B.  
 
Inductive bias of CANDIDATE-ELIMINATION algorithm. The target concept c is contained in the 
given hypothesis space H.  
 
Inductive Systems and Equivalent Deductive Systems 
 

• Modeling inductive systems by equivalent deductive systems. The input-output behavior 
of the CANDIDATE-ELIMINATION Algorithm using a hypothesis space H is identical to that 
of a deductive theorem prover utilizing the assertion "H contains the target concept." This 
assertion is therefore called the inductive bias of the CANDIDATE-ELIMINATION Algorithm 
. Characterizing inductive systems by their inductive bias allows modeling them by their 
equivalent deductive systems. This provides a way to compare inductive systems 
according to their policies for generalizing beyond the observed training data.  

 

 



Inductive Systems and Equivalent Deductive Systems 
 

 
 
Ranking Inductive Learners according to their Biases 
• Rote-Learner: This system simply memorizes the training data and their classification--- No 

generalization is involved. 
• Candidate-Elimination: New instances are classified only if all the hypotheses in the version 

space agree on the classification 
• Find-S: New instances are classified using the most specific hypothesis consistent with the 

training data 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Module -1 Questions. 
1. Define the following terms:  

a. Learning    
b. LMS weight update rule      
c. Version Space  
d. Consistent Hypothesis     
e.  General Boundary   
f. Specific Boundary   
g.  Concept  

2. What are the important objectives of machine learning?   
3. Explain find –S algorithm with given example. Give its application. 

 
 
4. What do you mean by a well –posed learning problem? Explain the important features  
that are required to well –define a learning problem.   
5. Explain the inductive biased hypothesis space and unbiased learner  
6. What are the basic design issues and approaches to machine learning?  
7. How is Candidate Elimination algorithm different from Find-S Algorithm  
8. How do you design a checkers learning problem  
9. Explain the various stages involved in designing a learning system 
10. Trace the Candidate Elimination Algorithm for the hypothesis space H’ given the    
sequence of training examples from Table 1.  

H’= < ?, Cold, High, ?,?,?>v<Sunny, ?, High, ?,?,Same>  
11. Differentiate between Training data and Testing Data  
12. Differentiate between Supervised, Unsupervised and Reinforcement Learning  
13. What are the issues in Machine Learning  
14. Explain the List Then Eliminate Algorithm with an example  
15. What is  the difference between Find-S and Candidate Elimination Algorithm  
16. Explain the concept of Inductive Bias  
17. With a neat diagram, explain how you can model inductive systems by equivalent  
deductive systems  
18. What do you mean by Concept Learning? 


