
Module 5

1. Evaluating Hypothesis: Motivation, Estimating hypothesis
accuracy, Basics of sampling theorem, General approach for
deriving confidence intervals, Difference in error of two hypothesis,
Comparing learning algorithms.

2. Instance Based Learning: Introduction, k-nearest neighbor learning,
locally weighted regression, radial basis function, cased-based
reasoning,

3. Reinforcement Learning: Introduction, Learning Task, Q Learning .

ಡಾ|| ತ್ಯಾ ಗರಾಜು ಜಿ.ಎಸ್

5.1 : Evaluating Hypothesis

• Motivation,

• Estimating hypothesis accuracy,

• Basics of sampling theorem,

• General approach for deriving confidence intervals,

• Difference in error of two hypothesis,

• Comparing learning algorithms.

5.1.0 Introduction

• Empirically evaluating the accuracy of hypotheses is fundamental to
machine learning.

• This chapter presents an introduction to statistical methods for
estimating hypothesis accuracy, focusing on three questions.

1. Given the observed accuracy of a hypothesis over a limited sample of data,
how well does this estimate its accuracy over additional examples?

2. Given that one hypothesis outperforms another over some sample of data,
how probable is it that this hypothesis is more accurate in general?

3. When data is limited what is the best way to use this data to both learn a
hypothesis and estimate its accuracy?

5.1.1 : MOTIVATION

• In many cases it is important to evaluate the performance of learned
hypotheses as precisely as possible.

1. One reason is simply to understand whether to use the hypothesis.

2. A second reason is that evaluating hypotheses is an integral component
of many learning methods.

Estimating the accuracy of a hypothesis is relatively straightforward when
data is plentiful. However, when we must learn a hypothesis and estimate its
future accuracy given only a limited set of data, two key difficulties arise:

1. Bias in the estimate

2. Variance in the estimate

5.1.2 ESTIMATING HYPOTHESIS ACCURACY

5.1.2.1 : Sample Error

• Sample Error : is the error rate of the hypothesis over the sample of data that is
available.

5.1.2.1 : True Error

• True Error : is the error rate of the hypothesis over the entire unknown
distribution D of examples. The true error of a hypothesis is the probability that
it will misclassify a single randomly drawn instance from the distribution D.

5.1.2.2 Confidence Intervals for Discrete-Valued
Hypotheses

• Here we give an answer to the question "How good an estimate of
𝒆𝒓𝒓𝒐𝒓𝑫(h) is provided by 𝒆𝒓𝒓𝒐𝒓𝑺(h)?

• More specifically, suppose we wish to estimate the true error for some
discrete- valued hypothesis h, based on its observed sample error over a
sample S, where

• the sample S contains n examples drawn independent of one another, and
independent of h, according to the probability distribution D

• n>=30

• hypothesis h commits r errors over these n examples (i.e., 𝒆𝒓𝒓𝒐𝒓𝑺(h) = rln).

5.1.2.2 Confidence Intervals for Discrete-Valued
Hypotheses

Reading Assignment

1. Two sided and one sided bound in Normal Distribution [page 141]

2. Hypothesis Testing [page 144 -145]

3. Comparing Learning Algorithms [145 – 148]

4. Paired t Tests [148-149]

5. Practical Considerations [149-150]

5.1.3.1 BASICS OF SAMPLING THEORY

Error Estimation and Estimating Binomial Proportions

5.1.3.3 Mean and Variance

• Two properties of a random variable that are often of interest are its expected
value (also called its mean value) and its variance. The expected value is the
average of the values taken on by repeatedly sampling the random variable.

19

5.1.3.4 Estimators, Bias and Variance
• Since errorS(h) (an estimator for the true error) obeys a Binomial distribution

we have: errorS(h) = r/n and errorD(h) = p
where n is the number of instances in the sample S, r is the number of instances from S
misclassified by h, and p is the probability of misclassifying a single instance drawn from
D.

• Definition: The estimation bias (from the inductive bias) of an estimator Y
for an arbitrary parameter p is E[Y] – p

• The standard deviation for errorS(h) is given by

 p(1-p)/n errorS(h)(1-errorS(h))/n

5.1.3.5 Confidence Intervals

A GENERAL APPROACH FOR DERIVING
CONFIDENCE INTERVALS
• The general process includes the following steps:

Central Limit Theorem

DIFFERENCE IN ERROR OF TWO HYPOTHESES

• Difference in True error

• Difference Sample error

• Approximate Variance

• Approximate N%
confidence interval
estimate for d is

Comparing Learning Algorithms

• How can we tell if one algorithm can learn better than another?

1. Design an experiment to measure the accuracy of the two
algorithms

2. Run multiple trials

3. Compare the samples not just their means . Do a statistically sound
test of the two samples.

4. Is any observed difference significant? Is it due to true difference
between algorithms or natural variations in the measurements?

32

Comparing Learning Algorithms

• Which of LA and LB is the better learning method on average for learning some
particular target function f ?

• To answer this question, we wish to estimate the expected value of the
difference in their errors:

ESD [errorD(LA(S)) - errorD(LB(S))]

• Of course, since we have only a limited sample D0 we estimate this quantity by
dividing D0 into a training set S0 and a testing set T0 and measure:

errorT0(LA(S0))-errorT0(LB(S0))

A procedure to estimate the difference in error
between two learning methods LA and LB.

Reading Assignment

1. Two sided and one sided bound in Normal Distribution [page 141]

2. Hypothesis Testing [page 144 -145]

3. Comparing Learning Algorithms [145 – 148]

4. Paired t Tests [148-149]

5. Practical Considerations [149-150]

5.2Instance Based Learning : Introuction

• Introduction, k-nearest neighbor learning, locally weighted regression,
radial basis function, cased-based reasoning,

5.2Instance Based Learning : Introduction

• All learning methods presented so far construct a general explicit
description of the target function when examples are provided.

• IBL methods simply store the training examples instead of learning explicit
description of the target function.

• Generalizing the examples is postponed until a new instance must be
classified .

• When a new instance is encountered , its relationship to the stored
examples is examined in order to assign a target function value for the new
instance.

5.2Instance Based Learning

• Memory-based learning (also called instance-based learning) is a type
of learning algorithm that compares new test data with training data in
order to solve the given machine learning problem. Such algorithms search
for the training data that are most similar to the test data and make
predictions based on these similarities.

• Learning in these algorithms consists of simply storing the presented
training data. When a new query instance is encountered a set of similar
related instances is retrieved from memory and used to classify the new
query instance

• Examples : k-nearest neighbor learning , locally weighted regression, Radial
Basis function (RBF), kernel machines and Case based Reasoning .

https://chemicalstatistician.wordpress.com/2014/01/07/machine-learning-lesson-of-the-day-using-validation-to-assess-predictive-accuracy-in-supervised-learning/
https://chemicalstatistician.wordpress.com/2014/01/17/machine-learning-lesson-of-the-day-cross-validation/
https://chemicalstatistician.wordpress.com/2014/01/04/machine-learning-lesson-of-the-day-supervised-and-unsupervised-learning/

38

Key Advantage

Instead of estimating the target function once for the entire

data set (which can lead to complex and not necessarily

accurate functions) IBL can estimate the required function

locally and differently for each new instance to be classified.

Advantages

• Instead of estimating for the whole instance space, local
approximations to the target function are possible.

• Especially if target functions is complex but still decomposable

Disadvantages

• Classification costs are high

• Typically all attributes are considered when attempting to retrieve
similar training examples.

k-NEAREST NEIGHBOR LEARNING

• The most basic instance-based method is the k-NEAREST NEIGHBOR
algorithm. This algorithm assumes all instances correspond to points
in the n-dimensional space 𝑅𝑛.

• The nearest neighbors of an instance are defined in terms of the
standard Euclidean distance.

More precisely let an arbitrary instance x be described by the feature

vector (set of attributes) as follows:

)(),...(),(21 xaxaxa n

where ar(x) denotes the value of the rth attribute of instance x. Then

the Euclidean distance between two instances xi and xj is defined to

be d(xi, xj) where

n

r

jrirji xaxaxxd
1

))()((2),(

43

Training Algorithm :

• For each training example <x , f(x) >, add the example to the list of training_examples

Consider, the case of learning a discrete-valued target function of the

form },...{set finite theis where,: 1 s
n vvVVf

The K-NN algorithm for approximating a discrete valued function

Classification Algorithm

• Given a query instance xq to be classified

• Let x1 … xk denote the k instances from training_examples that are nearest to xq

• Return

where argmax f(x) returns the value of x which maximises f(x),

e.g.

k

i

iq xfvxf
1Vv

))(,(argmax)(ˆ

otherwise 0

 if 1 b)(a, where

 b a

3)argmax(x
}3,2,1{

2
x

The decision surface is a
combination of convex
polyhedra surrounding each
of the training examples. For
every training example, the
polyhedron indicates the set
of query points whose
classification will be
completely determined by
that training example. Query
points outside the
polyhedron are closer to
some other training example.
This kind of diagram is often
called the Voronoi diagram of
the set of training examples

Continuous vs Discrete valued functions (classes)

K-NN works well for discrete-valued target functions. Furthermore, the

idea can be extended f or continuos (real) valued functions. In this case

we can take mean of the f values of k nearest neighbors:

k

xf

xf

k

i

i

q

 1

)(

)(ˆ

Distance-weighted k-NN

Might want to weigh nearer neighbors more heavily

and d (xq , x i) is distance between xq and xi

For continuous functions:

2

1

1

),(

1
 e wher

)(

)(ˆ
iq

i
k

i

i

k

i

ii

q

xxd
w

w

xfw

xf

Note now it may make more sense to use all training examples

instead of just k.

2
1Vv

1
 where))(,(argmax)(ˆ

), xd(x
 wxfvwxf

iq

ii

k

i

iq

Curse of Dimensionality : Remarks on KNN

Imagine instances described by 20 attributes, but only 2 are relevant to target function:

Instances that have identical values for the two relevant attributes may nevertheless be

distant from one another

in the 20-dimensional space.

Curse of dimensionality: nearest neighbor is easily misled when high-dimensional X.

(Compare to decision trees).

One approach: Weight each attribute differently (Use training)

1) Stretch j th axis by weight zj , where z1, …., zn chosen to minimize prediction error

2) Use cross-validation to automatically choose weights z1, …., zn

3) Note setting zj to zero eliminates dimension i altogether

When To Consider Nearest Neighbor ?

48

• Instances map to points in

• Average number of attributes (e.g. Less than 20 attributes per instance)

• Lots of training data

• When target function is complex but can be approximated by separate local simple

approximations

Advantages: Disadvantages:

Training is very fast Slow at query time

Learn complex target

functions

Easily fooled by irrelevant

attributes

n

Note that efficient methods do exist to allow fast querying (kd-trees)

KNN Performance

The performance of the KNN Algorithm is influenced by three main
factors :

1. The distance function or distance metric used to determine the
nearest neighbors

2. The decision rule used to derive a classification from the K nearest
neighbors

3. The number of neighbors used to classify the new example.

Advantages

• The KNN algorithm is very easy to implement

• Nearly optimal in the large sample limit

• Uses local information which can yield highly adaptive behavior

• Lends itself very easily to parallel implementation

Disadvantages

• Large storage requirements

• Computationally intensive recall

• Highly susceptible to the curse of dimensionality

A Note on Terminology

Lab Program

•Write a program to implement k-Nearest
Neighbour algorithm to classify the iris data
set. Print both correct and wrong predictions.
Python ML library classes can be used for this
problem.

ಡಾ|| ತ್ಯಾ ಗರಾಜು ಜಿ.ಎಸ್

K-Nearest-Neighbor Algorithm

• Principle: points (documents) that are close in the space belong to
the same class

ಡಾ|| ತ್ಯಾ ಗರಾಜು ಜಿ.ಎಸ್

Definition of Nearest Neighbor

X X X

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

K-nearest neighbors of a record x are data points

that have the k smallest distance to x

Nearest Neighbor Classification

• Compute distance between two points:
• Euclidean distance

i ii

qpqpd 2)(),(

ಡಾ|| ತ್ಯಾ ಗರಾಜು ಜಿ.ಎಸ್

Distance
Metrics

ಡಾ|| ತ್ಯಾ ಗರಾಜು ಜಿ.ಎಸ್

Selection of Distance Metrics

• You can choose the best distance metric based on the properties of your data. If
you are unsure, you can experiment with different distance metrics and different
values of K together and see which mix results in the most accurate models.

• Euclidean is a good distance measure to use if the input variables are similar in
type (e.g. all measured widths and heights).

• Manhattan distance is a good measure to use if the input variables are not
similar in type (such as age, gender, height, etc.).

ಡಾ|| ತ್ಯಾ ಗರಾಜು ಜಿ.ಎಸ್

Nearest Neighbor Classification…

• Choosing the value of k:
• If k is too small, sensitive to noise points

• If k is too large, neighborhood may include points from other classes

X

ಡಾ|| ತ್ಯಾ ಗರಾಜು ಜಿ.ಎಸ್

Example: Consider the following data concerning credit default. Age and
Loan are two numerical variables (predictors) and Default is the target.

ಡಾ|| ತ್ಯಾ ಗರಾಜು ಜಿ.ಎಸ್

Example: We can now use the training set to classify an unknown case
(Age=48 and Loan=$142,000) using Euclidean distance. If K=1 then the
nearest neighbor is the last case in the training set with Default=Y.

D = sqrt[(48-33)^2 + (142000-150000)^2] = 8000.01 >> Default=Y
ಡಾ|| ತ್ಯಾ ಗರಾಜು ಜಿ.ಎಸ್

With K=3, there are two Default=Y and one Default=N out of three closest neighbors. The
prediction for the unknown case is again Default=Y.

ಡಾ|| ತ್ಯಾ ಗರಾಜು ಜಿ.ಎಸ್

1.2 Locally-weighted Regression

Basic idea: k-NN forms local approximation to f for each query point xq

Why not form an explicit approximation f (x) for region surrounding xq

• Fit linear function to k nearest neighbors

• Fit quadratic, ...

• Thus producing ``piecewise approximation'' to f

1.2 Locally-weighted Regression

• Let us consider the case of locally weighted regression in which the target function f

is approximated near xq, using a linear function of the form

As before, ai(x) denotes the value of the ith attribute of the instance x.

• There are three error criterion E(xq) to emphasize fitting the local training

examples.

• Three possible criteria are given below :

f1 (simple regression)

Training data

Predicted value using locally weighted (piece-wise) regression

Predicted value using simple regression

Locally-weighted regression

f2

Locally-weighted regression

f3
Locally-weighted regression

f4

3 March, 2000 Advanced Knowledge Management 69

Several choices of error to minimize:

e.g Squared error over k nearest neighbors

or Distance-weighted square error over all neighbors

or …..

f1 (simple regression)
Locally-weighted regression

f2

Locally-weighted regression

f4

Remarks on Locally Weighted Regression

• The literature on locally weighted regression contains a broad range
of alternative methods for distance weighting the training examples,
and a range of methods for locally approximating the target function.

• In most cases, the target function is approximated by a constant,
linear, or quadratic function.

• More complex functional forms are not often found because
• (1) the cost of fitting more complex functions for each query instance is

prohibitively high, and

• (2) these simple approximations model the target function quite well over a
sufficiently small subregion of the instance space.

Lab Program 8

•Implement the non-parametric Locally
Weighted Regression (LOWESS) algorithm
in order to fit data points. Select
appropriate data set for your experiment
and draw graphs.

ಡಾ|| ತ್ಯಾ ಗರಾಜು ಜಿ.ಎಸ್

Regression

• Regression is a technique from statistics that is used to predict values of a
desired target quantity when the target quantity is continuous .

• In regression, we seek to identify (or estimate) a continuous variable y
associated with a given input vector x.

• y is called the dependent variable.

• x is called the independent variable.

ಡಾ|| ತ್ಯಾ ಗರಾಜು ಜಿ.ಎಸ್

ಡಾ|| ತ್ಯಾ ಗರಾಜು ಜಿ.ಎಸ್

What lines "really" best fit each case?

ಡಾ|| ತ್ಯಾ ಗರಾಜು ಜಿ.ಎಸ್

Loess/Lowess Regression

• Loess regression is a nonparametric technique that uses local weighted
regression to fit a smooth curve through points in a scatter plot.

ಡಾ|| ತ್ಯಾ ಗರಾಜು ಜಿ.ಎಸ್

Lowess Algorithm

• Locally weighted regression is a very powerful non-parametric model used in statistical learning .Given a dataset X, y, we
attempt to find a model parameter β(x) that minimizes residual sum of weighted squared errors. The weights are given by
a kernel function(k or w) which can be chosen arbitrarily .

Algorithm

1. Read the Given data Sample to X and the curve (linear or non linear) to Y

2. Set the value for Smoothening parameter or Free parameter say τ

3. Set the bias /Point of interest set X0 which is a subset of X

4. Determine the weight matrix using :

5. Determine the value of model term parameter β using :

6. Prediction = x0*β

ಡಾ|| ತ್ಯಾ ಗರಾಜು ಜಿ.ಎಸ್

https://en.wikipedia.org/wiki/Local_regression

1.3 Radial basis Function Networks

• One approach to function approximation that is closely related to
distance weighted regression and also to artificial neural network its
learning with radial basis functions .It is eager instead of lazy

• Global approximation to target function in terms of linear
combination of local approximations

• Used e.g. for image classification

• In this approach the learned hypothesis is a function of the form

Training of RBF network

• Given a set of training examples of the target function, RBF networks are
typically trained in a two-stage process.

• First, the number k of hidden units is determined and each hidden unit u is
defined by choosing the values of xu and σu^2: that define its kernel function
K,(d(x,, x)).

• Second, the weights w, are trained to maximize the fit of the network to
the training data, using the global error criterion given by Equation

• Because the kernel functions are held fixed during this second stage, the
linear weight values w, can be trained very efficiently.

1.4 Case Based Reasoning

• Instance-based methods such as k-NEAREST NEIGHBOUR and locally weighted
regression share three key properties.

• First, they are lazy learning methods in that they defer the decision of how to generalize
beyond the training data until a new query instance is observed.

• Second, they classify new query instances by ana- lyzing similar instances while ignoring
instances that are very different from the query.

• Third, they represent instances as real-valued points in an n-dimensional Euclidean space

• Case-based reasoning (CBR) is a learning paradigm based on the first two of
these principles, but not the third

Case Based Reasoning

• In CBR, instances are typically represented using more rich symbolic descriptions,
and the methods used to retrieve similar instances are correspondingly more
elaborate.

• CBR has been applied to problems such as conceptual design of mechanical
devices based on a stored library of previous designs (Sycara et al. 1992),
reasoning about new legal cases based on previous rulings (Ashley 1990), and
solving planning and scheduling problems by reusing and combining portions of
previous solutions to similar problems (Veloso 1992).

Basic Steps of CBR

1. Identify the problem/case

2. Look for a similar , previously experienced case

3. Predict a solution, possibly different from past experiences

4. Evaluate the solution

5. Update the system with the results

Case Based Reasoning using Symbolic Logic Descriptions

Case Based Reasoning in CADET

• CADET is a Case-based Design Tool. CADET is a system that aids conceptual design of
electro-mechanical devices and is based on the paradigm of Case-based Reasoning

• The CADET system (Sycara et al. 1992) employs case- based reasoning to assist in the
conceptual design of simple mechanical devices such as water faucets.

• It uses a library containing approximately 75 previous designs and design fragments to
suggest conceptual designs to meet the specifications of new design problems.

• Each instance stored in memory (e.g., a water pipe) is represented by describing both
its structure and its qualitative function.

• New design problems are then presented by specifying the desired function and
requesting the corresponding structure.

Case Based Reasoning in CADET

• The top half of the figure shows the description of a typical stored
case called a T-junction pipe. Its function is represented in terms of
the qualitative relationships among the waterflow levels and
temperatures at its inputs and outputs.

• In the functional description at its right, an arrow with a "+" label
indicates that the variable at the arrowhead increases with the
variable at its tail.

• For example, the output waterflow Q3 increases with increasing input
waterflow Ql.

• Similarly a "-" label indicates that the variable at the head decreases
with the variable at the tail.

• The bottom half of this figure depicts a new design problem
described by its desired function. This particular function describes
the required behavior of one type of water faucet.

• Here Qc, refers to the flow of cold water into the faucet, Qh to the
input flow of hot water, and Qm, to the single mixed flow out of the
faucet.

• Similarly, Tc, Th, and Tm , refer to the temperatures of the cold water,
hot water, and mixed water respectively.

• The variable Ct, denotes the control signal for temperature that is
input to the faucet, and Cf denotes the control signal for waterflow.
Note the description of the desired function specifies that these
controls Ct, and Cf are to influence the water flows Qc, and Qh,
thereby indirectly influencing the faucet output flow Qm, and
temperature Tm.

• Given this functional specification for the new design problem, CADET
searches its library for stored cases whose functional descriptions
match the design problem.

• If an exact match is found, indicating that some stored case
implements exactly the desired function, then this case can be
returned as a suggested solution to the design problem.

• If no exact match occurs, CADET may find cases that match various
subgraphs of the desired functional specification.

Generic properties of case-based reasoning system

• Instances or cases may be represented by rich symbolic descriptions,
such as the function graphs used in CADET. This may require a
similarity metric different from Euclidean distance, such as the size of
the largest shared subgraph between two function graphs.

•

Generic properties of case-based reasoning system

• Multiple retrieved cases may be combined to form the solution to the
new problem.

• This is similar to the k-NEAREST NEIGHBOR approach, in that multiple
similar cases are used to construct a response for the new query.

• However, the process for combining these multiple retrieved cases
can be very different, relying on knowledge-based reasoning rather
than statistical methods.

•

Generic properties of case-based reasoning system

• There may be a tight coupling between case retrieval, knowledge-based
reasoning, and problem solving.

• One simple example of this is found in CADET, which uses generic
knowledge about influences to rewrite function graphs during its attempt
to find matching cases.

• Other systems have been developed that more fully integrate case-based
reasoning into general search- based problem-solving systems. Two
examples are ANAPRON (Golding and Rosenbloom 199 1) and
PRODIGY/ANALOGY (Veloso 1992).

Summary

• To summarize, case-based reasoning is an instance-based learning
method in which instances (cases) may be rich relational descriptions
and in which the retrieval and combination of cases to solve the
current query may rely on knowledge- based reasoning and search-
intensive problem-solving methods.

• One current re- search issue in case-based reasoning is to develop
improved methods for indexing cases. The central issue here is that
syntactic similarity measures (e.g., subgraph isomorphism between
function graphs) provide only an approximate indication of the
relevance of a particular case to a particular problem.

Reinforcement Learning
• User will get immediate feedback in supervised learning and no

feedback from unsupervised learning . But in RL you will get delayed
scalar feedback

• Figure below illustrates the concept of RL.

• Agent will perform actions , and based on the reward or feedback
that it gets from the environment it improves its performance.

Elements of Reinforcement Learning

RL elements are as follows :

• a policy: is a mapping from perceived states of the environment
to actions to be taken when in those states.

• a reward function: defines the goal in a reinforcement learning
problem. iIt maps each perceived state (or state-action pair) of
the environment to a single number, a reward, indicating the
intrinsic desirability of that state.

• a value function: specifies what is good in the long run. The value
of a state is the total amount of reward an agent can expect to
accumulate over the future, starting from that state.

• a model: This is something that mimics the behavior of the
environment. For example, given a state and action, the model
might predict the resultant next state and next reward. Models
are used for planning, by which we mean any way of deciding on
a course of action by considering possible future situations
before they are actually experienced. The incorporation of
models and planning into reinforcement learning systems is a
relatively new development.

3. Reinforced Learning
• Reinforcement learning addresses the question of how an autonomous agent that

senses and acts in its environment can learn to choose optimal actions to achieve its
goals.

• This very generic problem covers tasks such as learning to control a mobile robot,
learning to optimize operations in factories, and learning to play board games. Each
time the agent performs an action in its environment, a trainer may provide a reward
or penalty to indicate the desirability of the resulting state.

• For example, when training an agent to play a game the trainer might provide a positive reward
when the game is won, negative reward when it is lost, and zero reward in all other states. The task
of the agent is to learn from this indirect, delayed reward, to choose sequences of actions that
produce the greatest cumulative reward.

• This chapter focuses on an algorithm called Q learning that can acquire optimal control
strategies from delayed rewards, even when the agent has no prior knowledge of the
effects of its actions on the environment. Reinforcement learning algorithms are
related to dynamic programming algorithms frequently used to solve optimization
problems.

3.1 Introduction :
Building a Learning Robot

• Consider building a learning robot. The robot, or agent, has a set of sensors to
observe the state of its environment, and a set of actions it can perform to alter this
state.

• For example, a mobile robot may have sensors such as a camera and sonars, and actions such
as "move forward" and "turn”.

• Its task is to learn a control strategy, or policy, for choosing actions that achieve its
goals.

• For example, the robot may have a goal of docking onto its battery charger whenever its
battery level is low.

• The problem of learning a control policy to maximize cumulative reward is very
general and covers many problems beyond robot learning tasks. In general the
problem is one of learning to control sequential processes.

• This includes, for example, manufacturing optimization problems in which a
sequence of manufacturing actions must be chosen, and the reward to be
maximized is the value of the goods produced minus the costs involved.

An agent interacting with its Environment
• An agent interacting with its environment.

The agent exists in an environment
described by some set of possible states S.

• It can perform any of a set of possible
actions A. Each time it performs an action
a, in some state st the agent receives a
real-valued reward r, that indicates the
immediate value of this state-action
transition. This produces a sequence of
states si, actions ai, and immediate
rewards ri as shown in the figure.

• The agent's task is to learn a control policy,
π : S -> A, that maximizes the expected
sum of these rewards, with future rewards
discounted exponentially by their delay

The aspects which makes RL different from other

The reinforcement learning problem differs from other function approximation
tasks in several important respects

• Delayed reward.

• Exploration

• Partially observable states

• Life-long learning

Delayed Reward

• The task of the agent is to learn a target function π that maps from
the current state s to the optimal action a = π(s).

• Here training example is not of the form (s, n(s)).

• Instead, the trainer provides only a sequence of immediate reward
values as the agent executes its sequence of actions.

• The agent, therefore, faces the problem of temporal credit
assignment: determining which of the actions in its sequence are to
be credited with producing the eventual rewards.

Exploration

• In reinforcement learning, the agent influences the distribution of
training examples by the action sequence it chooses.

• This raises the question of which experimentation strategy produces
most effective learning.

• The learner faces a tradeoff in choosing whether to favor exploration
of unknown states and actions (to gather new information), or
exploitation of states and actions that it has already learned will yield
high reward (to maximize its cumulative reward).

Partially observable states

• Although it is convenient to assume that the agent's sensors can
perceive the entire state of the environment at each time step, in
many practical situations sensors provide only partial information.

• For example, a robot with a forward-pointing camera cannot see what
is behind it.

• In such cases, it may be necessary for the agent to consider its
previous observations together with its current sensor data when
choosing actions, and the best policy may be one that chooses
actions specifically to improve the observability of the environment.

Life-long learning

• Unlike isolated function approximation tasks, robot learning often
requires that the robot learn several related tasks within the same
environment, using the same sensors.

• For example, a mobile robot may need to learn how to dock on its
battery charger, how to navigate through narrow corridors, and how
to pick up output from laser printers.

• This setting raises the possibility of using previously obtained
experience or knowledge to reduce sample complexity when learning
new tasks.

3.2 THE LEARNING TASK

• In this section we formulate the problem of learning sequential control
strategies more precisely. Note there are many ways to do so.

• For example, we might assume the agent's actions are deterministic or that
they are nondeterministic.

• We might assume that the agent can predict the next state that will result
from each action, or that it cannot.

• We might assume that the agent is trained by an expert who shows it
examples of optimal action sequences, or that it must train itself by
performing actions of its own choice.

• Here we define one quite general formulation of the problem, based on
Markov decision processes.

Markov Decision Process

• In a Markov decision process (MDP) the agent can perceive a set S of distinct states
of its environment and has a set A of actions that it can perform.

• At each discrete time step t, the agent senses the current state st, chooses a current
action at, and performs it.

• The environment responds by giving the agent a reward rt = r (st, a) and by
producing the succeeding state st+1 = δ(st, a). Here the functions δ and r are part of
the environment and are not necessarily known to the agent.

• In an MDP, the functions δ(st, a,) and r(st, a) depend only on the current state and
action, and not on earlier states or actions.

• Here we consider only the case in which S and A are finite. In general, δ and r may
be nondeterministic functions, but we begin by considering only the deterministic
case

105

Agent's Learning Task

Agents Learning Task (Value Function)

• The task of the agent is to learn a policy, π : S -> A, for selecting its next
action a, based on the current observed state 𝑠𝑡; that is, π(𝑠𝑡) = a,

• How shall we specify precisely which policy π we would like the agent to
learn?

• One obvious approach is to require the policy that produces the greatest
possible cumulative reward for the robot over time.

• To state this requirement more precisely, we define the cumulative value

• V𝜋 (𝑠𝑡) achieved by following an arbitrary policy n from an arbitrary initial
state 𝑠𝑡 as follows:

107

Value Function

The quantity V𝜋 (𝑠𝑡) is often called the discounted cumulative reward achieved
by policy π.

• The six grid squares in this diagram represent
six possible states, or locations, for the agent.

• Each arrow in the diagram represents a
possible action the agent can take to move
from one state to another.

• The number associated with each arrow
represents the immediate reward r(s,a) the
agent receives if it executes the corresponding
state-action transition.

• Note the immediate reward in this particular
environment is defined to be zero for all state-
action transitions except for those leading into
the state labeled G.

• It is convenient to think of the state G as the
goal state, because the only way the agent can
receive reward, in this case, is by entering this
state.

• Note in this particular environment, the only
action available to the agent once it enters the
state G is to remain in this state.

• For this reason, we call G an absorbing state.

• A simple deterministic world to
illustrate the basic concepts of Q-
learning. Each grid square
represents a distinct state, each
arrow a distinct action. The
immediate reward function, r(s,a)
gives reward 100 for actions entering
the goal state G, and zero otherwise.

• Values of V𝜋 (𝑠)and Q(s, a) follow
from r(s, a), and the discount factor
Ƴ=0.9. An optimal policy,
corresponding to actions with
maximal Q values, is also shown.

• The diagram at the right of Figure shows
the values of V* for each state.

• For example, consider the bottom right
state in this diagram. The value of V* for
this state is 100 because the optimal policy
in this state selects the "move up" action
that receives immediate reward 100.
Thereafter, the agent will remain in the
absorbing state and receive no further
rewards. Similarly, the value of V* for the
bottom center state is 90. This is because
the optimal policy will move the agent
from this state to the right (generating an
immediate reward of zero), then upward
(generating an immediate reward of 100).
Thus, the discounted future reward from
the bottom center state is

• 0 + Ƴ 100 + Ƴ 20 + Ƴ 3 0 +... = 90

3.3 Q Learning

• Q Learning is a Reinforcement learning technique used in machine learning . The
goal of Q learning is to learn a policy which tells an agent which action to take
under which circumstances. It does not require a model of the environment and
can handle problems with stochastic transitions and rewards, without requiring
adaptations.

• In Q –learning an agent tries to learn the optimal policy from its history of
interaction with the environment

• Q-learning finds a policy that is optimal in the sense that it maximizes the expected
value of the total reward over all successive steps, starting from the current state.

• When an agent take action at in state st at time t, the predicted future rewards is
defined as Q(st,at)

112

Q LEARNING

113

3.3.1 Q Function

3.3.2 An Algorithm for Learning Q

3.3.3 : An Illustrative Example

• To illustrate the operation of the Q learning algorithm, consider a single
action taken by an agent, and the corresponding refinement to

• In this example, the agent moves one cell to the right in its grid world and
receives an immediate reward of zero for this transition

• It then applies the training rule of to refine its estimate for the state-
action transition it just executed.

• Training Rule :

3.3.4 Convergence

120

3.3.5 Nondeterministic Case(Cont’)

121

3.3.6 Temporal Difference Learning

122

Temporal Difference Learning(Cont’)

123

3.3.7 Subtleties and Ongoing Research

List of Machine Learning Algorithms Discussed
1. Find S Algorithm

2. List then Elimination Algorithm
3. Candidate Elimination Algorithm

4. Rote Learner

5. The Basic Decision Tree Learning Algorithm (ID3)
6. Gradient Descent Algorithm

7. The Backpropagation Algorithm

8. Brute Force MAP Learning Algorithm
9. Gibbs Algorithm

10. Naïve Bayes Classifier for learning and classifying text

11. Bayesian Network Algorithm
12. The EM Algorithm

13. K- Means Algorithm

14. K-NN Algorithm
15. Non Parametric Locally Weighted Linear Regression Algorithm

16. Q – Learning assuming deterministic rewards and actions.

Notation Used

Greek
Alphabets

End of Module5

