
Module2: Problem Solving
Source Book

Stuart J. Russell and Peter Norvig, “Artificial
Intelligence”, 3rd Edition, Pearson,2015

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240 [Source Book: Stuart J. Russell and Peter Norvig, Artificial Intelligence, 3rd Edition, Pearson,2015]

Topics

1. Agents, The structure of agents.

2. Problem Solving Agents

3. Example problems,

4. Searching for Solutions,

5. Uninformed Search Strategies:
a) Breadth First search,

b) Depth First Search

c) Iterative Deepening Depth First Search

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

What is AI?

• Artificial Intelligence (AI) is a field of computer science dedicated to develop
systems capable of performing tasks that would typically require human
intelligence.

• These tasks include
• perception,

• Reasoning/problem solving,

• learning,

• understanding natural language, and

• interacting with the environment.

• According to Russell and Norvig, AI can be defined as follows:

• " AI (Artificial Intelligence) is the study of agents that perceive their

environment, reason about it, and take actions to achieve goals."
Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240

[Source Book: Stuart J. Russell and Peter Norvig, Artificial
Intelligence, 3rd Edition, Pearson,2015]

Agent

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

An agent is defined as anything capable of perceiving its environment through

sensors and acting upon that environment through actuators. This basic concept is

depicted in Figure 2.1.

Structure of Intelligent Agents

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Agent = Architecture + Agent Program

• Architecture = the machinery that an agent executes on.

• Agent Program = an implementation of an agent function.

Types of Agents

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Agent Type Description

Simple Reflex

Agents

Select actions based on the current percept, without

considering the history of past percepts.

Model-Based Reflex

Agents

Maintain an internal model of the world, considering the history

of percepts for decision-making.

Goal-Based Agents Designed to achieve specific objectives, using internal goals to

determine actions.

Utility-Based Agents Evaluate actions based on a utility function, quantifying the

desirability of different outcomes.

Learning Agents Improve performance over time through learning from

experience.

Problem Solving Agents

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Problem Solving Agent is a type of goal based intelligent

agent in artificial intelligence that is designed to

• analyse a situation,

• identify problems or goals, and then

• take actions to achieve those goals.

Problem Solving Agents

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Problem Solving Agent is a type of goal based intelligent agent in artificial intelligence that is designed to analyse

a situation, identify problems or goals, and then take actions to achieve those goals.

• In the city of Arad,

Romania, an agent on a

touring holiday has a

performance measure

with various goals,

such as improving

suntan, language

skills, exploring

sights, and avoiding

hangovers.

• The decision problem

is complex if no goal

is fixed.

Steps followed by Problem Solving Agents

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

1. Goal Formulation

2. Problem Formulation

3. Search Solution

4. Execution

5. Learning (Optional)

6. Feedback and Iteration

“Formulate, Search, Execute" framework for the agent

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Well Defined Problems and Solutions

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

A problem can be defined formally by five components:

1. State Representation: Encompasses the initial state from which the agent begins its problem-solving journey,

represented, for example, as "In(Arad)."

2. Actions and Applicability: Describes the set of possible actions available to the agent in a given state, denoted

as ACTIONS(s). For instance, in the state In(Arad), applicable actions include {Go(Sibiu), Go(Timisoara),

Go(Zerind)}.

3. Transition Model: Specifies the consequences of actions through the transition model, represented by the

function RESULT(s,a), which yields the state resulting from performing action a in state s. For example,

RESULT(In(Arad),Go(Zerind))=In(Zerind).

4. Goal Specification and Test: Defines the goal state or states and includes a test to determine whether a given

state satisfies the goal conditions. In the example, the goal is represented as the singleton set {In(Bucharest)}.

5. Cost Functions: Encompasses both the path cost function, assigning a numeric cost to each path, and the step

cost, denoted as c(s,a,s ′), which represents the cost of taking action a in state s to reach state s′ . The cost

functions play a crucial role in evaluating and optimizing the performance of the agent's solution.

Example Problems: Toy and Real-world problems.

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

A toy problem is designed to showcase or test various problem-solving

techniques, featuring a precise and concise description. This allows

different researchers to use it for comparing algorithm performances.

On the other hand, a real-world problem is one that holds significance

for people, lacking a single universally agreed-upon description.

However, we can provide a general sense of their formulations.

Toy Problems

1. Vacuum Cleaner World

2. 8 Puzzle

3. 8 Queens

4. Math's Sequences

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Vacuum Cleaner World

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

The problem can be formalized as follows:

1. States: The state is defined by the agent's location and the presence of dirt in specific locations. The agent

can be in one of two locations, each potentially containing dirt. Consequently, there are 8 possible world

states (2 × 2^2). For a larger environment with n locations, there would be n · 2^n states.

2. Initial state: Any state can serve as the initial state.

3. Actions: In this uncomplicated environment, each state presents three actions: Left, Right, and Suck. More

extensive environments might also include Up and Down.

4. Transition model: Actions produce expected effects, except for instances where moving Left in the

leftmost square, moving Right in the rightmost square, and Sucking in a clean square result in no effect.

5. Goal test: This assesses whether all squares are clean.

6. Path cost: Each step incurs a cost of 1, making the path cost equivalent to the number of steps taken in the

path.

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

8 Puzzle

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

1. States: A state description indicates the position of each of the eight tiles and the empty space within the

nine squares.

2. Initial state: Any state can be designated as the initial state.

3. Actions: In its simplest form, actions are defined as movements of the empty space—Left, Right, Up, or

Down. Different subsets of these actions are possible based on the current location of the empty space.

4. Transition model: Given a state and an action, the model returns the resulting state. For instance,

applying Left to the starting state in Figure 3.4 would switch the positions of the 5 and the empty space.

5. Goal test: This checks if the state aligns with the specified goal configuration shown in Figure 3.4. Other

goal configurations are also conceivable.

6. Path cost: Each step incurs a cost of 1, making the path cost equivalent to the number of steps taken in

the path.

The 8-queens problem

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

• The goal of the 8-queens problem is to place eight queens
on a chessboard such that no queen attacks any other.

• (A queen attacks any piece in the same row, column or
diagonal.)

• Figure 3.5 shows an attempted solution that fails: the queen
in the rightmost column is attacked by the queen at the top
left.

• States: Any arrangement of 0 to 8 queens on the board is a
state.

• Initial state: No queens on the board.
• Actions: Add a queen to any empty square.
• Transition model: Returns the board with a queen added to

the specified square.
• Goal test: 8 queens are on the board, none attacked.

Math's Sequences

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

The problem definition is very simple:
1. States: Positive numbers.
2. Initial state: 4.
3. Actions: Apply factorial, square root, or floor operation (factorial for integers only).
4. Transition model: As given by the mathematical definitions of the operations.
5. Goal test: State is the desired positive integer

Real-world problems

1. Route Finding Problem

2. Touring Problem

3. Traveling Salesperson Problem

4. VLSI Layout

5. Robot Navigation

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Consider the airline travel problems that must be
solved by a travel-planning Web site:

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

• States: Each state obviously includes a location (e.g., an airport) and the current time. Furthermore, because the cost
of an action (a flight segment) may depend on previous segments, their fare bases, and their status as domestic or
international, the state must record extra information about these “historical” aspects.

• Initial state: This is specified by the user’s query.

• Actions: Take any flight from the current location, in any seat class, leaving after the current time, leaving enough
time for within-airport transfer if needed.

• Transition model: The state resulting from taking a flight will have the flight’s destination as the current location and
the flight’s arrival time as the current time.

• Goal test: Are we at the final destination specified by the user?

• Path cost: This depends on monetary cost, waiting time, flight time, customs and immigration procedures, seat
quality, time of day, type of airplane, frequent-flyer mileage awards, and so on.

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Parameter Graph Tree

Description

Graph is a non−linear data
structure that can have more
than one path between
vertices.

Tree is also a non−linear
data structure, but it has
only one path between two
vertices.

Loops
Graphs can have loops. Loops are not allowed in a

tree structure.

Root Node
Graphs do not have a root
node.

Trees have exactly one root
node.

Traversal Techniques

Graphs have two traversal
techniques namely,
breadth−first search and
depth−first search.

Trees have three traversal
techniques namely,
pre−order, in−order, and
post−order.

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Graph Trees

Searching for Solutions

• The SEARCH TREE possible action sequences starting at the initial
state form a search tree with the initial state NODE at the root; the
branches are actions and the nodes correspond to states in the state
space of the problem

• Expanding the current state applying each legal action to the current
state, thereby generating a new set of state.

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Partial search trees for finding a route from Arad to Bucharest

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Partial search trees for finding a route from Arad to Bucharest

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Partial search trees for finding a route from Arad to Bucharest

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Tree Based Searching

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Graph based Searching

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Sequence of Search Trees

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Graph Search

Infrastructure for search algorithms

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Search algorithms require a data structure to keep track of the search tree
that is being constructed. For each node n of the tree, we have a structure
that contains four components:
• n.STATE: the state in the state space to which the node corresponds;
• n.PARENT: the node in the search tree that generated this node;
• n.ACTION: the action that was applied to the parent to generate the

node;
• n.PATH-COST: the cost, traditionally denoted by g(n), of the path from

the initial state to the node, as indicated by the parent pointers.

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

NODE

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Function: “CHILD NODE”

Measuring problem-solving performance

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

We can evaluate an algorithm’s performance in four ways:
1. COMPLETENESS : Is the algorithm guaranteed to find a solution

when there is one?
2. OPTIMALITY : Does the strategy find the optimal solution?
3. TIME COMPLEXITY : How long does it take to find a solution?
4. SPACE COMPLEXITY : How much memory is needed to perform

the search?

Searching Strategies/Algorithms

Uninformed (Blind)Search Strategies

1. Breadth-first search

2. Uniform-cost search

3. Depth-first search

4. Depth-limited search

5. Iterative deepening depth-first
search

6. Bidirectional search

Informed (Heuristic) Search Strategies

1. Greedy best-first search

2. A* search: Minimizing the
total estimated solution cost

3. Memory-bounded heuristic
search

4. AO* Search

5. Problem Reduction

6. Hill Climbing

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Comparing uninformed search strategies

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Breadth First Search

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

1. Initialize a queue with the initial state (usually the root node).

2. While the queue is not empty:

a. Dequeue a node from the front of the queue.

b. If the node contains the goal state, return the solution.

c. Otherwise, enqueue all the neighbouring nodes that have not been

visited.

3. If the queue becomes empty and the goal state is not found, then there is

no solution.

Note : The set of all leaf nodes available for expansion at any given point is called
the frontier

Pseudo Code

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

function BFS(initial_state, goal_state):

initialize an empty queue

enqueue initial_state to the queue

while queue is not empty:

current_node = dequeue from the front of the queue

if current_node is the goal_state:

return solution

for each neighbor of current_node:

if neighbor has not been visited:

mark neighbor as visited

enqueue neighbor to the queue

return no solution

Note:

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

 The queue is a First-In-First-Out (FIFO) data structure, meaning that

the first element enqueued will be the first to be dequeued.

 The algorithm ensures that all nodes at a particular depth level are

explored before moving on to the nodes at the next level.

 BFS is complete and optimal for searching in a state space with a

uniform cost per step.

 It may require a lot of memory for large state spaces due to the need to

store all generated nodes.

Example

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Example

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Pseudo Code BFS

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Example: BFS on Simple Graph

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Example: BFS on Simple Graph

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Time and Space Complexity of BFS

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Time Complexity:

• The time complexity of BFS in a uniform tree is expressed as O(b^d), where 'b' is the

branching factor and 'd' is the depth of the solution.

• Applying the goal test upon node expansion instead of generation would result in a

higher time complexity of O(b^(d+1)).

Space Complexity:

• For breadth-first graph search, where every generated node is kept in memory, the

space complexity is O(b^d).

• The space complexity is dominated by the size of the frontier, which holds nodes
yet to be explored.

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

• The branching factor is the number of children at each node, the outdegree.

If this value is not uniform, an average branching factor can be calculated.
• The average branching factor can be quickly calculated as the number of non-root

nodes (the size of the tree, minus one; or the number of edges) divided by the
number of non-leaf nodes (the number of nodes with children)

https://en.wikipedia.org/wiki/Child_node
https://en.wikipedia.org/wiki/Node_(computer_science)
https://en.wikipedia.org/wiki/Outdegree

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

T= 1 + 2 + 4 + 8 + 16 = 31

Exercise: Apply BFS on Following

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Depth First Search

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

• Depth-First Search (DFS) is a tree traversal algorithm that explores as far as

possible along each branch before backtracking.

• In the context of a binary tree, DFS can be implemented using recursion or a

Stack (LIFO QUEUE). Let's go through the DFS algorithm on a binary tree with

an example.

DFS Algorithm on Binary Tree:

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Recursive Approach:

 Start at the root node.

 Visit the current node.

o Recursively apply DFS to the left subtree.

o Recursively apply DFS to the right subtree.

Stack-Based Approach:

 Push the root node onto the stack.

 While the stack is not empty:

o Pop a node from the stack.

o Visit the popped node.

o Push the right child onto the stack (if exists).

o Push the left child onto the stack (if exists).

DFS Algorithm with LIFO Queue:

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Initialization:

Push the root node onto the LIFO queue.

Traversal:

While the LIFO queue is not empty:

 Pop a node from the LIFO queue.

 Visit the popped node.

 Push the right child onto the LIFO queue (if exists).

 Push the left child onto the LIFO queue (if exists).

Example

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Exercise: Apply DFS for the Following

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Discuss the Time and Space Complexity of DFS

DFS and BFS Time and Space Complexity

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Strategy
Graph Binary Tree

Time Complexity Space Complexity Time Complexity Space Complexity

BFS O(V + E) O(V) O(b^d) O(b^d)

DFS O(V + E) O(V) O(b^d) O(bd)

Depth Limited Search

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Example

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Example

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Iterative Deepening Search

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

• Iterative Deepening Depth-First Search (IDDFS) is a search strategy that combines the benefits of

depth-first search and breadth-first search.

• Iterative deepening search, also known as iterative deepening depth-first search.

• This method incrementally raises the limit, starting from 0 and progressing to 1, 2, and so forth, until a goal

state is reached, typically when the depth limit attains the value of 'd,' representing the depth of the

shallowest goal node.

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Example

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

The goal is to find the node with the value 'F'. We'll use Iterative Deepening Depth-First

Search with increasing depth limits.

Iteration 1 (Depth Limit = 0):

 Start at the root node A and perform depth-first search up to depth 0.

 Explore only the root node A.

 No goal found.

Iteration 2 (Depth Limit = 1):

 Start again at the root node A.

 Explore nodes A, B, and C up to depth 1.

 No goal found.

Iteration 3 (Depth Limit = 2):

 Start again at the root node A.

 Explore nodes A, B, C up to depth 2.

 Explore node B's children D and E, and node C's child F.

 Goal 'F' is found.

Time and Space Complexity

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

Topics

1. Agents, The structure of agents.

2. Problem Solving Agents

3. Example problems,

4. Searching for Solutions,

5. Uninformed Search Strategies:
a) Breadth First search,

b) Depth First Search

c) Iterative Deepening Depth First Search

Dr.Thyagaraju G S , Professor,Dept of CSE,SDMIT,Ujire -574240
[Source Book: Stuart J. Russell and Peter Norvig, Artificial

Intelligence, 3rd Edition, Pearson,2015]

END of

Module2

