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2.1 Agent 
 

In the context of AI, an agent is a system or program that perceives its 

environment through sensors, makes decisions or takes actions to achieve specific 

goals, and is capable of autonomy. Agents can be physical entities like robots or 

virtual entities like software programs. 
- (Artificial Intelligence: A Modern Approach by Stuart Russell and Peter Novig) 
 

 
Sources: (Pattie Maes, MIT Media Lab) , (Artificial Intelligence: A Modern Approach by Stuart Russell and Peter 

Novig), 

 

Types of Agents 

 
Agent Type Description 

Simple Reflex Agents Select actions based on the current percept, without considering the 

history of past percepts. 

Model-Based Reflex 

Agents 

Maintain an internal model of the world, considering the history of 

percepts for decision-making. 

Goal-Based Agents Designed to achieve specific objectives, using internal goals to 

determine actions. 

Utility-Based Agents Evaluate actions based on a utility function, quantifying the 

desirability of different outcomes. 

Learning Agents Improve performance over time through learning from experience. 

Logical Agents Use logical reasoning for decision-making in environments with 

explicit knowledge representation. 

Reactive Agents Select actions based on the current situation, suitable for real-time, 

dynamic environments. 

Deliberative Agents Consider multiple possible actions, consequences, and plan ahead to 

achieve goals thoughtfully. 

Mobile Agents Have the ability to move through the environment, commonly used 

in robotics and autonomous systems. 

Collaborative Agents Work together, communicate, and coordinate actions to achieve 

common goals. 

Rational Agents Make decisions that maximize expected utility, aiming for the best 

outcome given knowledge and goals. 
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 2.2 Problem Solving Agents 

 
Problem Solving Agent is a type of goal based intelligent agent in artificial 

intelligence that is designed to analyse a situation, identify problems or goals, and 

then take actions to achieve those goals. These agents are designed to address and 

solve complex problems or tasks in its environment. 

 

In the city of Arad, Romania, an agent on a touring holiday has a performance 

measure with various goals, such as improving suntan, language skills, exploring 

sights, and avoiding hangovers. The decision problem is complex, involving 

tradeoffs and guidebook analysis. However, if the agent has a nonrefundable 

ticket to fly out of Bucharest the next day, it is logical for the agent to prioritize 

the goal of reaching Bucharest. This simplifies the decision problem, as actions 

not leading to Bucharest can be disregarded. Goal formulation, the first step in 

problem-solving, helps organize behaviour by narrowing down objectives based 

on the current situation and the agent's performance measure. 
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2.2.1 Steps followed by Problem Solving Agents: 

 
Problem-solving agents follow a series of steps to analyse a situation, formulate 

goals, and take actions to achieve those goals. The typical steps followed by 

problem-solving agents are: 

 

1. Perception: Gather information about the current state of the environment 

through sensors or perceptual mechanisms. 

 

2. Goal Formulation: Define the objectives or goals that the agent is trying 

to achieve. This involves specifying what the agent is aiming for in the 

given situation. 

 

3. Problem Formulation: Convert the vague goals into a specific, actionable 

problem. This step defines the current state, the desired state, and the 

possible actions that can be taken to move from the current state to the 

desired state. 

 

4. Search: Explore possible sequences of actions to find a solution to the 

formulated problem. This involves considering different paths and 

evaluating their feasibility and desirability. 

 

5. Action Selection: Choose the best sequence of actions based on the results 

of the search. The selected actions should lead the agent from the current 

state to the desired state. 

 

6. Execution: Implement the chosen actions in the real world. This involves 

interacting with the environment and carrying out the planned sequence of 

actions using actuators. 

 

7. Learning (Optional): In some cases, problem-solving agents may 

incorporate learning mechanisms to improve their performance over time. 

Learning can be based on feedback from the environment or from the 

consequences of past actions. 

 

8. Feedback and Iteration: If the goals are not fully achieved or if the 

environment changes, the agent may need to iterate through the problem-

solving process. This involves revisiting the perception, goal formulation, 

and problem formulation steps to adapt to new information. 
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Hence, we employ a straightforward "formulate, search, execute" framework 

for the agent, illustrated in Figure 3.1. Following the formulation of a goal and a 

corresponding problem, the agent initiates a search procedure to find a solution. 

Subsequently, the agent follows the solution's guidance for its actions, executing 

the recommended next steps—usually starting with the initial action of the 

sequence—and removing each completed step. Once the solution has been 

implemented, the agent proceeds to formulate a new goal. 

 

 

 

2.2.2 Well Defined Problems and Solutions:  
 

A problem can be defined formally by five components: 

 

1. State Representation: Encompasses the initial state from which the agent 

begins its problem-solving journey, represented, for example, as 

"In(Arad)." 

2. Actions and Applicability: Describes the set of possible actions available 

to the agent in a given state, denoted as ACTIONS(s). For instance, in the 

state In(Arad), applicable actions include {Go(Sibiu), Go(Timisoara), 

Go(Zerind)}. 

3. Transition Model: Specifies the consequences of actions through the 

transition model, represented by the function RESULT(s,a), which yields 

the state resulting from performing action a in state s. For example, 

RESULT(In(Arad),Go(Zerind))=In(Zerind). 
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4. Goal Specification and Test: Defines the goal state or states and includes 

a test to determine whether a given state satisfies the goal conditions. In 

the example, the goal is represented as the singleton set {In(Bucharest)}. 

5. Cost Functions: Encompasses both the path cost function, assigning a 

numeric cost to each path, and the step cost, denoted as  c(s,a,s ′  ), which 

represents the cost of taking action a in state s to reach state s′ . The cost 

functions play a crucial role in evaluating and optimizing the performance 

of the agent's solution. 

 
These five components collectively provide a comprehensive definition of a 

problem and serve as inputs to problem-solving algorithms. The solution to the 

problem is an action sequence that leads from the initial state to a state satisfying 

the specified goal conditions, with the quality of the solution evaluated based on 

the assigned costs. 

 

2.2.3 Formulating Problems 

 

The previous section introduced a problem formulation for reaching Bucharest, 

involving the initial state, actions, transition model, goal test, and path cost. 

However, this formulation is a theoretical model, lacking real-world intricacies.  

 

The chosen state description, such as "In(Arad)," simplifies the complex reality 

of a cross-country trip, excluding factors like travel companions, radio programs, 

and weather. This simplification, known as abstraction, is essential. 

In addition to abstracting the state, actions must also be abstracted. Driving, for 

instance, involves numerous effects beyond changing location, such as time 

consumption, fuel usage, and pollution generation. The formulation only 

considers location changes, omitting actions like turning on the radio or slowing 

down for law enforcement. 

 

Determining the appropriate level of abstraction requires precision. Abstract 

states and actions correspond to large sets of detailed world states and sequences. 

A valid abstraction allows expanding abstract solutions into detailed ones. The 

abstraction is useful if executing abstract actions is easier than the original 

problem, ensuring they can be carried out without extensive search or planning 

by an average agent. Constructing effective abstractions involves removing 

unnecessary details while maintaining validity and ensuring ease of execution. 

Without this ability, intelligent agents would struggle to navigate the complexities 

of the real world. 
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2.3 Example Problems: Toy problems and Real-World 

Problems 
 

The problem-solving methodology has found application in diverse task 

environments, encompassing a broad range of scenarios. We categorize these 

scenarios into two types: toy problems and real-world problems.  

A toy problem is designed to showcase or test various problem-solving 

techniques, featuring a precise and concise description. This allows different 

researchers to use it for comparing algorithm performances.  

On the other hand, a real-world problem is one that holds significance for 

people, lacking a single universally agreed-upon description. However, we can 

provide a general sense of their formulations. 

 

2.3.1 Toy Problems 

 

2.3.1.1. Vacuum World Problem:  

 

The problem can be formalized as follows: 

 

1. States: The state is defined by the agent's location and the presence of dirt 

in specific locations. The agent can be in one of two locations, each 

potentially containing dirt. Consequently, there are 8 possible world states 

(2 × 2^2). For a larger environment with n locations, there would be n · 

2^n states. 

2. Initial state: Any state can serve as the initial state. 

3. Actions: In this uncomplicated environment, each state presents three 

actions: Left, Right, and Suck. More extensive environments might also 

include Up and Down. 

4. Transition model: Actions produce expected effects, except for instances 

where moving Left in the leftmost square, moving Right in the rightmost 

square, and Sucking in a clean square result in no effect. The 

comprehensive state space is depicted in Figure 3.3. 

5. Goal test: This assesses whether all squares are clean. 

6. Path cost: Each step incurs a cost of 1, making the path cost equivalent to 

the number of steps taken in the path. 
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2.3.1.2 Eight Puzzle:  

 

The 8-puzzle, illustrated in Figure 3.4, features a 3×3 board with eight numbered 

tiles and an empty space. Tiles adjacent to the empty space can slide into it, and 

the goal is to achieve a specified configuration, as depicted on the right side of 

the figure. The standard formulation is outlined as follows: 

 

1. States: A state description indicates the position of each of the eight tiles and 

the empty space within the nine squares. 

2. Initial state: Any state can be designated as the initial state.  

3. Actions: In its simplest form, actions are defined as movements of the empty 

space—Left, Right, Up, or Down. Different subsets of these actions are 

possible based on the current location of the empty space. 

4. Transition model: Given a state and an action, the model returns the resulting 

state. For instance, applying Left to the starting state in Figure 3.4 would 

switch the positions of the 5 and the empty space. 

5. Goal test: This checks if the state aligns with the specified goal configuration 

shown in Figure 3.4. Other goal configurations are also conceivable. 

6. Path cost: Each step incurs a cost of 1, making the path cost equivalent to the 

number of steps taken in the path. 
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The abstraction in this formulation is evident in the treatment of actions, which 

are abstracted to their fundamental movements—Left, Right, Up, or Down—

depending on the position of the empty space. 

 

 
 

2.3.1.2 Eight Queens Problem:  

 
The goal of the 8-queens problem is to place eight queens on a chessboard such 

that no queen attacks any other. (A queen attacks any piece in the same row, 

column or diagonal.) Figure 3.5 shows an attempted solution that fails: the queen 

in the rightmost column is attacked by the queen at the top left. 

 

 
 

 

1. States: Any arrangement of 0 to 8 queens on the board is a state.  

2. Initial state: No queens on the board.  

3. Actions: Add a queen to any empty square.  

4. Transition model: Returns the board with a queen added to the 

specified square.  

5. Goal test: 8 queens are on the board, none attacked. 
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2.3.1.4 Math's Sequences:  
 

  
 

The problem definition is as follows: 

1. States: Positive numbers.  

2. Initial state: 4.  

3. Actions: Apply factorial, square root, or floor operation (factorial for 

integers only).  

4. Transition model: As given by the mathematical definitions of the 

operations.  

5. Goal test: State is the desired positive integer 

 

2.3.2 Real Time Problems 
 

1. Route Finding Problem 

2. Touring Problem 

3. Traveling Salesperson Problem 

4. VLSI Layout  

5. Robot Navigation 

 

Consider the airline travel problems that must be solved by a travel-planning 

Web site: 

1. States: Each state obviously includes a location (e.g., an airport) and the 

current time. Furthermore, because the cost of an action (a flight segment) 

may depend on previous segments, their fare bases, and their status as 

domestic or international, the state must record extra information about these 

“historical” aspects. 

2. Initial state: This is specified by the user’s query.  

3. Actions: Take any flight from the current location, in any seat class, leaving 

after the current time, leaving enough time for within-airport transfer if 

needed. 

4. Transition model: The state resulting from taking a flight will have the 

flight’s destination as the current location and the flight’s arrival time as the 

current time.  

5. Goal test: Are we at the final destination specified by the user?  
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6. Path cost: This depends on monetary cost, waiting time, flight time, customs 

and immigration procedures, seat quality, time of day, type of airplane, 

frequent-flyer mileage awards, and so on.  

 

2.4 Searching for Solutions:  

 
• The SEARCH TREE possible action sequences starting at the initial state 

form a search tree with the initial state NODE at the root; the branches are 

actions and the nodes correspond to states in the state space of the 

problem. 

• Expanding the current state applying each legal action to the current state, 

thereby generating a new set of state. 

 

 
 

Partial search trees for finding a route from Arad to Bucharest is as shown in the 

following figures. Initially the searching for route starts from the route node 

“Arad”.  
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The set of all leaf nodes available for expansion at any given point is called the 

frontier. Arad node has frontier { Sibiu, Timisoara, Zerind}.Expansion of nodes 

will be done from left to right. 

 
In the following figure the left most node Sibiu will be further expanded to 

explore the path to reach the Goal i.e Bucharest.  

    
 

But after expanding Sibiu , the following frontier will be obtained : {Arad, 

Fagaras, Oradea, Rimincu Vilcea} . Since Arad is already visited, searching 

continues from Fagaras.  

 

General Pseudocode for Tree Search is as illustrated below: 

 

 
 

General Pseudocode for Graph Search is as illustrated below: 
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Following figure illustrates the snapshots of sequences of search trees generated 

by a graph search on the Romania problem (i.e. To find the route from Arad to 

Bucharest). 

 

 
 

Following figure illustrates the separation property of Graph search illustrated on 

a rectangular grid problem:  
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2.4.1 Infrastructure for search algorithms 
 

Search algorithms require a data structure to keep track of the search tree that is 

being constructed.  

For each node n of the tree, we have a structure that contains four components:  

• n.STATE: the state in the state space to which the node corresponds;  

• n.PARENT: the node in the search tree that generated this node;  

• n.ACTION: the action that was applied to the parent to generate the node;  

• n.PATH-COST: the cost, traditionally denoted by g(n), of the path from 

the initial state to the node, as indicated by the parent pointers.  

 

 
 

Following figure illustrates the generic pseudocode for any child node in search 

tree: 
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2.4.2 Measuring problem-solving performance:  

 
We can evaluate an algorithm’s performance in four ways:  

 

1. COMPLETENESS: Is the algorithm guaranteed to find a solution when there 

is one?  

2. OPTIMALITY: Does the strategy find the optimal solution?  

3. TIME COMPLEXITY: How long does it take to find a solution?  

4. SPACE COMPLEXITY: How much memory is needed to perform the 

search?  
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2.5 Uninformed and Informed Search Strategies: 

In the context of search algorithms in artificial intelligence and computer science, 

the terms "informed" and "uninformed" refer to different strategies for exploring 

a search space. These strategies are commonly used in algorithms designed to 

find solutions to problems, typically within a graph or a state space. 

Uninformed Search: Also known as blind search, uninformed search algorithms 

do not have any additional information about the problem other than the 

connectivity of the states or nodes in the search space. 

The algorithms explore the search space without considering the specific 

characteristics of the problem or the goal location. Uninformed search methods 

are generally simpler and may explore a large portion of the search space, which 

can be inefficient for certain types of problems. 
 

Examples:  

1.Breadth-first search 

2.Uniform-cost search 

3.Depth-first search 

4.Depth-limited search 

5.Iterative deepening depth-first search 

6.Bidirectional search 

 

Informed Search: Informed search algorithms, also called heuristic search 

algorithms, use additional knowledge about the problem to guide the search more 

efficiently towards the goal. 

These algorithms make use of heuristics, which are rules or estimates that provide 

information about the desirability of different paths. The heuristics help in 

selecting paths that are more likely to lead to a solution. 

A classic example of an informed search algorithm is A* (A-star), which 

incorporates a heuristic function to evaluate the desirability of different paths and 

combines it with information about the cost incurred so far. 

  

Examples:  
 

1.Greedy best-first search 

2.A* search: Minimizing the total estimated solution cost 

3.Memory-bounded heuristic search 

4.AO* Search 

5.Problem Reduction 

6.Hill Climbing 
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Key differences  
 

Characteristic Uninformed Search Informed Search 

Information 

Utilization 

No additional knowledge Additional knowledge 

(heuristics) 

Decision Making Based solely on structure of 

the search space 

Uses heuristics to 

intelligently guide the 

search 

Goal State May require exhaustive 

exploration to find the goal 

state 

More efficient, guided 

towards potential solution 

paths 

Search 

Algorithms 

Examples: Breadth-First 

Search Depth-First Search 

Examples: A*, Greedy 

Best-First Search, etc. 

Completeness Completeness depends on the 

specific algorithm 

Completeness depends on 

the specific algorithm and 

heuristic 

Optimality May not guarantee the most 

optimal solution 

A* is optimal under 

certain conditions 

Efficiency May be less efficient for 

certain problems due to 

exhaustive exploration 

Generally more efficient 

due to heuristic guidance 

Examples BFS, DFS, Uniform Cost 

Search, etc. 

A*, Greedy Best-First 

Search,etc. 

 

Enqueue and Dequeue Operations 

In the context of any queue-based algorithm, enqueue and dequeue are 

operations related to adding elements to the queue and removing elements 

from the front of the queue, respectively. 

Enqueue Operation: Adding an element to the end of the queue. 

Example: If the queue is [A, B, C] and you enqueue the node D, the queue 

becomes [A, B, C, D]. 

Dequeue Operation: Removing an element from the front of the queue. 

Example: If the queue is [A, B, C, D] and you dequeue, the result is A, and the 

queue becomes [B, C, D]. 

These operations are fundamental for maintaining the order of exploration in 

BFS. A queue is a First-In-First-Out (FIFO) data structure, meaning that the first 

element added to the queue will be the first one to be removed. The queue 

ensures that nodes are processed in a level-wise manner, which is essential for 

BFS to systematically explore the tree or graph. 
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2.5.1 Breadth-First Search (BFS) 
 

Breadth-First Search (BFS), a strategy where we start from a root node, expand 

it to generate its children, and then put those children in a queue (i.e, FIFO) to 

expand then later. This means all nodes at some depth level d  of the tree get 

expanded before any node at depth level d+1 gets expanded. The goal test is 

applied when nodes are immediately detected (i.e., before adding it to the queue) 

because there’s no benefit to continue checking nodes. BFS is complete and 

optimal, but it also suffers from horrible space and time complexity. 

 

Algorithm: Breadth-First Search (BFS): Breadth-First Search is an uninformed 

search algorithm that explores all the nodes at the current depth before moving 

on to nodes at the next depth level. It starts at the root node and explores each 

neighbour before moving to the next level. 

 

Description: 

1. Initialize a queue with the initial state (usually the root node). 

2. While the queue is not empty: 

a. Dequeue a node from the front of the queue. 

b. If the node contains the goal state, return the solution. 

c. Otherwise, enqueue all the neighbouring nodes that have not been 

visited. 

3. If the queue becomes empty and the goal state is not found, then there is 

no solution. 

 

Pseudocode for BFS: 

 



Source Book: Stuart J. Russell and Peter Norvig, Artificial Intelligence, 3rd Edition, Pearson,2015 

pg. 19 
Dr.Thyagaraju G S, Professor and HoD, Dept of CSE, SDM Institute of Technology, Ujire-574240  

Example 1: BFS on binary tree  

 

 
Step Details Visited Nodes QUEUE 

1 Initialization: Start with 

the root node A. 

 

V = {} 

 

      a 
 

2 Node a, Visited, 

Dequeue node a and 

enqueue neighbour 

nodes b and c to queue 

 

 

V = {a} 

       

 

      b 

 

     c b 
 

3 Node b visited, deque 

node b and enqueue 

neighbour nodes d and e 

to queue. 

 

 

V = {a,b} 

 

      c 

 

     d c 

 

    e d c 
 

4 Node c visited, deque 

node c and enqueue 

neighbour nodes f and g 

to queue 

 

 

V = {a,b,c} 

. 

     e d 

 

    f e d 

 

   g f e d 
 

5 Node d visited, deque 

node d  

 

V = {a,b,c,d} 

 

    g f e 
 

6 Node e  visited, deque 

node e 

 

V = {a,b,c,d,e} 

 

     g f 
 

7 Node f visited, deque 

node f 

V = {a,b,c,d,e,f}       g 
 

8 Node g visited, deque 

node g 

V = {a,b,c,d,e,f,g}          
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Example 2: BFS on Simple Graph 

 
 

Step Description Visited Nodes Queue 

1 Initialize the queue.  V= {} 
 

    S 

2 

Node S Visited, 

Dequeue node S and 

enqueue neighbour 

nodes A, B  and C to 

queue.  

V= {S} 

 
 
 
 
 
 

    A 

   B A 

  C B A 

3 

Node A Visited, 

Dequeue node A and 

enqueue neighbour node 

D  

V= {S,A} 
        
 

  D C B 

4 
Node B Visited, 

Dequeue node B  
V= {S,A,B} 

    D C 

5 
Node C Visited, 

Dequeue node C 
V= {S,A,B,C} 

 

    D 

6 
Node D Visited, 

Dequeue node D 
V= 
{S,A,B,C,D} 

      

Breadth First Search: S A B C D 
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. 

Exercise: Apply BFS on Following  
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2.5.2 Depth First Search 

Depth-First Search (DFS) is a tree traversal algorithm that explores as far as 
possible along each branch before backtracking. In the context of a binary tree, 
DFS can be implemented using recursion or a Stack (LIFO QUEUE). Let's go 
through the DFS algorithm on a binary tree with an example. 

DFS Algorithm on Binary Tree: 

 
Recursive Approach: 

 Start at the root node. 

 Visit the current node. 
o Recursively apply DFS to the left subtree. 
o Recursively apply DFS to the right subtree. 

 
 
Stack-Based Approach: 

Depth-First Search (DFS) can also be implemented using a Last-In, First-Out 
(LIFO) queue/Stack. The basic idea is to push nodes onto the queue and explore 
as deeply as possible before backtracking. In the context of a binary tree, the 
LIFO queue simulates the stack used in the recursive and stack-based 
approaches. Here's how the DFS algorithm works on a binary tree using a LIFO 
queue with an example: 

DFS Algorithm with LIFO Queue: 

Initialization: 
Push the root node onto the LIFO queue. 
 
Traversal: 
 
While the LIFO queue is not empty: 

 Pop a node from the LIFO queue. 

 Visit the popped node. 

 Push the right child onto the LIFO queue (if exists). 

 Push the left child onto the LIFO queue (if exists). 
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Figure below illustrates the Depth-first search on a binary tree. The unexplored 
region is shown in light gray. Explored nodes with no descendants in the frontier 
are removed from memory. Nodes at depth 3 have no successors and M is the 
only goal node. 
 

 
DFS Resultant Path for the Goal M in the above figure is A->C->F->M 
 
Example:  Consider the following binary tree: 

         A 

       /   \ 

      B     C 

     / \   / \ 

    D   E F   G 
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Step Description Visited Nodes LIFO QUEUE 

1 Push 'A' onto the LIFO queue {}  [A] 
2 Pop 'A', visit it, and push its children 

'B' and 'C' onto the LIFO queue 
{A} [C, B] 

3 Pop 'B', visit it, and push its children 
'E' and 'D' onto the LIFO queue. 

{A, B} [C, E, D] 

4 Pop 'D', visit it (no children to push) {A,B,D} [C, E] 

5 Pop 'E', visit it (no children to push) {A,B,D,E} [C] 
6 Pop 'C', visit it, and push its children 

'F' and 'G' 
{A,B,D,E,C} [G,F] 

7 Pop 'F', visit it (no children to push) {A,B,D,E,C,F} [G] 

8 Pop 'G', visit it (no children to push) {A,B,D,E,C,F,G} [] 

Resulting DFS Traversal Order: A,B,D,E,C,F,G 

 

Exercise: Apply the DFS for the following (Assume the Goal is 6) 
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2.5.3 Depth Limited Search 
 

Depth-Limited Search is a modification of the traditional Depth-First Search 

(DFS) algorithm, designed to address the challenges posed by infinite state 

spaces. In infinite state spaces, DFS can get stuck exploring paths indefinitely, 

leading to an infinite loop. To mitigate this issue, a depth limit (ℓ) is introduced 

in Depth-Limited Search, restricting the exploration depth of the algorithm. 

Here are key points about Depth-Limited Search based on the provided 

discussion: 

 

1. Purpose of Depth Limit (ℓ): 

 The depth limit (ℓ) is a predetermined value that restricts the depth of 

exploration. 

 Nodes at depth ℓ are treated as if they have no successors, addressing the 

infinite-path problem. 

 

2. Completeness and Optimality: 

 Depth-Limited Search introduces a potential source of incompleteness if 

ℓ<d, where d is the depth of the shallowest goal. This occurs when the 

shallowest goal is beyond the depth limit. 

 It can be non-optimal if ℓ>d. 

 The time complexity of Depth-Limited Search is O(bℓ ), and its space 

complexity is O(bℓ ), where b is the branching factor. 

 

3. Comparison with Depth-First Search: 

 Depth-First Search can be viewed as a special case of Depth-Limited 

Search with ℓ = ∞ . 

 

4. Setting Depth Limits: 

 Depth limits can be based on problem-specific knowledge. For 

example, the diameter of the state space can be used as a better depth 

limit for more efficient search. 

 In some cases, a good depth limit may not be known until the problem 

is solved. 

 

5. Implementation: 

 Depth-Limited Search can be implemented as a modification of the 

general tree or graph-search algorithm. 

 It can also be implemented as a simple recursive algorithm. 
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6. Termination Conditions: 

 

 Depth-Limited Search can terminate with two types of failure: the 

standard failure value (indicating no solution) and the cutoff value 

(indicating no solution within the depth limit). 

 

Figure below illustrate the Pseudocode for depth limited tree 

search: 

 

Algorithm: 

Initialization: 

 Set the depth limit to l 

 Push the root node onto the LIFO queue. 
Traversal:  
d = 0  
While the LIFO queue is not empty and  d<=l and goal is not reached: 

 Pop a node from the LIFO queue. 

 Visit the popped node. 

 Push the right child onto the LIFO queue (if exists). 

 Push the left child onto the LIFO queue (if exists). 

 Update the depth if goal is not reached 
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Example1: Let's consider a simple example of Depth-Limited Search (DLS) 

on a tree. In this example, we'll use a tree where each node has a value, and the 

goal is to find a specific target value. We'll set a depth limit (ℓ) to control the 

depth of exploration. Consider the following tree: 

        1 

       / \ 

      2   3 

     / \ 

4    5 

  / \ 

6    7 

 

Step Description Visited Nodes LIFO 
QUEUE 

Depth d 

1 Push '1' onto the LIFO 
queue 

{}  [1] 0 < 2 

2 Pop '1', visit it, and push 
its children '2' and '3' 
onto the LIFO queue 

{1} [3,2] 1<2 

3 Pop '2', visit it, and push 
its children '5' and '4' 
onto the LIFO queue. 

{1, 2} [3,5,4] 2=2 

4 Pop '4', visit it (no 
children to push) 

{1,2,4} [3, 5] 2 

5 Pop '5', visit it (Goal 
reached) 

{1,2,4,5} [3] 2 

 

In this example, the search terminates successfully, finding the goal node with the 

value 5 within the depth limit of 2. If the depth limit were set to 1, the search 

would not have found the goal, demonstrating how the depth limit affects the 

exploration of the tree. 
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Example2:  
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2.5.4 Iterative deepening depth first search 

Iterative Deepening Depth-First Search (IDDFS) is a search strategy that 

combines the benefits of depth-first search and breadth-first search. It 

systematically performs depth-first search up to a certain depth, incrementally 

increasing the depth limit in subsequent iterations until the goal is found. This 

approach ensures completeness and optimality while avoiding the excessive 

memory usage associated with full breadth-first exploration. 

Iterative deepening search, also known as iterative deepening depth-first search, 

is a versatile strategy commonly employed in conjunction with depth-first tree 

search to determine the optimal depth limit. This method incrementally raises the 

limit, starting from 0 and progressing to 1, 2, and so forth, until a goal state is 

reached, typically when the depth limit attains the value of 'd,' representing the 

depth of the shallowest goal node. The algorithmic process is illustrated in Figure 

below: The iterative deepening search algorithm, which repeatedly applies 

depthlimited search with increasing limits. It terminates when a solution is found 

or if the depthlimited search returns failure, meaning that no solution exists. 

 

Iterative deepening search combines the advantages of both depth-first and 

breadth-first search approaches. Similar to depth-first search, it maintains modest 

memory requirements with a precise complexity of O(bd), where 'b' is the 

branching factor. Similar to breadth-first search, it achieves completeness when 

the branching factor is finite and optimality when the path cost is a non-

decreasing function of the node's depth. Figure 3.19 illustrates four iterations of 

ITERATIVE-DEEPENING-SEARCH on a binary search tree, culminating in the 

discovery of the solution in the fourth iteration. 
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Although iterative deepening search may seem inefficient due to the generation 

of states multiple times, the cost is not prohibitive. This is because, in a search 

tree with a consistent branching factor, the majority of nodes are concentrated at 

the bottom level.  

The algorithm generates nodes on the bottom level (depth 'd') once, those on the 

next-to-bottom level twice, and so forth, up to the children of the root, which are 

generated 'd' times.  

The worst-case total number of generated nodes is given by the formula: 

N(IDS) = (d)b + (d − 1)b^2 + · · · + (1)b^d,  

resulting in a time complexity of O(b^d), asymptotically equivalent to breadth-

first search. 

Although there is an additional cost associated with generating upper levels 

multiple times, it remains manageable.  

For instance, with values of 'b = 10' and 'd = 5,' the node counts are : 

N(IDS) = 123,450 and  
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N(BFS) = 111,110.  

To mitigate repetition concerns, a suggested hybrid approach involves running 

breadth-first search until memory is nearly exhausted and then switching to 

iterative deepening from nodes in the frontier. 

In general, iterative deepening is the preferred uninformed search method for 

large search spaces with unknown solution depths. It mirrors breadth-first search 

by exploring a complete layer of new nodes in each iteration before progressing 

to the next layer. There is a suggestion to develop an iterative analog to uniform-

cost search, inheriting its optimality guarantees while circumventing its memory 

requirements. The proposed idea involves using increasing path-cost limits 

instead of increasing depth limits. 

Example:  

Let's walk through an example of Iterative Deepening Depth-First Search on a 

binary tree: 

Consider the following binary tree: 

        A 

       /  \ 

      B   C 

     /  \      \ 

    D   E   F 

The goal is to find the node with the value 'F'. We'll use Iterative Deepening 

Depth-First Search with increasing depth limits. 

Iteration 1 (Depth Limit = 0): 

 Start at the root node A and perform depth-first search up to depth 0. 

 Explore only the root node A. 

 No goal found. 

Iteration 2 (Depth Limit = 1): 

 Start again at the root node A. 

 Explore nodes A, B, and C up to depth 1. 

 No goal found. 
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Iteration 3 (Depth Limit = 2): 

 Start again at the root node A. 

 Explore nodes A, B, C up to depth 2. 

 Explore node B's children D and E, and node C's child F. 

 Goal 'F' is found. 

 

In this example, IDDFS successfully finds the goal node 'F' by incrementally 

increasing the depth limit in each iteration. The search is complete, and the 

solution is found in an optimal manner. 

The key advantage of IDDFS is that it guarantees completeness and optimality, 

similar to breadth-first search, while maintaining the low memory requirements 

of depth-first search. It is particularly useful in scenarios where memory is 

limited, and full breadth-first exploration is not practical. 

 

2.6 Time and Space Complexity  

 

Algorithm Time Space Complete Optimal 

Breadth First 

Search 

O(bd) O(bd) YES YES 

Depth First 

Search 

O(bd) O(bd) NO NO 

Depth 

Limited 

Search 

O(bl) O(bl) NO NO 

Iterative 

deepening 

Search 

O(bd) O(bd) YES YES 

 


