
Source Book: {ǘǳŀǊǘ WΦ wǳǎǎŜƭƭ ŀƴŘ tŜǘŜǊ bƻǊǾƛƎΣ !ǊǝŬŎƛŀƭ LƴǘŜƭƭƛƎŜƴŎŜΣ оǊŘ 9ŘƛǝƻƴΣ tŜŀǊǎƻƴΣнлмр

ǇƎΦ м
5ǊΦ¢ƘȅŀƎŀǊŀƧǳ D {Σ tǊƻŦŜǎǎƻǊ ŀƴŘ Iƻ5Σ 5ŜǇǘ ƻŦ /{9Σ {5a LƴǎǝǘǳǘŜ ƻŦ ¢ŜŎƘƴƻƭƻƎȅΣ ¦ƧƛǊŜπртпнпл

AI Module2

Source Book: {ǘǳŀǊǘ WΦ wǳǎǎŜƭƭ ŀƴŘ tŜǘŜǊ bƻǊǾƛƎΣ !ǊǝŬŎƛŀƭ LƴǘŜƭƭƛƎŜƴŎŜΣ

оǊŘ 9ŘƛǝƻƴΣ tŜŀǊǎƻƴΣнлмр

Topics:

1. Agent

2. Problemsolving agents,

3. Example problems,

4. Searching for Solutions,

5. Uninformed Search Strategies:

a. Breadth First search,

b. Depth First Search

c. Depth Limited Search

d. Iterative deepening depth first search

6. Time and Space Complexity

Source Book: {ǘǳŀǊǘ WΦ wǳǎǎŜƭƭ ŀƴŘ tŜǘŜǊ bƻǊǾƛƎΣ !ǊǝŬŎƛŀƭ LƴǘŜƭƭƛƎŜƴŎŜΣ

оǊŘ 9ŘƛǝƻƴΣ tŜŀǊǎƻƴΣнлмр

Source Book: {ǘǳŀǊǘ WΦ wǳǎǎŜƭƭ ŀƴŘ tŜǘŜǊ bƻǊǾƛƎΣ !ǊǝŬŎƛŀƭ LƴǘŜƭƭƛƎŜƴŎŜΣ оǊŘ 9ŘƛǝƻƴΣ tŜŀǊǎƻƴΣнлмр

ǇƎΦ н
5ǊΦ¢ƘȅŀƎŀǊŀƧǳ D {Σ tǊƻŦŜǎǎƻǊ ŀƴŘ Iƻ5Σ 5ŜǇǘ ƻŦ /{9Σ {5a LƴǎǝǘǳǘŜ ƻŦ ¢ŜŎƘƴƻƭƻƎȅΣ ¦ƧƛǊŜπртпнпл

2.1 Agent

In the context of AI, an agent is a system or program that perceives its

environment through sensors, makes decisions or takes actions to achieve specific

goals, and is capable of autonomy. Agents can be physical entities like robots or

virtual entities like software programs.
- (Artificial Intelligence: A Modern Approach by Stuart Russell and Peter Novig)

Sources: (Pattie Maes, MIT Media Lab) , (Artificial Intelligence: A Modern Approach by Stuart Russell and Peter

Novig),

Types of Agents

Agent Type Description

Simple Reflex Agents Select actions based on the current percept, without considering the

history of past percepts.

Model -Based Reflex

Agents

Maintain an internal model of the world, considering the history of

percepts for decision-making.

Goal-Based Agents Designed to achieve specific objectives, using internal goals to

determine actions.

Utility -Based Agents Evaluate actions based on a utility function, quantifying the

desirability of different outcomes.

Learning Agents Improve performance over time through learning from experience.

Logical Agents Use logical reasoning for decision-making in environments with

explicit knowledge representation.

Reactive Agents Select actions based on the current situation, suitable for real-time,

dynamic environments.

Deliberative Agents Consider multiple possible actions, consequences, and plan ahead to

achieve goals thoughtfully.

Mobile Agents Have the ability to move through the environment, commonly used

in robotics and autonomous systems.

Collaborative Agents Work together, communi cate, and coordinate actions to achieve

common goals.

Rational Agents Make decisions that maximize expected utility, aiming for the best

outcome given knowledge and goals.

Source Book: {ǘǳŀǊǘ WΦ wǳǎǎŜƭƭ ŀƴŘ tŜǘŜǊ bƻǊǾƛƎΣ !ǊǝŬŎƛŀƭ LƴǘŜƭƭƛƎŜƴŎŜΣ оǊŘ 9ŘƛǝƻƴΣ tŜŀǊǎƻƴΣнлмр

ǇƎΦ о
5ǊΦ¢ƘȅŀƎŀǊŀƧǳ D {Σ tǊƻŦŜǎǎƻǊ ŀƴŘ Iƻ5Σ 5ŜǇǘ ƻŦ /{9Σ {5a LƴǎǝǘǳǘŜ ƻŦ ¢ŜŎƘƴƻƭƻƎȅΣ ¦ƧƛǊŜπртпнпл

 2.2 Problem Solving Agents

Problem Solving Agent is a type of goal based intelligent agent in artificial

intelligence that is designed to analyse a situation, identify problems or goals, and

then take actions to achieve those goals. These agents are designed to address and

solve complex problems or tasks in its environment.

In the city of Arad, Romania, an agent on a touring holiday has a performance

measure with various goals, such as improving suntan, language skills, exploring

sights, and avoiding hangovers. The decision problem is complex, involving

tradeoffs and guidebook analysis. However, if the agent has a nonrefundable

ticket to fly out of Bucharest the next day, it is logical for the agent to prioritize

the goal of reaching Bucharest. This simplifies the decision problem, as actions

not leading to Bucharest can be disregarded. Goal formulation, the first step in

problem-solving, helps organize behaviour by narrowing down objectives based

on the current situation and the agent's performance measure.

Source Book: {ǘǳŀǊǘ WΦ wǳǎǎŜƭƭ ŀƴŘ tŜǘŜǊ bƻǊǾƛƎΣ !ǊǝŬŎƛŀƭ LƴǘŜƭƭƛƎŜƴŎŜΣ оǊŘ 9ŘƛǝƻƴΣ tŜŀǊǎƻƴΣнлмр

ǇƎΦ п
5ǊΦ¢ƘȅŀƎŀǊŀƧǳ D {Σ tǊƻŦŜǎǎƻǊ ŀƴŘ Iƻ5Σ 5ŜǇǘ ƻŦ /{9Σ {5a LƴǎǝǘǳǘŜ ƻŦ ¢ŜŎƘƴƻƭƻƎȅΣ ¦ƧƛǊŜπртпнпл

2.2.1 Steps followed by Problem Solving Agents:

Problem-solving agents follow a series of steps to analyse a situation, formulate

goals, and take actions to achieve those goals. The typical steps followed by

problem-solving agents are:

1. Perception: Gather information about the current state of the environment

through sensors or perceptual mechanisms.

2. Goal Formulation: Define the objectives or goals that the agent is trying

to achieve. This involves specifying what the agent is aiming for in the

given situation.

3. Problem Formulation: Convert the vague goals into a specific, actionable

problem. This step defines the current state, the desired state, and the

possible actions that can be taken to move from the current state to the

desired state.

4. Search: Explore possible sequences of actions to find a solution to the

formulated problem. This involves considering different paths and

evaluating their feasibility and desirability.

5. Action Selection: Choose the best sequence of actions based on the results

of the search. The selected actions should lead the agent from the current

state to the desired state.

6. Execution: Implement the chosen actions in the real world. This involves

interacting with the environment and carrying out the planned sequence of

actions using actuators.

7. Learning (Optional): In some cases, problem-solving agents may

incorporate learning mechanisms to improve their performance over time.

Learning can be based on feedback from the environment or from the

consequences of past actions.

8. Feedback and Iteration: If the goals are not fully achieved or if the

environment changes, the agent may need to iterate through the problem-

solving process. This involves revisiting the perception, goal formulation,

and problem formulation steps to adapt to new information.

Source Book: {ǘǳŀǊǘ WΦ wǳǎǎŜƭƭ ŀƴŘ tŜǘŜǊ bƻǊǾƛƎΣ !ǊǝŬŎƛŀƭ LƴǘŜƭƭƛƎŜƴŎŜΣ оǊŘ 9ŘƛǝƻƴΣ tŜŀǊǎƻƴΣнлмр

ǇƎΦ р
5ǊΦ¢ƘȅŀƎŀǊŀƧǳ D {Σ tǊƻŦŜǎǎƻǊ ŀƴŘ Iƻ5Σ 5ŜǇǘ ƻŦ /{9Σ {5a LƴǎǝǘǳǘŜ ƻŦ ¢ŜŎƘƴƻƭƻƎȅΣ ¦ƧƛǊŜπртпнпл

Hence, we employ a straightforward "formulate, search, execute" framework

for the agent, illustrated in Figure 3.1. Following the formulation of a goal and a

corresponding problem, the agent initiates a search procedure to find a solution.

Subsequently, the agent follows the solution's guidance for its actions, executing

the recommended next stepsðusually starting with the initial action of the

sequenceðand removing each completed step. Once the solution has been

implemented, the agent proceeds to formulate a new goal.

2.2.2 Well Defined Problems and Solutions:

A problem can be defined formally by five components:

1. State Representation: Encompasses the initial state from which the agent

begins its problem-solving journey, represented, for example, as

"In(Arad)."

2. Actions and Applicability: Describes the set of possible actions available

to the agent in a given state, denoted as ACTIONS(s). For instance, in the

state In(Arad), applicable actions include {Go(Sibiu), Go(Timisoara),

Go(Zerind)}.

3. Transition Model: Specifies the consequences of actions through the

transition model, represented by the function RESULT(s,a), which yields

the state resulting from performing action a in state s. For example,

RESULT(In(Arad),Go(Zerind))=In(Zerind).

Source Book: {ǘǳŀǊǘ WΦ wǳǎǎŜƭƭ ŀƴŘ tŜǘŜǊ bƻǊǾƛƎΣ !ǊǝŬŎƛŀƭ LƴǘŜƭƭƛƎŜƴŎŜΣ оǊŘ 9ŘƛǝƻƴΣ tŜŀǊǎƻƴΣнлмр

ǇƎΦ с
5ǊΦ¢ƘȅŀƎŀǊŀƧǳ D {Σ tǊƻŦŜǎǎƻǊ ŀƴŘ Iƻ5Σ 5ŜǇǘ ƻŦ /{9Σ {5a LƴǎǝǘǳǘŜ ƻŦ ¢ŜŎƘƴƻƭƻƎȅΣ ¦ƧƛǊŜπртпнпл

4. Goal Specification and Test: Defines the goal state or states and includes

a test to determine whether a given state satisfies the goal conditions. In

the example, the goal is represented as the singleton set {In(Bucharest)}.

5. Cost Functions: Encompasses both the path cost function, assigning a

numeric cost to each path, and the step cost, denoted as c(s,a,s ǋ), which

represents the cost of taking action a in state s to reach state sǋ . The cost

functions play a crucial role in evaluating and optimizing the performance

of the agent's solution.

These five components collectively provide a comprehensive definition of a

problem and serve as inputs to problem-solving algorithms. The solution to the

problem is an action sequence that leads from the initial state to a state satisfying

the specified goal conditions, with the quality of the solution evaluated based on

the assigned costs.

2.2.3 Formulating Problems

The previous section introduced a problem formulation for reaching Bucharest,

involving the initial state, actions, transition model, goal test, and path cost.

However, this formulation is a theoretical model, lacking real-world intricacies.

The chosen state description, such as "In(Arad)," simplifies the complex reality

of a cross-country trip, excluding factors like travel companions, radio programs,

and weather. This simplification, known as abstraction, is essential.

In addition to abstracting the state, actions must also be abstracted. Driving, for

instance, involves numerous effects beyond changing location, such as time

consumption, fuel usage, and pollution generation. The formulation only

considers location changes, omitting actions like turning on the radio or slowing

down for law enforcement.

Determining the appropriate level of abstraction requires precision. Abstract

states and actions correspond to large sets of detailed world states and sequences.

A valid abstraction allows expanding abstract solutions into detailed ones. The

abstraction is useful if executing abstract actions is easier than the original

problem, ensuring they can be carried out without extensive search or planning

by an average agent. Constructing effective abstractions involves removing

unnecessary details while maintaining validity and ensuring ease of execution.

Without this ability, intelligent agents would struggle to navigate the complexities

of the real world.

Source Book: {ǘǳŀǊǘ WΦ wǳǎǎŜƭƭ ŀƴŘ tŜǘŜǊ bƻǊǾƛƎΣ !ǊǝŬŎƛŀƭ LƴǘŜƭƭƛƎŜƴŎŜΣ оǊŘ 9ŘƛǝƻƴΣ tŜŀǊǎƻƴΣнлмр

ǇƎΦ т
5ǊΦ¢ƘȅŀƎŀǊŀƧǳ D {Σ tǊƻŦŜǎǎƻǊ ŀƴŘ Iƻ5Σ 5ŜǇǘ ƻŦ /{9Σ {5a LƴǎǝǘǳǘŜ ƻŦ ¢ŜŎƘƴƻƭƻƎȅΣ ¦ƧƛǊŜπртпнпл

2.3 Example Problems: Toy problems and Real-World

Problems

The problem-solving methodology has found application in diverse task

environments, encompassing a broad range of scenarios. We categorize these

scenarios into two types: toy problems and real-world problems.

A toy problem is designed to showcase or test various problem-solving

techniques, featuring a precise and concise description. This allows different

researchers to use it for comparing algorithm performances.

On the other hand, a real-world problem is one that holds significance for

people, lacking a single universally agreed-upon description. However, we can

provide a general sense of their formulations.

2.3.1 Toy Problems

2.3.1.1. Vacuum World Problem:

The problem can be formalized as follows:

1. States: The state is defined by the agent's location and the presence of dirt

in specific locations. The agent can be in one of two locations, each

potentially containing dirt. Consequently, there are 8 possible world states

(2 Ĭ 2^2). For a larger environment with n locations, there would be n Ŀ

2^n states.

2. Initial state: Any state can serve as the initial state.

3. Actions: In this uncomplicated environment, each state presents three

actions: Left, Right, and Suck. More extensive environments might also

include Up and Down.

4. Transition model: Actions produce expected effects, except for instances

where moving Left in the leftmost square, moving Right in the rightmost

square, and Sucking in a clean square result in no effect. The

comprehensive state space is depicted in Figure 3.3.

5. Goal test: This assesses whether all squares are clean.

6. Path cost: Each step incurs a cost of 1, making the path cost equivalent to

the number of steps taken in the path.

Source Book: {ǘǳŀǊǘ WΦ wǳǎǎŜƭƭ ŀƴŘ tŜǘŜǊ bƻǊǾƛƎΣ !ǊǝŬŎƛŀƭ LƴǘŜƭƭƛƎŜƴŎŜΣ оǊŘ 9ŘƛǝƻƴΣ tŜŀǊǎƻƴΣнлмр

ǇƎΦ у
5ǊΦ¢ƘȅŀƎŀǊŀƧǳ D {Σ tǊƻŦŜǎǎƻǊ ŀƴŘ Iƻ5Σ 5ŜǇǘ ƻŦ /{9Σ {5a LƴǎǝǘǳǘŜ ƻŦ ¢ŜŎƘƴƻƭƻƎȅΣ ¦ƧƛǊŜπртпнпл

2.3.1.2 Eight Puzzle:

The 8-puzzle, illustrated in Figure 3.4, features a 3Ĭ3 board with eight numbered

tiles and an empty space. Tiles adjacent to the empty space can slide into it, and

the goal is to achieve a specified configuration, as depicted on the right side of

the figure. The standard formulation is outlined as follows:

1. States: A state description indicates the position of each of the eight tiles and

the empty space within the nine squares.

2. Initial state: Any state can be designated as the initial state.

3. Actions: In its simplest form, actions are defined as movements of the empty

spaceðLeft, Right, Up, or Down. Different subsets of these actions are

possible based on the current location of the empty space.

4. Transition model: Given a state and an action, the model returns the resulting

state. For instance, applying Left to the starting state in Figure 3.4 would

switch the positions of the 5 and the empty space.

5. Goal test: This checks if the state aligns with the specified goal configuration

shown in Figure 3.4. Other goal configurations are also conceivable.

6. Path cost: Each step incurs a cost of 1, making the path cost equivalent to the

number of steps taken in the path.

Source Book: {ǘǳŀǊǘ WΦ wǳǎǎŜƭƭ ŀƴŘ tŜǘŜǊ bƻǊǾƛƎΣ !ǊǝŬŎƛŀƭ LƴǘŜƭƭƛƎŜƴŎŜΣ оǊŘ 9ŘƛǝƻƴΣ tŜŀǊǎƻƴΣнлмр

ǇƎΦ ф
5ǊΦ¢ƘȅŀƎŀǊŀƧǳ D {Σ tǊƻŦŜǎǎƻǊ ŀƴŘ Iƻ5Σ 5ŜǇǘ ƻŦ /{9Σ {5a LƴǎǝǘǳǘŜ ƻŦ ¢ŜŎƘƴƻƭƻƎȅΣ ¦ƧƛǊŜπртпнпл

The abstraction in this formulation is evident in the treatment of actions, which

are abstracted to their fundamental movementsðLeft, Right, Up, or Downð

depending on the position of the empty space.

2.3.1.2 Eight Queens Problem:

The goal of the 8-queens problem is to place eight queens on a chessboard such

that no queen attacks any other. (A queen attacks any piece in the same row,

column or diagonal.) Figure 3.5 shows an attempted solution that fails: the queen

in the rightmost column is attacked by the queen at the top left.

1. States: Any arrangement of 0 to 8 queens on the board is a state.

2. Initial state: No queens on the board.

3. Actions: Add a queen to any empty square.

4. Transition model: Returns the board with a queen added to the

specified square.

5. Goal test: 8 queens are on the board, none attacked.

Source Book: {ǘǳŀǊǘ WΦ wǳǎǎŜƭƭ ŀƴŘ tŜǘŜǊ bƻǊǾƛƎΣ !ǊǝŬŎƛŀƭ LƴǘŜƭƭƛƎŜƴŎŜΣ оǊŘ 9ŘƛǝƻƴΣ tŜŀǊǎƻƴΣнлмр

ǇƎΦ мл
5ǊΦ¢ƘȅŀƎŀǊŀƧǳ D {Σ tǊƻŦŜǎǎƻǊ ŀƴŘ Iƻ5Σ 5ŜǇǘ ƻŦ /{9Σ {5a LƴǎǝǘǳǘŜ ƻŦ ¢ŜŎƘƴƻƭƻƎȅΣ ¦ƧƛǊŜπртпнпл

2.3.1.4 Math's Sequences:

The problem definition is as follows:

1. States: Positive numbers.

2. Initial state: 4.

3. Actions: Apply factorial, square root, or floor operation (factorial for

integers only).

4. Transition model: As given by the mathematical definitions of the

operations.

5. Goal test: State is the desired positive integer

2.3.2 Real Time Problems

1. Route Finding Problem

2. Touring Problem

3. Traveling Salesperson Problem

4. VLSI Layout

5. Robot Navigation

Consider the airline travel problems that must be solved by a travel-planning

Web site:

1. States: Each state obviously includes a location (e.g., an airport) and the

current time. Furthermore, because the cost of an action (a flight segment)

may depend on previous segments, their fare bases, and their status as

domestic or international, the state must record extra information about these

ñhistoricalò aspects.

2. Initial state: This is specified by the userôs query.

3. Actions: Take any flight from the current location, in any seat class, leaving

after the current time, leaving enough time for within-airport transfer if

needed.

4. Transition model: The state resulting from taking a flight will have the

flightôs destination as the current location and the flightôs arrival time as the

current time.

5. Goal test: Are we at the final destination specified by the user?

Source Book: {ǘǳŀǊǘ WΦ wǳǎǎŜƭƭ ŀƴŘ tŜǘŜǊ bƻǊǾƛƎΣ !ǊǝŬŎƛŀƭ LƴǘŜƭƭƛƎŜƴŎŜΣ оǊŘ 9ŘƛǝƻƴΣ tŜŀǊǎƻƴΣнлмр

ǇƎΦ мм
5ǊΦ¢ƘȅŀƎŀǊŀƧǳ D {Σ tǊƻŦŜǎǎƻǊ ŀƴŘ Iƻ5Σ 5ŜǇǘ ƻŦ /{9Σ {5a LƴǎǝǘǳǘŜ ƻŦ ¢ŜŎƘƴƻƭƻƎȅΣ ¦ƧƛǊŜπртпнпл

6. Path cost: This depends on monetary cost, waiting time, flight time, customs

and immigration procedures, seat quality, time of day, type of airplane,

frequent-flyer mileage awards, and so on.

2.4 Searching for Solutions:

Å The SEARCH TREE possible action sequences starting at the initial state

form a search tree with the initial state NODE at the root; the branches are

actions and the nodes correspond to states in the state space of the

problem.

Å Expanding the current state applying each legal action to the current state,

thereby generating a new set of state.

Partial search trees for finding a route from Arad to Bucharest is as shown in the

following figures. Initially the searching for route starts from the route node

ñAradò.

Source Book: {ǘǳŀǊǘ WΦ wǳǎǎŜƭƭ ŀƴŘ tŜǘŜǊ bƻǊǾƛƎΣ !ǊǝŬŎƛŀƭ LƴǘŜƭƭƛƎŜƴŎŜΣ оǊŘ 9ŘƛǝƻƴΣ tŜŀǊǎƻƴΣнлмр

ǇƎΦ мн
5ǊΦ¢ƘȅŀƎŀǊŀƧǳ D {Σ tǊƻŦŜǎǎƻǊ ŀƴŘ Iƻ5Σ 5ŜǇǘ ƻŦ /{9Σ {5a LƴǎǝǘǳǘŜ ƻŦ ¢ŜŎƘƴƻƭƻƎȅΣ ¦ƧƛǊŜπртпнпл

The set of all leaf nodes available for expansion at any given point is called the

frontier. Arad node has frontier { Sibiu, Timisoara, Zerind}.Expansion of nodes

will be done from left to right.

In the following figure the left most node Sibiu will be further expanded to

explore the path to reach the Goal i.e Bucharest.

But after expanding Sibiu , the following frontier will be obtained : {Arad,

Fagaras, Oradea, Rimincu Vilcea} . Since Arad is already visited, searching

continues from Fagaras.

General Pseudocode for Tree Search is as illustrated below:

General Pseudocode for Graph Search is as illustrated below:

Source Book: {ǘǳŀǊǘ WΦ wǳǎǎŜƭƭ ŀƴŘ tŜǘŜǊ bƻǊǾƛƎΣ !ǊǝŬŎƛŀƭ LƴǘŜƭƭƛƎŜƴŎŜΣ оǊŘ 9ŘƛǝƻƴΣ tŜŀǊǎƻƴΣнлмр

ǇƎΦ мо
5ǊΦ¢ƘȅŀƎŀǊŀƧǳ D {Σ tǊƻŦŜǎǎƻǊ ŀƴŘ Iƻ5Σ 5ŜǇǘ ƻŦ /{9Σ {5a LƴǎǝǘǳǘŜ ƻŦ ¢ŜŎƘƴƻƭƻƎȅΣ ¦ƧƛǊŜπртпнпл

Following figure illustrates the snapshots of sequences of search trees generated

by a graph search on the Romania problem (i.e. To find the route from Arad to

Bucharest).

Following figure illustrates the separation property of Graph search illustrated on

a rectangular grid problem:

Source Book: {ǘǳŀǊǘ WΦ wǳǎǎŜƭƭ ŀƴŘ tŜǘŜǊ bƻǊǾƛƎΣ !ǊǝŬŎƛŀƭ LƴǘŜƭƭƛƎŜƴŎŜΣ оǊŘ 9ŘƛǝƻƴΣ tŜŀǊǎƻƴΣнлмр

ǇƎΦ мп
5ǊΦ¢ƘȅŀƎŀǊŀƧǳ D {Σ tǊƻŦŜǎǎƻǊ ŀƴŘ Iƻ5Σ 5ŜǇǘ ƻŦ /{9Σ {5a LƴǎǝǘǳǘŜ ƻŦ ¢ŜŎƘƴƻƭƻƎȅΣ ¦ƧƛǊŜπртпнпл

2.4.1 Infrastructure for search algorithms

Search algorithms require a data structure to keep track of the search tree that is

being constructed.

For each node n of the tree, we have a structure that contains four components:

Å n.STATE: the state in the state space to which the node corresponds;

Å n.PARENT: the node in the search tree that generated this node;

Å n.ACTION: the action that was applied to the parent to generate the node;

Å n.PATH-COST: the cost, traditionally denoted by g(n), of the path from

the initial state to the node, as indicated by the parent pointers.

Following figure illustrates the generic pseudocode for any child node in search

tree:

