
Module 4
First Order Logic and Inferences in FOL



Topics

1. Unification: is a process used to find a common instantiation for two 

predicates or terms such that they become identical.

2. Forward Chaining: is a reasoning and inference procedure which starts 

with known facts and moves forward to reach conclusions

3. Backward Chaining: is a reasoning and inference procedure which starts 

with the goal and moves backward to verify if the goal can be satisfied, 

4. Resolution: is an inference rule used to derive new clauses by combining 

existing ones. 

These techniques are essential for reasoning and inference in First-Order 
Logic systems.



1. Unification

• In first-order logic, unification is a process used to find a common instantiation for two 
predicates or terms such that they become identical. 

• A substitution, on the other hand, is a mapping of variables to terms. 



1. Unification

• In first-order logic, unification is a process used to find a common instantiation for two 
predicates or terms such that they become identical. 

• A substitution, on the other hand, is a mapping of variables to terms. 

UNIFY(Knows(John, x), Knows(x17,Elizabeth)) = {x/Elizabeth, x17/John} 





Unification is the process of finding a substitution that makes two logical expressions identical. The 
algorithm takes two expressions, x and y, and attempts to find a substitution (θ) that makes them identical.
Here's a breakdown of how the algorithm works:

Base case: If the substitution θ is already marked as a failure, then it returns failure 
immediately.
Identity check: If x and y are identical, it means no further unification is needed, and the 
current substitution θ can be returned.
Variable check: If x is a variable, it calls the UNIFY-VAR function with x as the variable and 
y as the expression. If y is a variable, it calls UNIFY-VAR with y as the variable and x as the 
expression.
Compound expression check: If both x and y are compound expressions, it recursively calls 
UNIFY on their arguments and operators.
List check: If both x and y are lists, it recursively calls UNIFY on their first elements and 
their remaining elements.
Failure case: If none of the above conditions are met, it returns failure, indicating that x 
and y cannot be unified.



The UNIFY-VAR function is used when one of the expressions (x or y) is a variable. It attempts 
to create a substitution based on the variable and the expression it's being unified with.

Occur check: Checks for a possible occurrence of the variable in the expression, preventing 
infinite loops, and returns failure if such an occurrence is detected.

Substitution addition: If none of the above cases apply, it adds a new mapping to the 
substitution, indicating that the variable is unified with the expression.



• Overall, the algorithm systematically traverses through the
• expressions, 
• handling variables, 
• Compound statements, 
• lists, and 
• checking for failures, 

• until it either finds a successful substitution or determines that 
unification is not possible.



Example

Suppose we have the following two predicates:
1. Predicate P(x,y)
2. Predicate Q(f(z),a)
Here, 
• P and Q are predicates, 
• x, y, and z are variables, and 
• f and a are constants.
Now, let's say we want to unify   P(x,y) with Q(f(z),a). 
We can use the given algorithm for unification to find a substitution that makes these two 
predicates identical.
1. Initially, θ is empty.
2. Start unifying the predicates:     P(x,y) and Q(f(z),a)
    Since P and Q are different, they can't be unified directly.
3. Unify the arguments:   Unify x with f(z) and y with a 



4. Unify x with f(z): 
• x is a variable, f(z) is a compound term.
• Call UNIFY-VAR(x, f(z), θ):

• Add x/f(z) to θ
• θ={x/f(z)}

5. Unify y with a:
• y is a variable, a is a constant.
• Call UNIFY-VAR(y, a, θ):

• Add y/a to θ
• θ={x/f(z),y/a}

6.Finally, return θ:
      θ={x/f(z),y/a}
So, the resulting substitution θ makes P(x,y) and Q(f(z),a) identical:
     P(x,y){x/f(z),y/a}=Q(f(z),a)



2. Forward Chaining:

• Forward chaining is a reasoning method ,  starts with the known 
facts and uses inference rules to derive new conclusions until the 
goal is reached or no further inferences can be made. 

• In essence, it proceeds forward from the premises to the conclusion.



Example : Consider the following knowledge base representing a simple 
diagnostic system:
1.If a patient has a fever, it might be a cold.

2.If a patient has a sore throat, it might be strep throat.

3.If a patient has a fever and a sore throat, they should see a doctor.

Given the facts:
• The patient has a fever.
• The patient has a sore throat.

• Forward chaining would proceed as follows:
1.Check the first rule: Fever? Yes. Proceed.
2.Check the second rule: Sore throat? Yes. Proceed.
3.Apply the third rule: The patient has a fever and sore throat, thus they should 

see a doctor.
Forward chaining is suitable for situations where there is a large amount of 
known information and the goal is to derive conclusions.



Forward Chaining: Another Example

• Consider the following problem: The law says that it is a crime for 
an American to sell weapons to hostile nations. The country Nono, 
an enemy of America, has some missiles, and all of its missiles were 
sold to it by Colonel West, who is American.

• We will prove that West is a criminal.



First, we will represent these facts as first-order definite clauses.
1.  “. . . it is a crime for an American to sell weapons to hostile nations”: 

• American(x) ∧ Weapon(y) ∧ Sells(x, y, z) ∧ Hostile(z) ⇒ Criminal(x) .
2. “Nono . . . has some missiles.” 

• The sentence ∃ x Owns(Nono, x)∧Missile(x) is transformed into two definite 
clauses by Existential Instantiation, introducing a new constant M1: 
• Owns(Nono, M1) 
• Missile  (M1) 

3. “All of its missiles were sold to it by Colonel West”: 
• Missile(x) ∧ Owns(Nono, x) ⇒ Sells(West, x, Nono) . 

4. We will also need to know that missiles are weapons: 
• Missile(x) ⇒ Weapon(x)

5. and we must know that an enemy of America counts as “hostile”: 
• Enemy(x, America) ⇒ Hostile(x) . 

6. “West, who is American . . .”: 
• American(West) . 

7. “The country Nono, an enemy of America . . .”: 
• Enemy(Nono, America) . 



From these inferred facts, we can conclude that Colonel West is indeed a criminal since 
he sold missiles to a hostile nation, which is Nono.
“. . . it is a crime for an American to sell weapons to hostile nations”: 

• American(West) ∧ Weapon(Missile) ∧ Sells(West, Missile, Nono) ∧ 
Hostile(Nono) ⇒ Criminal(West) .



Forward Chaining Algorithm [ Reading Exercise] 



3.Backward Chaining

• Backward chaining is a reasoning method that starts with the goal 
and works backward through the inference rules to find out whether 
the goal can be satisfied by the known facts. 

• It's essentially goal-driven reasoning, where the system seeks to 
prove the hypothesis by breaking it down into subgoals and verifying 
if the premises support them.



Example : Consider the following knowledge base representing a simple 
diagnostic system:

1.If a patient has a fever, it might be a cold.

2.If a patient has a sore throat, it might be strep throat.

3.If a patient has a fever and a sore throat, they should see a doctor.

Given the facts:
• The patient has a fever.
• The patient has a sore throat.

• Backward chaining would proceed as follows:
1. Start with the goal: Should the patient see a doctor?
2. Check the third rule: Does the patient have a cold and a sore throat? Yes.
3. Check the first and second rules: Does the patient have a fever and sore throat? Yes.
4. The goal is satisfied: The patient should see a doctor.

• Backward chaining is useful when there is a specific goal to be achieved, and 
the system can efficiently backtrack through the inference rules to determine 
whether the goal can be satisfied.



Backward Chaining Algorithm [ Reading Exercise] 



4. Resolution

• Resolution is based on the principle of proof by contradiction. 

• Resolution combines logical sentences in the form of clauses to derive 
new sentences. 

• The resolution rule states that if there are two clauses that contain 
complementary literals (one positive, one negative) then these 
literals can be resolved, leading to a new clause that is inferred from 
the original clauses.



Example:

Consider two logical statements:
1. P∨Q
2. ¬P∨R

Applying resolution: Resolve the statements by eliminating P: 
• P∨Q
• ¬P∨R
• Resolving P and ¬P: Q∨R

The resulting statement Q∨R is a new clause inferred from the original two. 
Resolution is a key component of logical reasoning in FOL, especially in tasks 
like automated theorem proving and knowledge representation.



4. Resolution

• Conjunctive normal form for first-order logic : As in the propositional 
case, first-order resolution requires that sentences be in conjunctive 
normal form (CNF)—that is, a conjunction of clauses, where each 
clause is a disjunction of literals.

• Literals can contain variables, which are assumed to be universally 
quantified. For example, the sentence 

• ∀ x American(x) ∧ Weapon(y) ∧ Sells(x, y, z) ∧ Hostile(z) ⇒
Criminal(x) becomes, in CNF, 

• ¬American(x) ∨ ¬Weapon(y) ∨ ¬Sells(x, y, z) ∨ ¬Hostile(z) ∨
Criminal(x) . 



Resolution

• Every sentence of first-order logic can be converted into an 
inferentially equivalent CNF sentence.

• The procedure for conversion to CNF is similar to the propositional 
case, The principal difference arises from the need to eliminate 
existential quantifiers.

• We illustrate the procedure by translating the sentence 

• “Everyone who loves all animals is loved by someone,” or 

• ∀ x [∀ y Animal(y) ⇒ Loves(x, y)] ⇒ [∃ y Loves(y, x)] .



Steps

• Eliminate implications: ∀ x [¬∀ y ¬Animal(y) ∨ Loves(x, y)] ∨ [∃ y Loves(y, x)] .

• Move ¬ inwards: In addition to the usual rules for negated connectives, we 
need rules for negated quantifiers. Thus, we have 
• ¬∀ x p becomes ∃ x ¬p 

• ¬∃ x p becomes ∀ x ¬p . 

• Our sentence goes through the following transformations: 
• ∀ x [∃ y ¬(¬Animal(y) ∨ Loves(x, y))] ∨ [∃ y Loves(y, x)] . 

• ∀ x [∃ y ¬¬Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)] . 

• ∀ x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)] .

• Standardize variables: For sentences like (∃ x P(x))∨(∃ x Q(x)) which use the 
same variable name twice, change the name of one of the variables. This 
avoids confusion later when we drop the quantifiers. Thus, we have 
• ∀ x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ z Loves(z, x)] .



• Skolemize: Skolemization is the process of removing existential 
quantifiers by elimination. Translate ∃ x P(x) into P(A), where A is a 
new constant.
• Example : 

• ∀ x [Animal(A) ∧ ¬Loves(x, A)] ∨ Loves(B, x) , 

• ∀ x [Animal(F(x)) ∧ ¬Loves(x, F(x))] ∨ Loves(G(z), x) . Here F and G are Skolem functions.

• Drop universal quantifiers: At this point, all remaining variables must 
be universally quantified. Moreover, the sentence is equivalent to one 
in which all the universal quantifiers have been moved to the left. We 
can therefore drop the universal quantifiers: 
• [Animal(F(x)) ∧ ¬Loves(x, F(x))] ∨ Loves(G(z), x) . 

• Distribute ∨ over ∧: 

[Animal(F(x)) ∨ Loves(G(z), x)] ∧ [¬Loves(x, F(x)) ∨ Loves(G(z), x)] .



The resolution inference rule
• Two clauses, which are assumed to be standardized apart so that they 

share no variables, can be resolved if they contain complementary 
literals. Propositional literals are complementary if one is the 
negation of the other; first-order literals are complementary if one 
unifies with the negation of the other.

• Thus We have





• Everyone who loves all animals is loved by someone. 
• Anyone who kills an animal is loved by no one.
• Jack loves all animals. 
• Either Jack or Curiosity killed the cat, who is named Tuna. 
• Did Curiosity kill the cat? 

Another Example





Suppose Curiosity did not kill Tuna. We know that either Jack or Curiosity did; thus Jack must have. Now, Tuna is a cat and 
cats are animals, so Tuna is an animal. Because anyone who kills an animal is loved by no one, we know that no one loves 
Jack. On the other hand, Jack loves all animals, so someone loves him; so we have a contradiction. Therefore, Curiosity 
killed the cat. 



Completeness of resolution

• REFUTATION COMPLETENESS :Means that if a set of sentences is 
unsatisfiable, then resolution will always be able to derive a 
contradiction

• It can be used to find all answers to a given question, Q(x), by proving 
that KB ∧ ¬Q(x) is unsatisfiable.

• If S is an unsatisfiable set of clauses, then the application of a finite 
number of resolution steps to S will yield a contradiction



Proof of Completeness of resolution
The basic structure of the proof is as 
follows:
1. First, we observe that if S is 

unsatisfiable, then there exists a 
particular set of ground instances of the 
clauses of S such that this set is also 
unsatisfiable (Herbrand’s theorem). 

2.  We then appeal to the ground 
resolution theorem given, which states 
that propositional resolution is 
complete for ground sentences. 

3. We then use a lifting lemma to show 
that, for any propositional resolution 
proof using the set of ground sentences, 
there is a corresponding first-order 
resolution proof using the first-order 
sentences from which the ground 
sentences were obtained.



Lifting  Lemma

Let C1 and C2 be two clauses with no shared variables, and let C ′ 1 and C ′ 2 
be ground instances of C1 and C2. If C ′ is a resolvent of C ′ 1 and C ′ 2 , then 
there exists a clause C such that 
(1) C is a resolvent of C1 and C2 and 
(2)  C ′ is a ground instance of C. 

This is called a lifting lemma, because it lifts a proof step from 
ground clauses up to general first-order clauses



Questions

• Discuss Completeness of  Resolution using the following concepts:
• Herbrand universe

• Saturation

• Herbrand base

• Lifting Lemma



Equality

• Equality is reflexive, symmetric, and transitive, 

• We can substitute equals for equals in any predicate or function

• We need three basic axioms, and then one for each predicate and 
function:



Equality

• Demodulation : The simplest rule, demodulation, takes a unit clause x 
= y and some clause α that contains the term x, and yields a new 
clause formed by substituting y for x within α. 

• That means that demodulation can be used for simplifying 
expressions using demodulators such as 
• x + 0= x or 𝑥1= x. 

• As another example, given 
• Father (Father (x)) = PaternalGrandfather (x) 

• Birthdate(Father (Father (Bella)), 1926) 

• we can conclude by demodulation 
• Birthdate(PaternalGrandfather (Bella), 1926) .



For example, from 
P(F(x, B), x) ∨ Q(x) and F(A, y)= y ∨ R(y) we have 
θ = UNIFY(F(A, y), F(x, B))= {x/A, y/B}, 
and we can conclude by paramodulation the sentence 
P(B, A) ∨ Q(A) ∨ R(B) .



Demodulation:

• Demodulation is the simplest rule used to handle equality in logic.

• It involves taking a unit clause of the form "x = y" and a clause α 
containing the term "x."

• It yields a new clause by substituting "y" for "x" within α, under the 
condition that the term within α unifies with "x" (i.e., they can be 
matched), but it doesn't necessarily have to be exactly equal to "x."

• This process is directional, meaning that given "x = y," "x" always gets 
replaced with "y," never vice versa.

• Demodulation can be used to simplify expressions using 
demodulators such as "x + 0 = x" or "x^1 = x."



Paramodulation:

• Paramodulation extends demodulation to handle non-unit clauses where 
an equality literal appears.

• It involves terms "x," "y," and "z," where "z" appears somewhere in a literal 
"mi."

• Similar to demodulation, it requires the unification of "x" and "z" resulting 
in a substitution θ.

• With paramodulation, instead of just handling unit clauses, it can deal with 
clauses containing multiple literals.

• The process substitutes "y" for "x" within the clause, while also applying 
the substitution θ to all other literals in the clause where "x" appears.



Summary

1. Unification: is a process used to find a common instantiation for two 

predicates or terms such that they become identical.

2. Forward Chaining: is a reasoning and inference procedure which starts 

with known facts and moves forward to reach conclusions

3. Backward Chaining: is a reasoning and inference procedure which starts 

with the goal and moves backward to verify if the goal can be satisfied, 

4. Resolution: is an inference rule used to derive new clauses by combining 

existing ones. 

These techniques are essential for reasoning and inference in First-Order 
Logic systems.
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