
Module 4
First Order Logic and Inferences in FOL

Topics

1. Unification: is a process used to find a common instantiation for two

predicates or terms such that they become identical.

2. Forward Chaining: is a reasoning and inference procedure which starts

with known facts and moves forward to reach conclusions

3. Backward Chaining: is a reasoning and inference procedure which starts

with the goal and moves backward to verify if the goal can be satisfied,

4. Resolution: is an inference rule used to derive new clauses by combining

existing ones.

These techniques are essential for reasoning and inference in First-Order
Logic systems.

1. Unification

• In first-order logic, unification is a process used to find a common instantiation for two
predicates or terms such that they become identical.

• A substitution, on the other hand, is a mapping of variables to terms.

1. Unification

• In first-order logic, unification is a process used to find a common instantiation for two
predicates or terms such that they become identical.

• A substitution, on the other hand, is a mapping of variables to terms.

UNIFY(Knows(John, x), Knows(x17,Elizabeth)) = {x/Elizabeth, x17/John}

Unification is the process of finding a substitution that makes two logical expressions identical. The
algorithm takes two expressions, x and y, and attempts to find a substitution (θ) that makes them identical.
Here's a breakdown of how the algorithm works:

Base case: If the substitution θ is already marked as a failure, then it returns failure
immediately.
Identity check: If x and y are identical, it means no further unification is needed, and the
current substitution θ can be returned.
Variable check: If x is a variable, it calls the UNIFY-VAR function with x as the variable and
y as the expression. If y is a variable, it calls UNIFY-VAR with y as the variable and x as the
expression.
Compound expression check: If both x and y are compound expressions, it recursively calls
UNIFY on their arguments and operators.
List check: If both x and y are lists, it recursively calls UNIFY on their first elements and
their remaining elements.
Failure case: If none of the above conditions are met, it returns failure, indicating that x
and y cannot be unified.

The UNIFY-VAR function is used when one of the expressions (x or y) is a variable. It attempts
to create a substitution based on the variable and the expression it's being unified with.

Occur check: Checks for a possible occurrence of the variable in the expression, preventing
infinite loops, and returns failure if such an occurrence is detected.

Substitution addition: If none of the above cases apply, it adds a new mapping to the
substitution, indicating that the variable is unified with the expression.

• Overall, the algorithm systematically traverses through the
• expressions,
• handling variables,
• Compound statements,
• lists, and
• checking for failures,

• until it either finds a successful substitution or determines that
unification is not possible.

Example

Suppose we have the following two predicates:
1. Predicate P(x,y)
2. Predicate Q(f(z),a)
Here,
• P and Q are predicates,
• x, y, and z are variables, and
• f and a are constants.
Now, let's say we want to unify P(x,y) with Q(f(z),a).
We can use the given algorithm for unification to find a substitution that makes these two
predicates identical.
1. Initially, θ is empty.
2. Start unifying the predicates: P(x,y) and Q(f(z),a)
 Since P and Q are different, they can't be unified directly.
3. Unify the arguments: Unify x with f(z) and y with a

4. Unify x with f(z):
• x is a variable, f(z) is a compound term.
• Call UNIFY-VAR(x, f(z), θ):

• Add x/f(z) to θ
• θ={x/f(z)}

5. Unify y with a:
• y is a variable, a is a constant.
• Call UNIFY-VAR(y, a, θ):

• Add y/a to θ
• θ={x/f(z),y/a}

6.Finally, return θ:
 θ={x/f(z),y/a}
So, the resulting substitution θ makes P(x,y) and Q(f(z),a) identical:
 P(x,y){x/f(z),y/a}=Q(f(z),a)

2. Forward Chaining:

• Forward chaining is a reasoning method , starts with the known
facts and uses inference rules to derive new conclusions until the
goal is reached or no further inferences can be made.

• In essence, it proceeds forward from the premises to the conclusion.

Example : Consider the following knowledge base representing a simple
diagnostic system:
1.If a patient has a fever, it might be a cold.

2.If a patient has a sore throat, it might be strep throat.

3.If a patient has a fever and a sore throat, they should see a doctor.

Given the facts:
• The patient has a fever.
• The patient has a sore throat.

• Forward chaining would proceed as follows:
1.Check the first rule: Fever? Yes. Proceed.
2.Check the second rule: Sore throat? Yes. Proceed.
3.Apply the third rule: The patient has a fever and sore throat, thus they should

see a doctor.
Forward chaining is suitable for situations where there is a large amount of
known information and the goal is to derive conclusions.

Forward Chaining: Another Example

• Consider the following problem: The law says that it is a crime for
an American to sell weapons to hostile nations. The country Nono,
an enemy of America, has some missiles, and all of its missiles were
sold to it by Colonel West, who is American.

• We will prove that West is a criminal.

First, we will represent these facts as first-order definite clauses.
1. “. . . it is a crime for an American to sell weapons to hostile nations”:

• American(x) ∧ Weapon(y) ∧ Sells(x, y, z) ∧ Hostile(z) ⇒ Criminal(x) .
2. “Nono . . . has some missiles.”

• The sentence ∃ x Owns(Nono, x)∧Missile(x) is transformed into two definite
clauses by Existential Instantiation, introducing a new constant M1:
• Owns(Nono, M1)
• Missile (M1)

3. “All of its missiles were sold to it by Colonel West”:
• Missile(x) ∧ Owns(Nono, x) ⇒ Sells(West, x, Nono) .

4. We will also need to know that missiles are weapons:
• Missile(x) ⇒ Weapon(x)

5. and we must know that an enemy of America counts as “hostile”:
• Enemy(x, America) ⇒ Hostile(x) .

6. “West, who is American . . .”:
• American(West) .

7. “The country Nono, an enemy of America . . .”:
• Enemy(Nono, America) .

From these inferred facts, we can conclude that Colonel West is indeed a criminal since
he sold missiles to a hostile nation, which is Nono.
“. . . it is a crime for an American to sell weapons to hostile nations”:

• American(West) ∧ Weapon(Missile) ∧ Sells(West, Missile, Nono) ∧
Hostile(Nono) ⇒ Criminal(West) .

Forward Chaining Algorithm [Reading Exercise]

3.Backward Chaining

• Backward chaining is a reasoning method that starts with the goal
and works backward through the inference rules to find out whether
the goal can be satisfied by the known facts.

• It's essentially goal-driven reasoning, where the system seeks to
prove the hypothesis by breaking it down into subgoals and verifying
if the premises support them.

Example : Consider the following knowledge base representing a simple
diagnostic system:

1.If a patient has a fever, it might be a cold.

2.If a patient has a sore throat, it might be strep throat.

3.If a patient has a fever and a sore throat, they should see a doctor.

Given the facts:
• The patient has a fever.
• The patient has a sore throat.

• Backward chaining would proceed as follows:
1. Start with the goal: Should the patient see a doctor?
2. Check the third rule: Does the patient have a cold and a sore throat? Yes.
3. Check the first and second rules: Does the patient have a fever and sore throat? Yes.
4. The goal is satisfied: The patient should see a doctor.

• Backward chaining is useful when there is a specific goal to be achieved, and
the system can efficiently backtrack through the inference rules to determine
whether the goal can be satisfied.

Backward Chaining Algorithm [Reading Exercise]

4. Resolution

• Resolution is based on the principle of proof by contradiction.

• Resolution combines logical sentences in the form of clauses to derive
new sentences.

• The resolution rule states that if there are two clauses that contain
complementary literals (one positive, one negative) then these
literals can be resolved, leading to a new clause that is inferred from
the original clauses.

Example:

Consider two logical statements:
1. P∨Q
2. ¬P∨R

Applying resolution: Resolve the statements by eliminating P:
• P∨Q
• ¬P∨R
• Resolving P and ¬P: Q∨R

The resulting statement Q∨R is a new clause inferred from the original two.
Resolution is a key component of logical reasoning in FOL, especially in tasks
like automated theorem proving and knowledge representation.

4. Resolution

• Conjunctive normal form for first-order logic : As in the propositional
case, first-order resolution requires that sentences be in conjunctive
normal form (CNF)—that is, a conjunction of clauses, where each
clause is a disjunction of literals.

• Literals can contain variables, which are assumed to be universally
quantified. For example, the sentence

• ∀ x American(x) ∧ Weapon(y) ∧ Sells(x, y, z) ∧ Hostile(z) ⇒
Criminal(x) becomes, in CNF,

• ¬American(x) ∨ ¬Weapon(y) ∨ ¬Sells(x, y, z) ∨ ¬Hostile(z) ∨
Criminal(x) .

Resolution

• Every sentence of first-order logic can be converted into an
inferentially equivalent CNF sentence.

• The procedure for conversion to CNF is similar to the propositional
case, The principal difference arises from the need to eliminate
existential quantifiers.

• We illustrate the procedure by translating the sentence

• “Everyone who loves all animals is loved by someone,” or

• ∀ x [∀ y Animal(y) ⇒ Loves(x, y)] ⇒ [∃ y Loves(y, x)] .

Steps

• Eliminate implications: ∀ x [¬∀ y ¬Animal(y) ∨ Loves(x, y)] ∨ [∃ y Loves(y, x)] .

• Move ¬ inwards: In addition to the usual rules for negated connectives, we
need rules for negated quantifiers. Thus, we have
• ¬∀ x p becomes ∃ x ¬p

• ¬∃ x p becomes ∀ x ¬p .

• Our sentence goes through the following transformations:
• ∀ x [∃ y ¬(¬Animal(y) ∨ Loves(x, y))] ∨ [∃ y Loves(y, x)] .

• ∀ x [∃ y ¬¬Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)] .

• ∀ x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)] .

• Standardize variables: For sentences like (∃ x P(x))∨(∃ x Q(x)) which use the
same variable name twice, change the name of one of the variables. This
avoids confusion later when we drop the quantifiers. Thus, we have
• ∀ x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ z Loves(z, x)] .

• Skolemize: Skolemization is the process of removing existential
quantifiers by elimination. Translate ∃ x P(x) into P(A), where A is a
new constant.
• Example :

• ∀ x [Animal(A) ∧ ¬Loves(x, A)] ∨ Loves(B, x) ,

• ∀ x [Animal(F(x)) ∧ ¬Loves(x, F(x))] ∨ Loves(G(z), x) . Here F and G are Skolem functions.

• Drop universal quantifiers: At this point, all remaining variables must
be universally quantified. Moreover, the sentence is equivalent to one
in which all the universal quantifiers have been moved to the left. We
can therefore drop the universal quantifiers:
• [Animal(F(x)) ∧ ¬Loves(x, F(x))] ∨ Loves(G(z), x) .

• Distribute ∨ over ∧:

[Animal(F(x)) ∨ Loves(G(z), x)] ∧ [¬Loves(x, F(x)) ∨ Loves(G(z), x)] .

The resolution inference rule
• Two clauses, which are assumed to be standardized apart so that they

share no variables, can be resolved if they contain complementary
literals. Propositional literals are complementary if one is the
negation of the other; first-order literals are complementary if one
unifies with the negation of the other.

• Thus We have

• Everyone who loves all animals is loved by someone.
• Anyone who kills an animal is loved by no one.
• Jack loves all animals.
• Either Jack or Curiosity killed the cat, who is named Tuna.
• Did Curiosity kill the cat?

Another Example

Suppose Curiosity did not kill Tuna. We know that either Jack or Curiosity did; thus Jack must have. Now, Tuna is a cat and
cats are animals, so Tuna is an animal. Because anyone who kills an animal is loved by no one, we know that no one loves
Jack. On the other hand, Jack loves all animals, so someone loves him; so we have a contradiction. Therefore, Curiosity
killed the cat.

Completeness of resolution

• REFUTATION COMPLETENESS :Means that if a set of sentences is
unsatisfiable, then resolution will always be able to derive a
contradiction

• It can be used to find all answers to a given question, Q(x), by proving
that KB ∧ ¬Q(x) is unsatisfiable.

• If S is an unsatisfiable set of clauses, then the application of a finite
number of resolution steps to S will yield a contradiction

Proof of Completeness of resolution
The basic structure of the proof is as
follows:
1. First, we observe that if S is

unsatisfiable, then there exists a
particular set of ground instances of the
clauses of S such that this set is also
unsatisfiable (Herbrand’s theorem).

2. We then appeal to the ground
resolution theorem given, which states
that propositional resolution is
complete for ground sentences.

3. We then use a lifting lemma to show
that, for any propositional resolution
proof using the set of ground sentences,
there is a corresponding first-order
resolution proof using the first-order
sentences from which the ground
sentences were obtained.

Lifting Lemma

Let C1 and C2 be two clauses with no shared variables, and let C ′ 1 and C ′ 2
be ground instances of C1 and C2. If C ′ is a resolvent of C ′ 1 and C ′ 2 , then
there exists a clause C such that
(1) C is a resolvent of C1 and C2 and
(2) C ′ is a ground instance of C.

This is called a lifting lemma, because it lifts a proof step from
ground clauses up to general first-order clauses

Questions

• Discuss Completeness of Resolution using the following concepts:
• Herbrand universe

• Saturation

• Herbrand base

• Lifting Lemma

Equality

• Equality is reflexive, symmetric, and transitive,

• We can substitute equals for equals in any predicate or function

• We need three basic axioms, and then one for each predicate and
function:

Equality

• Demodulation : The simplest rule, demodulation, takes a unit clause x
= y and some clause α that contains the term x, and yields a new
clause formed by substituting y for x within α.

• That means that demodulation can be used for simplifying
expressions using demodulators such as
• x + 0= x or 𝑥1= x.

• As another example, given
• Father (Father (x)) = PaternalGrandfather (x)

• Birthdate(Father (Father (Bella)), 1926)

• we can conclude by demodulation
• Birthdate(PaternalGrandfather (Bella), 1926) .

For example, from
P(F(x, B), x) ∨ Q(x) and F(A, y)= y ∨ R(y) we have
θ = UNIFY(F(A, y), F(x, B))= {x/A, y/B},
and we can conclude by paramodulation the sentence
P(B, A) ∨ Q(A) ∨ R(B) .

Demodulation:

• Demodulation is the simplest rule used to handle equality in logic.

• It involves taking a unit clause of the form "x = y" and a clause α
containing the term "x."

• It yields a new clause by substituting "y" for "x" within α, under the
condition that the term within α unifies with "x" (i.e., they can be
matched), but it doesn't necessarily have to be exactly equal to "x."

• This process is directional, meaning that given "x = y," "x" always gets
replaced with "y," never vice versa.

• Demodulation can be used to simplify expressions using
demodulators such as "x + 0 = x" or "x^1 = x."

Paramodulation:

• Paramodulation extends demodulation to handle non-unit clauses where
an equality literal appears.

• It involves terms "x," "y," and "z," where "z" appears somewhere in a literal
"mi."

• Similar to demodulation, it requires the unification of "x" and "z" resulting
in a substitution θ.

• With paramodulation, instead of just handling unit clauses, it can deal with
clauses containing multiple literals.

• The process substitutes "y" for "x" within the clause, while also applying
the substitution θ to all other literals in the clause where "x" appears.

Summary

1. Unification: is a process used to find a common instantiation for two

predicates or terms such that they become identical.

2. Forward Chaining: is a reasoning and inference procedure which starts

with known facts and moves forward to reach conclusions

3. Backward Chaining: is a reasoning and inference procedure which starts

with the goal and moves backward to verify if the goal can be satisfied,

4. Resolution: is an inference rule used to derive new clauses by combining

existing ones.

These techniques are essential for reasoning and inference in First-Order
Logic systems.

	Slide 1: Module 4
	Slide 2: Topics
	Slide 3: 1. Unification
	Slide 4: 1. Unification
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Example
	Slide 10
	Slide 11: 2. Forward Chaining:
	Slide 12
	Slide 13: Forward Chaining: Another Example
	Slide 14
	Slide 15
	Slide 16
	Slide 17: 3.Backward Chaining
	Slide 18
	Slide 19
	Slide 20: 4. Resolution
	Slide 21: Example:
	Slide 22: 4. Resolution
	Slide 23: Resolution
	Slide 24: Steps
	Slide 25
	Slide 26: The resolution inference rule
	Slide 27
	Slide 28: Another Example
	Slide 29
	Slide 30
	Slide 31: Completeness of resolution
	Slide 32: Proof of Completeness of resolution
	Slide 33: Lifting Lemma
	Slide 34: Questions
	Slide 35: Equality
	Slide 36: Equality
	Slide 37
	Slide 38: Demodulation:
	Slide 39: Paramodulation:
	Slide 40: Summary

