
8 FIRST-ORDER LOGIC

In which we notice that the world is blessed with many objects, some of which are
related to other objects, and in which we endeavor to reason about them.

In Chapter 7, we showed how a knowledge-based agent could represent the world in which it
operates and deduce what actions to take. We used propositional logic as our representation
language because it sufficed to illustrate the basic concepts of logic and knowledge-based
agents. Unfortunately, propositional logic is too puny a language to represent knowledge
of complex environments in a concise way. In this chapter, we examine first-order logic,1FIRST­ORDER LOGIC

which is sufficiently expressive to represent a good deal of our commonsense knowledge.
It also either subsumes or forms the foundation of many other representation languages and
has been studied intensively for many decades. We begin in Section 8.1 with a discussion of
representation languages in general; Section 8.2 covers the syntax and semantics of first-order
logic; Sections 8.3 and 8.4 illustrate the use of first-order logic for simple representations.

8.1 REPRESENTATION REVISITED

In this section, we discuss the nature of representation languages. Our discussion motivates
the development of first-order logic, a much more expressive language than the propositional
logic introduced in Chapter 7. We look at propositional logic and at other kinds of languages
to understand what works and what fails. Our discussion will be cursory, compressing cen-
turies of thought, trial, and error into a few paragraphs.

Programming languages (such as C++ or Java or Lisp) are by far the largest class of
formal languages in common use. Programs themselves represent, in a direct sense, only
computational processes. Data structures within programs can represent facts; for example,
a program could use a 4 × 4 array to represent the contents of the wumpus world. Thus, the
programming language statement World [2,2]←Pit is a fairly natural way to assert that there
is a pit in square [2,2]. (Such representations might be considered ad hoc; database systems
were developed precisely to provide a more general, domain-independent way to store and

1 Also called first-order predicate calculus, sometimes abbreviated as FOL or FOPC.

285

286 Chapter 8. First-Order Logic

retrieve facts.) What programming languages lack is any general mechanism for deriving
facts from other facts; each update to a data structure is done by a domain-specific procedure
whose details are derived by the programmer from his or her own knowledge of the domain.
This procedural approach can be contrasted with the declarative nature of propositional logic,
in which knowledge and inference are separate, and inference is entirely domain independent.

A second drawback of data structures in programs (and of databases, for that matter)
is the lack of any easy way to say, for example, “There is a pit in [2,2] or [3,1]” or “If the
wumpus is in [1,1] then he is not in [2,2].” Programs can store a single value for each variable,
and some systems allow the value to be “unknown,” but they lack the expressiveness required
to handle partial information.

Propositional logic is a declarative language because its semantics is based on a truth
relation between sentences and possible worlds. It also has sufficient expressive power to
deal with partial information, using disjunction and negation. Propositional logic has a third
property that is desirable in representation languages, namely, compositionality. In a com-COMPOSITIONALITY

positional language, the meaning of a sentence is a function of the meaning of its parts. For
example, the meaning of “S1,4 ∧ S1,2” is related to the meanings of “S1,4” and “S1,2.” It
would be very strange if “S1,4” meant that there is a stench in square [1,4] and “S1,2” meant
that there is a stench in square [1,2], but “S1,4∧S1,2” meant that France and Poland drew 1–1
in last week’s ice hockey qualifying match. Clearly, noncompositionality makes life much
more difficult for the reasoning system.

As we saw in Chapter 7, however, propositional logic lacks the expressive power to
concisely describe an environment with many objects. For example, we were forced to write
a separate rule about breezes and pits for each square, such as

B1,1 ⇔ (P1,2 ∨ P2,1) .

In English, on the other hand, it seems easy enough to say, once and for all, “Squares adjacent
to pits are breezy.” The syntax and semantics of English somehow make it possible to describe
the environment concisely.

8.1.1 The language of thought

Natural languages (such as English or Spanish) are very expressive indeed. We managed to
write almost this whole book in natural language, with only occasional lapses into other lan-
guages (including logic, mathematics, and the language of diagrams). There is a long tradi-
tion in linguistics and the philosophy of language that views natural language as a declarative
knowledge representation language. If we could uncover the rules for natural language, we
could use it in representation and reasoning systems and gain the benefit of the billions of
pages that have been written in natural language.

The modern view of natural language is that it serves a as a medium for communication
rather than pure representation. When a speaker points and says, “Look!” the listener comes
to know that, say, Superman has finally appeared over the rooftops. Yet we would not want
to say that the sentence “Look!” represents that fact. Rather, the meaning of the sentence
depends both on the sentence itself and on the context in which the sentence was spoken.
Clearly, one could not store a sentence such as “Look!” in a knowledge base and expect to

Section 8.1. Representation Revisited 287

recover its meaning without also storing a representation of the context—which raises the
question of how the context itself can be represented. Natural languages also suffer from
ambiguity, a problem for a representation language. As Pinker (1995) puts it: “When peopleAMBIGUITY

think about spring, surely they are not confused as to whether they are thinking about a season
or something that goes boing—and if one word can correspond to two thoughts, thoughts
can’t be words.”

The famous Sapir–Whorf hypothesis claims that our understanding of the world is
strongly influenced by the language we speak. Whorf (1956) wrote “We cut nature up, orga-
nize it into concepts, and ascribe significances as we do, largely because we are parties to an
agreement to organize it this way—an agreement that holds throughout our speech commu-
nity and is codified in the patterns of our language.” It is certainly true that different speech
communities divide up the world differently. The French have two words “chaise” and “fau-
teuil,” for a concept that English speakers cover with one: “chair.” But English speakers
can easily recognize the category fauteuil and give it a name—roughly “open-arm chair”—so
does language really make a difference? Whorf relied mainly on intuition and speculation,
but in the intervening years we actually have real data from anthropological, psychological
and neurological studies.

For example, can you remember which of the following two phrases formed the opening
of Section 8.1?

“In this section, we discuss the nature of representation languages . . .”

“This section covers the topic of knowledge representation languages . . .”

Wanner (1974) did a similar experiment and found that subjects made the right choice at
chance level—about 50% of the time—but remembered the content of what they read with
better than 90% accuracy. This suggests that people process the words to form some kind of
nonverbal representation.

More interesting is the case in which a concept is completely absent in a language.
Speakers of the Australian aboriginal language Guugu Yimithirr have no words for relative
directions, such as front, back, right, or left. Instead they use absolute directions, saying,
for example, the equivalent of “I have a pain in my north arm.” This difference in language
makes a difference in behavior: Guugu Yimithirr speakers are better at navigating in open
terrain, while English speakers are better at placing the fork to the right of the plate.

Language also seems to influence thought through seemingly arbitrary grammatical
features such as the gender of nouns. For example, “bridge” is masculine in Spanish and
feminine in German. Boroditsky (2003) asked subjects to choose English adjectives to de-
scribe a photograph of a particular bridge. Spanish speakers chose big, dangerous, strong,
and towering, whereas German speakers chose beautiful, elegant, fragile, and slender. Words
can serve as anchor points that affect how we perceive the world. Loftus and Palmer (1974)
showed experimental subjects a movie of an auto accident. Subjects who were asked “How
fast were the cars going when they contacted each other?” reported an average of 32 mph,
while subjects who were asked the question with the word “smashed” instead of “contacted”
reported 41mph for the same cars in the same movie.

288 Chapter 8. First-Order Logic

In a first-order logic reasoning system that uses CNF, we can see that the linguistic form
“¬(A ∨ B)” and “¬A ∧ ¬B” are the same because we can look inside the system and see
that the two sentences are stored as the same canonical CNF form. Can we do that with the
human brain? Until recently the answer was “no,” but now it is “maybe.” Mitchell et al.
(2008) put subjects in an fMRI (functional magnetic resonance imaging) machine, showed
them words such as “celery,” and imaged their brains. The researchers were then able to train
a computer program to predict, from a brain image, what word the subject had been presented
with. Given two choices (e.g., “celery” or “airplane”), the system predicts correctly 77% of
the time. The system can even predict at above-chance levels for words it has never seen
an fMRI image of before (by considering the images of related words) and for people it has
never seen before (proving that fMRI reveals some level of common representation across
people). This type of work is still in its infancy, but fMRI (and other imaging technology
such as intracranial electrophysiology (Sahin et al., 2009)) promises to give us much more
concrete ideas of what human knowledge representations are like.

From the viewpoint of formal logic, representing the same knowledge in two different
ways makes absolutely no difference; the same facts will be derivable from either represen-
tation. In practice, however, one representation might require fewer steps to derive a conclu-
sion, meaning that a reasoner with limited resources could get to the conclusion using one
representation but not the other. For nondeductive tasks such as learning from experience,
outcomes are necessarily dependent on the form of the representations used. We show in
Chapter 18 that when a learning program considers two possible theories of the world, both
of which are consistent with all the data, the most common way of breaking the tie is to choose
the most succinct theory—and that depends on the language used to represent theories. Thus,
the influence of language on thought is unavoidable for any agent that does learning.

8.1.2 Combining the best of formal and natural languages

We can adopt the foundation of propositional logic—a declarative, compositional semantics
that is context-independent and unambiguous—and build a more expressive logic on that
foundation, borrowing representational ideas from natural language while avoiding its draw-
backs. When we look at the syntax of natural language, the most obvious elements are nouns
and noun phrases that refer to objects (squares, pits, wumpuses) and verbs and verb phrasesOBJECT

that refer to relations among objects (is breezy, is adjacent to, shoots). Some of these rela-RELATION

tions are functions—relations in which there is only one “value” for a given “input.” It isFUNCTION

easy to start listing examples of objects, relations, and functions:

• Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games,
wars, centuries . . .

• Relations: these can be unary relations or properties such as red, round, bogus, prime,PROPERTY

multistoried . . ., or more general n-ary relations such as brother of, bigger than, inside,
part of, has color, occurred after, owns, comes between, . . .

• Functions: father of, best friend, third inning of, one more than, beginning of . . .

Indeed, almost any assertion can be thought of as referring to objects and properties or rela-
tions. Some examples follow:

Section 8.1. Representation Revisited 289

• “One plus two equals three.”
Objects: one, two, three, one plus two; Relation: equals; Function: plus. (“One plus
two” is a name for the object that is obtained by applying the function “plus” to the
objects “one” and “two.” “Three” is another name for this object.)

• “Squares neighboring the wumpus are smelly.”
Objects: wumpus, squares; Property: smelly; Relation: neighboring.

• “Evil King John ruled England in 1200.”
Objects: John, England, 1200; Relation: ruled; Properties: evil, king.

The language of first-order logic, whose syntax and semantics we define in the next section,
is built around objects and relations. It has been so important to mathematics, philosophy, and
artificial intelligence precisely because those fields—and indeed, much of everyday human
existence—can be usefully thought of as dealing with objects and the relations among them.
First-order logic can also express facts about some or all of the objects in the universe. This
enables one to represent general laws or rules, such as the statement “Squares neighboring
the wumpus are smelly.”

The primary difference between propositional and first-order logic lies in the ontologi-
cal commitment made by each language—that is, what it assumes about the nature of reality.ONTOLOGICAL

COMMITMENT

Mathematically, this commitment is expressed through the nature of the formal models with
respect to which the truth of sentences is defined. For example, propositional logic assumes
that there are facts that either hold or do not hold in the world. Each fact can be in one
of two states: true or false, and each model assigns true or false to each proposition sym-
bol (see Section 7.4.2).2 First-order logic assumes more; namely, that the world consists of
objects with certain relations among them that do or do not hold. The formal models are
correspondingly more complicated than those for propositional logic. Special-purpose logics
make still further ontological commitments; for example, temporal logic assumes that factsTEMPORAL LOGIC

hold at particular times and that those times (which may be points or intervals) are ordered.
Thus, special-purpose logics give certain kinds of objects (and the axioms about them) “first
class” status within the logic, rather than simply defining them within the knowledge base.
Higher-order logic views the relations and functions referred to by first-order logic as ob-HIGHER­ORDER

LOGIC

jects in themselves. This allows one to make assertions about all relations—for example, one
could wish to define what it means for a relation to be transitive. Unlike most special-purpose
logics, higher-order logic is strictly more expressive than first-order logic, in the sense that
some sentences of higher-order logic cannot be expressed by any finite number of first-order
logic sentences.

A logic can also be characterized by its epistemological commitments—the possibleEPISTEMOLOGICAL

COMMITMENT

states of knowledge that it allows with respect to each fact. In both propositional and first-
order logic, a sentence represents a fact and the agent either believes the sentence to be true,
believes it to be false, or has no opinion. These logics therefore have three possible states
of knowledge regarding any sentence. Systems using probability theory, on the other hand,

2 In contrast, facts in fuzzy logic have a degree of truth between 0 and 1. For example, the sentence “Vienna is
a large city” might be true in our world only to degree 0.6 in fuzzy logic.

290 Chapter 8. First-Order Logic

can have any degree of belief, ranging from 0 (total disbelief) to 1 (total belief).3 For ex-
ample, a probabilistic wumpus-world agent might believe that the wumpus is in [1,3] with
probability 0.75. The ontological and epistemological commitments of five different logics
are summarized in Figure 8.1.

Language Ontological Commitment Epistemological Commitment
(What exists in the world) (What an agent believes about facts)

Propositional logic facts true/false/unknown
First-order logic facts, objects, relations true/false/unknown
Temporal logic facts, objects, relations, times true/false/unknown
Probability theory facts degree of belief ∈ [0, 1]

Fuzzy logic facts with degree of truth ∈ [0, 1] known interval value

Figure 8.1 Formal languages and their ontological and epistemological commitments.

In the next section, we will launch into the details of first-order logic. Just as a student of
physics requires some familiarity with mathematics, a student of AI must develop a talent for
working with logical notation. On the other hand, it is also important not to get too concerned
with the specifics of logical notation—after all, there are dozens of different versions. The
main things to keep hold of are how the language facilitates concise representations and how
its semantics leads to sound reasoning procedures.

8.2 SYNTAX AND SEMANTICS OF FIRST-ORDER LOGIC

We begin this section by specifying more precisely the way in which the possible worlds
of first-order logic reflect the ontological commitment to objects and relations. Then we
introduce the various elements of the language, explaining their semantics as we go along.

8.2.1 Models for first-order logic

Recall from Chapter 7 that the models of a logical language are the formal structures that
constitute the possible worlds under consideration. Each model links the vocabulary of the
logical sentences to elements of the possible world, so that the truth of any sentence can
be determined. Thus, models for propositional logic link proposition symbols to predefined
truth values. Models for first-order logic are much more interesting. First, they have objects
in them! The domain of a model is the set of objects or domain elements it contains. The do-DOMAIN

DOMAIN ELEMENTS main is required to be nonempty—every possible world must contain at least one object. (See
Exercise 8.7 for a discussion of empty worlds.) Mathematically speaking, it doesn’t matter
what these objects are—all that matters is how many there are in each particular model—but
for pedagogical purposes we’ll use a concrete example. Figure 8.2 shows a model with five

3 It is important not to confuse the degree of belief in probability theory with the degree of truth in fuzzy logic.
Indeed, some fuzzy systems allow uncertainty (degree of belief) about degrees of truth.

Section 8.2. Syntax and Semantics of First-Order Logic 291

objects: Richard the Lionheart, King of England from 1189 to 1199; his younger brother, the
evil King John, who ruled from 1199 to 1215; the left legs of Richard and John; and a crown.

The objects in the model may be related in various ways. In the figure, Richard and
John are brothers. Formally speaking, a relation is just the set of tuples of objects that areTUPLE

related. (A tuple is a collection of objects arranged in a fixed order and is written with angle
brackets surrounding the objects.) Thus, the brotherhood relation in this model is the set

{ 〈Richard the Lionheart, King John〉, 〈King John, Richard the Lionheart〉 } . (8.1)

(Here we have named the objects in English, but you may, if you wish, mentally substitute the
pictures for the names.) The crown is on King John’s head, so the “on head” relation contains
just one tuple, 〈the crown, King John〉. The “brother” and “on head” relations are binary
relations—that is, they relate pairs of objects. The model also contains unary relations, or
properties: the “person” property is true of both Richard and John; the “king” property is true
only of John (presumably because Richard is dead at this point); and the “crown” property is
true only of the crown.

Certain kinds of relationships are best considered as functions, in that a given object
must be related to exactly one object in this way. For example, each person has one left leg,
so the model has a unary “left leg” function that includes the following mappings:

〈Richard the Lionheart〉 → Richard’s left leg
〈King John〉 → John’s left leg .

(8.2)

Strictly speaking, models in first-order logic require total functions, that is, there must be aTOTAL FUNCTIONS

value for every input tuple. Thus, the crown must have a left leg and so must each of the left
legs. There is a technical solution to this awkward problem involving an additional “invisible”

R J
$

left leg

on headbrother

brother

person person
king

crown

left leg

Figure 8.2 A model containing five objects, two binary relations, three unary relations
(indicated by labels on the objects), and one unary function, left-leg.

292 Chapter 8. First-Order Logic

object that is the left leg of everything that has no left leg, including itself. Fortunately, as
long as one makes no assertions about the left legs of things that have no left legs, these
technicalities are of no import.

So far, we have described the elements that populate models for first-order logic. The
other essential part of a model is the link between those elements and the vocabulary of the
logical sentences, which we explain next.

8.2.2 Symbols and interpretations

We turn now to the syntax of first-order logic. The impatient reader can obtain a complete
description from the formal grammar in Figure 8.3.

The basic syntactic elements of first-order logic are the symbols that stand for objects,
relations, and functions. The symbols, therefore, come in three kinds: constant symbols,CONSTANT SYMBOL

which stand for objects; predicate symbols, which stand for relations; and function sym-PREDICATE SYMBOL

bols, which stand for functions. We adopt the convention that these symbols will begin withFUNCTION SYMBOL

uppercase letters. For example, we might use the constant symbols Richard and John ; the
predicate symbols Brother , OnHead , Person , King , and Crown ; and the function symbol
LeftLeg . As with proposition symbols, the choice of names is entirely up to the user. Each
predicate and function symbol comes with an arity that fixes the number of arguments.ARITY

As in propositional logic, every model must provide the information required to deter-
mine if any given sentence is true or false. Thus, in addition to its objects, relations, and
functions, each model includes an interpretation that specifies exactly which objects, rela-INTERPRETATION

tions and functions are referred to by the constant, predicate, and function symbols. One
possible interpretation for our example—which a logician would call the intended interpre-
tation—is as follows:INTENDED

INTERPRETATION

• Richard refers to Richard the Lionheart and John refers to the evil King John.

• Brother refers to the brotherhood relation, that is, the set of tuples of objects given in
Equation (8.1); OnHead refers to the “on head” relation that holds between the crown
and King John; Person , King , and Crown refer to the sets of objects that are persons,
kings, and crowns.

• LeftLeg refers to the “left leg” function, that is, the mapping given in Equation (8.2).

There are many other possible interpretations, of course. For example, one interpretation
maps Richard to the crown and John to King John’s left leg. There are five objects in
the model, so there are 25 possible interpretations just for the constant symbols Richard

and John . Notice that not all the objects need have a name—for example, the intended
interpretation does not name the crown or the legs. It is also possible for an object to have
several names; there is an interpretation under which both Richard and John refer to the
crown.4 If you find this possibility confusing, remember that, in propositional logic, it is
perfectly possible to have a model in which Cloudy and Sunny are both true; it is the job of
the knowledge base to rule out models that are inconsistent with our knowledge.

4 Later, in Section 8.2.8, we examine a semantics in which every object has exactly one name.

Section 8.2. Syntax and Semantics of First-Order Logic 293

Sentence → AtomicSentence | ComplexSentence

AtomicSentence → Predicate | Predicate(Term , . . .) | Term = Term

ComplexSentence → (Sentence) | [Sentence]
| ¬ Sentence

| Sentence ∧ Sentence

| Sentence ∨ Sentence

| Sentence ⇒ Sentence

| Sentence ⇔ Sentence

| Quantifier Variable , . . . Sentence

Term → Function(Term, . . .)

| Constant

| Variable

Quantifier → ∀ | ∃

Constant → A | X1 | John | · · ·

Variable → a | x | s | · · ·

Predicate → True | False | After | Loves | Raining | · · ·

Function → Mother | LeftLeg | · · ·

OPERATOR PRECEDENCE : ¬, =,∧,∨,⇒,⇔

Figure 8.3 The syntax of first-order logic with equality, specified in Backus–Naur form
(see page 1066 if you are not familiar with this notation). Operator precedences are specified,
from highest to lowest. The precedence of quantifiers is such that a quantifier holds over
everything to the right of it.

R JR JR J R J R J R J

.

Figure 8.4 Some members of the set of all models for a language with two constant sym-
bols, R and J , and one binary relation symbol. The interpretation of each constant symbol is
shown by a gray arrow. Within each model, the related objects are connected by arrows.

294 Chapter 8. First-Order Logic

In summary, a model in first-order logic consists of a set of objects and an interpretation
that maps constant symbols to objects, predicate symbols to relations on those objects, and
function symbols to functions on those objects. Just as with propositional logic, entailment,
validity, and so on are defined in terms of all possible models. To get an idea of what the
set of all possible models looks like, see Figure 8.4. It shows that models vary in how many
objects they contain—from one up to infinity—and in the way the constant symbols map
to objects. If there are two constant symbols and one object, then both symbols must refer
to the same object; but this can still happen even with more objects. When there are more
objects than constant symbols, some of the objects will have no names. Because the number
of possible models is unbounded, checking entailment by the enumeration of all possible
models is not feasible for first-order logic (unlike propositional logic). Even if the number of
objects is restricted, the number of combinations can be very large. (See Exercise 8.5.) For
the example in Figure 8.4, there are 137,506,194,466 models with six or fewer objects.

8.2.3 Terms

A term is a logical expression that refers to an object. Constant symbols are therefore terms,TERM

but it is not always convenient to have a distinct symbol to name every object. For example,
in English we might use the expression “King John’s left leg” rather than giving a name
to his leg. This is what function symbols are for: instead of using a constant symbol, we
use LeftLeg(John). In the general case, a complex term is formed by a function symbol
followed by a parenthesized list of terms as arguments to the function symbol. It is important
to remember that a complex term is just a complicated kind of name. It is not a “subroutine
call” that “returns a value.” There is no LeftLeg subroutine that takes a person as input and
returns a leg. We can reason about left legs (e.g., stating the general rule that everyone has one
and then deducing that John must have one) without ever providing a definition of LeftLeg .
This is something that cannot be done with subroutines in programming languages.5

The formal semantics of terms is straightforward. Consider a term f(t1, . . . , tn). The
function symbol f refers to some function in the model (call it F); the argument terms refer
to objects in the domain (call them d1, . . . , dn); and the term as a whole refers to the object
that is the value of the function F applied to d1, . . . , dn. For example, suppose the LeftLeg

function symbol refers to the function shown in Equation (8.2) and John refers to King John,
then LeftLeg(John) refers to King John’s left leg. In this way, the interpretation fixes the
referent of every term.

8.2.4 Atomic sentences

Now that we have both terms for referring to objects and predicate symbols for referring to
relations, we can put them together to make atomic sentences that state facts. An atomic
5 λ-expressions provide a useful notation in which new function symbols are constructed “on the fly.” For
example, the function that squares its argument can be written as (λx x×x) and can be applied to arguments
just like any other function symbol. A λ-expression can also be defined and used as a predicate symbol. (See
Chapter 22.) The lambda operator in Lisp plays exactly the same role. Notice that the use of λ in this way does
not increase the formal expressive power of first-order logic, because any sentence that includes a λ-expression
can be rewritten by “plugging in” its arguments to yield an equivalent sentence.

Section 8.2. Syntax and Semantics of First-Order Logic 295

sentence (or atom for short) is formed from a predicate symbol optionally followed by aATOMIC SENTENCE

ATOM parenthesized list of terms, such as

Brother (Richard , John).

This states, under the intended interpretation given earlier, that Richard the Lionheart is the
brother of King John.6 Atomic sentences can have complex terms as arguments. Thus,

Married(Father (Richard),Mother (John))

states that Richard the Lionheart’s father is married to King John’s mother (again, under a
suitable interpretation).

An atomic sentence is true in a given model if the relation referred to by the predicate
symbol holds among the objects referred to by the arguments.

8.2.5 Complex sentences

We can use logical connectives to construct more complex sentences, with the same syntax
and semantics as in propositional calculus. Here are four sentences that are true in the model
of Figure 8.2 under our intended interpretation:

¬Brother (LeftLeg(Richard), John)

Brother (Richard , John) ∧ Brother (John ,Richard)

King(Richard) ∨King(John)

¬King(Richard) ⇒ King(John) .

8.2.6 Quantifiers

Once we have a logic that allows objects, it is only natural to want to express properties of
entire collections of objects, instead of enumerating the objects by name. Quantifiers let usQUANTIFIER

do this. First-order logic contains two standard quantifiers, called universal and existential.

Universal quantification (∀)

Recall the difficulty we had in Chapter 7 with the expression of general rules in proposi-
tional logic. Rules such as “Squares neighboring the wumpus are smelly” and “All kings
are persons” are the bread and butter of first-order logic. We deal with the first of these in
Section 8.3. The second rule, “All kings are persons,” is written in first-order logic as

∀x King(x) ⇒ Person(x) .

∀ is usually pronounced “For all . . .”. (Remember that the upside-down A stands for “all.”)
Thus, the sentence says, “For all x, if x is a king, then x is a person.” The symbol x is called
a variable. By convention, variables are lowercase letters. A variable is a term all by itself,VARIABLE

and as such can also serve as the argument of a function—for example, LeftLeg(x). A term
with no variables is called a ground term.GROUND TERM

Intuitively, the sentence ∀x P , where P is any logical expression, says that P is true
for every object x. More precisely, ∀x P is true in a given model if P is true in all possible
extended interpretations constructed from the interpretation given in the model, where eachEXTENDED

INTERPRETATION

6 We usually follow the argument-ordering convention that P (x, y) is read as “x is a P of y.”

296 Chapter 8. First-Order Logic

extended interpretation specifies a domain element to which x refers.
This sounds complicated, but it is really just a careful way of stating the intuitive mean-

ing of universal quantification. Consider the model shown in Figure 8.2 and the intended
interpretation that goes with it. We can extend the interpretation in five ways:

x→ Richard the Lionheart,
x→ King John,
x→ Richard’s left leg,
x→ John’s left leg,
x→ the crown.

The universally quantified sentence ∀x King(x)⇒ Person(x) is true in the original model
if the sentence King(x) ⇒ Person(x) is true under each of the five extended interpreta-
tions. That is, the universally quantified sentence is equivalent to asserting the following five
sentences:

Richard the Lionheart is a king ⇒ Richard the Lionheart is a person.
King John is a king ⇒ King John is a person.
Richard’s left leg is a king ⇒ Richard’s left leg is a person.
John’s left leg is a king ⇒ John’s left leg is a person.
The crown is a king ⇒ the crown is a person.

Let us look carefully at this set of assertions. Since, in our model, King John is the only
king, the second sentence asserts that he is a person, as we would hope. But what about
the other four sentences, which appear to make claims about legs and crowns? Is that part
of the meaning of “All kings are persons”? In fact, the other four assertions are true in the
model, but make no claim whatsoever about the personhood qualifications of legs, crowns,
or indeed Richard. This is because none of these objects is a king. Looking at the truth table
for ⇒ (Figure 7.8 on page 246), we see that the implication is true whenever its premise is
false—regardless of the truth of the conclusion. Thus, by asserting the universally quantified
sentence, which is equivalent to asserting a whole list of individual implications, we end
up asserting the conclusion of the rule just for those objects for whom the premise is true
and saying nothing at all about those individuals for whom the premise is false. Thus, the
truth-table definition of ⇒ turns out to be perfect for writing general rules with universal
quantifiers.

A common mistake, made frequently even by diligent readers who have read this para-
graph several times, is to use conjunction instead of implication. The sentence

∀x King(x) ∧ Person(x)

would be equivalent to asserting

Richard the Lionheart is a king ∧ Richard the Lionheart is a person,
King John is a king ∧King John is a person,
Richard’s left leg is a king ∧ Richard’s left leg is a person,

and so on. Obviously, this does not capture what we want.

Section 8.2. Syntax and Semantics of First-Order Logic 297

Existential quantification (∃)

Universal quantification makes statements about every object. Similarly, we can make a state-
ment about some object in the universe without naming it, by using an existential quantifier.
To say, for example, that King John has a crown on his head, we write

∃x Crown(x) ∧OnHead(x, John) .

∃x is pronounced “There exists an x such that . . .” or “For some x . . .”.
Intuitively, the sentence ∃x P says that P is true for at least one object x. More

precisely, ∃x P is true in a given model if P is true in at least one extended interpretation
that assigns x to a domain element. That is, at least one of the following is true:

Richard the Lionheart is a crown ∧ Richard the Lionheart is on John’s head;
King John is a crown ∧ King John is on John’s head;
Richard’s left leg is a crown ∧ Richard’s left leg is on John’s head;
John’s left leg is a crown ∧ John’s left leg is on John’s head;
The crown is a crown ∧ the crown is on John’s head.

The fifth assertion is true in the model, so the original existentially quantified sentence is
true in the model. Notice that, by our definition, the sentence would also be true in a model
in which King John was wearing two crowns. This is entirely consistent with the original
sentence “King John has a crown on his head.” 7

Just as⇒ appears to be the natural connective to use with ∀, ∧ is the natural connective
to use with ∃. Using ∧ as the main connective with ∀ led to an overly strong statement in
the example in the previous section; using⇒ with ∃ usually leads to a very weak statement,
indeed. Consider the following sentence:

∃x Crown(x) ⇒ OnHead(x, John) .

On the surface, this might look like a reasonable rendition of our sentence. Applying the
semantics, we see that the sentence says that at least one of the following assertions is true:

Richard the Lionheart is a crown ⇒ Richard the Lionheart is on John’s head;
King John is a crown ⇒ King John is on John’s head;
Richard’s left leg is a crown ⇒ Richard’s left leg is on John’s head;

and so on. Now an implication is true if both premise and conclusion are true, or if its premise
is false. So if Richard the Lionheart is not a crown, then the first assertion is true and the
existential is satisfied. So, an existentially quantified implication sentence is true whenever
any object fails to satisfy the premise; hence such sentences really do not say much at all.

Nested quantifiers

We will often want to express more complex sentences using multiple quantifiers. The sim-
plest case is where the quantifiers are of the same type. For example, “Brothers are siblings”
can be written as

∀x ∀ y Brother (x, y) ⇒ Sibling(x, y) .

7 There is a variant of the existential quantifier, usually written ∃
1 or ∃!, that means “There exists exactly one.”

The same meaning can be expressed using equality statements.

298 Chapter 8. First-Order Logic

Consecutive quantifiers of the same type can be written as one quantifier with several vari-
ables. For example, to say that siblinghood is a symmetric relationship, we can write

∀x, y Sibling(x, y) ⇔ Sibling(y, x) .

In other cases we will have mixtures. “Everybody loves somebody” means that for every
person, there is someone that person loves:

∀x ∃ y Loves(x, y) .

On the other hand, to say “There is someone who is loved by everyone,” we write

∃ y ∀x Loves(x, y) .

The order of quantification is therefore very important. It becomes clearer if we insert paren-
theses. ∀x (∃ y Loves(x, y)) says that everyone has a particular property, namely, the prop-
erty that they love someone. On the other hand, ∃ y (∀x Loves(x, y)) says that someone in
the world has a particular property, namely the property of being loved by everybody.

Some confusion can arise when two quantifiers are used with the same variable name.
Consider the sentence

∀x (Crown(x) ∨ (∃x Brother (Richard , x))) .

Here the x in Brother (Richard , x) is existentially quantified. The rule is that the variable
belongs to the innermost quantifier that mentions it; then it will not be subject to any other
quantification. Another way to think of it is this: ∃x Brother (Richard , x) is a sentence
about Richard (that he has a brother), not about x; so putting a ∀x outside it has no effect. It
could equally well have been written ∃ z Brother (Richard , z). Because this can be a source
of confusion, we will always use different variable names with nested quantifiers.

Connections between ∀ and ∃

The two quantifiers are actually intimately connected with each other, through negation. As-
serting that everyone dislikes parsnips is the same as asserting there does not exist someone
who likes them, and vice versa:

∀x ¬Likes(x,Parsnips) is equivalent to ¬∃x Likes(x,Parsnips) .

We can go one step further: “Everyone likes ice cream” means that there is no one who does
not like ice cream:

∀x Likes(x, IceCream) is equivalent to ¬∃x ¬Likes(x, IceCream) .

Because ∀ is really a conjunction over the universe of objects and ∃ is a disjunction, it should
not be surprising that they obey De Morgan’s rules. The De Morgan rules for quantified and
unquantified sentences are as follows:

∀x ¬P ≡ ¬∃x P ¬(P ∨Q) ≡ ¬P ∧ ¬Q

¬∀x P ≡ ∃x ¬P ¬(P ∧Q) ≡ ¬P ∨ ¬Q

∀x P ≡ ¬∃x ¬P P ∧Q ≡ ¬(¬P ∨ ¬Q)

∃x P ≡ ¬∀x ¬P P ∨Q ≡ ¬(¬P ∧ ¬Q) .

Thus, we do not really need both ∀ and ∃, just as we do not really need both ∧ and ∨. Still,
readability is more important than parsimony, so we will keep both of the quantifiers.

Section 8.2. Syntax and Semantics of First-Order Logic 299

8.2.7 Equality

First-order logic includes one more way to make atomic sentences, other than using a predi-
cate and terms as described earlier. We can use the equality symbol to signify that two termsEQUALITY SYMBOL

refer to the same object. For example,

Father (John)=Henry

says that the object referred to by Father (John) and the object referred to by Henry are the
same. Because an interpretation fixes the referent of any term, determining the truth of an
equality sentence is simply a matter of seeing that the referents of the two terms are the same
object.

The equality symbol can be used to state facts about a given function, as we just did for
the Father symbol. It can also be used with negation to insist that two terms are not the same
object. To say that Richard has at least two brothers, we would write

∃x, y Brother (x,Richard) ∧ Brother (y,Richard) ∧ ¬(x= y) .

The sentence

∃x, y Brother (x,Richard) ∧ Brother (y,Richard)

does not have the intended meaning. In particular, it is true in the model of Figure 8.2, where
Richard has only one brother. To see this, consider the extended interpretation in which both
x and y are assigned to King John. The addition of ¬(x= y) rules out such models. The
notation x 6= y is sometimes used as an abbreviation for ¬(x= y).

8.2.8 An alternative semantics?

Continuing the example from the previous section, suppose that we believe that Richard has
two brothers, John and Geoffrey.8 Can we capture this state of affairs by asserting

Brother (John ,Richard) ∧ Brother (Geoffrey ,Richard) ? (8.3)

Not quite. First, this assertion is true in a model where Richard has only one brother—
we need to add John 6= Geoffrey . Second, the sentence doesn’t rule out models in which
Richard has many more brothers besides John and Geoffrey. Thus, the correct translation of
“Richard’s brothers are John and Geoffrey” is as follows:

Brother (John ,Richard) ∧ Brother (Geoffrey ,Richard) ∧ John 6= Geoffrey

∧ ∀x Brother (x,Richard) ⇒ (x= John ∨ x=Geoffrey) .

For many purposes, this seems much more cumbersome than the corresponding natural-
language expression. As a consequence, humans may make mistakes in translating their
knowledge into first-order logic, resulting in unintuitive behaviors from logical reasoning
systems that use the knowledge. Can we devise a semantics that allows a more straightfor-
ward logical expression?

One proposal that is very popular in database systems works as follows. First, we insist
that every constant symbol refer to a distinct object—the so-called unique-names assump-
tion. Second, we assume that atomic sentences not known to be true are in fact false—theUNIQUE­NAMES

ASSUMPTION

closed-world assumption. Finally, we invoke domain closure, meaning that each modelCLOSED­WORLD

ASSUMPTION

DOMAIN CLOSURE
8 Actually he had four, the others being William and Henry.

300 Chapter 8. First-Order Logic

. . .

R J

R

J

R J

R

J

R J

R

J

R J

R

J

R J

R

J

Figure 8.5 Some members of the set of all models for a language with two constant sym-
bols, R and J , and one binary relation symbol, under database semantics. The interpretation
of the constant symbols is fixed, and there is a distinct object for each constant symbol.

contains no more domain elements than those named by the constant symbols. Under the
resulting semantics, which we call database semantics to distinguish it from the standardDATABASE

SEMANTICS

semantics of first-order logic, the sentence Equation (8.3) does indeed state that Richard’s
two brothers are John and Geoffrey. Database semantics is also used in logic programming
systems, as explained in Section 9.4.5.

It is instructive to consider the set of all possible models under database semantics for
the same case as shown in Figure 8.4. Figure 8.5 shows some of the models, ranging from
the model with no tuples satisfying the relation to the model with all tuples satisfying the
relation. With two objects, there are four possible two-element tuples, so there are 24 = 16

different subsets of tuples that can satisfy the relation. Thus, there are 16 possible models in
all—a lot fewer than the infinitely many models for the standard first-order semantics. On the
other hand, the database semantics requires definite knowledge of what the world contains.

This example brings up an important point: there is no one “correct” semantics for
logic. The usefulness of any proposed semantics depends on how concise and intuitive it
makes the expression of the kinds of knowledge we want to write down, and on how easy
and natural it is to develop the corresponding rules of inference. Database semantics is most
useful when we are certain about the identity of all the objects described in the knowledge
base and when we have all the facts at hand; in other cases, it is quite awkward. For the rest
of this chapter, we assume the standard semantics while noting instances in which this choice
leads to cumbersome expressions.

8.3 USING FIRST-ORDER LOGIC

Now that we have defined an expressive logical language, it is time to learn how to use it. The
best way to do this is through examples. We have seen some simple sentences illustrating the
various aspects of logical syntax; in this section, we provide more systematic representations
of some simple domains. In knowledge representation, a domain is just some part of theDOMAIN

world about which we wish to express some knowledge.
We begin with a brief description of the TELL/ASK interface for first-order knowledge

bases. Then we look at the domains of family relationships, numbers, sets, and lists, and at

Section 8.3. Using First-Order Logic 301

the wumpus world. The next section contains a more substantial example (electronic circuits)
and Chapter 12 covers everything in the universe.

8.3.1 Assertions and queries in first-order logic

Sentences are added to a knowledge base using TELL, exactly as in propositional logic. Such
sentences are called assertions. For example, we can assert that John is a king, Richard is aASSERTION

person, and all kings are persons:

TELL(KB , King(John)) .

TELL(KB , Person(Richard)) .

TELL(KB , ∀x King(x) ⇒ Person(x)) .

We can ask questions of the knowledge base using ASK. For example,

ASK(KB , King(John))

returns true . Questions asked with ASK are called queries or goals. Generally speaking, anyQUERY

GOAL query that is logically entailed by the knowledge base should be answered affirmatively. For
example, given the two preceding assertions, the query

ASK(KB , Person(John))

should also return true . We can ask quantified queries, such as

ASK(KB , ∃x Person(x)) .

The answer is true , but this is perhaps not as helpful as we would like. It is rather like
answering “Can you tell me the time?” with “Yes.” If we want to know what value of x

makes the sentence true, we will need a different function, ASKVARS, which we call with

ASKVARS(KB ,Person(x))

and which yields a stream of answers. In this case there will be two answers: {x/John} and
{x/Richard}. Such an answer is called a substitution or binding list. ASKVARS is usuallySUBSTITUTION

BINDING LIST reserved for knowledge bases consisting solely of Horn clauses, because in such knowledge
bases every way of making the query true will bind the variables to specific values. That is
not the case with first-order logic; if KB has been told King(John) ∨King(Richard), then
there is no binding to x for the query ∃x King(x), even though the query is true.

8.3.2 The kinship domain

The first example we consider is the domain of family relationships, or kinship. This domain
includes facts such as “Elizabeth is the mother of Charles” and “Charles is the father of
William” and rules such as “One’s grandmother is the mother of one’s parent.”

Clearly, the objects in our domain are people. We have two unary predicates, Male and
Female . Kinship relations—parenthood, brotherhood, marriage, and so on—are represented
by binary predicates: Parent , Sibling , Brother , Sister , Child , Daughter , Son , Spouse ,
Wife, Husband , Grandparent , Grandchild , Cousin , Aunt , and Uncle . We use functions
for Mother and Father , because every person has exactly one of each of these (at least
according to nature’s design).

302 Chapter 8. First-Order Logic

We can go through each function and predicate, writing down what we know in terms
of the other symbols. For example, one’s mother is one’s female parent:

∀m, c Mother (c)= m ⇔ Female(m) ∧ Parent(m, c) .

One’s husband is one’s male spouse:

∀w, h Husband(h,w) ⇔ Male(h) ∧ Spouse(h,w) .

Male and female are disjoint categories:

∀x Male(x) ⇔ ¬Female(x) .

Parent and child are inverse relations:

∀ p, c Parent(p, c) ⇔ Child(c, p) .

A grandparent is a parent of one’s parent:

∀ g, c Grandparent (g, c) ⇔ ∃ p Parent(g, p) ∧ Parent(p, c) .

A sibling is another child of one’s parents:

∀x, y Sibling(x, y) ⇔ x 6= y ∧ ∃ p Parent(p, x) ∧ Parent(p, y) .

We could go on for several more pages like this, and Exercise 8.15 asks you to do just that.
Each of these sentences can be viewed as an axiom of the kinship domain, as explained

in Section 7.1. Axioms are commonly associated with purely mathematical domains—we
will see some axioms for numbers shortly—but they are needed in all domains. They provide
the basic factual information from which useful conclusions can be derived. Our kinship
axioms are also definitions; they have the form ∀x, y P (x, y) ⇔ The axioms defineDEFINITION

the Mother function and the Husband , Male , Parent , Grandparent , and Sibling predicates
in terms of other predicates. Our definitions “bottom out” at a basic set of predicates (Child ,
Spouse , and Female) in terms of which the others are ultimately defined. This is a natural
way in which to build up the representation of a domain, and it is analogous to the way in
which software packages are built up by successive definitions of subroutines from primitive
library functions. Notice that there is not necessarily a unique set of primitive predicates;
we could equally well have used Parent , Spouse , and Male . In some domains, as we show,
there is no clearly identifiable basic set.

Not all logical sentences about a domain are axioms. Some are theorems—that is, theyTHEOREM

are entailed by the axioms. For example, consider the assertion that siblinghood is symmetric:

∀x, y Sibling(x, y) ⇔ Sibling(y, x) .

Is this an axiom or a theorem? In fact, it is a theorem that follows logically from the axiom
that defines siblinghood. If we ASK the knowledge base this sentence, it should return true .

From a purely logical point of view, a knowledge base need contain only axioms and
no theorems, because the theorems do not increase the set of conclusions that follow from
the knowledge base. From a practical point of view, theorems are essential to reduce the
computational cost of deriving new sentences. Without them, a reasoning system has to start
from first principles every time, rather like a physicist having to rederive the rules of calculus
for every new problem.

Section 8.3. Using First-Order Logic 303

Not all axioms are definitions. Some provide more general information about certain
predicates without constituting a definition. Indeed, some predicates have no complete defi-
nition because we do not know enough to characterize them fully. For example, there is no
obvious definitive way to complete the sentence

∀x Person(x) ⇔ . . .

Fortunately, first-order logic allows us to make use of the Person predicate without com-
pletely defining it. Instead, we can write partial specifications of properties that every person
has and properties that make something a person:

∀x Person(x) ⇒ . . .

∀x . . . ⇒ Person(x) .

Axioms can also be “just plain facts,” such as Male(Jim) and Spouse(Jim ,Laura).
Such facts form the descriptions of specific problem instances, enabling specific questions
to be answered. The answers to these questions will then be theorems that follow from
the axioms. Often, one finds that the expected answers are not forthcoming—for example,
from Spouse(Jim,Laura) one expects (under the laws of many countries) to be able to infer
¬Spouse(George ,Laura); but this does not follow from the axioms given earlier—even after
we add Jim 6= George as suggested in Section 8.2.8. This is a sign that an axiom is missing.
Exercise 8.8 asks the reader to supply it.

8.3.3 Numbers, sets, and lists

Numbers are perhaps the most vivid example of how a large theory can be built up from
a tiny kernel of axioms. We describe here the theory of natural numbers or non-negativeNATURAL NUMBERS

integers. We need a predicate NatNum that will be true of natural numbers; we need one
constant symbol, 0; and we need one function symbol, S (successor). The Peano axiomsPEANO AXIOMS

define natural numbers and addition.9 Natural numbers are defined recursively:

NatNum(0) .

∀n NatNum(n) ⇒ NatNum(S(n)) .

That is, 0 is a natural number, and for every object n, if n is a natural number, then S(n) is
a natural number. So the natural numbers are 0, S(0), S(S(0)), and so on. (After reading
Section 8.2.8, you will notice that these axioms allow for other natural numbers besides the
usual ones; see Exercise 8.13.) We also need axioms to constrain the successor function:

∀n 0 6= S(n) .

∀m,n m 6= n ⇒ S(m) 6= S(n) .

Now we can define addition in terms of the successor function:
∀m NatNum(m) ⇒ + (0,m) = m .

∀m,n NatNum(m) ∧ NatNum(n) ⇒ + (S(m), n) = S(+(m,n)) .

The first of these axioms says that adding 0 to any natural number m gives m itself. Notice
the use of the binary function symbol “+” in the term +(m, 0); in ordinary mathematics, the
term would be written m + 0 using infix notation. (The notation we have used for first-orderINFIX

9 The Peano axioms also include the principle of induction, which is a sentence of second-order logic rather
than of first-order logic. The importance of this distinction is explained in Chapter 9.

304 Chapter 8. First-Order Logic

logic is called prefix.) To make our sentences about numbers easier to read, we allow the usePREFIX

of infix notation. We can also write S(n) as n + 1, so the second axiom becomes

∀m,n NatNum(m) ∧ NatNum(n) ⇒ (m + 1) + n = (m + n) + 1 .

This axiom reduces addition to repeated application of the successor function.
The use of infix notation is an example of syntactic sugar, that is, an extension to orSYNTACTIC SUGAR

abbreviation of the standard syntax that does not change the semantics. Any sentence that
uses sugar can be “desugared” to produce an equivalent sentence in ordinary first-order logic.

Once we have addition, it is straightforward to define multiplication as repeated addi-
tion, exponentiation as repeated multiplication, integer division and remainders, prime num-
bers, and so on. Thus, the whole of number theory (including cryptography) can be built up
from one constant, one function, one predicate and four axioms.

The domain of sets is also fundamental to mathematics as well as to commonsenseSET

reasoning. (In fact, it is possible to define number theory in terms of set theory.) We want to
be able to represent individual sets, including the empty set. We need a way to build up sets
by adding an element to a set or taking the union or intersection of two sets. We will want
to know whether an element is a member of a set and we will want to distinguish sets from
objects that are not sets.

We will use the normal vocabulary of set theory as syntactic sugar. The empty set is a
constant written as { }. There is one unary predicate, Set , which is true of sets. The binary
predicates are x∈ s (x is a member of set s) and s1 ⊆ s2 (set s1 is a subset, not necessarily
proper, of set s2). The binary functions are s1 ∩ s2 (the intersection of two sets), s1 ∪ s2

(the union of two sets), and {x|s} (the set resulting from adjoining element x to set s). One
possible set of axioms is as follows:

1. The only sets are the empty set and those made by adjoining something to a set:

∀ s Set(s) ⇔ (s = { }) ∨ (∃x, s2 Set(s2) ∧ s = {x|s2}) .

2. The empty set has no elements adjoined into it. In other words, there is no way to
decompose { } into a smaller set and an element:

¬∃x, s {x|s}= { } .

3. Adjoining an element already in the set has no effect:

∀x, s x∈ s ⇔ s = {x|s} .

4. The only members of a set are the elements that were adjoined into it. We express
this recursively, saying that x is a member of s if and only if s is equal to some set s2

adjoined with some element y, where either y is the same as x or x is a member of s2:

∀x, s x∈ s ⇔ ∃ y, s2 (s = {y|s2} ∧ (x= y ∨ x∈ s2)) .

5. A set is a subset of another set if and only if all of the first set’s members are members
of the second set:

∀ s1, s2 s1 ⊆ s2 ⇔ (∀x x∈ s1 ⇒ x∈ s2) .

6. Two sets are equal if and only if each is a subset of the other:

∀ s1, s2 (s1 = s2) ⇔ (s1 ⊆ s2 ∧ s2 ⊆ s1) .

Section 8.3. Using First-Order Logic 305

7. An object is in the intersection of two sets if and only if it is a member of both sets:

∀x, s1, s2 x∈ (s1 ∩ s2) ⇔ (x∈ s1 ∧ x∈ s2) .

8. An object is in the union of two sets if and only if it is a member of either set:

∀x, s1, s2 x∈ (s1 ∪ s2) ⇔ (x∈ s1 ∨ x∈ s2) .

Lists are similar to sets. The differences are that lists are ordered and the same element canLIST

appear more than once in a list. We can use the vocabulary of Lisp for lists: Nil is the constant
list with no elements; Cons , Append , First , and Rest are functions; and Find is the pred-
icate that does for lists what Member does for sets. List? is a predicate that is true only of
lists. As with sets, it is common to use syntactic sugar in logical sentences involving lists. The
empty list is []. The term Cons(x, y), where y is a nonempty list, is written [x|y]. The term
Cons(x,Nil) (i.e., the list containing the element x) is written as [x]. A list of several ele-
ments, such as [A,B,C], corresponds to the nested term Cons(A,Cons(B,Cons(C,Nil))).
Exercise 8.17 asks you to write out the axioms for lists.

8.3.4 The wumpus world

Some propositional logic axioms for the wumpus world were given in Chapter 7. The first-
order axioms in this section are much more concise, capturing in a natural way exactly what
we want to say.

Recall that the wumpus agent receives a percept vector with five elements. The corre-
sponding first-order sentence stored in the knowledge base must include both the percept and
the time at which it occurred; otherwise, the agent will get confused about when it saw what.
We use integers for time steps. A typical percept sentence would be

Percept([Stench,Breeze ,Glitter ,None,None], 5) .

Here, Percept is a binary predicate, and Stench and so on are constants placed in a list. The
actions in the wumpus world can be represented by logical terms:

Turn(Right), Turn(Left), Forward , Shoot , Grab, Climb .

To determine which is best, the agent program executes the query

ASKVARS(∃ a BestAction(a, 5)) ,

which returns a binding list such as {a/Grab}. The agent program can then return Grab as
the action to take. The raw percept data implies certain facts about the current state. For
example:

∀ t, s, g,m, c Percept([s,Breeze , g,m, c], t) ⇒ Breeze(t) ,

∀ t, s, b,m, c Percept([s, b,Glitter ,m, c], t) ⇒ Glitter(t) ,

and so on. These rules exhibit a trivial form of the reasoning process called perception, which
we study in depth in Chapter 24. Notice the quantification over time t. In propositional logic,
we would need copies of each sentence for each time step.

Simple “reflex” behavior can also be implemented by quantified implication sentences.
For example, we have

∀ t Glitter (t) ⇒ BestAction(Grab, t) .

306 Chapter 8. First-Order Logic

Given the percept and rules from the preceding paragraphs, this would yield the desired con-
clusion BestAction(Grab, 5)—that is, Grab is the right thing to do.

We have represented the agent’s inputs and outputs; now it is time to represent the
environment itself. Let us begin with objects. Obvious candidates are squares, pits, and the
wumpus. We could name each square—Square1,2 and so on—but then the fact that Square1,2

and Square1,3 are adjacent would have to be an “extra” fact, and we would need one such
fact for each pair of squares. It is better to use a complex term in which the row and column
appear as integers; for example, we can simply use the list term [1, 2]. Adjacency of any two
squares can be defined as

∀x, y, a, b Adjacent([x, y], [a, b]) ⇔

(x = a ∧ (y = b− 1 ∨ y = b + 1)) ∨ (y = b ∧ (x = a− 1 ∨ x = a + 1)) .

We could name each pit, but this would be inappropriate for a different reason: there is no
reason to distinguish among pits.10 It is simpler to use a unary predicate Pit that is true of
squares containing pits. Finally, since there is exactly one wumpus, a constant Wumpus is
just as good as a unary predicate (and perhaps more dignified from the wumpus’s viewpoint).

The agent’s location changes over time, so we write At(Agent , s, t) to mean that the
agent is at square s at time t. We can fix the wumpus’s location with ∀tAt(Wumpus , [2, 2], t).
We can then say that objects can only be at one location at a time:

∀x, s1, s2, t At(x, s1, t) ∧ At(x, s2, t) ⇒ s1 = s2 .

Given its current location, the agent can infer properties of the square from properties of its
current percept. For example, if the agent is at a square and perceives a breeze, then that
square is breezy:

∀ s, t At(Agent , s, t) ∧ Breeze(t) ⇒ Breezy(s) .

It is useful to know that a square is breezy because we know that the pits cannot move about.
Notice that Breezy has no time argument.

Having discovered which places are breezy (or smelly) and, very important, not breezy
(or not smelly), the agent can deduce where the pits are (and where the wumpus is). Whereas
propositional logic necessitates a separate axiom for each square (see R2 and R3 on page 247)
and would need a different set of axioms for each geographical layout of the world, first-order
logic just needs one axiom:

∀ s Breezy(s) ⇔ ∃ r Adjacent(r, s) ∧ Pit(r) . (8.4)

Similarly, in first-order logic we can quantify over time, so we need just one successor-state
axiom for each predicate, rather than a different copy for each time step. For example, the
axiom for the arrow (Equation (7.2) on page 267) becomes

∀ t HaveArrow (t + 1) ⇔ (HaveArrow (t) ∧ ¬Action(Shoot , t)) .

From these two example sentences, we can see that the first-order logic formulation is no
less concise than the original English-language description given in Chapter 7. The reader

10 Similarly, most of us do not name each bird that flies overhead as it migrates to warmer regions in winter. An
ornithologist wishing to study migration patterns, survival rates, and so on does name each bird, by means of a
ring on its leg, because individual birds must be tracked.

Section 8.4. Knowledge Engineering in First-Order Logic 307

is invited to construct analogous axioms for the agent’s location and orientation; in these
cases, the axioms quantify over both space and time. As in the case of propositional state
estimation, an agent can use logical inference with axioms of this kind to keep track of aspects
of the world that are not directly observed. Chapter 10 goes into more depth on the subject of
first-order successor-state axioms and their uses for constructing plans.

8.4 KNOWLEDGE ENGINEERING IN FIRST-ORDER LOGIC

The preceding section illustrated the use of first-order logic to represent knowledge in three
simple domains. This section describes the general process of knowledge-base construction—
a process called knowledge engineering. A knowledge engineer is someone who investigatesKNOWLEDGE

ENGINEERING

a particular domain, learns what concepts are important in that domain, and creates a formal
representation of the objects and relations in the domain. We illustrate the knowledge engi-
neering process in an electronic circuit domain that should already be fairly familiar, so that
we can concentrate on the representational issues involved. The approach we take is suitable
for developing special-purpose knowledge bases whose domain is carefully circumscribed
and whose range of queries is known in advance. General-purpose knowledge bases, which
cover a broad range of human knowledge and are intended to support tasks such as natural
language understanding, are discussed in Chapter 12.

8.4.1 The knowledge-engineering process

Knowledge engineering projects vary widely in content, scope, and difficulty, but all such
projects include the following steps:

1. Identify the task. The knowledge engineer must delineate the range of questions that
the knowledge base will support and the kinds of facts that will be available for each
specific problem instance. For example, does the wumpus knowledge base need to be
able to choose actions or is it required to answer questions only about the contents
of the environment? Will the sensor facts include the current location? The task will
determine what knowledge must be represented in order to connect problem instances to
answers. This step is analogous to the PEAS process for designing agents in Chapter 2.

2. Assemble the relevant knowledge. The knowledge engineer might already be an expert
in the domain, or might need to work with real experts to extract what they know—a
process called knowledge acquisition. At this stage, the knowledge is not representedKNOWLEDGE

ACQUISITION

formally. The idea is to understand the scope of the knowledge base, as determined by
the task, and to understand how the domain actually works.

For the wumpus world, which is defined by an artificial set of rules, the relevant
knowledge is easy to identify. (Notice, however, that the definition of adjacency was
not supplied explicitly in the wumpus-world rules.) For real domains, the issue of
relevance can be quite difficult—for example, a system for simulating VLSI designs
might or might not need to take into account stray capacitances and skin effects.

308 Chapter 8. First-Order Logic

3. Decide on a vocabulary of predicates, functions, and constants. That is, translate the
important domain-level concepts into logic-level names. This involves many questions
of knowledge-engineering style. Like programming style, this can have a significant
impact on the eventual success of the project. For example, should pits be represented
by objects or by a unary predicate on squares? Should the agent’s orientation be a
function or a predicate? Should the wumpus’s location depend on time? Once the
choices have been made, the result is a vocabulary that is known as the ontology ofONTOLOGY

the domain. The word ontology means a particular theory of the nature of being or
existence. The ontology determines what kinds of things exist, but does not determine
their specific properties and interrelationships.

4. Encode general knowledge about the domain. The knowledge engineer writes down
the axioms for all the vocabulary terms. This pins down (to the extent possible) the
meaning of the terms, enabling the expert to check the content. Often, this step reveals
misconceptions or gaps in the vocabulary that must be fixed by returning to step 3 and
iterating through the process.

5. Encode a description of the specific problem instance. If the ontology is well thought
out, this step will be easy. It will involve writing simple atomic sentences about in-
stances of concepts that are already part of the ontology. For a logical agent, problem
instances are supplied by the sensors, whereas a “disembodied” knowledge base is sup-
plied with additional sentences in the same way that traditional programs are supplied
with input data.

6. Pose queries to the inference procedure and get answers. This is where the reward is:
we can let the inference procedure operate on the axioms and problem-specific facts to
derive the facts we are interested in knowing. Thus, we avoid the need for writing an
application-specific solution algorithm.

7. Debug the knowledge base. Alas, the answers to queries will seldom be correct on
the first try. More precisely, the answers will be correct for the knowledge base as
written, assuming that the inference procedure is sound, but they will not be the ones
that the user is expecting. For example, if an axiom is missing, some queries will not be
answerable from the knowledge base. A considerable debugging process could ensue.
Missing axioms or axioms that are too weak can be easily identified by noticing places
where the chain of reasoning stops unexpectedly. For example, if the knowledge base
includes a diagnostic rule (see Exercise 8.14) for finding the wumpus,

∀ s Smelly(s) ⇒ Adjacent(Home(Wumpus), s) ,

instead of the biconditional, then the agent will never be able to prove the absence of
wumpuses. Incorrect axioms can be identified because they are false statements about
the world. For example, the sentence

∀x NumOfLegs(x, 4) ⇒ Mammal(x)

is false for reptiles, amphibians, and, more importantly, tables. The falsehood of this
sentence can be determined independently of the rest of the knowledge base. In contrast,

Section 8.4. Knowledge Engineering in First-Order Logic 309

a typical error in a program looks like this:

offset = position + 1 .

It is impossible to tell whether this statement is correct without looking at the rest of the
program to see whether, for example, offset is used to refer to the current position,
or to one beyond the current position, or whether the value of position is changed
by another statement and so offset should also be changed again.

To understand this seven-step process better, we now apply it to an extended example—the
domain of electronic circuits.

8.4.2 The electronic circuits domain

We will develop an ontology and knowledge base that allow us to reason about digital circuits
of the kind shown in Figure 8.6. We follow the seven-step process for knowledge engineering.

Identify the task

There are many reasoning tasks associated with digital circuits. At the highest level, one
analyzes the circuit’s functionality. For example, does the circuit in Figure 8.6 actually add
properly? If all the inputs are high, what is the output of gate A2? Questions about the
circuit’s structure are also interesting. For example, what are all the gates connected to the
first input terminal? Does the circuit contain feedback loops? These will be our tasks in this
section. There are more detailed levels of analysis, including those related to timing delays,
circuit area, power consumption, production cost, and so on. Each of these levels would
require additional knowledge.

Assemble the relevant knowledge

What do we know about digital circuits? For our purposes, they are composed of wires and
gates. Signals flow along wires to the input terminals of gates, and each gate produces a

1
2

3

1

2

X1 X2

A1

A2

O1

C1

Figure 8.6 A digital circuit C1, purporting to be a one-bit full adder. The first two inputs
are the two bits to be added, and the third input is a carry bit. The first output is the sum, and
the second output is a carry bit for the next adder. The circuit contains two XOR gates, two
AND gates, and one OR gate.

310 Chapter 8. First-Order Logic

signal on the output terminal that flows along another wire. To determine what these signals
will be, we need to know how the gates transform their input signals. There are four types
of gates: AND, OR, and XOR gates have two input terminals, and NOT gates have one. All
gates have one output terminal. Circuits, like gates, have input and output terminals.

To reason about functionality and connectivity, we do not need to talk about the wires
themselves, the paths they take, or the junctions where they come together. All that matters
is the connections between terminals—we can say that one output terminal is connected to
another input terminal without having to say what actually connects them. Other factors such
as the size, shape, color, or cost of the various components are irrelevant to our analysis.

If our purpose were something other than verifying designs at the gate level, the ontol-
ogy would be different. For example, if we were interested in debugging faulty circuits, then
it would probably be a good idea to include the wires in the ontology, because a faulty wire
can corrupt the signal flowing along it. For resolving timing faults, we would need to include
gate delays. If we were interested in designing a product that would be profitable, then the
cost of the circuit and its speed relative to other products on the market would be important.

Decide on a vocabulary

We now know that we want to talk about circuits, terminals, signals, and gates. The next step
is to choose functions, predicates, and constants to represent them. First, we need to be able
to distinguish gates from each other and from other objects. Each gate is represented as an
object named by a constant, about which we assert that it is a gate with, say, Gate(X1). The
behavior of each gate is determined by its type: one of the constants AND,OR, XOR, or
NOT . Because a gate has exactly one type, a function is appropriate: Type(X1)=XOR.
Circuits, like gates, are identified by a predicate: Circuit(C1).

Next we consider terminals, which are identified by the predicate Terminal (x). A gate
or circuit can have one or more input terminals and one or more output terminals. We use the
function In(1,X1) to denote the first input terminal for gate X1. A similar function Out is
used for output terminals. The function Arity(c, i, j) says that circuit c has i input and j out-
put terminals. The connectivity between gates can be represented by a predicate, Connected ,
which takes two terminals as arguments, as in Connected(Out(1,X1), In(1,X2)).

Finally, we need to know whether a signal is on or off. One possibility is to use a unary
predicate, On(t), which is true when the signal at a terminal is on. This makes it a little
difficult, however, to pose questions such as “What are all the possible values of the signals
at the output terminals of circuit C1 ?” We therefore introduce as objects two signal values, 1

and 0, and a function Signal(t) that denotes the signal value for the terminal t.

Encode general knowledge of the domain

One sign that we have a good ontology is that we require only a few general rules, which can
be stated clearly and concisely. These are all the axioms we will need:

1. If two terminals are connected, then they have the same signal:
∀ t1, t2 Terminal (t1) ∧ Terminal(t2) ∧Connected(t1, t2) ⇒

Signal(t1)= Signal(t2) .

Section 8.4. Knowledge Engineering in First-Order Logic 311

2. The signal at every terminal is either 1 or 0:
∀ t Terminal(t) ⇒ Signal(t)= 1 ∨ Signal(t)= 0 .

3. Connected is commutative:
∀ t1, t2 Connected(t1, t2) ⇔ Connected(t2, t1) .

4. There are four types of gates:
∀ g Gate(g) ∧ k = Type(g) ⇒ k = AND ∨ k = OR ∨ k = XOR ∨ k = NOT .

5. An AND gate’s output is 0 if and only if any of its inputs is 0:
∀ g Gate(g) ∧ Type(g)= AND ⇒

Signal(Out(1, g))= 0 ⇔ ∃n Signal(In(n, g))= 0 .

6. An OR gate’s output is 1 if and only if any of its inputs is 1:
∀ g Gate(g) ∧ Type(g)= OR ⇒

Signal(Out(1, g))= 1 ⇔ ∃n Signal(In(n, g))= 1 .

7. An XOR gate’s output is 1 if and only if its inputs are different:
∀ g Gate(g) ∧ Type(g)= XOR ⇒

Signal(Out(1, g))= 1 ⇔ Signal(In(1, g)) 6= Signal(In(2, g)) .

8. A NOT gate’s output is different from its input:
∀ g Gate(g) ∧ (Type(g)= NOT) ⇒

Signal(Out(1, g)) 6= Signal(In(1, g)) .

9. The gates (except for NOT) have two inputs and one output.
∀ g Gate(g) ∧ Type(g) = NOT ⇒ Arity(g, 1, 1) .
∀ g Gate(g) ∧ k = Type(g) ∧ (k = AND ∨ k = OR ∨ k = XOR) ⇒

Arity(g, 2, 1)

10. A circuit has terminals, up to its input and output arity, and nothing beyond its arity:
∀ c, i, j Circuit(c) ∧Arity(c, i, j) ⇒

∀n (n ≤ i ⇒ Terminal (In(c, n))) ∧ (n > i ⇒ In(c, n) = Nothing) ∧

∀n (n ≤ j ⇒ Terminal(Out(c, n))) ∧ (n > j ⇒ Out(c, n) = Nothing)

11. Gates, terminals, signals, gate types, and Nothing are all distinct.
∀ g, t Gate(g) ∧ Terminal (t) ⇒

g 6= t 6= 1 6= 0 6= OR 6= AND 6= XOR 6= NOT 6= Nothing .

12. Gates are circuits.
∀ g Gate(g) ⇒ Circuit(g)

Encode the specific problem instance

The circuit shown in Figure 8.6 is encoded as circuit C1 with the following description. First,
we categorize the circuit and its component gates:

Circuit(C1) ∧ Arity(C1, 3, 2)

Gate(X1) ∧ Type(X1)=XOR

Gate(X2) ∧ Type(X2)=XOR

Gate(A1) ∧ Type(A1)=AND

Gate(A2) ∧ Type(A2)=AND

Gate(O1) ∧Type(O1)= OR .

312 Chapter 8. First-Order Logic

Then, we show the connections between them:

Connected(Out(1,X1), In(1,X2)) Connected(In(1, C1), In(1,X1))

Connected(Out(1,X1), In(2, A2)) Connected(In(1, C1), In(1, A1))

Connected(Out(1, A2), In(1, O1)) Connected(In(2, C1), In(2,X1))

Connected(Out(1, A1), In(2, O1)) Connected(In(2, C1), In(2, A1))

Connected(Out(1,X2),Out(1, C1)) Connected(In(3, C1), In(2,X2))

Connected(Out(1, O1),Out(2, C1)) Connected(In(3, C1), In(1, A2)) .

Pose queries to the inference procedure

What combinations of inputs would cause the first output of C1 (the sum bit) to be 0 and the
second output of C1 (the carry bit) to be 1?

∃ i1, i2, i3 Signal(In(1, C1))= i1 ∧ Signal (In(2, C1))= i2 ∧ Signal(In(3, C1))= i3

∧ Signal(Out(1, C1))=0 ∧ Signal(Out(2, C1))=1 .

The answers are substitutions for the variables i1, i2, and i3 such that the resulting sentence
is entailed by the knowledge base. ASKVARS will give us three such substitutions:

{i1/1, i2/1, i3/0} {i1/1, i2/0, i3/1} {i1/0, i2/1, i3/1} .

What are the possible sets of values of all the terminals for the adder circuit?

∃ i1, i2, i3, o1, o2 Signal (In(1, C1))= i1 ∧ Signal(In(2, C1))= i2

∧ Signal(In(3, C1))= i3 ∧ Signal(Out(1, C1))= o1 ∧ Signal(Out(2, C1))= o2 .

This final query will return a complete input–output table for the device, which can be used
to check that it does in fact add its inputs correctly. This is a simple example of circuit
verification. We can also use the definition of the circuit to build larger digital systems, forCIRCUIT

VERIFICATION

which the same kind of verification procedure can be carried out. (See Exercise 8.28.) Many
domains are amenable to the same kind of structured knowledge-base development, in which
more complex concepts are defined on top of simpler concepts.

Debug the knowledge base

We can perturb the knowledge base in various ways to see what kinds of erroneous behaviors
emerge. For example, suppose we fail to read Section 8.2.8 and hence forget to assert that
1 6= 0. Suddenly, the system will be unable to prove any outputs for the circuit, except for
the input cases 000 and 110. We can pinpoint the problem by asking for the outputs of each
gate. For example, we can ask

∃ i1, i2, o Signal(In(1, C1))= i1 ∧ Signal(In(2, C1))= i2 ∧ Signal(Out(1,X1)) ,

which reveals that no outputs are known at X1 for the input cases 10 and 01. Then, we look
at the axiom for XOR gates, as applied to X1:

Signal(Out(1,X1))= 1 ⇔ Signal(In(1,X1)) 6= Signal(In(2,X1)) .

If the inputs are known to be, say, 1 and 0, then this reduces to

Signal(Out(1,X1))= 1 ⇔ 1 6= 0 .

Now the problem is apparent: the system is unable to infer that Signal(Out(1,X1))= 1, so
we need to tell it that 1 6= 0.

Section 8.5. Summary 313

8.5 SUMMARY

This chapter has introduced first-order logic, a representation language that is far more pow-
erful than propositional logic. The important points are as follows:

• Knowledge representation languages should be declarative, compositional, expressive,
context independent, and unambiguous.
• Logics differ in their ontological commitments and epistemological commitments.

While propositional logic commits only to the existence of facts, first-order logic com-
mits to the existence of objects and relations and thereby gains expressive power.
• The syntax of first-order logic builds on that of propositional logic. It adds terms to

represent objects, and has universal and existential quantifiers to construct assertions
about all or some of the possible values of the quantified variables.
• A possible world, or model, for first-order logic includes a set of objects and an inter-

pretation that maps constant symbols to objects, predicate symbols to relations among
objects, and function symbols to functions on objects.
• An atomic sentence is true just when the relation named by the predicate holds between

the objects named by the terms. Extended interpretations, which map quantifier vari-
ables to objects in the model, define the truth of quantified sentences.
• Developing a knowledge base in first-order logic requires a careful process of analyzing

the domain, choosing a vocabulary, and encoding the axioms required to support the
desired inferences.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Although Aristotle’s logic deals with generalizations over objects, it fell far short of the ex-
pressive power of first-order logic. A major barrier to its further development was its concen-
tration on one-place predicates to the exclusion of many-place relational predicates. The first
systematic treatment of relations was given by Augustus De Morgan (1864), who cited the
following example to show the sorts of inferences that Aristotle’s logic could not handle: “All
horses are animals; therefore, the head of a horse is the head of an animal.” This inference
is inaccessible to Aristotle because any valid rule that can support this inference must first
analyze the sentence using the two-place predicate “x is the head of y.” The logic of relations
was studied in depth by Charles Sanders Peirce (1870, 2004).

True first-order logic dates from the introduction of quantifiers in Gottlob Frege’s (1879)
Begriffschrift (“Concept Writing” or “Conceptual Notation”). Peirce (1883) also developed
first-order logic independently of Frege, although slightly later. Frege’s ability to nest quan-
tifiers was a big step forward, but he used an awkward notation. The present notation for
first-order logic is due substantially to Giuseppe Peano (1889), but the semantics is virtually
identical to Frege’s. Oddly enough, Peano’s axioms were due in large measure to Grassmann
(1861) and Dedekind (1888).

314 Chapter 8. First-Order Logic

Leopold Löwenheim (1915) gave a systematic treatment of model theory for first-order
logic, including the first proper treatment of the equality symbol. Löwenheim’s results were
further extended by Thoralf Skolem (1920). Alfred Tarski (1935, 1956) gave an explicit
definition of truth and model-theoretic satisfaction in first-order logic, using set theory.

McCarthy (1958) was primarily responsible for the introduction of first-order logic as a
tool for building AI systems. The prospects for logic-based AI were advanced significantly by
Robinson’s (1965) development of resolution, a complete procedure for first-order inference
described in Chapter 9. The logicist approach took root at Stanford University. Cordell Green
(1969a, 1969b) developed a first-order reasoning system, QA3, leading to the first attempts to
build a logical robot at SRI (Fikes and Nilsson, 1971). First-order logic was applied by Zohar
Manna and Richard Waldinger (1971) for reasoning about programs and later by Michael
Genesereth (1984) for reasoning about circuits. In Europe, logic programming (a restricted
form of first-order reasoning) was developed for linguistic analysis (Colmerauer et al., 1973)
and for general declarative systems (Kowalski, 1974). Computational logic was also well
entrenched at Edinburgh through the LCF (Logic for Computable Functions) project (Gordon
et al., 1979). These developments are chronicled further in Chapters 9 and 12.

Practical applications built with first-order logic include a system for evaluating the
manufacturing requirements for electronic products (Mannion, 2002), a system for reasoning
about policies for file access and digital rights management (Halpern and Weissman, 2008),
and a system for the automated composition of Web services (McIlraith and Zeng, 2001).

Reactions to the Whorf hypothesis (Whorf, 1956) and the problem of language and
thought in general, appear in several recent books (Gumperz and Levinson, 1996; Bowerman
and Levinson, 2001; Pinker, 2003; Gentner and Goldin-Meadow, 2003). The “theory” theory
(Gopnik and Glymour, 2002; Tenenbaum et al., 2007) views children’s learning about the
world as analogous to the construction of scientific theories. Just as the predictions of a
machine learning algorithm depend strongly on the vocabulary supplied to it, so will the
child’s formulation of theories depend on the linguistic environment in which learning occurs.

There are a number of good introductory texts on first-order logic, including some by
leading figures in the history of logic: Alfred Tarski (1941), Alonzo Church (1956), and
W.V. Quine (1982) (which is one of the most readable). Enderton (1972) gives a more math-
ematically oriented perspective. A highly formal treatment of first-order logic, along with
many more advanced topics in logic, is provided by Bell and Machover (1977). Manna and
Waldinger (1985) give a readable introduction to logic from a computer science perspec-
tive, as do Huth and Ryan (2004), who concentrate on program verification. Barwise and
Etchemendy (2002) take an approach similar to the one used here. Smullyan (1995) presents
results concisely, using the tableau format. Gallier (1986) provides an extremely rigorous
mathematical exposition of first-order logic, along with a great deal of material on its use in
automated reasoning. Logical Foundations of Artificial Intelligence (Genesereth and Nilsson,
1987) is both a solid introduction to logic and the first systematic treatment of logical agents
with percepts and actions, and there are two good handbooks: van Bentham and ter Meulen
(1997) and Robinson and Voronkov (2001). The journal of record for the field of pure math-
ematical logic is the Journal of Symbolic Logic, whereas the Journal of Applied Logic deals
with concerns closer to those of artificial intelligence.

Exercises 315

EXERCISES

8.1 A logical knowledge base represents the world using a set of sentences with no explicit
structure. An analogical representation, on the other hand, has physical structure that corre-
sponds directly to the structure of the thing represented. Consider a road map of your country
as an analogical representation of facts about the country—it represents facts with a map lan-
guage. The two-dimensional structure of the map corresponds to the two-dimensional surface
of the area.

a. Give five examples of symbols in the map language.

b. An explicit sentence is a sentence that the creator of the representation actually writes
down. An implicit sentence is a sentence that results from explicit sentences because
of properties of the analogical representation. Give three examples each of implicit and
explicit sentences in the map language.

c. Give three examples of facts about the physical structure of your country that cannot be
represented in the map language.

d. Give two examples of facts that are much easier to express in the map language than in
first-order logic.

e. Give two other examples of useful analogical representations. What are the advantages
and disadvantages of each of these languages?

8.2 Consider a knowledge base containing just two sentences: P (a) and P (b). Does this
knowledge base entail ∀x P (x)? Explain your answer in terms of models.

8.3 Is the sentence ∃x, y x= y valid? Explain.

8.4 Write down a logical sentence such that every world in which it is true contains exactly
two objects.

8.5 Consider a symbol vocabulary that contains c constant symbols, pk predicate symbols
of each arity k, and fk function symbols of each arity k, where 1 ≤ k ≤ A. Let the domain
size be fixed at D. For any given model, each predicate or function symbol is mapped onto a
relation or function, respectively, of the same arity. You may assume that the functions in the
model allow some input tuples to have no value for the function (i.e., the value is the invisible
object). Derive a formula for the number of possible models for a domain with D elements.
Don’t worry about eliminating redundant combinations.

8.6 Which of the following are valid (necessarily true) sentences?

a. (∃x x= x) ⇒ (∀ y ∃z y = z).

b. ∀x P (x) ∨ ¬P (x).

c. ∀x Smart(x) ∨ (x= x).

8.7 Consider a version of the semantics for first-order logic in which models with empty
domains are allowed. Give at least two examples of sentences that are valid according to the

316 Chapter 8. First-Order Logic

standard semantics but not according to the new semantics. Discuss which outcome makes
more intuitive sense for your examples.

8.8 Does the fact ¬Spouse(George ,Laura) follow from the facts Jim 6= George and
Spouse(Jim,Laura)? If so, give a proof; if not, supply additional axioms as needed. What
happens if we use Spouse as a unary function symbol instead of a binary predicate?

8.9 Consider a vocabulary with the following symbols:

Occupation(p, o): Predicate. Person p has occupation o.
Customer (p1, p2): Predicate. Person p1 is a customer of person p2.
Boss(p1, p2): Predicate. Person p1 is a boss of person p2.
Doctor , Surgeon , Lawyer , Actor : Constants denoting occupations.
Emily , Joe : Constants denoting people.

Use these symbols to write the following assertions in first-order logic:

a. Emily is either a surgeon or a lawyer.

b. Joe is an actor, but he also holds another job.

c. All surgeons are doctors.

d. Joe does not have a lawyer (i.e., is not a customer of any lawyer).

e. Emily has a boss who is a lawyer.

f. There exists a lawyer all of whose customers are doctors.

g. Every surgeon has a lawyer.

8.10 In each of the following we give an English sentence and a number of candidate logical
expressions. For each of the logical expressions, state whether it (1) correctly expresses the
English sentence; (2) is syntactically invalid and therefore meaningless; or (3) is syntactically
valid but does not express the meaning of the English sentence.

a. Every cat loves its mother or father.

(i) ∀x Cat(x) ⇒ Loves(x,Mother (x) ∨ Father (x)).
(ii) ∀x ¬Cat(x) ∨ Loves(x,Mother (x)) ∨ Loves(x,Father (x)).

(iii) ∀x Cat(x) ∧ (Loves(x,Mother (x)) ∨ Loves(x,Father (x))).

b. Every dog who loves one of its brothers is happy.

(i) ∀x Dog(x) ∧ (∃y Brother (y, x) ∧ Loves(x, y)) ⇒ Happy(x).
(ii) ∀x, y Dog(x) ∧ Brother (y, x) ∧ Loves(x, y) ⇒ Happy(x).

(iii) ∀x Dog(x) ∧ [∀ y Brother (y, x) ⇔ Loves(x, y)] ⇒ Happy(x).

c. No dog bites a child of its owner.

(i) ∀x Dog(x) ⇒ ¬Bites(x,Child(Owner (x))).
(ii) ¬∃x, y Dog(x) ∧ Child(y,Owner(x)) ∧ Bites(x, y).

(iii) ∀x Dog(x) ⇒ (∀ y Child(y,Owner (x)) ⇒ ¬Bites(x, y)).
(iv) ¬∃x Dog(x) ⇒ (∃ y Child(y,Owner(x)) ∧ Bites(x, y)).

d. Everyone’s zip code within a state has the same first digit.

Exercises 317

(i) ∀x, s, z1 [State(s) ∧ LivesIn(x, s) ∧ Zip(x)= z1] ⇒

[∀ y, z2 LivesIn(y, s) ∧ Zip(y)= z2 ⇒ Digit(1, z1)=Digit(1, z2)].
(ii) ∀x, s [State(s) ∧ LivesIn(x, s) ∧ ∃ z1 Zip(x)= z1] ⇒

[∀ y, z2 LivesIn(y, s) ∧ Zip(y)= z2 ∧Digit(1, z1)=Digit(1, z2)].
(iii) ∀x, y, s State(s)∧LivesIn(x, s)∧LivesIn(y, s) ⇒ Digit(1,Zip(x)=Zip(y)).
(iv) ∀x, y, s State(s) ∧ LivesIn(x, s) ∧ LivesIn(y, s) ⇒

Digit(1,Zip(x))= Digit(1,Zip(y)).

8.11 Complete the following exercises about logical senntences:

a. Translate into good, natural English (no xs or ys!):

∀x, y, l SpeaksLanguage(x, l) ∧ SpeaksLanguage(y, l)

⇒ Understands(x, y) ∧ Understands(y, x).

b. Explain why this sentence is entailed by the sentence

∀x, y, l SpeaksLanguage(x, l) ∧ SpeaksLanguage(y, l)

⇒ Understands(x, y).

c. Translate into first-order logic the following sentences:

(i) Understanding leads to friendship.
(ii) Friendship is transitive.

Remember to define all predicates, functions, and constants you use.

8.12 True or false? Explain.

a. ∃x x=Rumpelstiltskin is a valid (necessarily true) sentence of first-order logic.

b. Every existentially quantified sentence in first-order logic is true in any model that con-
tains exactly one object.

c. ∀x, y x= y is satisfiable.

8.13 Rewrite the first two Peano axioms in Section 8.3.3 as a single axiom that defines
NatNum(x) so as to exclude the possibility of natural numbers except for those generated by
the successor function.

8.14 Equation (8.4) on page 306 defines the conditions under which a square is breezy. Here
we consider two other ways to describe this aspect of the wumpus world.

a. We can write diagnostic rules leading from observed effects to hidden causes. For find-DIAGNOSTIC RULE

ing pits, the obvious diagnostic rules say that if a square is breezy, some adjacent square
must contain a pit; and if a square is not breezy, then no adjacent square contains a pit.
Write these two rules in first-order logic and show that their conjunction is logically
equivalent to Equation (8.4).

b. We can write causal rules leading from cause to effect. One obvious causal rule is thatCAUSAL RULE

a pit causes all adjacent squares to be breezy. Write this rule in first-order logic, explain
why it is incomplete compared to Equation (8.4), and supply the missing axiom.

318 Chapter 8. First-Order Logic

Beatrice

Andrew

EugenieWilliam Harry

CharlesDiana

MumGeorge

PhilipElizabeth MargaretKyddSpencer

Peter

Mark

Zara

Anne Sarah Edward Sophie

Louise James

Figure 8.7 A typical family tree. The symbol “⊲⊳” connects spouses and arrows point to
children.

8.15 Write axioms describing the predicates Grandchild , Greatgrandparent , Ancestor ,
Brother , Sister , Daughter , Son , FirstCousin , BrotherInLaw , SisterInLaw , Aunt , and
Uncle. Find out the proper definition of mth cousin n times removed, and write the def-
inition in first-order logic. Now write down the basic facts depicted in the family tree in
Figure 8.7. Using a suitable logical reasoning system, TELL it all the sentences you have
written down, and ASK it who are Elizabeth’s grandchildren, Diana’s brothers-in-law, Zara’s
great-grandparents, and Eugenie’s ancestors.

8.16 Write down a sentence asserting that + is a commutative function. Does your sentence
follow from the Peano axioms? If so, explain why; if not, give a model in which the axioms
are true and your sentence is false.

8.17 Using the set axioms as examples, write axioms for the list domain, including all the
constants, functions, and predicates mentioned in the chapter.

8.18 Explain what is wrong with the following proposed definition of adjacent squares in
the wumpus world:

∀x, y Adjacent([x, y], [x + 1, y]) ∧Adjacent([x, y], [x, y + 1]) .

8.19 Write out the axioms required for reasoning about the wumpus’s location, using a
constant symbol Wumpus and a binary predicate At(Wumpus ,Location). Remember that
there is only one wumpus.

8.20 Assuming predicates Parent(p, q) and Female(p) and constants Joan and Kevin,
with the obvious meanings, express each of the following sentences in first-order logic. (You
may use the abbreviation ∃1 to mean “there exists exactly one.”)

a. Joan has a daughter (possibly more than one, and possibly sons as well).

b. Joan has exactly one daughter (but may have sons as well).

c. Joan has exactly one child, a daughter.

d. Joan and Kevin have exactly one child together.

e. Joan has at least one child with Kevin, and no children with anyone else.

Exercises 319

8.21 Arithmetic assertions can be written in first-order logic with the predicate symbol <,
the function symbols + and ×, and the constant symbols 0 and 1. Additional predicates can
also be defined with biconditionals.

a. Represent the property “x is an even number.”

b. Represent the property “x is prime.”

c. Goldbach’s conjecture is the conjecture (unproven as yet) that every even number is
equal to the sum of two primes. Represent this conjecture as a logical sentence.

8.22 In Chapter 6, we used equality to indicate the relation between a variable and its value.
For instance, we wrote WA= red to mean that Western Australia is colored red. Repre-
senting this in first-order logic, we must write more verbosely ColorOf (WA)= red . What
incorrect inference could be drawn if we wrote sentences such as WA= red directly as logical
assertions?

8.23 Write in first-order logic the assertion that every key and at least one of every pair of
socks will eventually be lost forever, using only the following vocabulary: Key(x), x is a key;
Sock(x), x is a sock; Pair(x, y), x and y are a pair; Now , the current time; Before(t1, t2),
time t1 comes before time t2; Lost(x, t), object x is lost at time t.

8.24 Translate into first-order logic the sentence “Everyone’s DNA is unique and is derived
from their parents’ DNA.” You must specify the precise intended meaning of your vocabulary
terms. (Hint: Do not use the predicate Unique(x), since uniqueness is not really a property
of an object in itself!)

8.25 For each of the following sentences in English, decide if the accompanying first-order
logic sentence is a good translation. If not, explain why not and correct it.

a. Any apartment in London has lower rent than some apartments in Paris.

∀x [Apt(x) ∧ In(x,London)] ⇒ ∃ y ([Apt(y) ∧ In(y,Paris)] ⇒

(Rent(x) < Rent(y))) .

b. There is exactly one apartment in Paris with rent below $1000.

∃x Apt(x) ∧ In(x,Paris) ∧

∀ y [Apt(y) ∧ In(y,Paris) ∧ (Rent(y) < Dollars(1000))] ⇒ (y = x).

c. If an apartment is more expensive than all apartments in London, it must be in Moscow.

∀x Apt(x) ∧ [∀ y Apt(y) ∧ In(y,London) ∧ (Rent(x) > Rent(y))] ⇒

In(x,Moscow).

8.26 Represent the following sentences in first-order logic, using a consistent vocabulary
(which you must define):

a. Some students took French in spring 2009.

b. Every student who takes French passes it.

c. Only one student took Greek in spring 2009.

d. The best score in Greek is always lower than the best score in French.

320 Chapter 8. First-Order Logic

Z0

Z1

Z2

Z3
Z4

X0
Y0

X1
Y1

X2
Y2

X3
Y3

Ad0

Ad1

Ad2

Ad3

X0X1X2X3

Z0Z1Z2Z3Z4

Y0Y1Y2Y3+

Figure 8.8 A four-bit adder. Each Ad i is a one-bit adder, as in Figure 8.6 on page 309.

e. Every person who buys a policy is smart.

f. There is an agent who sells policies only to people who are not insured.

g. There is a barber who shaves all men in town who do not shave themselves.

h. A person born in the UK, each of whose parents is a UK citizen or a UK resident, is a
UK citizen by birth.

i. A person born outside the UK, one of whose parents is a UK citizen by birth, is a UK
citizen by descent.

j. Politicians can fool some of the people all of the time, and they can fool all of the people
some of the time, but they can’t fool all of the people all of the time.

k. All Greeks speak the same language. (Use Speaks(x, l) to mean that person x speaks
language l.)

8.27 Write a general set of facts and axioms to represent the assertion “Wellington heard
about Napoleon’s death” and to correctly answer the question “Did Napoleon hear about
Wellington’s death?”

8.28 Extend the vocabulary from Section 8.4 to define addition for n-bit binary numbers.
Then encode the description of the four-bit adder in Figure 8.8, and pose the queries needed
to verify that it is in fact correct.

8.29 The circuit representation in the chapter is more detailed than necessary if we care
only about circuit functionality. A simpler formulation describes any m-input, n-output gate
or circuit using a predicate with m+n arguments, such that the predicate is true exactly when
the inputs and outputs are consistent. For example, NOT gates are described by the binary
predicate NOT (i, o), for which NOT (0, 1) and NOT (1, 0) are known. Compositions of
gates are defined by conjunctions of gate predicates in which shared variables indicate direct
connections. For example, a NAND circuit can be composed from ANDs and NOT s:

∀ i1, i2, oa, o AND(i1, i2, oa) ∧ NOT (oa, o) ⇒ NAND(i1, i2, o) .

Exercises 321

Using this representation, define the one-bit adder in Figure 8.6 and the four-bit adder in
Figure 8.8, and explain what queries you would use to verify the designs. What kinds of
queries are not supported by this representation that are supported by the representation in
Section 8.4?

8.30 Obtain a passport application for your country, identify the rules determining eligi-
bility for a passport, and translate them into first-order logic, following the steps outlined in
Section 8.4.

8.31 Consider a first-order logical knowledge base that describes worlds containing people,
songs, albums (e.g., “Meet the Beatles”) and disks (i.e., particular physical instances of CDs).
The vocabulary contains the following symbols:

CopyOf (d, a): Predicate. Disk d is a copy of album a.
Owns(p, d): Predicate. Person p owns disk d.
Sings(p, s, a): Album a includes a recording of song s sung by person p.
Wrote(p, s): Person p wrote song s.
McCartney , Gershwin , BHoliday , Joe , EleanorRigby , TheManILove , Revolver :
Constants with the obvious meanings.

Express the following statements in first-order logic:

a. Gershwin wrote “The Man I Love.”

b. Gershwin did not write “Eleanor Rigby.”

c. Either Gershwin or McCartney wrote “The Man I Love.”

d. Joe has written at least one song.

e. Joe owns a copy of Revolver.

f. Every song that McCartney sings on Revolver was written by McCartney.

g. Gershwin did not write any of the songs on Revolver.

h. Every song that Gershwin wrote has been recorded on some album. (Possibly different
songs are recorded on different albums.)

i. There is a single album that contains every song that Joe has written.

j. Joe owns a copy of an album that has Billie Holiday singing “The Man I Love.”

k. Joe owns a copy of every album that has a song sung by McCartney. (Of course, each
different album is instantiated in a different physical CD.)

l. Joe owns a copy of every album on which all the songs are sung by Billie Holiday.

9 INFERENCE IN
FIRST-ORDER LOGIC

In which we define effective procedures for answering questions posed in first-
order logic.

Chapter 7 showed how sound and complete inference can be achieved for propositional logic.
In this chapter, we extend those results to obtain algorithms that can answer any answer-
able question stated in first-order logic. Section 9.1 introduces inference rules for quantifiers
and shows how to reduce first-order inference to propositional inference, albeit at potentially
great expense. Section 9.2 describes the idea of unification, showing how it can be used
to construct inference rules that work directly with first-order sentences. We then discuss
three major families of first-order inference algorithms. Forward chaining and its applica-
tions to deductive databases and production systems are covered in Section 9.3; backward
chaining and logic programming systems are developed in Section 9.4. Forward and back-
ward chaining can be very efficient, but are applicable only to knowledge bases that can
be expressed as sets of Horn clauses. General first-order sentences require resolution-based
theorem proving, which is described in Section 9.5.

9.1 PROPOSITIONAL VS. FIRST-ORDER INFERENCE

This section and the next introduce the ideas underlying modern logical inference systems.
We begin with some simple inference rules that can be applied to sentences with quantifiers
to obtain sentences without quantifiers. These rules lead naturally to the idea that first-order
inference can be done by converting the knowledge base to propositional logic and using
propositional inference, which we already know how to do. The next section points out an
obvious shortcut, leading to inference methods that manipulate first-order sentences directly.

9.1.1 Inference rules for quantifiers

Let us begin with universal quantifiers. Suppose our knowledge base contains the standard
folkloric axiom stating that all greedy kings are evil:

∀x King(x) ∧Greedy(x) ⇒ Evil(x) .

322

Section 9.1. Propositional vs. First-Order Inference 323

Then it seems quite permissible to infer any of the following sentences:

King(John) ∧Greedy(John) ⇒ Evil(John)

King(Richard) ∧Greedy(Richard) ⇒ Evil(Richard)

King(Father (John)) ∧Greedy(Father (John)) ⇒ Evil(Father (John)) .

...

The rule of Universal Instantiation (UI for short) says that we can infer any sentence ob-UNIVERSAL

INSTANTIATION

tained by substituting a ground term (a term without variables) for the variable.1 To writeGROUND TERM

out the inference rule formally, we use the notion of substitutions introduced in Section 8.3.
Let SUBST(θ, α) denote the result of applying the substitution θ to the sentence α. Then the
rule is written

∀ v α

SUBST({v/g}, α)

for any variable v and ground term g. For example, the three sentences given earlier are
obtained with the substitutions {x/John}, {x/Richard}, and {x/Father (John)}.

In the rule for Existential Instantiation, the variable is replaced by a single new con-EXISTENTIAL

INSTANTIATION

stant symbol. The formal statement is as follows: for any sentence α, variable v, and constant
symbol k that does not appear elsewhere in the knowledge base,

∃ v α

SUBST({v/k}, α)
.

For example, from the sentence

∃x Crown(x) ∧OnHead(x, John)

we can infer the sentence

Crown(C1) ∧OnHead(C1, John)

as long as C1 does not appear elsewhere in the knowledge base. Basically, the existential
sentence says there is some object satisfying a condition, and applying the existential instan-
tiation rule just gives a name to that object. Of course, that name must not already belong
to another object. Mathematics provides a nice example: suppose we discover that there is a
number that is a little bigger than 2.71828 and that satisfies the equation d(xy)/dy = x

y for x.
We can give this number a name, such as e, but it would be a mistake to give it the name of
an existing object, such as π. In logic, the new name is called a Skolem constant. Existen-SKOLEM CONSTANT

tial Instantiation is a special case of a more general process called skolemization, which we
cover in Section 9.5.

Whereas Universal Instantiation can be applied many times to produce many different
consequences, Existential Instantiation can be applied once, and then the existentially quan-
tified sentence can be discarded. For example, we no longer need ∃x Kill(x,Victim) once
we have added the sentence Kill(Murderer ,Victim). Strictly speaking, the new knowledge
base is not logically equivalent to the old, but it can be shown to be inferentially equivalentINFERENTIAL

EQUIVALENCE

in the sense that it is satisfiable exactly when the original knowledge base is satisfiable.

1 Do not confuse these substitutions with the extended interpretations used to define the semantics of quantifiers.
The substitution replaces a variable with a term (a piece of syntax) to produce a new sentence, whereas an
interpretation maps a variable to an object in the domain.

324 Chapter 9. Inference in First-Order Logic

9.1.2 Reduction to propositional inference

Once we have rules for inferring nonquantified sentences from quantified sentences, it be-
comes possible to reduce first-order inference to propositional inference. In this section we
give the main ideas; the details are given in Section 9.5.

The first idea is that, just as an existentially quantified sentence can be replaced by
one instantiation, a universally quantified sentence can be replaced by the set of all possible
instantiations. For example, suppose our knowledge base contains just the sentences

∀x King(x) ∧Greedy(x) ⇒ Evil(x)

King(John)

Greedy(John)

Brother (Richard , John) .

(9.1)

Then we apply UI to the first sentence using all possible ground-term substitutions from the
vocabulary of the knowledge base—in this case, {x/John} and {x/Richard}. We obtain

King(John) ∧Greedy(John) ⇒ Evil(John)

King(Richard) ∧Greedy(Richard) ⇒ Evil(Richard) ,

and we discard the universally quantified sentence. Now, the knowledge base is essentially
propositional if we view the ground atomic sentences—King (John), Greedy(John), and
so on—as proposition symbols. Therefore, we can apply any of the complete propositional
algorithms in Chapter 7 to obtain conclusions such as Evil(John).

This technique of propositionalization can be made completely general, as we show
in Section 9.5; that is, every first-order knowledge base and query can be propositionalized
in such a way that entailment is preserved. Thus, we have a complete decision procedure
for entailment . . . or perhaps not. There is a problem: when the knowledge base includes
a function symbol, the set of possible ground-term substitutions is infinite! For example, if
the knowledge base mentions the Father symbol, then infinitely many nested terms such as
Father (Father (Father (John))) can be constructed. Our propositional algorithms will have
difficulty with an infinitely large set of sentences.

Fortunately, there is a famous theorem due to Jacques Herbrand (1930) to the effect
that if a sentence is entailed by the original, first-order knowledge base, then there is a proof
involving just a finite subset of the propositionalized knowledge base. Since any such subset
has a maximum depth of nesting among its ground terms, we can find the subset by first
generating all the instantiations with constant symbols (Richard and John), then all terms of
depth 1 (Father (Richard) and Father (John)), then all terms of depth 2, and so on, until we
are able to construct a propositional proof of the entailed sentence.

We have sketched an approach to first-order inference via propositionalization that is
complete—that is, any entailed sentence can be proved. This is a major achievement, given
that the space of possible models is infinite. On the other hand, we do not know until the
proof is done that the sentence is entailed! What happens when the sentence is not entailed?
Can we tell? Well, for first-order logic, it turns out that we cannot. Our proof procedure can
go on and on, generating more and more deeply nested terms, but we will not know whether
it is stuck in a hopeless loop or whether the proof is just about to pop out. This is very much

Section 9.2. Unification and Lifting 325

like the halting problem for Turing machines. Alan Turing (1936) and Alonzo Church (1936)
both proved, in rather different ways, the inevitability of this state of affairs. The question of
entailment for first-order logic is semidecidable—that is, algorithms exist that say yes to every
entailed sentence, but no algorithm exists that also says no to every nonentailed sentence.

9.2 UNIFICATION AND LIFTING

The preceding section described the understanding of first-order inference that existed up
to the early 1960s. The sharp-eyed reader (and certainly the computational logicians of the
early 1960s) will have noticed that the propositionalization approach is rather inefficient. For
example, given the query Evil(x) and the knowledge base in Equation (9.1), it seems per-
verse to generate sentences such as King(Richard) ∧Greedy(Richard)⇒ Evil(Richard).
Indeed, the inference of Evil(John) from the sentences

∀x King(x) ∧Greedy(x) ⇒ Evil(x)

King(John)

Greedy(John)

seems completely obvious to a human being. We now show how to make it completely
obvious to a computer.

9.2.1 A first-order inference rule

The inference that John is evil—that is, that {x/John} solves the query Evil(x)—works like
this: to use the rule that greedy kings are evil, find some x such that x is a king and x is
greedy, and then infer that this x is evil. More generally, if there is some substitution θ that
makes each of the conjuncts of the premise of the implication identical to sentences already
in the knowledge base, then we can assert the conclusion of the implication, after applying θ.
In this case, the substitution θ = {x/John} achieves that aim.

We can actually make the inference step do even more work. Suppose that instead of
knowing Greedy(John), we know that everyone is greedy:

∀ y Greedy(y) . (9.2)

Then we would still like to be able to conclude that Evil(John), because we know that
John is a king (given) and John is greedy (because everyone is greedy). What we need for
this to work is to find a substitution both for the variables in the implication sentence and
for the variables in the sentences that are in the knowledge base. In this case, applying the
substitution {x/John , y/John} to the implication premises King(x) and Greedy(x) and the
knowledge-base sentences King(John) and Greedy(y) will make them identical. Thus, we
can infer the conclusion of the implication.

This inference process can be captured as a single inference rule that we call Gener-
alized Modus Ponens:2 For atomic sentences pi, pi

′, and q, where there is a substitution θ
GENERALIZED

MODUS PONENS

326 Chapter 9. Inference in First-Order Logic

such that SUBST(θ, pi
′)= SUBST(θ, pi), for all i,

p1
′

, p2
′

, . . . , pn
′

, (p1 ∧ p2 ∧ . . . ∧ pn ⇒ q)

SUBST(θ, q)
.

There are n+1 premises to this rule: the n atomic sentences pi
′ and the one implication. The

conclusion is the result of applying the substitution θ to the consequent q. For our example:

p1
′ is King(John) p1 is King(x)

p2
′ is Greedy(y) p2 is Greedy(x)

θ is {x/John , y/John} q is Evil(x)

SUBST(θ, q) is Evil(John) .

It is easy to show that Generalized Modus Ponens is a sound inference rule. First, we observe
that, for any sentence p (whose variables are assumed to be universally quantified) and for
any substitution θ,

p |= SUBST(θ, p)

holds by Universal Instantiation. It holds in particular for a θ that satisfies the conditions of
the Generalized Modus Ponens rule. Thus, from p1

′

, . . . , pn
′ we can infer

SUBST(θ, p1
′

) ∧ . . . ∧ SUBST(θ, pn
′

)

and from the implication p1 ∧ . . . ∧ pn ⇒ q we can infer

SUBST(θ, p1) ∧ . . . ∧ SUBST(θ, pn) ⇒ SUBST(θ, q) .

Now, θ in Generalized Modus Ponens is defined so that SUBST(θ, pi
′)= SUBST(θ, pi), for

all i; therefore the first of these two sentences matches the premise of the second exactly.
Hence, SUBST(θ, q) follows by Modus Ponens.

Generalized Modus Ponens is a lifted version of Modus Ponens—it raises Modus Po-LIFTING

nens from ground (variable-free) propositional logic to first-order logic. We will see in the
rest of this chapter that we can develop lifted versions of the forward chaining, backward
chaining, and resolution algorithms introduced in Chapter 7. The key advantage of lifted
inference rules over propositionalization is that they make only those substitutions that are
required to allow particular inferences to proceed.

9.2.2 Unification

Lifted inference rules require finding substitutions that make different logical expressions
look identical. This process is called unification and is a key component of all first-orderUNIFICATION

inference algorithms. The UNIFY algorithm takes two sentences and returns a unifier forUNIFIER

them if one exists:

UNIFY(p, q)= θ where SUBST(θ, p)= SUBST(θ, q) .

Let us look at some examples of how UNIFY should behave. Suppose we have a query
AskVars(Knows(John , x)): whom does John know? Answers to this query can be found

2 Generalized Modus Ponens is more general than Modus Ponens (page 249) in the sense that the known facts
and the premise of the implication need match only up to a substitution, rather than exactly. On the other hand,
Modus Ponens allows any sentence α as the premise, rather than just a conjunction of atomic sentences.

Section 9.2. Unification and Lifting 327

by finding all sentences in the knowledge base that unify with Knows(John , x). Here are the
results of unification with four different sentences that might be in the knowledge base:

UNIFY(Knows(John , x), Knows(John , Jane)) = {x/Jane}

UNIFY(Knows(John , x), Knows(y,Bill)) = {x/Bill , y/John}

UNIFY(Knows(John , x), Knows(y,Mother (y))) = {y/John , x/Mother (John)}

UNIFY(Knows(John , x), Knows(x,Elizabeth)) = fail .

The last unification fails because x cannot take on the values John and Elizabeth at the
same time. Now, remember that Knows(x,Elizabeth) means “Everyone knows Elizabeth,”
so we should be able to infer that John knows Elizabeth. The problem arises only because
the two sentences happen to use the same variable name, x. The problem can be avoided
by standardizing apart one of the two sentences being unified, which means renaming itsSTANDARDIZING

APART

variables to avoid name clashes. For example, we can rename x in Knows(x,Elizabeth) to
x17 (a new variable name) without changing its meaning. Now the unification will work:

UNIFY(Knows(John , x), Knows(x17,Elizabeth)) = {x/Elizabeth , x17/John} .

Exercise 9.13 delves further into the need for standardizing apart.
There is one more complication: we said that UNIFY should return a substitution

that makes the two arguments look the same. But there could be more than one such uni-
fier. For example, UNIFY(Knows(John , x),Knows(y, z)) could return {y/John , x/z} or
{y/John , x/John , z/John}. The first unifier gives Knows(John , z) as the result of unifi-
cation, whereas the second gives Knows(John , John). The second result could be obtained
from the first by an additional substitution {z/John}; we say that the first unifier is more
general than the second, because it places fewer restrictions on the values of the variables. It
turns out that, for every unifiable pair of expressions, there is a single most general unifier (orMOST GENERAL

UNIFIER

MGU) that is unique up to renaming and substitution of variables. (For example, {x/John}

and {y/John} are considered equivalent, as are {x/John , y/John} and {x/John , y/x}.) In
this case it is {y/John , x/z}.

An algorithm for computing most general unifiers is shown in Figure 9.1. The process
is simple: recursively explore the two expressions simultaneously “side by side,” building up
a unifier along the way, but failing if two corresponding points in the structures do not match.
There is one expensive step: when matching a variable against a complex term, one must
check whether the variable itself occurs inside the term; if it does, the match fails because no
consistent unifier can be constructed. For example, S(x) can’t unify with S(S(x)). This so-
called occur check makes the complexity of the entire algorithm quadratic in the size of theOCCUR CHECK

expressions being unified. Some systems, including all logic programming systems, simply
omit the occur check and sometimes make unsound inferences as a result; other systems use
more complex algorithms with linear-time complexity.

9.2.3 Storage and retrieval

Underlying the TELL and ASK functions used to inform and interrogate a knowledge base
are the more primitive STORE and FETCH functions. STORE(s) stores a sentence s into the
knowledge base and FETCH(q) returns all unifiers such that the query q unifies with some

328 Chapter 9. Inference in First-Order Logic

function UNIFY(x , y , θ) returns a substitution to make x and y identical
inputs: x , a variable, constant, list, or compound expression

y , a variable, constant, list, or compound expression
θ, the substitution built up so far (optional, defaults to empty)

if θ = failure then return failure
else if x = y then return θ

else if VARIABLE?(x) then return UNIFY-VAR(x , y , θ)
else if VARIABLE?(y) then return UNIFY-VAR(y , x , θ)
else if COMPOUND?(x) and COMPOUND?(y) then

return UNIFY(x .ARGS, y .ARGS, UNIFY(x .OP, y .OP, θ))
else if LIST?(x) and LIST?(y) then

return UNIFY(x .REST, y .REST, UNIFY(x .FIRST, y .FIRST, θ))
else return failure

function UNIFY-VAR(var , x , θ) returns a substitution

if {var/val} ∈ θ then return UNIFY(val , x , θ)
else if {x/val} ∈ θ then return UNIFY(var , val , θ)
else if OCCUR-CHECK?(var , x) then return failure
else return add {var /x} to θ

Figure 9.1 The unification algorithm. The algorithm works by comparing the structures
of the inputs, element by element. The substitution θ that is the argument to UNIFY is built
up along the way and is used to make sure that later comparisons are consistent with bindings
that were established earlier. In a compound expression such as F (A, B), the OP field picks
out the function symbol F and the ARGS field picks out the argument list (A, B).

sentence in the knowledge base. The problem we used to illustrate unification—finding all
facts that unify with Knows(John , x)—is an instance of FETCHing.

The simplest way to implement STORE and FETCH is to keep all the facts in one long
list and unify each query against every element of the list. Such a process is inefficient, but
it works, and it’s all you need to understand the rest of the chapter. The remainder of this
section outlines ways to make retrieval more efficient; it can be skipped on first reading.

We can make FETCH more efficient by ensuring that unifications are attempted only
with sentences that have some chance of unifying. For example, there is no point in trying
to unify Knows(John , x) with Brother (Richard , John). We can avoid such unifications by
indexing the facts in the knowledge base. A simple scheme called predicate indexing putsINDEXING

PREDICATE

INDEXING
all the Knows facts in one bucket and all the Brother facts in another. The buckets can be
stored in a hash table for efficient access.

Predicate indexing is useful when there are many predicate symbols but only a few
clauses for each symbol. Sometimes, however, a predicate has many clauses. For example,
suppose that the tax authorities want to keep track of who employs whom, using a predi-
cate Employs(x, y). This would be a very large bucket with perhaps millions of employers

Section 9.2. Unification and Lifting 329

Employs(x,y)

Employs(x,Richard) Employs(IBM,y)

Employs(IBM,Richard)

Employs(x,y)

Employs(John,John)

Employs(x,x)Employs(x,John) Employs(John,y)

(a) (b)

Figure 9.2 (a) The subsumption lattice whose lowest node is Employs(IBM ,Richard).
(b) The subsumption lattice for the sentence Employs(John, John).

and tens of millions of employees. Answering a query such as Employs(x,Richard) with
predicate indexing would require scanning the entire bucket.

For this particular query, it would help if facts were indexed both by predicate and by
second argument, perhaps using a combined hash table key. Then we could simply construct
the key from the query and retrieve exactly those facts that unify with the query. For other
queries, such as Employs(IBM , y), we would need to have indexed the facts by combining
the predicate with the first argument. Therefore, facts can be stored under multiple index
keys, rendering them instantly accessible to various queries that they might unify with.

Given a sentence to be stored, it is possible to construct indices for all possible queries
that unify with it. For the fact Employs(IBM ,Richard), the queries are

Employs(IBM ,Richard) Does IBM employ Richard?
Employs(x,Richard) Who employs Richard?
Employs(IBM , y) Whom does IBM employ?
Employs(x, y) Who employs whom?

These queries form a subsumption lattice, as shown in Figure 9.2(a). The lattice has someSUBSUMPTION

LATTICE

interesting properties. For example, the child of any node in the lattice is obtained from its
parent by a single substitution; and the “highest” common descendant of any two nodes is
the result of applying their most general unifier. The portion of the lattice above any ground
fact can be constructed systematically (Exercise 9.5). A sentence with repeated constants has
a slightly different lattice, as shown in Figure 9.2(b). Function symbols and variables in the
sentences to be stored introduce still more interesting lattice structures.

The scheme we have described works very well whenever the lattice contains a small
number of nodes. For a predicate with n arguments, however, the lattice contains O(2n)

nodes. If function symbols are allowed, the number of nodes is also exponential in the size
of the terms in the sentence to be stored. This can lead to a huge number of indices. At some
point, the benefits of indexing are outweighed by the costs of storing and maintaining all
the indices. We can respond by adopting a fixed policy, such as maintaining indices only on
keys composed of a predicate plus each argument, or by using an adaptive policy that creates
indices to meet the demands of the kinds of queries being asked. For most AI systems, the
number of facts to be stored is small enough that efficient indexing is considered a solved
problem. For commercial databases, where facts number in the billions, the problem has
been the subject of intensive study and technology development..

330 Chapter 9. Inference in First-Order Logic

9.3 FORWARD CHAINING

A forward-chaining algorithm for propositional definite clauses was given in Section 7.5.
The idea is simple: start with the atomic sentences in the knowledge base and apply Modus
Ponens in the forward direction, adding new atomic sentences, until no further inferences
can be made. Here, we explain how the algorithm is applied to first-order definite clauses.
Definite clauses such as Situation ⇒ Response are especially useful for systems that make
inferences in response to newly arrived information. Many systems can be defined this way,
and forward chaining can be implemented very efficiently.

9.3.1 First-order definite clauses

First-order definite clauses closely resemble propositional definite clauses (page 256): they
are disjunctions of literals of which exactly one is positive. A definite clause either is atomic
or is an implication whose antecedent is a conjunction of positive literals and whose conse-
quent is a single positive literal. The following are first-order definite clauses:

King(x) ∧Greedy(x) ⇒ Evil(x) .

King(John) .

Greedy(y) .

Unlike propositional literals, first-order literals can include variables, in which case those
variables are assumed to be universally quantified. (Typically, we omit universal quantifiers
when writing definite clauses.) Not every knowledge base can be converted into a set of
definite clauses because of the single-positive-literal restriction, but many can. Consider the
following problem:

The law says that it is a crime for an American to sell weapons to hostile nations. The
country Nono, an enemy of America, has some missiles, and all of its missiles were sold
to it by Colonel West, who is American.

We will prove that West is a criminal. First, we will represent these facts as first-order definite
clauses. The next section shows how the forward-chaining algorithm solves the problem.

“. . . it is a crime for an American to sell weapons to hostile nations”:

American(x) ∧Weapon(y) ∧ Sells(x, y, z) ∧ Hostile(z) ⇒ Criminal (x) . (9.3)

“Nono . . . has some missiles.” The sentence ∃x Owns(Nono, x)∧Missile(x) is transformed
into two definite clauses by Existential Instantiation, introducing a new constant M1:

Owns(Nono,M1) (9.4)

Missile(M1). (9.5)

“All of its missiles were sold to it by Colonel West”:

Missile(x) ∧Owns(Nono, x) ⇒ Sells(West , x,Nono) . (9.6)

We will also need to know that missiles are weapons:

Missile(x)⇒Weapon(x) (9.7)

Section 9.3. Forward Chaining 331

and we must know that an enemy of America counts as “hostile”:

Enemy(x,America) ⇒ Hostile(x) . (9.8)

“West, who is American . . .”:

American(West) . (9.9)

“The country Nono, an enemy of America . . .”:

Enemy(Nono,America) . (9.10)

This knowledge base contains no function symbols and is therefore an instance of the class
of Datalog knowledge bases. Datalog is a language that is restricted to first-order definiteDATALOG

clauses with no function symbols. Datalog gets its name because it can represent the type of
statements typically made in relational databases. We will see that the absence of function
symbols makes inference much easier.

9.3.2 A simple forward-chaining algorithm

The first forward-chaining algorithm we consider is a simple one, shown in Figure 9.3. Start-
ing from the known facts, it triggers all the rules whose premises are satisfied, adding their
conclusions to the known facts. The process repeats until the query is answered (assuming
that just one answer is required) or no new facts are added. Notice that a fact is not “new”
if it is just a renaming of a known fact. One sentence is a renaming of another if theyRENAMING

are identical except for the names of the variables. For example, Likes(x, IceCream) and
Likes(y, IceCream) are renamings of each other because they differ only in the choice of x

or y; their meanings are identical: everyone likes ice cream.
We use our crime problem to illustrate how FOL-FC-ASK works. The implication

sentences are (9.3), (9.6), (9.7), and (9.8). Two iterations are required:

• On the first iteration, rule (9.3) has unsatisfied premises.
Rule (9.6) is satisfied with {x/M1}, and Sells(West ,M1,Nono) is added.
Rule (9.7) is satisfied with {x/M1}, and Weapon(M1) is added.
Rule (9.8) is satisfied with {x/Nono}, and Hostile(Nono) is added.

• On the second iteration, rule (9.3) is satisfied with {x/West , y/M1, z/Nono}, and
Criminal(West) is added.

Figure 9.4 shows the proof tree that is generated. Notice that no new inferences are possible
at this point because every sentence that could be concluded by forward chaining is already
contained explicitly in the KB. Such a knowledge base is called a fixed point of the inference
process. Fixed points reached by forward chaining with first-order definite clauses are similar
to those for propositional forward chaining (page 258); the principal difference is that a first-
order fixed point can include universally quantified atomic sentences.

FOL-FC-ASK is easy to analyze. First, it is sound, because every inference is just an
application of Generalized Modus Ponens, which is sound. Second, it is complete for definite
clause knowledge bases; that is, it answers every query whose answers are entailed by any
knowledge base of definite clauses. For Datalog knowledge bases, which contain no function
symbols, the proof of completeness is fairly easy. We begin by counting the number of

332 Chapter 9. Inference in First-Order Logic

function FOL-FC-ASK(KB , α) returns a substitution or false

inputs: KB , the knowledge base, a set of first-order definite clauses
α, the query, an atomic sentence

local variables: new , the new sentences inferred on each iteration

repeat until new is empty
new←{}

for each rule in KB do
(p1 ∧ . . . ∧ pn ⇒ q)← STANDARDIZE-VARIABLES(rule)
for each θ such that SUBST(θ,p1 ∧ . . . ∧ pn) = SUBST(θ,p′

1
∧ . . . ∧ p′

n)
for some p′

1
, . . . , p′

n in KB

q ′← SUBST(θ, q)
if q ′ does not unify with some sentence already in KB or new then

add q ′ to new

φ←UNIFY(q ′, α)
if φ is not fail then return φ

add new to KB

return false

Figure 9.3 A conceptually straightforward, but very inefficient, forward-chaining algo-
rithm. On each iteration, it adds to KB all the atomic sentences that can be inferred in one
step from the implication sentences and the atomic sentences already in KB . The function
STANDARDIZE-VARIABLES replaces all variables in its arguments with new ones that have
not been used before.

Hostile(Nono)

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)American(West)

Weapon(M1)

Criminal(West)

Sells(West,M1,Nono)

Figure 9.4 The proof tree generated by forward chaining on the crime example. The initial
facts appear at the bottom level, facts inferred on the first iteration in the middle level, and
facts inferred on the second iteration at the top level.

possible facts that can be added, which determines the maximum number of iterations. Let k

be the maximum arity (number of arguments) of any predicate, p be the number of predicates,
and n be the number of constant symbols. Clearly, there can be no more than pn

k distinct
ground facts, so after this many iterations the algorithm must have reached a fixed point. Then
we can make an argument very similar to the proof of completeness for propositional forward

Section 9.3. Forward Chaining 333

chaining. (See page 258.) The details of how to make the transition from propositional to
first-order completeness are given for the resolution algorithm in Section 9.5.

For general definite clauses with function symbols, FOL-FC-ASK can generate in-
finitely many new facts, so we need to be more careful. For the case in which an answer to
the query sentence q is entailed, we must appeal to Herbrand’s theorem to establish that the
algorithm will find a proof. (See Section 9.5 for the resolution case.) If the query has no
answer, the algorithm could fail to terminate in some cases. For example, if the knowledge
base includes the Peano axioms

NatNum(0)

∀n NatNum(n) ⇒ NatNum(S(n)) ,

then forward chaining adds NatNum(S(0)), NatNum(S(S(0))), NatNum(S(S(S(0)))),
and so on. This problem is unavoidable in general. As with general first-order logic, entail-
ment with definite clauses is semidecidable.

9.3.3 Efficient forward chaining

The forward-chaining algorithm in Figure 9.3 is designed for ease of understanding rather
than for efficiency of operation. There are three possible sources of inefficiency. First, the
“inner loop” of the algorithm involves finding all possible unifiers such that the premise of
a rule unifies with a suitable set of facts in the knowledge base. This is often called pattern
matching and can be very expensive. Second, the algorithm rechecks every rule on everyPATTERN MATCHING

iteration to see whether its premises are satisfied, even if very few additions are made to the
knowledge base on each iteration. Finally, the algorithm might generate many facts that are
irrelevant to the goal. We address each of these issues in turn.

Matching rules against known facts

The problem of matching the premise of a rule against the facts in the knowledge base might
seem simple enough. For example, suppose we want to apply the rule

Missile(x)⇒Weapon(x) .

Then we need to find all the facts that unify with Missile(x); in a suitably indexed knowledge
base, this can be done in constant time per fact. Now consider a rule such as

Missile(x) ∧Owns(Nono, x) ⇒ Sells(West , x,Nono) .

Again, we can find all the objects owned by Nono in constant time per object; then, for each
object, we could check whether it is a missile. If the knowledge base contains many objects
owned by Nono and very few missiles, however, it would be better to find all the missiles first
and then check whether they are owned by Nono. This is the conjunct ordering problem:CONJUNCT

ORDERING

find an ordering to solve the conjuncts of the rule premise so that the total cost is minimized.
It turns out that finding the optimal ordering is NP-hard, but good heuristics are available.
For example, the minimum-remaining-values (MRV) heuristic used for CSPs in Chapter 6
would suggest ordering the conjuncts to look for missiles first if fewer missiles than objects
are owned by Nono.

334 Chapter 9. Inference in First-Order Logic

WA

NT

SA

Q

NSW

V

T

Diff (wa ,nt) ∧Diff (wa , sa) ∧

Diff (nt , q) ∧Diff (nt , sa) ∧

Diff (q,nsw) ∧Diff (q, sa) ∧

Diff (nsw , v) ∧Diff (nsw , sa) ∧

Diff (v, sa) ⇒ Colorable()

Diff (Red ,Blue) Diff (Red ,Green)

Diff (Green ,Red) Diff (Green ,Blue)

Diff (Blue,Red) Diff (Blue,Green)

(a) (b)

Figure 9.5 (a) Constraint graph for coloring the map of Australia. (b) The map-coloring
CSP expressed as a single definite clause. Each map region is represented as a variable whose
value can be one of the constants Red , Green or Blue .

The connection between pattern matching and constraint satisfaction is actually very
close. We can view each conjunct as a constraint on the variables that it contains—for ex-
ample, Missile(x) is a unary constraint on x. Extending this idea, we can express every
finite-domain CSP as a single definite clause together with some associated ground facts.
Consider the map-coloring problem from Figure 6.1, shown again in Figure 9.5(a). An equiv-
alent formulation as a single definite clause is given in Figure 9.5(b). Clearly, the conclusion
Colorable() can be inferred only if the CSP has a solution. Because CSPs in general include
3-SAT problems as special cases, we can conclude that matching a definite clause against a
set of facts is NP-hard.

It might seem rather depressing that forward chaining has an NP-hard matching problem
in its inner loop. There are three ways to cheer ourselves up:

• We can remind ourselves that most rules in real-world knowledge bases are small and
simple (like the rules in our crime example) rather than large and complex (like the
CSP formulation in Figure 9.5). It is common in the database world to assume that
both the sizes of rules and the arities of predicates are bounded by a constant and to
worry only about data complexity—that is, the complexity of inference as a functionDATA COMPLEXITY

of the number of ground facts in the knowledge base. It is easy to show that the data
complexity of forward chaining is polynomial.

• We can consider subclasses of rules for which matching is efficient. Essentially every
Datalog clause can be viewed as defining a CSP, so matching will be tractable just
when the corresponding CSP is tractable. Chapter 6 describes several tractable families
of CSPs. For example, if the constraint graph (the graph whose nodes are variables
and whose links are constraints) forms a tree, then the CSP can be solved in linear
time. Exactly the same result holds for rule matching. For instance, if we remove South

Section 9.3. Forward Chaining 335

Australia from the map in Figure 9.5, the resulting clause is

Diff (wa ,nt) ∧Diff (nt , q) ∧Diff (q,nsw) ∧Diff (nsw , v) ⇒ Colorable()

which corresponds to the reduced CSP shown in Figure 6.12 on page 224. Algorithms
for solving tree-structured CSPs can be applied directly to the problem of rule matching.

• We can try to to eliminate redundant rule-matching attempts in the forward-chaining
algorithm, as described next.

Incremental forward chaining

When we showed how forward chaining works on the crime example, we cheated; in partic-
ular, we omitted some of the rule matching done by the algorithm shown in Figure 9.3. For
example, on the second iteration, the rule

Missile(x)⇒Weapon(x)

matches against Missile(M1) (again), and of course the conclusion Weapon(M1) is already
known so nothing happens. Such redundant rule matching can be avoided if we make the
following observation: Every new fact inferred on iteration t must be derived from at least
one new fact inferred on iteration t − 1. This is true because any inference that does not
require a new fact from iteration t− 1 could have been done at iteration t− 1 already.

This observation leads naturally to an incremental forward-chaining algorithm where,
at iteration t, we check a rule only if its premise includes a conjunct pi that unifies with a fact
p
′

i newly inferred at iteration t− 1. The rule-matching step then fixes pi to match with p
′

i, but
allows the other conjuncts of the rule to match with facts from any previous iteration. This
algorithm generates exactly the same facts at each iteration as the algorithm in Figure 9.3, but
is much more efficient.

With suitable indexing, it is easy to identify all the rules that can be triggered by any
given fact, and indeed many real systems operate in an “update” mode wherein forward chain-
ing occurs in response to each new fact that is TELLed to the system. Inferences cascade
through the set of rules until the fixed point is reached, and then the process begins again for
the next new fact.

Typically, only a small fraction of the rules in the knowledge base are actually triggered
by the addition of a given fact. This means that a great deal of redundant work is done in
repeatedly constructing partial matches that have some unsatisfied premises. Our crime ex-
ample is rather too small to show this effectively, but notice that a partial match is constructed
on the first iteration between the rule

American(x) ∧Weapon(y) ∧ Sells(x, y, z) ∧ Hostile(z) ⇒ Criminal (x)

and the fact American(West). This partial match is then discarded and rebuilt on the second
iteration (when the rule succeeds). It would be better to retain and gradually complete the
partial matches as new facts arrive, rather than discarding them.

The rete algorithm3 was the first to address this problem. The algorithm preprocessesRETE

the set of rules in the knowledge base to construct a sort of dataflow network in which each

3 Rete is Latin for net. The English pronunciation rhymes with treaty.

336 Chapter 9. Inference in First-Order Logic

node is a literal from a rule premise. Variable bindings flow through the network and are
filtered out when they fail to match a literal. If two literals in a rule share a variable—for
example, Sells(x, y, z) ∧ Hostile(z) in the crime example—then the bindings from each
literal are filtered through an equality node. A variable binding reaching a node for an n-
ary literal such as Sells(x, y, z) might have to wait for bindings for the other variables to be
established before the process can continue. At any given point, the state of a rete network
captures all the partial matches of the rules, avoiding a great deal of recomputation.

Rete networks, and various improvements thereon, have been a key component of so-
called production systems, which were among the earliest forward-chaining systems inPRODUCTION

SYSTEM

widespread use.4 The XCON system (originally called R1; McDermott, 1982) was built
with a production-system architecture. XCON contained several thousand rules for designing
configurations of computer components for customers of the Digital Equipment Corporation.
It was one of the first clear commercial successes in the emerging field of expert systems.
Many other similar systems have been built with the same underlying technology, which has
been implemented in the general-purpose language OPS-5.

Production systems are also popular in cognitive architectures—that is, models of hu-COGNITIVE

ARCHITECTURES

man reasoning—such as ACT (Anderson, 1983) and SOAR (Laird et al., 1987). In such sys-
tems, the “working memory” of the system models human short-term memory, and the pro-
ductions are part of long-term memory. On each cycle of operation, productions are matched
against the working memory of facts. A production whose conditions are satisfied can add or
delete facts in working memory. In contrast to the typical situation in databases, production
systems often have many rules and relatively few facts. With suitably optimized matching
technology, some modern systems can operate in real time with tens of millions of rules.

Irrelevant facts

The final source of inefficiency in forward chaining appears to be intrinsic to the approach
and also arises in the propositional context. Forward chaining makes all allowable inferences
based on the known facts, even if they are irrelevant to the goal at hand. In our crime example,
there were no rules capable of drawing irrelevant conclusions, so the lack of directedness was
not a problem. In other cases (e.g., if many rules describe the eating habits of Americans and
the prices of missiles), FOL-FC-ASK will generate many irrelevant conclusions.

One way to avoid drawing irrelevant conclusions is to use backward chaining, as de-
scribed in Section 9.4. Another solution is to restrict forward chaining to a selected subset of
rules, as in PL-FC-ENTAILS? (page 258). A third approach has emerged in the field of de-
ductive databases, which are large-scale databases, like relational databases, but which useDEDUCTIVE

DATABASES

forward chaining as the standard inference tool rather than SQL queries. The idea is to rewrite
the rule set, using information from the goal, so that only relevant variable bindings—those
belonging to a so-called magic set—are considered during forward inference. For example, ifMAGIC SET

the goal is Criminal (West), the rule that concludes Criminal (x) will be rewritten to include
an extra conjunct that constrains the value of x:

Magic(x) ∧ American(x) ∧Weapon(y) ∧ Sells(x, y, z) ∧ Hostile(z) ⇒ Criminal (x) .

4 The word production in production systems denotes a condition–action rule.

Section 9.4. Backward Chaining 337

The fact Magic(West) is also added to the KB. In this way, even if the knowledge base
contains facts about millions of Americans, only Colonel West will be considered during the
forward inference process. The complete process for defining magic sets and rewriting the
knowledge base is too complex to go into here, but the basic idea is to perform a sort of
“generic” backward inference from the goal in order to work out which variable bindings
need to be constrained. The magic sets approach can therefore be thought of as a kind of
hybrid between forward inference and backward preprocessing.

9.4 BACKWARD CHAINING

The second major family of logical inference algorithms uses the backward chaining ap-
proach introduced in Section 7.5 for definite clauses. These algorithms work backward from
the goal, chaining through rules to find known facts that support the proof. We describe
the basic algorithm, and then we describe how it is used in logic programming, which is the
most widely used form of automated reasoning. We also see that backward chaining has some
disadvantages compared with forward chaining, and we look at ways to overcome them. Fi-
nally, we look at the close connection between logic programming and constraint satisfaction
problems.

9.4.1 A backward-chaining algorithm

Figure 9.6 shows a backward-chaining algorithm for definite clauses. FOL-BC-ASK(KB ,
goal) will be proved if the knowledge base contains a clause of the form lhs ⇒ goal , where
lhs (left-hand side) is a list of conjuncts. An atomic fact like American(West) is considered
as a clause whose lhs is the empty list. Now a query that contains variables might be proved
in multiple ways. For example, the query Person(x) could be proved with the substitution
{x/John} as well as with {x/Richard}. So we implement FOL-BC-ASK as a generator—GENERATOR

a function that returns multiple times, each time giving one possible result.
Backward chaining is a kind of AND/OR search—the OR part because the goal query

can be proved by any rule in the knowledge base, and the AND part because all the conjuncts
in the lhs of a clause must be proved. FOL-BC-OR works by fetching all clauses that might
unify with the goal, standardizing the variables in the clause to be brand-new variables, and
then, if the rhs of the clause does indeed unify with the goal, proving every conjunct in the
lhs , using FOL-BC-AND. That function in turn works by proving each of the conjuncts in
turn, keeping track of the accumulated substitution as we go. Figure 9.7 is the proof tree for
deriving Criminal (West) from sentences (9.3) through (9.10).

Backward chaining, as we have written it, is clearly a depth-first search algorithm.
This means that its space requirements are linear in the size of the proof (neglecting, for
now, the space required to accumulate the solutions). It also means that backward chaining
(unlike forward chaining) suffers from problems with repeated states and incompleteness. We
will discuss these problems and some potential solutions, but first we show how backward
chaining is used in logic programming systems.

338 Chapter 9. Inference in First-Order Logic

function FOL-BC-ASK(KB , query) returns a generator of substitutions
return FOL-BC-OR(KB , query ,{ })

generator FOL-BC-OR(KB , goal , θ) yields a substitution
for each rule (lhs ⇒ rhs) in FETCH-RULES-FOR-GOAL(KB , goal) do

(lhs , rhs)← STANDARDIZE-VARIABLES((lhs , rhs))
for each θ

′ in FOL-BC-AND(KB , lhs , UNIFY(rhs , goal , θ)) do
yield θ

′

generator FOL-BC-AND(KB , goals , θ) yields a substitution
if θ = failure then return
else if LENGTH(goals) = 0 then yield θ

else do
first ,rest← FIRST(goals), REST(goals)
for each θ

′ in FOL-BC-OR(KB , SUBST(θ, first), θ) do
for each θ

′′ in FOL-BC-AND(KB , rest , θ′) do
yield θ

′′

Figure 9.6 A simple backward-chaining algorithm for first-order knowledge bases.

Hostile(Nono)

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)

Criminal(West)

Missile(y)

Weapon(y) Sells(West,M1,z)American(West)

{y/M1} { }{ }{ }

 {z/Nono}{ }

Figure 9.7 Proof tree constructed by backward chaining to prove that West is a criminal.
The tree should be read depth first, left to right. To prove Criminal (West), we have to prove
the four conjuncts below it. Some of these are in the knowledge base, and others require
further backward chaining. Bindings for each successful unification are shown next to the
corresponding subgoal. Note that once one subgoal in a conjunction succeeds, its substitution
is applied to subsequent subgoals. Thus, by the time FOL-BC-ASK gets to the last conjunct,
originally Hostile(z), z is already bound to Nono.

Section 9.4. Backward Chaining 339

9.4.2 Logic programming

Logic programming is a technology that comes fairly close to embodying the declarative
ideal described in Chapter 7: that systems should be constructed by expressing knowledge in
a formal language and that problems should be solved by running inference processes on that
knowledge. The ideal is summed up in Robert Kowalski’s equation,

Algorithm = Logic + Control .

Prolog is the most widely used logic programming language. It is used primarily as a rapid-PROLOG

prototyping language and for symbol-manipulation tasks such as writing compilers (Van Roy,
1990) and parsing natural language (Pereira and Warren, 1980). Many expert systems have
been written in Prolog for legal, medical, financial, and other domains.

Prolog programs are sets of definite clauses written in a notation somewhat different
from standard first-order logic. Prolog uses uppercase letters for variables and lowercase for
constants—the opposite of our convention for logic. Commas separate conjuncts in a clause,
and the clause is written “backwards” from what we are used to; instead of A ∧ B ⇒ C in
Prolog we have C :- A, B. Here is a typical example:

criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).

The notation [E|L] denotes a list whose first element is E and whose rest is L. Here is a
Prolog program for append(X,Y,Z), which succeeds if list Z is the result of appending
lists X and Y:

append([],Y,Y).
append([A|X],Y,[A|Z]) :- append(X,Y,Z).

In English, we can read these clauses as (1) appending an empty list with a list Y produces
the same list Y and (2) [A|Z] is the result of appending [A|X] onto Y, provided that Z is
the result of appending X onto Y. In most high-level languages we can write a similar recur-
sive function that describes how to append two lists. The Prolog definition is actually much
more powerful, however, because it describes a relation that holds among three arguments,
rather than a function computed from two arguments. For example, we can ask the query
append(X,Y,[1,2]): what two lists can be appended to give [1,2]? We get back the
solutions

X=[] Y=[1,2];
X=[1] Y=[2];
X=[1,2] Y=[]

The execution of Prolog programs is done through depth-first backward chaining, where
clauses are tried in the order in which they are written in the knowledge base. Some aspects
of Prolog fall outside standard logical inference:

• Prolog uses the database semantics of Section 8.2.8 rather than first-order semantics,
and this is apparent in its treatment of equality and negation (see Section 9.4.5).

• There is a set of built-in functions for arithmetic. Literals using these function symbols
are “proved” by executing code rather than doing further inference. For example, the

340 Chapter 9. Inference in First-Order Logic

goal “X is 4+3” succeeds with X bound to 7. On the other hand, the goal “5 is X+Y”
fails, because the built-in functions do not do arbitrary equation solving.5

• There are built-in predicates that have side effects when executed. These include input–
output predicates and the assert/retract predicates for modifying the knowledge
base. Such predicates have no counterpart in logic and can produce confusing results—
for example, if facts are asserted in a branch of the proof tree that eventually fails.

• The occur check is omitted from Prolog’s unification algorithm. This means that some
unsound inferences can be made; these are almost never a problem in practice.

• Prolog uses depth-first backward-chaining search with no checks for infinite recursion.
This makes it very fast when given the right set of axioms, but incomplete when given
the wrong ones.

Prolog’s design represents a compromise between declarativeness and execution efficiency—
inasmuch as efficiency was understood at the time Prolog was designed.

9.4.3 Efficient implementation of logic programs

The execution of a Prolog program can happen in two modes: interpreted and compiled.
Interpretation essentially amounts to running the FOL-BC-ASK algorithm from Figure 9.6,
with the program as the knowledge base. We say “essentially” because Prolog interpreters
contain a variety of improvements designed to maximize speed. Here we consider only two.

First, our implementation had to explicitly manage the iteration over possible results
generated by each of the subfunctions. Prolog interpreters have a global data structure,
a stack of choice points, to keep track of the multiple possibilities that we considered inCHOICE POINT

FOL-BC-OR. This global stack is more efficient, and it makes debugging easier, because
the debugger can move up and down the stack.

Second, our simple implementation of FOL-BC-ASK spends a good deal of time gener-
ating substitutions. Instead of explicitly constructing substitutions, Prolog has logic variables
that remember their current binding. At any point in time, every variable in the program ei-
ther is unbound or is bound to some value. Together, these variables and values implicitly
define the substitution for the current branch of the proof. Extending the path can only add
new variable bindings, because an attempt to add a different binding for an already bound
variable results in a failure of unification. When a path in the search fails, Prolog will back
up to a previous choice point, and then it might have to unbind some variables. This is done
by keeping track of all the variables that have been bound in a stack called the trail. As eachTRAIL

new variable is bound by UNIFY-VAR, the variable is pushed onto the trail. When a goal fails
and it is time to back up to a previous choice point, each of the variables is unbound as it is
removed from the trail.

Even the most efficient Prolog interpreters require several thousand machine instruc-
tions per inference step because of the cost of index lookup, unification, and building the
recursive call stack. In effect, the interpreter always behaves as if it has never seen the pro-
gram before; for example, it has to find clauses that match the goal. A compiled Prolog

5 Note that if the Peano axioms are provided, such goals can be solved by inference within a Prolog program.

Section 9.4. Backward Chaining 341

procedure APPEND(ax , y ,az , continuation)

trail←GLOBAL-TRAIL-POINTER()
if ax = [] and UNIFY(y ,az) then CALL(continuation)
RESET-TRAIL(trail)
a, x , z←NEW-VARIABLE(), NEW-VARIABLE(), NEW-VARIABLE()
if UNIFY(ax , [a | x]) and UNIFY(az , [a | z]) then APPEND(x , y , z , continuation)

Figure 9.8 Pseudocode representing the result of compiling the Append predicate. The
function NEW-VARIABLE returns a new variable, distinct from all other variables used so far.
The procedure CALL(continuation) continues execution with the specified continuation.

program, on the other hand, is an inference procedure for a specific set of clauses, so it knows
what clauses match the goal. Prolog basically generates a miniature theorem prover for each
different predicate, thereby eliminating much of the overhead of interpretation. It is also pos-
sible to open-code the unification routine for each different call, thereby avoiding explicitOPEN­CODE

analysis of term structure. (For details of open-coded unification, see Warren et al. (1977).)
The instruction sets of today’s computers give a poor match with Prolog’s semantics,

so most Prolog compilers compile into an intermediate language rather than directly into ma-
chine language. The most popular intermediate language is the Warren Abstract Machine,
or WAM, named after David H. D. Warren, one of the implementers of the first Prolog com-
piler. The WAM is an abstract instruction set that is suitable for Prolog and can be either
interpreted or translated into machine language. Other compilers translate Prolog into a high-
level language such as Lisp or C and then use that language’s compiler to translate to machine
language. For example, the definition of the Append predicate can be compiled into the code
shown in Figure 9.8. Several points are worth mentioning:

• Rather than having to search the knowledge base for Append clauses, the clauses be-
come a procedure and the inferences are carried out simply by calling the procedure.

• As described earlier, the current variable bindings are kept on a trail. The first step of the
procedure saves the current state of the trail, so that it can be restored by RESET-TRAIL

if the first clause fails. This will undo any bindings generated by the first call to UNIFY.

• The trickiest part is the use of continuations to implement choice points. You can thinkCONTINUATION

of a continuation as packaging up a procedure and a list of arguments that together
define what should be done next whenever the current goal succeeds. It would not
do just to return from a procedure like APPEND when the goal succeeds, because it
could succeed in several ways, and each of them has to be explored. The continuation
argument solves this problem because it can be called each time the goal succeeds. In
the APPEND code, if the first argument is empty and the second argument unifies with
the third, then the APPEND predicate has succeeded. We then CALL the continuation,
with the appropriate bindings on the trail, to do whatever should be done next. For
example, if the call to APPEND were at the top level, the continuation would print the
bindings of the variables.

342 Chapter 9. Inference in First-Order Logic

Before Warren’s work on the compilation of inference in Prolog, logic programming was
too slow for general use. Compilers by Warren and others allowed Prolog code to achieve
speeds that are competitive with C on a variety of standard benchmarks (Van Roy, 1990).
Of course, the fact that one can write a planner or natural language parser in a few dozen
lines of Prolog makes it somewhat more desirable than C for prototyping most small-scale AI
research projects.

Parallelization can also provide substantial speedup. There are two principal sources of
parallelism. The first, called OR-parallelism, comes from the possibility of a goal unifyingOR­PARALLELISM

with many different clauses in the knowledge base. Each gives rise to an independent branch
in the search space that can lead to a potential solution, and all such branches can be solved
in parallel. The second, called AND-parallelism, comes from the possibility of solvingAND­PARALLELISM

each conjunct in the body of an implication in parallel. AND-parallelism is more difficult to
achieve, because solutions for the whole conjunction require consistent bindings for all the
variables. Each conjunctive branch must communicate with the other branches to ensure a
global solution.

9.4.4 Redundant inference and infinite loops

We now turn to the Achilles heel of Prolog: the mismatch between depth-first search and
search trees that include repeated states and infinite paths. Consider the following logic pro-
gram that decides if a path exists between two points on a directed graph:

path(X,Z) :- link(X,Z).
path(X,Z) :- path(X,Y), link(Y,Z).

A simple three-node graph, described by the facts link(a,b) and link(b,c), is shown
in Figure 9.9(a). With this program, the query path(a,c) generates the proof tree shown
in Figure 9.10(a). On the other hand, if we put the two clauses in the order

path(X,Z) :- path(X,Y), link(Y,Z).
path(X,Z) :- link(X,Z).

then Prolog follows the infinite path shown in Figure 9.10(b). Prolog is therefore incomplete
as a theorem prover for definite clauses—even for Datalog programs, as this example shows—
because, for some knowledge bases, it fails to prove sentences that are entailed. Notice that
forward chaining does not suffer from this problem: once path(a,b), path(b,c), and
path(a,c) are inferred, forward chaining halts.

Depth-first backward chaining also has problems with redundant computations. For
example, when finding a path from A1 to J4 in Figure 9.9(b), Prolog performs 877 inferences,
most of which involve finding all possible paths to nodes from which the goal is unreachable.
This is similar to the repeated-state problem discussed in Chapter 3. The total amount of
inference can be exponential in the number of ground facts that are generated. If we apply
forward chaining instead, at most n

2 path(X,Y) facts can be generated linking n nodes.
For the problem in Figure 9.9(b), only 62 inferences are needed.

Forward chaining on graph search problems is an example of dynamic programming,DYNAMIC

PROGRAMMING

in which the solutions to subproblems are constructed incrementally from those of smaller

Section 9.4. Backward Chaining 343

(a) (b)

A B C

A1

J4

Figure 9.9 (a) Finding a path from A to C can lead Prolog into an infinite loop. (b) A
graph in which each node is connected to two random successors in the next layer. Finding a
path from A1 to J4 requires 877 inferences.

path(a,c)

fail

{ }/Y b

{ }

link(a,c) path(a,Y)

link(a,Y)

link(b,c)

path(a,c)

path(a,Y) link(Y,c)

path(a,Y’) link(Y’,Y)

(a) (b)

Figure 9.10 (a) Proof that a path exists from A to C. (b) Infinite proof tree generated
when the clauses are in the “wrong” order.

subproblems and are cached to avoid recomputation. We can obtain a similar effect in a
backward chaining system using memoization—that is, caching solutions to subgoals as
they are found and then reusing those solutions when the subgoal recurs, rather than repeat-
ing the previous computation. This is the approach taken by tabled logic programming sys-TABLED LOGIC

PROGRAMMING

tems, which use efficient storage and retrieval mechanisms to perform memoization. Tabled
logic programming combines the goal-directedness of backward chaining with the dynamic-
programming efficiency of forward chaining. It is also complete for Datalog knowledge
bases, which means that the programmer need worry less about infinite loops. (It is still pos-
sible to get an infinite loop with predicates like father(X,Y) that refer to a potentially
unbounded number of objects.)

9.4.5 Database semantics of Prolog

Prolog uses database semantics, as discussed in Section 8.2.8. The unique names assumption
says that every Prolog constant and every ground term refers to a distinct object, and the
closed world assumption says that the only sentences that are true are those that are entailed

344 Chapter 9. Inference in First-Order Logic

by the knowledge base. There is no way to assert that a sentence is false in Prolog. This makes
Prolog less expressive than first-order logic, but it is part of what makes Prolog more efficient
and more concise. Consider the following Prolog assertions about some course offerings:

Course(CS , 101), Course(CS , 102), Course(CS , 106), Course(EE , 101). (9.11)

Under the unique names assumption, CS and EE are different (as are 101, 102, and 106),
so this means that there are four distinct courses. Under the closed-world assumption there
are no other courses, so there are exactly four courses. But if these were assertions in FOL
rather than in Prolog, then all we could say is that there are somewhere between one and
infinity courses. That’s because the assertions (in FOL) do not deny the possibility that other
unmentioned courses are also offered, nor do they say that the courses mentioned are different
from each other. If we wanted to translate Equation (9.11) into FOL, we would get this:

Course(d, n) ⇔ (d= CS ∧ n = 101) ∨ (d=CS ∧ n = 102)

∨ (d= CS ∧ n = 106) ∨ (d=EE ∧ n = 101) . (9.12)

This is called the completion of Equation (9.11). It expresses in FOL the idea that there areCOMPLETION

at most four courses. To express in FOL the idea that there are at least four courses, we need
to write the completion of the equality predicate:

x = y ⇔ (x = CS ∧ y = CS) ∨ (x = EE ∧ y = EE) ∨ (x = 101 ∧ y = 101)

∨ (x = 102 ∧ y = 102) ∨ (x = 106 ∧ y = 106) .

The completion is useful for understanding database semantics, but for practical purposes, if
your problem can be described with database semantics, it is more efficient to reason with
Prolog or some other database semantics system, rather than translating into FOL and rea-
soning with a full FOL theorem prover.

9.4.6 Constraint logic programming

In our discussion of forward chaining (Section 9.3), we showed how constraint satisfaction
problems (CSPs) can be encoded as definite clauses. Standard Prolog solves such problems
in exactly the same way as the backtracking algorithm given in Figure 6.5.

Because backtracking enumerates the domains of the variables, it works only for finite-
domain CSPs. In Prolog terms, there must be a finite number of solutions for any goal
with unbound variables. (For example, the goal diff(Q,SA), which says that Queensland
and South Australia must be different colors, has six solutions if three colors are allowed.)
Infinite-domain CSPs—for example, with integer or real-valued variables—require quite dif-
ferent algorithms, such as bounds propagation or linear programming.

Consider the following example. We define triangle(X,Y,Z) as a predicate that
holds if the three arguments are numbers that satisfy the triangle inequality:

triangle(X,Y,Z) :-
X>0, Y>0, Z>0, X+Y>=Z, Y+Z>=X, X+Z>=Y.

If we ask Prolog the query triangle(3,4,5), it succeeds. On the other hand, if we
ask triangle(3,4,Z), no solution will be found, because the subgoal Z>=0 cannot be
handled by Prolog; we can’t compare an unbound value to 0.

Section 9.5. Resolution 345

Constraint logic programming (CLP) allows variables to be constrained rather thanCONSTRAINT LOGIC

PROGRAMMING

bound. A CLP solution is the most specific set of constraints on the query variables that can
be derived from the knowledge base. For example, the solution to the triangle(3,4,Z)
query is the constraint 7 >= Z >= 1. Standard logic programs are just a special case of
CLP in which the solution constraints must be equality constraints—that is, bindings.

CLP systems incorporate various constraint-solving algorithms for the constraints al-
lowed in the language. For example, a system that allows linear inequalities on real-valued
variables might include a linear programming algorithm for solving those constraints. CLP
systems also adopt a much more flexible approach to solving standard logic programming
queries. For example, instead of depth-first, left-to-right backtracking, they might use any of
the more efficient algorithms discussed in Chapter 6, including heuristic conjunct ordering,
backjumping, cutset conditioning, and so on. CLP systems therefore combine elements of
constraint satisfaction algorithms, logic programming, and deductive databases.

Several systems that allow the programmer more control over the search order for in-
ference have been defined. The MRS language (Genesereth and Smith, 1981; Russell, 1985)
allows the programmer to write metarules to determine which conjuncts are tried first. TheMETARULE

user could write a rule saying that the goal with the fewest variables should be tried first or
could write domain-specific rules for particular predicates.

9.5 RESOLUTION

The last of our three families of logical systems is based on resolution. We saw on page 250
that propositional resolution using refutation is a complete inference procedure for proposi-
tional logic. In this section, we describe how to extend resolution to first-order logic.

9.5.1 Conjunctive normal form for first-order logic

As in the propositional case, first-order resolution requires that sentences be in conjunctive
normal form (CNF)—that is, a conjunction of clauses, where each clause is a disjunction of
literals.6 Literals can contain variables, which are assumed to be universally quantified. For
example, the sentence

∀x American(x) ∧Weapon(y) ∧ Sells(x, y, z) ∧ Hostile(z) ⇒ Criminal (x)

becomes, in CNF,

¬American(x) ∨ ¬Weapon(y) ∨ ¬Sells(x, y, z) ∨ ¬Hostile(z) ∨ Criminal(x) .

Every sentence of first-order logic can be converted into an inferentially equivalent CNF
sentence. In particular, the CNF sentence will be unsatisfiable just when the original sentence
is unsatisfiable, so we have a basis for doing proofs by contradiction on the CNF sentences.

6 A clause can also be represented as an implication with a conjunction of atoms in the premise and a disjunction
of atoms in the conclusion (Exercise 7.13). This is called implicative normal form or Kowalski form (especially
when written with a right-to-left implication symbol (Kowalski, 1979)) and is often much easier to read.

346 Chapter 9. Inference in First-Order Logic

The procedure for conversion to CNF is similar to the propositional case, which we saw
on page 253. The principal difference arises from the need to eliminate existential quantifiers.
We illustrate the procedure by translating the sentence “Everyone who loves all animals is
loved by someone,” or

∀x [∀ y Animal(y) ⇒ Loves(x, y)] ⇒ [∃ y Loves(y, x)] .

The steps are as follows:

• Eliminate implications:

∀x [¬∀ y ¬Animal(y) ∨ Loves(x, y)] ∨ [∃ y Loves(y, x)] .

• Move ¬ inwards: In addition to the usual rules for negated connectives, we need rules
for negated quantifiers. Thus, we have

¬∀x p becomes ∃x ¬p

¬∃x p becomes ∀x ¬p .

Our sentence goes through the following transformations:

∀x [∃ y ¬(¬Animal(y) ∨ Loves(x, y))] ∨ [∃ y Loves(y, x)] .

∀x [∃ y ¬¬Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)] .

∀x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)] .

Notice how a universal quantifier (∀ y) in the premise of the implication has become
an existential quantifier. The sentence now reads “Either there is some animal that x

doesn’t love, or (if this is not the case) someone loves x.” Clearly, the meaning of the
original sentence has been preserved.
• Standardize variables: For sentences like (∃xP (x))∨(∃xQ(x)) which use the same

variable name twice, change the name of one of the variables. This avoids confusion
later when we drop the quantifiers. Thus, we have

∀x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ z Loves(z, x)] .

• Skolemize: Skolemization is the process of removing existential quantifiers by elimi-SKOLEMIZATION

nation. In the simple case, it is just like the Existential Instantiation rule of Section 9.1:
translate ∃x P (x) into P (A), where A is a new constant. However, we can’t apply Ex-
istential Instantiation to our sentence above because it doesn’t match the pattern ∃ v α;
only parts of the sentence match the pattern. If we blindly apply the rule to the two
matching parts we get

∀x [Animal(A) ∧ ¬Loves(x,A)] ∨ Loves(B,x) ,

which has the wrong meaning entirely: it says that everyone either fails to love a par-
ticular animal A or is loved by some particular entity B. In fact, our original sentence
allows each person to fail to love a different animal or to be loved by a different person.
Thus, we want the Skolem entities to depend on x and z:

∀x [Animal(F (x)) ∧ ¬Loves(x, F (x))] ∨ Loves(G(z), x) .

Here F and G are Skolem functions. The general rule is that the arguments of theSKOLEM FUNCTION

Skolem function are all the universally quantified variables in whose scope the exis-
tential quantifier appears. As with Existential Instantiation, the Skolemized sentence is
satisfiable exactly when the original sentence is satisfiable.

Section 9.5. Resolution 347

• Drop universal quantifiers: At this point, all remaining variables must be universally
quantified. Moreover, the sentence is equivalent to one in which all the universal quan-
tifiers have been moved to the left. We can therefore drop the universal quantifiers:

[Animal(F (x)) ∧ ¬Loves(x, F (x))] ∨ Loves(G(z), x) .

• Distribute ∨ over ∧:

[Animal(F (x)) ∨ Loves(G(z), x)] ∧ [¬Loves(x, F (x)) ∨ Loves(G(z), x)] .

This step may also require flattening out nested conjunctions and disjunctions.

The sentence is now in CNF and consists of two clauses. It is quite unreadable. (It may
help to explain that the Skolem function F (x) refers to the animal potentially unloved by x,
whereas G(z) refers to someone who might love x.) Fortunately, humans seldom need look
at CNF sentences—the translation process is easily automated.

9.5.2 The resolution inference rule

The resolution rule for first-order clauses is simply a lifted version of the propositional reso-
lution rule given on page 253. Two clauses, which are assumed to be standardized apart so
that they share no variables, can be resolved if they contain complementary literals. Propo-
sitional literals are complementary if one is the negation of the other; first-order literals are
complementary if one unifies with the negation of the other. Thus, we have

ℓ1 ∨ · · · ∨ ℓk, m1 ∨ · · · ∨mn

SUBST(θ, ℓ1 ∨ · · · ∨ ℓi−1 ∨ ℓi+1 ∨ · · · ∨ ℓk ∨m1 ∨ · · · ∨mj−1 ∨mj+1 ∨ · · · ∨mn)

where UNIFY(ℓi,¬mj)= θ. For example, we can resolve the two clauses

[Animal(F (x)) ∨ Loves(G(x), x)] and [¬Loves(u, v) ∨ ¬Kills(u, v)]

by eliminating the complementary literals Loves(G(x), x) and ¬Loves(u, v), with unifier
θ = {u/G(x), v/x}, to produce the resolvent clause

[Animal(F (x)) ∨ ¬Kills(G(x), x)] .

This rule is called the binary resolution rule because it resolves exactly two literals. TheBINARY RESOLUTION

binary resolution rule by itself does not yield a complete inference procedure. The full reso-
lution rule resolves subsets of literals in each clause that are unifiable. An alternative approach
is to extend factoring—the removal of redundant literals—to the first-order case. Proposi-
tional factoring reduces two literals to one if they are identical; first-order factoring reduces
two literals to one if they are unifiable. The unifier must be applied to the entire clause. The
combination of binary resolution and factoring is complete.

9.5.3 Example proofs

Resolution proves that KB |= α by proving KB ∧ ¬α unsatisfiable, that is, by deriving the
empty clause. The algorithmic approach is identical to the propositional case, described in

348 Chapter 9. Inference in First-Order Logic

¬American(x) ¬Weapon(y) ¬Sells(x,y,z) ¬Hostile(z) Criminal(x) ¬Criminal(West)

¬Enemy(Nono, America)Enemy(Nono,America)

¬Missile(x) Weapon(x) ¬Weapon(y) ¬Sells(West,y,z) ¬Hostile(z)

Missile(M1) ¬Missile(y) ¬Sells(West,y,z) ¬Hostile(z)

¬Missile(x) ¬Owns(Nono,x) Sells(West,x,Nono) ¬Sells(West,M1,z) ¬Hostile(z)

¬American(West) ¬Weapon(y) ¬Sells(West,y,z) ¬Hostile(z)American(West)

¬Missile(M1) ¬Owns(Nono,M1) ¬Hostile(Nono)Missile(M1)

¬Owns(Nono,M1) ¬Hostile(Nono)Owns(Nono,M1)

¬Enemy(x,America) Hostile(x) ¬Hostile(Nono)

^^^ ^

^ ^ ^

^ ^ ^

^ ^

^ ^ ^

^ ^

^

^

Figure 9.11 A resolution proof that West is a criminal. At each step, the literals that unify
are in bold.

Figure 7.12, so we need not repeat it here. Instead, we give two example proofs. The first is
the crime example from Section 9.3. The sentences in CNF are

¬American(x) ∨ ¬Weapon(y) ∨ ¬Sells(x, y, z) ∨ ¬Hostile(z) ∨ Criminal(x)

¬Missile(x) ∨ ¬Owns(Nono, x) ∨ Sells(West , x,Nono)

¬Enemy(x,America) ∨Hostile(x)

¬Missile(x) ∨Weapon(x)

Owns(Nono,M1) Missile(M1)

American(West) Enemy(Nono,America) .

We also include the negated goal ¬Criminal(West). The resolution proof is shown in Fig-
ure 9.11. Notice the structure: single “spine” beginning with the goal clause, resolving against
clauses from the knowledge base until the empty clause is generated. This is characteristic
of resolution on Horn clause knowledge bases. In fact, the clauses along the main spine
correspond exactly to the consecutive values of the goals variable in the backward-chaining
algorithm of Figure 9.6. This is because we always choose to resolve with a clause whose
positive literal unified with the leftmost literal of the “current” clause on the spine; this is
exactly what happens in backward chaining. Thus, backward chaining is just a special case
of resolution with a particular control strategy to decide which resolution to perform next.

Our second example makes use of Skolemization and involves clauses that are not def-
inite clauses. This results in a somewhat more complex proof structure. In English, the
problem is as follows:

Everyone who loves all animals is loved by someone.
Anyone who kills an animal is loved by no one.
Jack loves all animals.
Either Jack or Curiosity killed the cat, who is named Tuna.
Did Curiosity kill the cat?

Section 9.5. Resolution 349

First, we express the original sentences, some background knowledge, and the negated goal
G in first-order logic:

A. ∀x [∀ y Animal(y) ⇒ Loves(x, y)] ⇒ [∃ y Loves(y, x)]

B. ∀x [∃ z Animal(z) ∧Kills(x, z)] ⇒ [∀ y ¬Loves(y, x)]

C. ∀x Animal(x) ⇒ Loves(Jack , x)

D. Kills(Jack ,Tuna) ∨Kills(Curiosity ,Tuna)

E. Cat(Tuna)

F. ∀x Cat(x)⇒ Animal(x)

¬G. ¬Kills(Curiosity ,Tuna)

Now we apply the conversion procedure to convert each sentence to CNF:

A1. Animal(F (x)) ∨ Loves(G(x), x)

A2. ¬Loves(x, F (x)) ∨ Loves(G(x), x)

B. ¬Loves(y, x) ∨ ¬Animal(z) ∨ ¬Kills(x, z)

C. ¬Animal(x) ∨ Loves(Jack , x)

D. Kills(Jack ,Tuna) ∨Kills(Curiosity ,Tuna)

E. Cat(Tuna)

F. ¬Cat(x) ∨ Animal(x)

¬G. ¬Kills(Curiosity ,Tuna)

The resolution proof that Curiosity killed the cat is given in Figure 9.12. In English, the proof
could be paraphrased as follows:

Suppose Curiosity did not kill Tuna. We know that either Jack or Curiosity did; thus
Jack must have. Now, Tuna is a cat and cats are animals, so Tuna is an animal. Because
anyone who kills an animal is loved by no one, we know that no one loves Jack. On the
other hand, Jack loves all animals, so someone loves him; so we have a contradiction.
Therefore, Curiosity killed the cat.

¬Loves(y, Jack) Loves(G(Jack), Jack)

¬Kills(Curiosity, Tuna)Kills(Jack, Tuna) Kills(Curiosity, Tuna)¬Cat(x) Animal(x)Cat(Tuna)

¬Animal(F(Jack)) Loves(G(Jack), Jack) Animal(F(x)) Loves(G(x), x) ¬Loves(y, x) ¬Kills(x, Tuna)

Kills(Jack, Tuna)¬Loves(y, x) ¬Animal(z) ¬Kills(x, z)Animal(Tuna) ¬Loves(x,F(x)) Loves(G(x), x) ¬Animal(x) Loves(Jack, x)

^^

^ ^ ^ ^

^^^

Figure 9.12 A resolution proof that Curiosity killed the cat. Notice the use of factoring
in the derivation of the clause Loves(G(Jack), Jack). Notice also in the upper right, the
unification of Loves(x, F (x)) and Loves(Jack, x) can only succeed after the variables have
been standardized apart.

350 Chapter 9. Inference in First-Order Logic

The proof answers the question “Did Curiosity kill the cat?” but often we want to pose more
general questions, such as “Who killed the cat?” Resolution can do this, but it takes a little
more work to obtain the answer. The goal is ∃w Kills(w,Tuna), which, when negated,
becomes ¬Kills(w,Tuna) in CNF. Repeating the proof in Figure 9.12 with the new negated
goal, we obtain a similar proof tree, but with the substitution {w/Curiosity} in one of the
steps. So, in this case, finding out who killed the cat is just a matter of keeping track of the
bindings for the query variables in the proof.

Unfortunately, resolution can produce nonconstructive proofs for existential goals.NONCONSTRUCTIVE

PROOF

For example, ¬Kills(w,Tuna) resolves with Kills(Jack ,Tuna) ∨Kills(Curiosity ,Tuna)

to give Kills(Jack ,Tuna), which resolves again with ¬Kills(w,Tuna) to yield the empty
clause. Notice that w has two different bindings in this proof; resolution is telling us that,
yes, someone killed Tuna—either Jack or Curiosity. This is no great surprise! One so-
lution is to restrict the allowed resolution steps so that the query variables can be bound
only once in a given proof; then we need to be able to backtrack over the possible bind-
ings. Another solution is to add a special answer literal to the negated goal, which be-ANSWER LITERAL

comes ¬Kills(w,Tuna) ∨ Answer(w). Now, the resolution process generates an answer
whenever a clause is generated containing just a single answer literal. For the proof in Fig-
ure 9.12, this is Answer(Curiosity). The nonconstructive proof would generate the clause
Answer(Curiosity) ∨ Answer(Jack), which does not constitute an answer.

9.5.4 Completeness of resolution

This section gives a completeness proof of resolution. It can be safely skipped by those who
are willing to take it on faith.

We show that resolution is refutation-complete, which means that if a set of sentencesREFUTATION

COMPLETENESS

is unsatisfiable, then resolution will always be able to derive a contradiction. Resolution
cannot be used to generate all logical consequences of a set of sentences, but it can be used
to establish that a given sentence is entailed by the set of sentences. Hence, it can be used to
find all answers to a given question, Q(x), by proving that KB ∧ ¬Q(x) is unsatisfiable.

We take it as given that any sentence in first-order logic (without equality) can be rewrit-
ten as a set of clauses in CNF. This can be proved by induction on the form of the sentence,
using atomic sentences as the base case (Davis and Putnam, 1960). Our goal therefore is to
prove the following: if S is an unsatisfiable set of clauses, then the application of a finite
number of resolution steps to S will yield a contradiction.

Our proof sketch follows Robinson’s original proof with some simplifications from
Genesereth and Nilsson (1987). The basic structure of the proof (Figure 9.13) is as follows:

1. First, we observe that if S is unsatisfiable, then there exists a particular set of ground
instances of the clauses of S such that this set is also unsatisfiable (Herbrand’s theorem).

2. We then appeal to the ground resolution theorem given in Chapter 7, which states that
propositional resolution is complete for ground sentences.

3. We then use a lifting lemma to show that, for any propositional resolution proof using
the set of ground sentences, there is a corresponding first-order resolution proof using
the first-order sentences from which the ground sentences were obtained.

Section 9.5. Resolution 351

Resolution can find a contradiction in S'

There is a resolution proof for the contradiction in S'

Herbrand’s theorem

Some set S' of ground instances is unsatisfiable

Any set of sentences S is representable in clausal form

Assume S is unsatisfiable, and in clausal form

Lifting lemma

Ground resolution
theorem

Figure 9.13 Structure of a completeness proof for resolution.

To carry out the first step, we need three new concepts:

• Herbrand universe: If S is a set of clauses, then HS , the Herbrand universe of S, isHERBRAND

UNIVERSE

the set of all ground terms constructable from the following:

a. The function symbols in S, if any.
b. The constant symbols in S, if any; if none, then the constant symbol A.

For example, if S contains just the clause ¬P (x, F (x,A))∨¬Q(x,A)∨R(x,B), then
HS is the following infinite set of ground terms:

{A,B,F (A,A), F (A,B), F (B,A), F (B,B), F (A,F (A,A)), . . .} .

• Saturation: If S is a set of clauses and P is a set of ground terms, then P (S), theSATURATION

saturation of S with respect to P , is the set of all ground clauses obtained by applying
all possible consistent substitutions of ground terms in P with variables in S.
• Herbrand base: The saturation of a set S of clauses with respect to its Herbrand uni-HERBRAND BASE

verse is called the Herbrand base of S, written as HS(S). For example, if S contains
solely the clause just given, then HS(S) is the infinite set of clauses

{¬P (A,F (A,A)) ∨ ¬Q(A,A) ∨R(A,B),

¬P (B,F (B,A)) ∨ ¬Q(B,A) ∨R(B,B),

¬P (F (A,A), F (F (A,A), A)) ∨ ¬Q(F (A,A), A) ∨R(F (A,A), B),

¬P (F (A,B), F (F (A,B), A)) ∨ ¬Q(F (A,B), A) ∨R(F (A,B), B), . . . }

These definitions allow us to state a form of Herbrand’s theorem (Herbrand, 1930):HERBRAND’S

THEOREM

If a set S of clauses is unsatisfiable, then there exists a finite subset of HS(S) that
is also unsatisfiable.

Let S
′ be this finite subset of ground sentences. Now, we can appeal to the ground resolution

theorem (page 255) to show that the resolution closure RC (S′) contains the empty clause.
That is, running propositional resolution to completion on S

′ will derive a contradiction.
Now that we have established that there is always a resolution proof involving some

finite subset of the Herbrand base of S, the next step is to show that there is a resolution

352 Chapter 9. Inference in First-Order Logic

GÖDEL’S INCOMPLETENESS THEOREM

By slightly extending the language of first-order logic to allow for the mathemat-
ical induction schema in arithmetic, Kurt Gödel was able to show, in his incom-
pleteness theorem, that there are true arithmetic sentences that cannot be proved.

The proof of the incompleteness theorem is somewhat beyond the scope of
this book, occupying, as it does, at least 30 pages, but we can give a hint here. We
begin with the logical theory of numbers. In this theory, there is a single constant,
0, and a single function, S (the successor function). In the intended model, S(0)

denotes 1, S(S(0)) denotes 2, and so on; the language therefore has names for all
the natural numbers. The vocabulary also includes the function symbols +, ×, and
Expt (exponentiation) and the usual set of logical connectives and quantifiers. The
first step is to notice that the set of sentences that we can write in this language can
be enumerated. (Imagine defining an alphabetical order on the symbols and then
arranging, in alphabetical order, each of the sets of sentences of length 1, 2, and
so on.) We can then number each sentence α with a unique natural number #α

(the Gödel number). This is crucial: number theory contains a name for each of
its own sentences. Similarly, we can number each possible proof P with a Gödel
number G(P), because a proof is simply a finite sequence of sentences.

Now suppose we have a recursively enumerable set A of sentences that are
true statements about the natural numbers. Recalling that A can be named by a
given set of integers, we can imagine writing in our language a sentence α(j,A) of
the following sort:

∀ i i is not the Gödel number of a proof of the sentence whose Gödel
number is j, where the proof uses only premises in A.

Then let σ be the sentence α(#σ,A), that is, a sentence that states its own unprov-
ability from A. (That this sentence always exists is true but not entirely obvious.)

Now we make the following ingenious argument: Suppose that σ is provable
from A; then σ is false (because σ says it cannot be proved). But then we have a
false sentence that is provable from A, so A cannot consist of only true sentences—
a violation of our premise. Therefore, σ is not provable from A. But this is exactly
what σ itself claims; hence σ is a true sentence.

So, we have shown (barring 29
1

2
pages) that for any set of true sentences of

number theory, and in particular any set of basic axioms, there are other true sen-
tences that cannot be proved from those axioms. This establishes, among other
things, that we can never prove all the theorems of mathematics within any given
system of axioms. Clearly, this was an important discovery for mathematics. Its
significance for AI has been widely debated, beginning with speculations by Gödel
himself. We take up the debate in Chapter 26.

Section 9.5. Resolution 353

proof using the clauses of S itself, which are not necessarily ground clauses. We start by
considering a single application of the resolution rule. Robinson stated this lemma:

Let C1 and C2 be two clauses with no shared variables, and let C
′

1
and C

′

2
be

ground instances of C1 and C2. If C
′ is a resolvent of C

′

1
and C

′

2
, then there exists

a clause C such that (1) C is a resolvent of C1 and C2 and (2) C
′ is a ground

instance of C .

This is called a lifting lemma, because it lifts a proof step from ground clauses up to generalLIFTING LEMMA

first-order clauses. In order to prove his basic lifting lemma, Robinson had to invent unifi-
cation and derive all of the properties of most general unifiers. Rather than repeat the proof
here, we simply illustrate the lemma:

C1 = ¬P (x, F (x,A)) ∨ ¬Q(x,A) ∨R(x,B)

C2 = ¬N(G(y), z) ∨ P (H(y), z)

C
′

1 = ¬P (H(B), F (H(B), A)) ∨ ¬Q(H(B), A) ∨R(H(B), B)

C
′

2 = ¬N(G(B), F (H(B), A)) ∨ P (H(B), F (H(B), A))

C
′

= ¬N(G(B), F (H(B), A)) ∨ ¬Q(H(B), A) ∨R(H(B), B)

C = ¬N(G(y), F (H(y), A)) ∨ ¬Q(H(y), A) ∨R(H(y), B) .

We see that indeed C
′ is a ground instance of C . In general, for C

′

1
and C

′

2
to have any

resolvents, they must be constructed by first applying to C1 and C2 the most general unifier
of a pair of complementary literals in C1 and C2. From the lifting lemma, it is easy to derive
a similar statement about any sequence of applications of the resolution rule:

For any clause C
′ in the resolution closure of S

′ there is a clause C in the resolu-
tion closure of S such that C

′ is a ground instance of C and the derivation of C is
the same length as the derivation of C

′.

From this fact, it follows that if the empty clause appears in the resolution closure of S
′, it

must also appear in the resolution closure of S. This is because the empty clause cannot be a
ground instance of any other clause. To recap: we have shown that if S is unsatisfiable, then
there is a finite derivation of the empty clause using the resolution rule.

The lifting of theorem proving from ground clauses to first-order clauses provides a vast
increase in power. This increase comes from the fact that the first-order proof need instantiate
variables only as far as necessary for the proof, whereas the ground-clause methods were
required to examine a huge number of arbitrary instantiations.

9.5.5 Equality

None of the inference methods described so far in this chapter handle an assertion of the form
x = y. Three distinct approaches can be taken. The first approach is to axiomatize equality—
to write down sentences about the equality relation in the knowledge base. We need to say that
equality is reflexive, symmetric, and transitive, and we also have to say that we can substitute
equals for equals in any predicate or function. So we need three basic axioms, and then one

354 Chapter 9. Inference in First-Order Logic

for each predicate and function:

∀x x= x

∀x, y x= y ⇒ y = x

∀x, y, z x= y ∧ y = z ⇒ x= z

∀x, y x= y ⇒ (P1(x) ⇔ P1(y))

∀x, y x= y ⇒ (P2(x) ⇔ P2(y))

...
∀w, x, y, z w = y ∧ x= z ⇒ (F1(w, x)= F1(y, z))

∀w, x, y, z w = y ∧ x= z ⇒ (F2(w, x)= F2(y, z))

...

Given these sentences, a standard inference procedure such as resolution can perform tasks
requiring equality reasoning, such as solving mathematical equations. However, these axioms
will generate a lot of conclusions, most of them not helpful to a proof. So there has been a
search for more efficient ways of handling equality. One alternative is to add inference rules
rather than axioms. The simplest rule, demodulation, takes a unit clause x= y and some
clause α that contains the term x, and yields a new clause formed by substituting y for x

within α. It works if the term within α unifies with x; it need not be exactly equal to x.
Note that demodulation is directional; given x = y, the x always gets replaced with y, never
vice versa. That means that demodulation can be used for simplifying expressions using
demodulators such as x + 0= x or x

1 = x. As another example, given

Father (Father (x)) = PaternalGrandfather (x)

Birthdate(Father (Father (Bella)), 1926)

we can conclude by demodulation

Birthdate(PaternalGrandfather (Bella), 1926) .

More formally, we have

• Demodulation: For any terms x, y, and z, where z appears somewhere in literal miDEMODULATION

and where UNIFY(x, z) = θ,
x= y, m1 ∨ · · · ∨mn

SUB(SUBST(θ, x), SUBST(θ, y),m1 ∨ · · · ∨mn)
.

where SUBST is the usual substitution of a binding list, and SUB(x, y,m) means to
replace x with y everywhere that x occurs within m.

The rule can also be extended to handle non-unit clauses in which an equality literal appears:

• Paramodulation: For any terms x, y, and z, where z appears somewhere in literal mi,PARAMODULATION

and where UNIFY(x, z) = θ,
ℓ1 ∨ · · · ∨ ℓk ∨ x= y, m1 ∨ · · · ∨mn

SUB(SUBST(θ, x), SUBST(θ, y), SUBST(θ, ℓ1 ∨ · · · ∨ ℓk ∨m1 ∨ · · · ∨mn)
.

For example, from

P (F (x,B), x) ∨Q(x) and F (A, y)= y ∨R(y)

Section 9.5. Resolution 355

we have θ = UNIFY(F (A, y), F (x,B))= {x/A, y/B}, and we can conclude by paramodu-
lation the sentence

P (B,A) ∨Q(A) ∨R(B) .

Paramodulation yields a complete inference procedure for first-order logic with equality.
A third approach handles equality reasoning entirely within an extended unification

algorithm. That is, terms are unifiable if they are provably equal under some substitution,
where “provably” allows for equality reasoning. For example, the terms 1 + 2 and 2 + 1

normally are not unifiable, but a unification algorithm that knows that x + y = y + x could
unify them with the empty substitution. Equational unification of this kind can be done withEQUATIONAL

UNIFICATION

efficient algorithms designed for the particular axioms used (commutativity, associativity, and
so on) rather than through explicit inference with those axioms. Theorem provers using this
technique are closely related to the CLP systems described in Section 9.4.

9.5.6 Resolution strategies

We know that repeated applications of the resolution inference rule will eventually find a
proof if one exists. In this subsection, we examine strategies that help find proofs efficiently.

Unit preference: This strategy prefers to do resolutions where one of the sentences is a singleUNIT PREFERENCE

literal (also known as a unit clause). The idea behind the strategy is that we are trying to
produce an empty clause, so it might be a good idea to prefer inferences that produce shorter
clauses. Resolving a unit sentence (such as P) with any other sentence (such as ¬P∨¬Q∨R)
always yields a clause (in this case, ¬Q ∨ R) that is shorter than the other clause. When
the unit preference strategy was first tried for propositional inference in 1964, it led to a
dramatic speedup, making it feasible to prove theorems that could not be handled without the
preference. Unit resolution is a restricted form of resolution in which every resolution step
must involve a unit clause. Unit resolution is incomplete in general, but complete for Horn
clauses. Unit resolution proofs on Horn clauses resemble forward chaining.

The OTTER theorem prover (Organized Techniques for Theorem-proving and Effective
Research, McCune, 1992), uses a form of best-first search. Its heuristic function measures
the “weight” of each clause, where lighter clauses are preferred. The exact choice of heuristic
is up to the user, but generally, the weight of a clause should be correlated with its size or
difficulty. Unit clauses are treated as light; the search can thus be seen as a generalization of
the unit preference strategy.

Set of support: Preferences that try certain resolutions first are helpful, but in general it isSET OF SUPPORT

more effective to try to eliminate some potential resolutions altogether. For example, we can
insist that every resolution step involve at least one element of a special set of clauses—the
set of support. The resolvent is then added into the set of support. If the set of support is
small relative to the whole knowledge base, the search space will be reduced dramatically.

We have to be careful with this approach because a bad choice for the set of support
will make the algorithm incomplete. However, if we choose the set of support S so that the
remainder of the sentences are jointly satisfiable, then set-of-support resolution is complete.
For example, one can use the negated query as the set of support, on the assumption that the

356 Chapter 9. Inference in First-Order Logic

original knowledge base is consistent. (After all, if it is not consistent, then the fact that the
query follows from it is vacuous.) The set-of-support strategy has the additional advantage of
generating goal-directed proof trees that are often easy for humans to understand.

Input resolution: In this strategy, every resolution combines one of the input sentences (fromINPUT RESOLUTION

the KB or the query) with some other sentence. The proof in Figure 9.11 on page 348 uses
only input resolutions and has the characteristic shape of a single “spine” with single sen-
tences combining onto the spine. Clearly, the space of proof trees of this shape is smaller
than the space of all proof graphs. In Horn knowledge bases, Modus Ponens is a kind of
input resolution strategy, because it combines an implication from the original KB with some
other sentences. Thus, it is no surprise that input resolution is complete for knowledge bases
that are in Horn form, but incomplete in the general case. The linear resolution strategy is aLINEAR RESOLUTION

slight generalization that allows P and Q to be resolved together either if P is in the original
KB or if P is an ancestor of Q in the proof tree. Linear resolution is complete.

Subsumption: The subsumption method eliminates all sentences that are subsumed by (thatSUBSUMPTION

is, more specific than) an existing sentence in the KB. For example, if P (x) is in the KB, then
there is no sense in adding P (A) and even less sense in adding P (A) ∨Q(B). Subsumption
helps keep the KB small and thus helps keep the search space small.

Practical uses of resolution theorem provers

Theorem provers can be applied to the problems involved in the synthesis and verificationSYNTHESIS

VERIFICATION of both hardware and software. Thus, theorem-proving research is carried out in the fields of
hardware design, programming languages, and software engineering—not just in AI.

In the case of hardware, the axioms describe the interactions between signals and cir-
cuit elements. (See Section 8.4.2 on page 309 for an example.) Logical reasoners designed
specially for verification have been able to verify entire CPUs, including their timing prop-
erties (Srivas and Bickford, 1990). The AURA theorem prover has been applied to design
circuits that are more compact than any previous design (Wojciechowski and Wojcik, 1983).

In the case of software, reasoning about programs is quite similar to reasoning about
actions, as in Chapter 7: axioms describe the preconditions and effects of each statement.
The formal synthesis of algorithms was one of the first uses of theorem provers, as outlined
by Cordell Green (1969a), who built on earlier ideas by Herbert Simon (1963). The idea
is to constructively prove a theorem to the effect that “there exists a program p satisfying a
certain specification.” Although fully automated deductive synthesis, as it is called, has notDEDUCTIVE

SYNTHESIS

yet become feasible for general-purpose programming, hand-guided deductive synthesis has
been successful in designing several novel and sophisticated algorithms. Synthesis of special-
purpose programs, such as scientific computing code, is also an active area of research.

Similar techniques are now being applied to software verification by systems such as the
SPIN model checker (Holzmann, 1997). For example, the Remote Agent spacecraft control
program was verified before and after flight (Havelund et al., 2000). The RSA public key
encryption algorithm and the Boyer–Moore string-matching algorithm have been verified this
way (Boyer and Moore, 1984).

Section 9.6. Summary 357

9.6 SUMMARY

We have presented an analysis of logical inference in first-order logic and a number of algo-
rithms for doing it.

• A first approach uses inference rules (universal instantiation and existential instan-
tiation) to propositionalize the inference problem. Typically, this approach is slow,
unless the domain is small.

• The use of unification to identify appropriate substitutions for variables eliminates the
instantiation step in first-order proofs, making the process more efficient in many cases.

• A lifted version of Modus Ponens uses unification to provide a natural and powerful
inference rule, generalized Modus Ponens. The forward-chaining and backward-
chaining algorithms apply this rule to sets of definite clauses.

• Generalized Modus Ponens is complete for definite clauses, although the entailment
problem is semidecidable. For Datalog knowledge bases consisting of function-free
definite clauses, entailment is decidable.

• Forward chaining is used in deductive databases, where it can be combined with re-
lational database operations. It is also used in production systems, which perform
efficient updates with very large rule sets. Forward chaining is complete for Datalog
and runs in polynomial time.

• Backward chaining is used in logic programming systems, which employ sophisti-
cated compiler technology to provide very fast inference. Backward chaining suffers
from redundant inferences and infinite loops; these can be alleviated by memoization.

• Prolog, unlike first-order logic, uses a closed world with the unique names assumption
and negation as failure. These make Prolog a more practical programming language,
but bring it further from pure logic.

• The generalized resolution inference rule provides a complete proof system for first-
order logic, using knowledge bases in conjunctive normal form.

• Several strategies exist for reducing the search space of a resolution system without
compromising completeness. One of the most important issues is dealing with equality;
we showed how demodulation and paramodulation can be used.

• Efficient resolution-based theorem provers have been used to prove interesting mathe-
matical theorems and to verify and synthesize software and hardware.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Gottlob Frege, who developed full first-order logic in 1879, based his system of inference
on a collection of valid schemas plus a single inference rule, Modus Ponens. Whitehead
and Russell (1910) expounded the so-called rules of passage (the actual term is from Her-
brand (1930)) that are used to move quantifiers to the front of formulas. Skolem constants

358 Chapter 9. Inference in First-Order Logic

and Skolem functions were introduced, appropriately enough, by Thoralf Skolem (1920).
Oddly enough, it was Skolem who introduced the Herbrand universe (Skolem, 1928).

Herbrand’s theorem (Herbrand, 1930) has played a vital role in the development of
automated reasoning. Herbrand is also the inventor of unification. Gödel (1930) built on
the ideas of Skolem and Herbrand to show that first-order logic has a complete proof pro-
cedure. Alan Turing (1936) and Alonzo Church (1936) simultaneously showed, using very
different proofs, that validity in first-order logic was not decidable. The excellent text by
Enderton (1972) explains all of these results in a rigorous yet understandable fashion.

Abraham Robinson proposed that an automated reasoner could be built using proposi-
tionalization and Herbrand’s theorem, and Paul Gilmore (1960) wrote the first program. Davis
and Putnam (1960) introduced the propositionalization method of Section 9.1. Prawitz (1960)
developed the key idea of letting the quest for propositional inconsistency drive the search,
and generating terms from the Herbrand universe only when they were necessary to estab-
lish propositional inconsistency. After further development by other researchers, this idea led
J. A. Robinson (no relation) to develop resolution (Robinson, 1965).

In AI, resolution was adopted for question-answering systems by Cordell Green and
Bertram Raphael (1968). Early AI implementations put a good deal of effort into data struc-
tures that would allow efficient retrieval of facts; this work is covered in AI programming
texts (Charniak et al., 1987; Norvig, 1992; Forbus and de Kleer, 1993). By the early 1970s,
forward chaining was well established in AI as an easily understandable alternative to res-
olution. AI applications typically involved large numbers of rules, so it was important to
develop efficient rule-matching technology, particularly for incremental updates. The tech-
nology for production systems was developed to support such applications. The production
system language OPS-5 (Forgy, 1981; Brownston et al., 1985), incorporating the efficient
rete match process (Forgy, 1982), was used for applications such as the R1 expert system forRETE

minicomputer configuration (McDermott, 1982).
The SOAR cognitive architecture (Laird et al., 1987; Laird, 2008) was designed to han-

dle very large rule sets—up to a million rules (Doorenbos, 1994). Example applications of
SOAR include controlling simulated fighter aircraft (Jones et al., 1998), airspace manage-
ment (Taylor et al., 2007), AI characters for computer games (Wintermute et al., 2007), and
training tools for soldiers (Wray and Jones, 2005).

The field of deductive databases began with a workshop in Toulouse in 1977 that
brought together experts in logical inference and database systems (Gallaire and Minker,
1978). Influential work by Chandra and Harel (1980) and Ullman (1985) led to the adoption
of Datalog as a standard language for deductive databases. The development of the magic sets
technique for rule rewriting by Bancilhon et al. (1986) allowed forward chaining to borrow
the advantage of goal-directedness from backward chaining. Current work includes the idea
of integrating multiple databases into a consistent dataspace (Halevy, 2007).

Backward chaining for logical inference appeared first in Hewitt’s PLANNER lan-
guage (1969). Meanwhile, in 1972, Alain Colmerauer had developed and implemented Pro-
log for the purpose of parsing natural language—Prolog’s clauses were intended initially
as context-free grammar rules (Roussel, 1975; Colmerauer et al., 1973). Much of the the-
oretical background for logic programming was developed by Robert Kowalski, working

Bibliographical and Historical Notes 359

with Colmerauer; see Kowalski (1988) and Colmerauer and Roussel (1993) for a historical
overview. Efficient Prolog compilers are generally based on the Warren Abstract Machine
(WAM) model of computation developed by David H. D. Warren (1983). Van Roy (1990)
showed that Prolog programs can be competitive with C programs in terms of speed.

Methods for avoiding unnecessary looping in recursive logic programs were developed
independently by Smith et al. (1986) and Tamaki and Sato (1986). The latter paper also
included memoization for logic programs, a method developed extensively as tabled logic
programming by David S. Warren. Swift and Warren (1994) show how to extend the WAM
to handle tabling, enabling Datalog programs to execute an order of magnitude faster than
forward-chaining deductive database systems.

Early work on constraint logic programming was done by Jaffar and Lassez (1987).
Jaffar et al. (1992) developed the CLP(R) system for handling real-valued constraints. There
are now commercial products for solving large-scale configuration and optimization problems
with constraint programming; one of the best known is ILOG (Junker, 2003). Answer set
programming (Gelfond, 2008) extends Prolog, allowing disjunction and negation.

Texts on logic programming and Prolog, including Shoham (1994), Bratko (2001),
Clocksin (2003), and Clocksin and Mellish (2003). Prior to 2000, the Journal of Logic Pro-
gramming was the journal of record; it has now been replaced by Theory and Practice of
Logic Programming. Logic programming conferences include the International Conference
on Logic Programming (ICLP) and the International Logic Programming Symposium (ILPS).

Research into mathematical theorem proving began even before the first complete
first-order systems were developed. Herbert Gelernter’s Geometry Theorem Prover (Gelern-
ter, 1959) used heuristic search methods combined with diagrams for pruning false subgoals
and was able to prove some quite intricate results in Euclidean geometry. The demodula-
tion and paramodulation rules for equality reasoning were introduced by Wos et al. (1967)
and Wos and Robinson (1968), respectively. These rules were also developed independently
in the context of term-rewriting systems (Knuth and Bendix, 1970). The incorporation of
equality reasoning into the unification algorithm is due to Gordon Plotkin (1972). Jouannaud
and Kirchner (1991) survey equational unification from a term-rewriting perspective. An
overview of unification is given by Baader and Snyder (2001).

A number of control strategies have been proposed for resolution, beginning with the
unit preference strategy (Wos et al., 1964). The set-of-support strategy was proposed by Wos
et al. (1965) to provide a degree of goal-directedness in resolution. Linear resolution first
appeared in Loveland (1970). Genesereth and Nilsson (1987, Chapter 5) provide a short but
thorough analysis of a wide variety of control strategies.

A Computational Logic (Boyer and Moore, 1979) is the basic reference on the Boyer-
Moore theorem prover. Stickel (1992) covers the Prolog Technology Theorem Prover (PTTP),
which combines the advantages of Prolog compilation with the completeness of model elimi-
nation. SETHEO (Letz et al., 1992) is another widely used theorem prover based on this ap-
proach. LEANTAP (Beckert and Posegga, 1995) is an efficient theorem prover implemented
in only 25 lines of Prolog. Weidenbach (2001) describes SPASS, one of the strongest current
theorem provers. The most successful theorem prover in recent annual competitions has been
VAMPIRE (Riazanov and Voronkov, 2002). The COQ system (Bertot et al., 2004) and the E

360 Chapter 9. Inference in First-Order Logic

equational solver (Schulz, 2004) have also proven to be valuable tools for proving correct-
ness. Theorem provers have been used to automatically synthesize and verify software for
controlling spacecraft (Denney et al., 2006), including NASA’s new Orion capsule (Lowry,
2008). The design of the FM9001 32-bit microprocessor was proved correct by the NQTHM

system (Hunt and Brock, 1992). The Conference on Automated Deduction (CADE) runs an
annual contest for automated theorem provers. From 2002 through 2008, the most successful
system has been VAMPIRE (Riazanov and Voronkov, 2002). Wiedijk (2003) compares the
strength of 15 mathematical provers. TPTP (Thousands of Problems for Theorem Provers)
is a library of theorem-proving problems, useful for comparing the performance of systems
(Sutcliffe and Suttner, 1998; Sutcliffe et al., 2006).

Theorem provers have come up with novel mathematical results that eluded human
mathematicians for decades, as detailed in the book Automated Reasoning and the Discov-
ery of Missing Elegant Proofs (Wos and Pieper, 2003). The SAM (Semi-Automated Math-
ematics) program was the first, proving a lemma in lattice theory (Guard et al., 1969). The
AURA program has also answered open questions in several areas of mathematics (Wos and
Winker, 1983). The Boyer–Moore theorem prover (Boyer and Moore, 1979) was used by
Natarajan Shankar to give the first fully rigorous formal proof of Gödel’s Incompleteness
Theorem (Shankar, 1986). The NUPRL system proved Girard’s paradox (Howe, 1987) and
Higman’s Lemma (Murthy and Russell, 1990). In 1933, Herbert Robbins proposed a simple
set of axioms—the Robbins algebra—that appeared to define Boolean algebra, but no proofROBBINS ALGEBRA

could be found (despite serious work by Alfred Tarski and others). On October 10, 1996,
after eight days of computation, EQP (a version of OTTER) found a proof (McCune, 1997).

Many early papers in mathematical logic are to be found in From Frege to Gödel:
A Source Book in Mathematical Logic (van Heijenoort, 1967). Textbooks geared toward
automated deduction include the classic Symbolic Logic and Mechanical Theorem Prov-
ing (Chang and Lee, 1973), as well as more recent works by Duffy (1991), Wos et al. (1992),
Bibel (1993), and Kaufmann et al. (2000). The principal journal for theorem proving is the
Journal of Automated Reasoning; the main conferences are the annual Conference on Auto-
mated Deduction (CADE) and the International Joint Conference on Automated Reasoning
(IJCAR). The Handbook of Automated Reasoning (Robinson and Voronkov, 2001) collects
papers in the field. MacKenzie’s Mechanizing Proof (2004) covers the history and technology
of theorem proving for the popular audience.

EXERCISES

9.1 Prove that Universal Instantiation is sound and that Existential Instantiation produces
an inferentially equivalent knowledge base.

9.2 From Likes(Jerry , IceCream) it seems reasonable to infer ∃x Likes(x, IceCream).
Write down a general inference rule, Existential Introduction, that sanctions this inference.EXISTENTIAL

INTRODUCTION

State carefully the conditions that must be satisfied by the variables and terms involved.

Exercises 361

9.3 Suppose a knowledge base contains just one sentence, ∃x AsHighAs(x,Everest).
Which of the following are legitimate results of applying Existential Instantiation?

a. AsHighAs(Everest ,Everest).

b. AsHighAs(Kilimanjaro ,Everest).

c. AsHighAs(Kilimanjaro ,Everest) ∧ AsHighAs(BenNevis,Everest)

(after two applications).

9.4 For each pair of atomic sentences, give the most general unifier if it exists:

a. P (A,A,B), P (x, y, z).

b. Q(y,G(A,B)), Q(G(x, x), y).

c. Older(Father (y), y), Older (Father (x), Jerry).

d. Knows(Father (y), y), Knows(x, x).

9.5 Consider the subsumption lattices shown in Figure 9.2 (page 329).

a. Construct the lattice for the sentence Employs(Mother (John),Father (Richard)).

b. Construct the lattice for the sentence Employs(IBM , y) (“Everyone works for IBM”).
Remember to include every kind of query that unifies with the sentence.

c. Assume that STORE indexes each sentence under every node in its subsumption lattice.
Explain how FETCH should work when some of these sentences contain variables; use
as examples the sentences in (a) and (b) and the query Employs(x,Father (x)).

9.6 Write down logical representations for the following sentences, suitable for use with
Generalized Modus Ponens:

a. Horses, cows, and pigs are mammals.

b. An offspring of a horse is a horse.

c. Bluebeard is a horse.

d. Bluebeard is Charlie’s parent.

e. Offspring and parent are inverse relations.

f. Every mammal has a parent.

9.7 These questions concern concern issues with substitution and Skolemization.

a. Given the premise ∀x ∃ y P (x, y), it is not valid to conclude that ∃ q P (q, q). Give
an example of a predicate P where the first is true but the second is false.

b. Suppose that an inference engine is incorrectly written with the occurs check omitted,
so that it allows a literal like P (x, F (x)) to be unified with P (q, q). (As mentioned,
most standard implementations of Prolog actually do allow this.) Show that such an
inference engine will allow the conclusion ∃ y P (q, q) to be inferred from the premise
∀x ∃ y P (x, y).

362 Chapter 9. Inference in First-Order Logic

c. Suppose that a procedure that converts first-order logic to clausal form incorrectly
Skolemizes ∀x ∃ y P (x, y) to P (x, Sk0)—that is, it replaces y by a Skolem con-
stant rather than by a Skolem function of x. Show that an inference engine that uses
such a procedure will likewise allow ∃ q P (q, q) to be inferred from the premise
∀x ∃ y P (x, y).

d. A common error among students is to suppose that, in unification, one is allowed to
substitute a term for a Skolem constant instead of for a variable. For instance, they will
say that the formulas P (Sk1) and P (A) can be unified under the substitution {Sk1/A}.
Give an example where this leads to an invalid inference.

9.8 This question considers Horn KBs, such as the following:

P (F (x)) ⇒ P (x)

Q(x) ⇒ P (F (x))

P (A)

Q(B)

Let FC be a breadth-first forward-chaining algorithm that repeatedly adds all consequences
of currently satisfied rules; let BC be a depth-first left-to-right backward-chaining algorithm
that tries clauses in the order given in the KB. Which of the following are true?

a. FC will infer the literal Q(A).

b. FC will infer the literal P (B).

c. If FC has failed to infer a given literal, then it is not entailed by the KB.

d. BC will return true given the query P (B).

e. If BC does not return true given a query literal, then it is not entailed by the KB.

9.9 Explain how to write any given 3-SAT problem of arbitrary size using a single first-order
definite clause and no more than 30 ground facts.

9.10 Suppose you are given the following axioms:

1. 0 ≤ 4.
2. 5 ≤ 9.
3. ∀x x ≤ x.
4. ∀x x ≤ x + 0.
5. ∀x x + 0 ≤ x.
6. ∀x, y x + y ≤ y + x.
7. ∀w, x, y, z w ≤ y ∧ x ≤ z ⇒ w + x ≤ y + z.
8. ∀x, y, z x ≤ y ∧ y ≤ z ⇒ x ≤ z

a. Give a backward-chaining proof of the sentence 5 ≤ 4 + 9. (Be sure, of course, to use
only the axioms given here, not anything else you may know about arithmetic.) Show
only the steps that leads to success, not the irrelevant steps.

b. Give a forward-chaining proof of the sentence 5 ≤ 4 + 9. Again, show only the steps
that lead to success.

Exercises 363

9.11 A popular children’s riddle is “Brothers and sisters have I none, but that man’s father
is my father’s son.” Use the rules of the family domain (Section 8.3.2 on page 301) to show
who that man is. You may apply any of the inference methods described in this chapter. Why
do you think that this riddle is difficult?

9.12 Suppose we put into a logical knowledge base a segment of the U.S. census data list-
ing the age, city of residence, date of birth, and mother of every person, using social se-
curity numbers as identifying constants for each person. Thus, George’s age is given by
Age(443-65-1282, 56). Which of the following indexing schemes S1–S5 enable an efficient
solution for which of the queries Q1–Q4 (assuming normal backward chaining)?

• S1: an index for each atom in each position.
• S2: an index for each first argument.
• S3: an index for each predicate atom.
• S4: an index for each combination of predicate and first argument.
• S5: an index for each combination of predicate and second argument and an index for

each first argument.

• Q1: Age(443-44-4321, x)

• Q2: ResidesIn(x,Houston)

• Q3: Mother (x, y)

• Q4: Age(x, 34) ∧ ResidesIn(x,TinyTownUSA)

9.13 One might suppose that we can avoid the problem of variable conflict in unification
during backward chaining by standardizing apart all of the sentences in the knowledge base
once and for all. Show that, for some sentences, this approach cannot work. (Hint: Consider
a sentence in which one part unifies with another.)

9.14 In this exercise, use the sentences you wrote in Exercise 9.6 to answer a question by
using a backward-chaining algorithm.

a. Draw the proof tree generated by an exhaustive backward-chaining algorithm for the
query ∃h Horse(h), where clauses are matched in the order given.

b. What do you notice about this domain?
c. How many solutions for h actually follow from your sentences?
d. Can you think of a way to find all of them? (Hint: See Smith et al. (1986).)

9.15 Trace the execution of the backward-chaining algorithm in Figure 9.6 (page 338) when
it is applied to solve the crime problem (page 330). Show the sequence of values taken on by
the goals variable, and arrange them into a tree.

9.16 The following Prolog code defines a predicate P. (Remember that uppercase terms are
variables, not constants, in Prolog.)

P(X,[X|Y]).
P(X,[Y|Z]) :- P(X,Z).

364 Chapter 9. Inference in First-Order Logic

a. Show proof trees and solutions for the queries P(A,[1,2,3]) and P(2,[1,A,3]).

b. What standard list operation does P represent?

9.17 This exercise looks at sorting in Prolog.

a. Write Prolog clauses that define the predicate sorted(L), which is true if and only if
list L is sorted in ascending order.

b. Write a Prolog definition for the predicate perm(L,M), which is true if and only if L
is a permutation of M.

c. Define sort(L,M) (M is a sorted version of L) using perm and sorted.

d. Run sort on longer and longer lists until you lose patience. What is the time complex-
ity of your program?

e. Write a faster sorting algorithm, such as insertion sort or quicksort, in Prolog.

9.18 This exercise looks at the recursive application of rewrite rules, using logic program-
ming. A rewrite rule (or demodulator in OTTER terminology) is an equation with a specified
direction. For example, the rewrite rule x + 0 → x suggests replacing any expression that
matches x+0 with the expression x. Rewrite rules are a key component of equational reason-
ing systems. Use the predicate rewrite(X,Y) to represent rewrite rules. For example, the
earlier rewrite rule is written as rewrite(X+0,X). Some terms are primitive and cannot
be further simplified; thus, we write primitive(0) to say that 0 is a primitive term.

a. Write a definition of a predicate simplify(X,Y), that is true when Y is a simplified
version of X—that is, when no further rewrite rules apply to any subexpression of Y.

b. Write a collection of rules for the simplification of expressions involving arithmetic
operators, and apply your simplification algorithm to some sample expressions.

c. Write a collection of rewrite rules for symbolic differentiation, and use them along with
your simplification rules to differentiate and simplify expressions involving arithmetic
expressions, including exponentiation.

9.19 This exercise considers the implementation of search algorithms in Prolog. Suppose
that successor(X,Y) is true when state Y is a successor of state X; and that goal(X)
is true when X is a goal state. Write a definition for solve(X,P), which means that P is a
path (list of states) beginning with X, ending in a goal state, and consisting of a sequence of
legal steps as defined by successor. You will find that depth-first search is the easiest way
to do this. How easy would it be to add heuristic search control?

9.20 LetL be the first-order language with a single predicate S(p, q), meaning “p shaves q.”
Assume a domain of people.

a. Consider the sentence “There exists a person P who shaves every one who does not
shave themselves, and only people that do not shave themselves.” Express this in L.

b. Convert the sentence in (a) to clausal form.

Exercises 365

c. Construct a resolution proof to show that the clauses in (b) are inherently inconsistent.
(Note: you do not need any additional axioms.)

9.21 How can resolution be used to show that a sentence is valid? Unsatisfiable?

9.22 Construct an example of two clauses that can be resolved together in two different
ways giving two different outcomes.

9.23 From “Sheep are animals,” it follows that “The head of a sheep is the head of an
animal.” Demonstrate that this inference is valid by carrying out the following steps:

a. Translate the premise and the conclusion into the language of first-order logic. Use three
predicates: HeadOf (h, x) (meaning “h is the head of x”), Sheep(x), and Animal(x).

b. Negate the conclusion, and convert the premise and the negated conclusion into con-
junctive normal form.

c. Use resolution to show that the conclusion follows from the premise.

9.24 Here are two sentences in the language of first-order logic:

(A) ∀x ∃ y (x ≥ y)

(B) ∃ y ∀x (x ≥ y)

a. Assume that the variables range over all the natural numbers 0, 1, 2, . . . ,∞ and that the
“≥” predicate means “is greater than or equal to.” Under this interpretation, translate
(A) and (B) into English.

b. Is (A) true under this interpretation?

c. Is (B) true under this interpretation?

d. Does (A) logically entail (B)?

e. Does (B) logically entail (A)?

f. Using resolution, try to prove that (A) follows from (B). Do this even if you think that
(B) does not logically entail (A); continue until the proof breaks down and you cannot
proceed (if it does break down). Show the unifying substitution for each resolution step.
If the proof fails, explain exactly where, how, and why it breaks down.

g. Now try to prove that (B) follows from (A).

9.25 Resolution can produce nonconstructive proofs for queries with variables, so we had
to introduce special mechanisms to extract definite answers. Explain why this issue does not
arise with knowledge bases containing only definite clauses.

9.26 We said in this chapter that resolution cannot be used to generate all logical conse-
quences of a set of sentences. Can any algorithm do this?

	Knowledge, Reasoning & Planning
	8 First-Order Logic
	8.1 Representation Revisited
	8.2 Syntax and Semantics of First-Order Logic
	8.3 Using First-Order Logic
	8.4 Knowledge Engineering in First-Order Logic
	8.5 Summary, Bibliographical and Historical Notes, Exercises

	9 Inference in 1st-Order Logic
	9.1 Propositional vs. First-Order Inference
	9.2 Unification and Lifting
	9.3 Forward Chaining
	9.4 Backward Chaining
	9.5 Resolution
	9.6 Summary, Bibliographical and Historical Notes, Exercises

