FIRST-ORDER LOGIC

In which we notice that the world is blessed with many objects, some of which are related to other objects, and in which we endeavor to reason about them.

FIRST-ORDER LOGIC

In Chapter 7, we showed how a knowledge-based agent could represent the world in which it operates and deduce what actions to take. We used propositional logic as our representation language because it sufficed to illustrate the basic concepts of logic and knowledge-based agents. Unfortunately, propositional logic is too puny a language to represent knowledge of complex environments in a concise way. In this chapter, we examine **first-order logic**, 1 which is sufficiently expressive to represent a good deal of our commonsense knowledge. It also either subsumes or forms the foundation of many other representation languages and has been studied intensively for many decades. We begin in Section 8.1 with a discussion of representation languages in general; Section 8.2 covers the syntax and semantics of first-order logic; Sections 8.3 and 8.4 illustrate the use of first-order logic for simple representations.

8.1 REPRESENTATION REVISITED

In this section, we discuss the nature of representation languages. Our discussion motivates the development of first-order logic, a much more expressive language than the propositional logic introduced in Chapter 7. We look at propositional logic and at other kinds of languages to understand what works and what fails. Our discussion will be cursory, compressing centuries of thought, trial, and error into a few paragraphs.

Programming languages (such as C++ or Java or Lisp) are by far the largest class of formal languages in common use. Programs themselves represent, in a direct sense, only computational processes. Data structures within programs can represent facts; for example, a program could use a 4×4 array to represent the contents of the wumpus world. Thus, the programming language statement $World[2,2] \leftarrow Pit$ is a fairly natural way to assert that there is a pit in square [2,2]. (Such representations might be considered *ad hoc*; database systems were developed precisely to provide a more general, domain-independent way to store and

¹ Also called **first-order predicate calculus**, sometimes abbreviated as **FOL** or **FOPC**.

retrieve facts.) What programming languages lack is any general mechanism for deriving facts from other facts; each update to a data structure is done by a domain-specific procedure whose details are derived by the programmer from his or her own knowledge of the domain. This procedural approach can be contrasted with the **declarative** nature of propositional logic, in which knowledge and inference are separate, and inference is entirely domain independent.

A second drawback of data structures in programs (and of databases, for that matter) is the lack of any easy way to say, for example, "There is a pit in $[2,2]$ or $[3,1]$ " or "If the wumpus is in [1,1] then he is not in [2,2]." Programs can store a single value for each variable, and some systems allow the value to be "unknown," but they lack the expressiveness required to handle partial information.

Propositional logic is a declarative language because its semantics is based on a truth relation between sentences and possible worlds. It also has sufficient expressive power to deal with partial information, using disjunction and negation. Propositional logic has a third COMPOSITIONALITY property that is desirable in representation languages, namely, **compositionality**. In a compositional language, the meaning of a sentence is a function of the meaning of its parts. For example, the meaning of " $S_{1,4} \wedge S_{1,2}$ " is related to the meanings of " $S_{1,4}$ " and " $S_{1,2}$." It would be very strange if " $S_{1,4}$ " meant that there is a stench in square [1,4] and " $S_{1,2}$ " meant that there is a stench in square [1,2], but " $S_{1,4} \wedge S_{1,2}$ " meant that France and Poland drew 1–1 in last week's ice hockey qualifying match. Clearly, noncompositionality makes life much more difficult for the reasoning system.

> As we saw in Chapter 7, however, propositional logic lacks the expressive power to *concisely* describe an environment with many objects. For example, we were forced to write a separate rule about breezes and pits for each square, such as

 $B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$.

In English, on the other hand, it seems easy enough to say, once and for all, "Squares adjacent to pits are breezy." The syntax and semantics of English somehow make it possible to describe the environment concisely.

8.1.1 The language of thought

Natural languages (such as English or Spanish) are very expressive indeed. We managed to write almost this whole book in natural language, with only occasional lapses into other languages (including logic, mathematics, and the language of diagrams). There is a long tradition in linguistics and the philosophy of language that views natural language as a declarative knowledge representation language. If we could uncover the rules for natural language, we could use it in representation and reasoning systems and gain the benefit of the billions of pages that have been written in natural language.

The modern view of natural language is that it serves a as a medium for **communication** rather than pure representation. When a speaker points and says, "Look!" the listener comes to know that, say, Superman has finally appeared over the rooftops. Yet we would not want to say that the sentence "Look!" represents that fact. Rather, the meaning of the sentence depends both on the sentence itself and on the **context** in which the sentence was spoken. Clearly, one could not store a sentence such as "Look!" in a knowledge base and expect to

recover its meaning without also storing a representation of the context—which raises the question of how the context itself can be represented. Natural languages also suffer from AMBIGUITY **ambiguity**, a problem for a representation language. As Pinker (1995) puts it: "When people think about *spring*, surely they are not confused as to whether they are thinking about a season or something that goes *boing*—and if one word can correspond to two thoughts, thoughts can't be words."

> The famous **Sapir–Whorf hypothesis** claims that our understanding of the world *is* strongly influenced by the language we speak. Whorf (1956) wrote "We cut nature up, organize it into concepts, and ascribe significances as we do, largely because we are parties to an agreement to organize it this way—an agreement that holds throughout our speech community and is codified in the patterns of our language." It is certainly true that different speech communities divide up the world differently. The French have two words "chaise" and "fauteuil," for a concept that English speakers cover with one: "chair." But English speakers can easily recognize the category fauteuil and give it a name—roughly "open-arm chair"—so does language really make a difference? Whorf relied mainly on intuition and speculation, but in the intervening years we actually have real data from anthropological, psychological and neurological studies.

> For example, can you remember which of the following two phrases formed the opening of Section 8.1?

"In this section, we discuss the nature of representation languages ..."

"This section covers the topic of knowledge representation languages ..."

Wanner (1974) did a similar experiment and found that subjects made the right choice at chance level—about 50% of the time—but remembered the content of what they read with better than 90% accuracy. This suggests that people process the words to form some kind of *nonverbal* representation.

More interesting is the case in which a concept is completely absent in a language. Speakers of the Australian aboriginal language Guugu Yimithirr have no words for relative directions, such as front, back, right, or left. Instead they use absolute directions, saying, for example, the equivalent of "I have a pain in my north arm." This difference in language makes a difference in behavior: Guugu Yimithirr speakers are better at navigating in open terrain, while English speakers are better at placing the fork to the right of the plate.

Language also seems to influence thought through seemingly arbitrary grammatical features such as the gender of nouns. For example, "bridge" is masculine in Spanish and feminine in German. Boroditsky (2003) asked subjects to choose English adjectives to describe a photograph of a particular bridge. Spanish speakers chose *big*, *dangerous*, *strong*, and *towering*, whereas German speakers chose *beautiful*, *elegant*, *fragile*, and *slender*. Words can serve as anchor points that affect how we perceive the world. Loftus and Palmer (1974) showed experimental subjects a movie of an auto accident. Subjects who were asked "How fast were the cars going when they contacted each other?" reported an average of 32 mph, while subjects who were asked the question with the word "smashed" instead of "contacted" reported 41mph for the same cars in the same movie.

In a first-order logic reasoning system that uses CNF, we can see that the linguistic form "¬ $(A \vee B)$ " and "¬ $A \wedge \neg B$ " are the same because we can look inside the system and see that the two sentences are stored as the same canonical CNF form. Can we do that with the human brain? Until recently the answer was "no," but now it is "maybe." Mitchell *et al.* (2008) put subjects in an fMRI (functional magnetic resonance imaging) machine, showed them words such as "celery," and imaged their brains. The researchers were then able to train a computer program to predict, from a brain image, what word the subject had been presented with. Given two choices (e.g., "celery" or "airplane"), the system predicts correctly 77% of the time. The system can even predict at above-chance levels for words it has never seen an fMRI image of before (by considering the images of related words) and for people it has never seen before (proving that fMRI reveals some level of common representation across people). This type of work is still in its infancy, but fMRI (and other imaging technology such as intracranial electrophysiology (Sahin *et al.*, 2009)) promises to give us much more concrete ideas of what human knowledge representations are like.

From the viewpoint of formal logic, representing the same knowledge in two different ways makes absolutely no difference; the same facts will be derivable from either representation. In practice, however, one representation might require fewer steps to derive a conclusion, meaning that a reasoner with limited resources could get to the conclusion using one representation but not the other. For *nondeductive* tasks such as learning from experience, outcomes are *necessarily* dependent on the form of the representations used. We show in Chapter 18 that when a learning program considers two possible theories of the world, both of which are consistent with all the data, the most common way of breaking the tie is to choose the most succinct theory—and that depends on the language used to represent theories. Thus, the influence of language on thought is unavoidable for any agent that does learning.

8.1.2 Combining the best of formal and natural languages

We can adopt the foundation of propositional logic—a declarative, compositional semantics that is context-independent and unambiguous—and build a more expressive logic on that foundation, borrowing representational ideas from natural language while avoiding its drawbacks. When we look at the syntax of natural language, the most obvious elements are nouns OBJECT and noun phrases that refer to **objects** (squares, pits, wumpuses) and verbs and verb phrases RELATION that refer to **relations** among objects (is breezy, is adjacent to, shoots). Some of these rela-FUNCTION tions are **functions**—relations in which there is only one "value" for a given "input." It is easy to start listing examples of objects, relations, and functions:

- Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games, wars, centuries ...
- **PROPERTY** Relations: these can be unary relations or **properties** such as red, round, bogus, prime, multistoried \dots , or more general *n*-ary relations such as brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, ...
	- Functions: father of, best friend, third inning of, one more than, beginning of ...

Indeed, almost any assertion can be thought of as referring to objects and properties or relations. Some examples follow:

• "One plus two equals three."

Objects: one, two, three, one plus two; Relation: equals; Function: plus. ("One plus two" is a name for the object that is obtained by applying the function "plus" to the objects "one" and "two." "Three" is another name for this object.)

- "Squares neighboring the wumpus are smelly." Objects: wumpus, squares; Property: smelly; Relation: neighboring.
- "Evil King John ruled England in 1200." Objects: John, England, 1200; Relation: ruled; Properties: evil, king.

The language of **first-order logic**, whose syntax and semantics we define in the next section, is built around objects and relations. It has been so important to mathematics, philosophy, and artificial intelligence precisely because those fields—and indeed, much of everyday human existence—can be usefully thought of as dealing with objects and the relations among them. First-order logic can also express facts about *some* or *all* of the objects in the universe. This enables one to represent general laws or rules, such as the statement "Squares neighboring the wumpus are smelly."

ONTOLOGICAL COMMITMENT

LOGIC

COMMITMENT

The primary difference between propositional and first-order logic lies in the **ontological commitment** made by each language—that is, what it assumes about the nature of *reality*. Mathematically, this commitment is expressed through the nature of the formal **models** with respect to which the truth of sentences is defined. For example, propositional logic assumes that there are facts that either hold or do not hold in the world. Each fact can be in one of two states: true or false, and each model assigns true or false to each proposition symbol (see Section 7.4.2).² First-order logic assumes more; namely, that the world consists of objects with certain relations among them that do or do not hold. The formal models are correspondingly more complicated than those for propositional logic. Special-purpose logics TEMPORAL LOGIC make still further ontological commitments; for example, **temporal logic** assumes that facts hold at particular *times* and that those times (which may be points or intervals) are ordered. Thus, special-purpose logics give certain kinds of objects (and the axioms about them) "first class" status within the logic, rather than simply defining them within the knowledge base. HIGHER-ORDER **Higher-order logic** views the relations and functions referred to by first-order logic as objects in themselves. This allows one to make assertions about *all* relations—for example, one could wish to define what it means for a relation to be transitive. Unlike most special-purpose logics, higher-order logic is strictly more expressive than first-order logic, in the sense that some sentences of higher-order logic cannot be expressed by any finite number of first-order logic sentences.

EPISTEMOLOGICAL A logic can also be characterized by its **epistemological commitments**—the possible states of knowledge that it allows with respect to each fact. In both propositional and firstorder logic, a sentence represents a fact and the agent either believes the sentence to be true, believes it to be false, or has no opinion. These logics therefore have three possible states of knowledge regarding any sentence. Systems using **probability theory**, on the other hand,

² In contrast, facts in **fuzzy logic** have a **degree of truth** between 0 and 1. For example, the sentence "Vienna is a large city" might be true in our world only to degree 0.6 in fuzzy logic.

can have any *degree of belief*, ranging from 0 (total disbelief) to 1 (total belief).³ For example, a probabilistic wumpus-world agent might believe that the wumpus is in [1,3] with probability 0.75. The ontological and epistemological commitments of five different logics are summarized in Figure 8.1.

In the next section, we will launch into the details of first-order logic. Just as a student of physics requires some familiarity with mathematics, a student of AI must develop a talent for working with logical notation. On the other hand, it is also important *not* to get too concerned with the *specifics* of logical notation—after all, there are dozens of different versions. The main things to keep hold of are how the language facilitates concise representations and how its semantics leads to sound reasoning procedures.

8.2 SYNTAX AND SEMANTICS OF FIRST-ORDER LOGIC

We begin this section by specifying more precisely the way in which the possible worlds of first-order logic reflect the ontological commitment to objects and relations. Then we introduce the various elements of the language, explaining their semantics as we go along.

8.2.1 Models for first-order logic

Recall from Chapter 7 that the models of a logical language are the formal structures that constitute the possible worlds under consideration. Each model links the vocabulary of the logical sentences to elements of the possible world, so that the truth of any sentence can be determined. Thus, models for propositional logic link proposition symbols to predefined truth values. Models for first-order logic are much more interesting. First, they have objects DOMAIN in them! The **domain** of a model is the set of objects or **domain elements** it contains. The do-DOMAIN ELEMENTS main is required to be *nonempty*—every possible world must contain at least one object. (See Exercise 8.7 for a discussion of empty worlds.) Mathematically speaking, it doesn't matter *what* these objects are—all that matters is *how many* there are in each particular model—but for pedagogical purposes we'll use a concrete example. Figure 8.2 shows a model with five

³ It is important not to confuse the degree of belief in probability theory with the degree of truth in fuzzy logic. Indeed, some fuzzy systems allow uncertainty (degree of belief) about degrees of truth.

objects: Richard the Lionheart, King of England from 1189 to 1199; his younger brother, the evil King John, who ruled from 1199 to 1215; the left legs of Richard and John; and a crown.

The objects in the model may be *related* in various ways. In the figure, Richard and TUPLE John are brothers. Formally speaking, a relation is just the set of **tuples** of objects that are related. (A tuple is a collection of objects arranged in a fixed order and is written with angle brackets surrounding the objects.) Thus, the brotherhood relation in this model is the set

 $\{$ (Richard the Lionheart, King John), \langle King John, Richard the Lionheart \rangle }. (8.1)

(Here we have named the objects in English, but you may, if you wish, mentally substitute the pictures for the names.) The crown is on King John's head, so the "on head" relation contains just one tuple, (the crown, King John). The "brother" and "on head" relations are binary relations—that is, they relate pairs of objects. The model also contains unary relations, or properties: the "person" property is true of both Richard and John; the "king" property is true only of John (presumably because Richard is dead at this point); and the "crown" property is true only of the crown.

Certain kinds of relationships are best considered as functions, in that a given object must be related to exactly one object in this way. For example, each person has one left leg, so the model has a unary "left leg" function that includes the following mappings:

$$
\langle Richard the Lionheart \rangle \rightarrow Richard's left leg
$$

$$
\langle King John \rangle \rightarrow John's left leg
$$
 (8.2)

TOTAL FUNCTIONS Strictly speaking, models in first-order logic require **total functions**, that is, there must be a value for every input tuple. Thus, the crown must have a left leg and so must each of the left legs. There is a technical solution to this awkward problem involving an additional "invisible"

Figure 8.2 A model containing five objects, two binary relations, three unary relations (indicated by labels on the objects), and one unary function, left-leg.

object that is the left leg of everything that has no left leg, including itself. Fortunately, as long as one makes no assertions about the left legs of things that have no left legs, these technicalities are of no import.

So far, we have described the elements that populate models for first-order logic. The other essential part of a model is the link between those elements and the vocabulary of the logical sentences, which we explain next.

8.2.2 Symbols and interpretations

We turn now to the syntax of first-order logic. The impatient reader can obtain a complete description from the formal grammar in Figure 8.3.

The basic syntactic elements of first-order logic are the symbols that stand for objects, CONSTANT SYMBOL relations, and functions. The symbols, therefore, come in three kinds: **constant symbols**, PREDICATE SYMBOL which stand for objects; **predicate symbols**, which stand for relations; and **function sym-**FUNCTION SYMBOL **bols**, which stand for functions. We adopt the convention that these symbols will begin with uppercase letters. For example, we might use the constant symbols Richard and John; the predicate symbols Brother , OnHead, Person, King, and Crown; and the function symbol LeftLeg. As with proposition symbols, the choice of names is entirely up to the user. Each ARITY predicate and function symbol comes with an **arity** that fixes the number of arguments.

As in propositional logic, every model must provide the information required to determine if any given sentence is true or false. Thus, in addition to its objects, relations, and INTERPRETATION functions, each model includes an **interpretation** that specifies exactly which objects, relations and functions are referred to by the constant, predicate, and function symbols. One possible interpretation for our example—which a logician would call the **intended interpre-**INTENDED
INTERPRETATION **tation**—is as follows:

- Richard refers to Richard the Lionheart and *John* refers to the evil King John.
- *Brother* refers to the brotherhood relation, that is, the set of tuples of objects given in Equation (8.1); $OnHead$ refers to the "on head" relation that holds between the crown and King John; Person, King, and Crown refer to the sets of objects that are persons, kings, and crowns.
- LeftLeg refers to the "left leg" function, that is, the mapping given in Equation (8.2).

There are many other possible interpretations, of course. For example, one interpretation maps Richard to the crown and John to King John's left leg. There are five objects in the model, so there are 25 possible interpretations just for the constant symbols Richard and John. Notice that not all the objects need have a name—for example, the intended interpretation does not name the crown or the legs. It is also possible for an object to have several names; there is an interpretation under which both Richard and John refer to the crown.⁴ If you find this possibility confusing, remember that, in propositional logic, it is perfectly possible to have a model in which Cloudy and Sunny are both true; it is the job of the knowledge base to rule out models that are inconsistent with our knowledge.

INTERPRETATION

⁴ Later, in Section 8.2.8, we examine a semantics in which every object has exactly one name.

Figure 8.3 The syntax of first-order logic with equality, specified in Backus–Naur form (see page 1066 if you are not familiar with this notation). Operator precedences are specified, from highest to lowest. The precedence of quantifiers is such that a quantifier holds over everything to the right of it.

In summary, a model in first-order logic consists of a set of objects and an interpretation that maps constant symbols to objects, predicate symbols to relations on those objects, and function symbols to functions on those objects. Just as with propositional logic, entailment, validity, and so on are defined in terms of *all possible models*. To get an idea of what the set of all possible models looks like, see Figure 8.4. It shows that models vary in how many objects they contain—from one up to infinity—and in the way the constant symbols map to objects. If there are two constant symbols and one object, then both symbols must refer to the same object; but this can still happen even with more objects. When there are more objects than constant symbols, some of the objects will have no names. Because the number of possible models is unbounded, checking entailment by the enumeration of all possible models is not feasible for first-order logic (unlike propositional logic). Even if the number of objects is restricted, the number of combinations can be very large. (See Exercise 8.5.) For the example in Figure 8.4, there are 137,506,194,466 models with six or fewer objects.

8.2.3 Terms

TERM A **term** is a logical expression that refers to an object. Constant symbols are therefore terms, but it is not always convenient to have a distinct symbol to name every object. For example, in English we might use the expression "King John's left leg" rather than giving a name to his leg. This is what function symbols are for: instead of using a constant symbol, we use $LeftLeg(John)$. In the general case, a complex term is formed by a function symbol followed by a parenthesized list of terms as arguments to the function symbol. It is important to remember that a complex term is just a complicated kind of name. It is not a "subroutine call" that "returns a value." There is no $LeftLeg$ subroutine that takes a person as input and returns a leg. We can reason about left legs (e.g., stating the general rule that everyone has one and then deducing that John must have one) without ever providing a definition of LeftLeq. This is something that cannot be done with subroutines in programming languages.⁵

> The formal semantics of terms is straightforward. Consider a term $f(t_1, \ldots, t_n)$. The function symbol f refers to some function in the model (call it F); the argument terms refer to objects in the domain (call them d_1, \ldots, d_n); and the term as a whole refers to the object that is the value of the function F applied to d_1, \ldots, d_n . For example, suppose the LeftLeg function symbol refers to the function shown in Equation (8.2) and John refers to King John, then LeftLeg(John) refers to King John's left leg. In this way, the interpretation fixes the referent of every term.

8.2.4 Atomic sentences

Now that we have both terms for referring to objects and predicate symbols for referring to relations, we can put them together to make **atomic sentences** that state facts. An **atomic**

⁵ λ**-expressions** provide a useful notation in which new function symbols are constructed "on the fly." For example, the function that squares its argument can be written as $(\lambda x \times x)$ and can be applied to arguments just like any other function symbol. A λ -expression can also be defined and used as a predicate symbol. (See Chapter 22.) The lambda operator in Lisp plays exactly the same role. Notice that the use of λ in this way does *not* increase the formal expressive power of first-order logic, because any sentence that includes a λ -expression can be rewritten by "plugging in" its arguments to yield an equivalent sentence.

ATOMIC SENTENCE **sentence** (or **atom** for short) is formed from a predicate symbol optionally followed by a ATOM parenthesized list of terms, such as

Brother (Richard, John).

This states, under the intended interpretation given earlier, that Richard the Lionheart is the brother of King John.⁶ Atomic sentences can have complex terms as arguments. Thus,

 $Married(Father(Richard), Mother(John))$

states that Richard the Lionheart's father is married to King John's mother (again, under a suitable interpretation).

An atomic sentence is true in a given model if the relation referred to by the predicate symbol holds among the objects referred to by the arguments.

8.2.5 Complex sentences

We can use **logical connectives** to construct more complex sentences, with the same syntax and semantics as in propositional calculus. Here are four sentences that are true in the model of Figure 8.2 under our intended interpretation:

 $\neg Brother(LeftLeg(Richard), John)$ $Brother(Richard, John) \wedge Brother(John, Richard)$ $King(Richard) \vee King(John)$ $\neg King(Richard) \Rightarrow King(John)$.

8.2.6 Quantifiers

Once we have a logic that allows objects, it is only natural to want to express properties of QUANTIFIER entire collections of objects, instead of enumerating the objects by name. **Quantifiers** let us do this. First-order logic contains two standard quantifiers, called *universal* and *existential*.

Universal quantification (∀**)**

Recall the difficulty we had in Chapter 7 with the expression of general rules in propositional logic. Rules such as "Squares neighboring the wumpus are smelly" and "All kings are persons" are the bread and butter of first-order logic. We deal with the first of these in Section 8.3. The second rule, "All kings are persons," is written in first-order logic as

$$
\forall x \; King(x) \Rightarrow Person(x) .
$$

∀ is usually pronounced "For all ...". (Remember that the upside-down A stands for "all.") Thus, the sentence says, "For all x, if x is a king, then x is a person." The symbol x is called VARIABLE a **variable**. By convention, variables are lowercase letters. A variable is a term all by itself, and as such can also serve as the argument of a function—for example, $LeftLeg(x)$. A term GROUND TERM with no variables is called a **ground term**.

Intuitively, the sentence $\forall x \ P$, where P is any logical expression, says that P is true for every object x. More precisely, $\forall x \ P$ is true in a given model if P is true in all possible EXTENDED
INTERPRETATION **extended interpretations** constructed from the interpretation given in the model, where each

INTERPRETATION

⁶ We usually follow the argument-ordering convention that $P(x, y)$ is read as "x is a P of y."

extended interpretation specifies a domain element to which x refers.

This sounds complicated, but it is really just a careful way of stating the intuitive meaning of universal quantification. Consider the model shown in Figure 8.2 and the intended interpretation that goes with it. We can extend the interpretation in five ways:

- $x \rightarrow$ Richard the Lionheart,
- $x \rightarrow$ King John,
- $x \rightarrow$ Richard's left leg,
- $x \rightarrow$ John's left leg,
- $x \rightarrow$ the crown.

The universally quantified sentence $\forall x \space King(x) \Rightarrow Person(x)$ is true in the original model if the sentence $King(x) \Rightarrow Person(x)$ is true under each of the five extended interpretations. That is, the universally quantified sentence is equivalent to asserting the following five sentences:

Richard the Lionheart is a king \Rightarrow Richard the Lionheart is a person. King John is a king \Rightarrow King John is a person. Richard's left leg is a king \Rightarrow Richard's left leg is a person. John's left leg is a king \Rightarrow John's left leg is a person. The crown is a king \Rightarrow the crown is a person.

Let us look carefully at this set of assertions. Since, in our model, King John is the only king, the second sentence asserts that he is a person, as we would hope. But what about the other four sentences, which appear to make claims about legs and crowns? Is that part of the meaning of "All kings are persons"? In fact, the other four assertions are true in the model, but make no claim whatsoever about the personhood qualifications of legs, crowns, or indeed Richard. This is because none of these objects is a king. Looking at the truth table for \Rightarrow (Figure 7.8 on page 246), we see that the implication is true whenever its premise is false—*regardless* of the truth of the conclusion. Thus, by asserting the universally quantified sentence, which is equivalent to asserting a whole list of individual implications, we end up asserting the conclusion of the rule just for those objects for whom the premise is true and saying nothing at all about those individuals for whom the premise is false. Thus, the truth-table definition of \Rightarrow turns out to be perfect for writing general rules with universal quantifiers.

A common mistake, made frequently even by diligent readers who have read this paragraph several times, is to use conjunction instead of implication. The sentence

 $\forall x \; King(x) \land Person(x)$

would be equivalent to asserting

Richard the Lionheart is a king ∧ Richard the Lionheart is a person, King John is a king \land King John is a person, Richard's left leg is a king ∧ Richard's left leg is a person,

and so on. Obviously, this does not capture what we want.

Existential quantification (∃**)**

Universal quantification makes statements about every object. Similarly, we can make a statement about *some* object in the universe without naming it, by using an existential quantifier. To say, for example, that King John has a crown on his head, we write

```
\exists x \; Crown(x) \wedge OnHead(x, John).
```
 $\exists x$ is pronounced "There exists an x such that ..." or "For some $x \dots$ ".

Intuitively, the sentence $\exists x \ P$ says that P is true for at least one object x. More precisely, $\exists x \ P$ is true in a given model if P is true in *at least one* extended interpretation that assigns x to a domain element. That is, at least one of the following is true:

Richard the Lionheart is a crown \land Richard the Lionheart is on John's head;

King John is a crown ∧ King John is on John's head;

Richard's left leg is a crown \land Richard's left leg is on John's head;

John's left leg is a crown ∧ John's left leg is on John's head;

The crown is a crown \wedge the crown is on John's head.

The fifth assertion is true in the model, so the original existentially quantified sentence is true in the model. Notice that, by our definition, the sentence would also be true in a model in which King John was wearing two crowns. This is entirely consistent with the original sentence "King John has a crown on his head."⁷

Just as \Rightarrow appears to be the natural connective to use with \forall , \wedge is the natural connective to use with ∃. Using ∧ as the main connective with ∀ led to an overly strong statement in the example in the previous section; using \Rightarrow with \exists usually leads to a very weak statement, indeed. Consider the following sentence:

 $\exists x \; Crown(x) \Rightarrow OnHead(x, John)$.

On the surface, this might look like a reasonable rendition of our sentence. Applying the semantics, we see that the sentence says that at least one of the following assertions is true:

Richard the Lionheart is a crown \Rightarrow Richard the Lionheart is on John's head;

King John is a crown \Rightarrow King John is on John's head;

Richard's left leg is a crown \Rightarrow Richard's left leg is on John's head;

and so on. Now an implication is true if both premise and conclusion are true, *or if its premise is false*. So if Richard the Lionheart is not a crown, then the first assertion is true and the existential is satisfied. So, an existentially quantified implication sentence is true whenever *any* object fails to satisfy the premise; hence such sentences really do not say much at all.

Nested quantifiers

We will often want to express more complex sentences using multiple quantifiers. The simplest case is where the quantifiers are of the same type. For example, "Brothers are siblings" can be written as

 $\forall x \; \forall y \; Brother(x, y) \Rightarrow Sibling(x, y)$.

⁷ There is a variant of the existential quantifier, usually written \exists^1 or $\exists!$, that means "There exists exactly one." The same meaning can be expressed using equality statements.

Consecutive quantifiers of the same type can be written as one quantifier with several variables. For example, to say that siblinghood is a symmetric relationship, we can write

 $\forall x, y \; Sibling(x, y) \Leftrightarrow Sibling(y, x)$.

In other cases we will have mixtures. "Everybody loves somebody" means that for every person, there is someone that person loves:

 $\forall x \; \exists y \; Loves(x,y)$.

On the other hand, to say "There is someone who is loved by everyone," we write

 $\exists y \forall x \ Loves(x,y)$.

The order of quantification is therefore very important. It becomes clearer if we insert parentheses. $\forall x (\exists y \ Loves(x, y))$ says that *everyone* has a particular property, namely, the property that they love someone. On the other hand, $\exists y (\forall x \ Loves(x, y))$ says that *someone* in the world has a particular property, namely the property of being loved by everybody.

Some confusion can arise when two quantifiers are used with the same variable name. Consider the sentence

 $\forall x \ (Crown(x) \lor (\exists x \ Brother(Richard, x))$.

Here the x in $Brother(Richard, x)$ is *existentially* quantified. The rule is that the variable belongs to the innermost quantifier that mentions it; then it will not be subject to any other quantification. Another way to think of it is this: $\exists x \; Brother(Richard, x)$ is a sentence about Richard (that he has a brother), not about x; so putting a $\forall x$ outside it has no effect. It could equally well have been written $\exists z \; Brother(Richard, z)$. Because this can be a source of confusion, we will always use different variable names with nested quantifiers.

Connections between ∀ **and** ∃

The two quantifiers are actually intimately connected with each other, through negation. Asserting that everyone dislikes parsnips is the same as asserting there does not exist someone who likes them, and vice versa:

 $\forall x \neg \text{Likes}(x, \text{Parsnips})$ is equivalent to $\neg \exists x \text{Likes}(x, \text{Parsnips})$.

We can go one step further: "Everyone likes ice cream" means that there is no one who does not like ice cream:

 $\forall x \; \textit{Likes}(x, \textit{LeeCream})$ is equivalent to $\neg \exists x \; \neg \textit{Likes}(x, \textit{LeeCream})$.

Because ∀ is really a conjunction over the universe of objects and ∃ is a disjunction, it should not be surprising that they obey De Morgan's rules. The De Morgan rules for quantified and unquantified sentences are as follows:

 $\forall x \ \neg P \equiv \neg \exists x \ P \qquad \qquad \neg (P \lor Q) \equiv \neg P \land \neg Q$ $\neg \forall x \ P \equiv \exists x \ \neg P$ $\neg (P \land Q) \equiv \neg P \lor \neg Q$ $\forall x \ P \equiv \neg \exists x \ \neg P \qquad P \land Q \equiv \neg(\neg P \lor \neg Q)$ $\exists x \; P \equiv \neg \forall x \; \neg P \qquad P \lor Q \equiv \neg(\neg P \land \neg Q).$

Thus, we do not really need both \forall and \exists , just as we do not really need both \land and \lor . Still, readability is more important than parsimony, so we will keep both of the quantifiers.

8.2.7 Equality

First-order logic includes one more way to make atomic sentences, other than using a predi-EQUALITY SYMBOL cate and terms as described earlier. We can use the **equality symbol** to signify that two terms refer to the same object. For example,

 $Father(John) = Henry$

says that the object referred to by $Father(John)$ and the object referred to by $Henry$ are the same. Because an interpretation fixes the referent of any term, determining the truth of an equality sentence is simply a matter of seeing that the referents of the two terms are the same object.

The equality symbol can be used to state facts about a given function, as we just did for the Father symbol. It can also be used with negation to insist that two terms are not the same object. To say that Richard has at least two brothers, we would write

 $\exists x, y \; Brother(x, Richard) \land Brother(y, Richard) \land \neg(x = y)$.

The sentence

 $\exists x, y \; Brother(x, Richard) \wedge Brother(y, Richard)$

does not have the intended meaning. In particular, it is true in the model of Figure 8.2, where Richard has only one brother. To see this, consider the extended interpretation in which both x and y are assigned to King John. The addition of $\neg(x = y)$ rules out such models. The notation $x \neq y$ is sometimes used as an abbreviation for $\neg(x = y)$.

8.2.8 An alternative semantics?

Continuing the example from the previous section, suppose that we believe that Richard has two brothers, John and Geoffrey.⁸ Can we capture this state of affairs by asserting

 $Brother(John, Richard) \wedge Brother(Geoffrey, Richard)$? (8.3)

Not quite. First, this assertion is true in a model where Richard has only one brother we need to add $John \neq Geoffrey$. Second, the sentence doesn't rule out models in which Richard has many more brothers besides John and Geoffrey. Thus, the correct translation of "Richard's brothers are John and Geoffrey" is as follows:

```
Brother (John, Richard) ∧ Brother (Geoffrey, Richard) ∧ John \neq Geoffrey
    \wedge \forall x \; Brother(x, Richard) \Rightarrow (x = John \vee x = Geoffrey).
```
For many purposes, this seems much more cumbersome than the corresponding naturallanguage expression. As a consequence, humans may make mistakes in translating their knowledge into first-order logic, resulting in unintuitive behaviors from logical reasoning systems that use the knowledge. Can we devise a semantics that allows a more straightforward logical expression?

One proposal that is very popular in database systems works as follows. First, we insist that every constant symbol refer to a distinct object—the so-called **unique-names assumpthe Second, we assume that atomic sentences not known to be true are in fact false—the closed-world assumption**. Finally, we invoke **domain closure**, meaning that each model CLOSED-WORLD

ASSUMPTION ASSUMPTION

DOMAIN CLOSURE $\overline{8}$ Actually he had four, the others being William and Henry.

contains no more domain elements than those named by the constant symbols. Under the DATABASE resulting semantics, which we call **database semantics** to distinguish it from the standard semantics of first-order logic, the sentence Equation (8.3) does indeed state that Richard's two brothers are John and Geoffrey. Database semantics is also used in logic programming systems, as explained in Section 9.4.5.

> It is instructive to consider the set of all possible models under database semantics for the same case as shown in Figure 8.4. Figure 8.5 shows some of the models, ranging from the model with no tuples satisfying the relation to the model with all tuples satisfying the relation. With two objects, there are four possible two-element tuples, so there are $2^4 = 16$ different subsets of tuples that can satisfy the relation. Thus, there are 16 possible models in all—a lot fewer than the infinitely many models for the standard first-order semantics. On the other hand, the database semantics requires definite knowledge of what the world contains.

> This example brings up an important point: there is no one "correct" semantics for logic. The usefulness of any proposed semantics depends on how concise and intuitive it makes the expression of the kinds of knowledge we want to write down, and on how easy and natural it is to develop the corresponding rules of inference. Database semantics is most useful when we are certain about the identity of all the objects described in the knowledge base and when we have all the facts at hand; in other cases, it is quite awkward. For the rest of this chapter, we assume the standard semantics while noting instances in which this choice leads to cumbersome expressions.

8.3 USING FIRST-ORDER LOGIC

Now that we have defined an expressive logical language, it is time to learn how to use it. The best way to do this is through examples. We have seen some simple sentences illustrating the various aspects of logical syntax; in this section, we provide more systematic representations DOMAIN of some simple **domains**. In knowledge representation, a domain is just some part of the world about which we wish to express some knowledge.

> We begin with a brief description of the TELL/ASK interface for first-order knowledge bases. Then we look at the domains of family relationships, numbers, sets, and lists, and at

SEMANTICS

the wumpus world. The next section contains a more substantial example (electronic circuits) and Chapter 12 covers everything in the universe.

8.3.1 Assertions and queries in first-order logic

Sentences are added to a knowledge base using TELL, exactly as in propositional logic. Such ASSERTION sentences are called **assertions**. For example, we can assert that John is a king, Richard is a person, and all kings are persons:

> $TELL(KB, King(John))$. $TELL(KB, Person(Richard))$. TELL(KB, $\forall x$ King(x) \Rightarrow Person(x)).

We can ask questions of the knowledge base using ASK. For example,

 $Ask(KB, King(John))$

QUERY returns true. Questions asked with ASK are called **queries** or **goals**. Generally speaking, any GOAL query that is logically entailed by the knowledge base should be answered affirmatively. For example, given the two preceding assertions, the query

ASK(KB, Person(John))

should also return true. We can ask quantified queries, such as

 $Ask(KB, \exists x \ Person(x))$.

The answer is true, but this is perhaps not as helpful as we would like. It is rather like answering "Can you tell me the time?" with "Yes." If we want to know what value of x makes the sentence true, we will need a different function, ASKVARS, which we call with

 $AskVARS(KB, Person(x))$

and which yields a stream of answers. In this case there will be two answers: $\{x/John\}$ and SUBSTITUTION {x/Richard}. Such an answer is called a **substitution** or **binding list**. ASKVARS is usually BINDING LIST reserved for knowledge bases consisting solely of Horn clauses, because in such knowledge bases every way of making the query true will bind the variables to specific values. That is not the case with first-order logic; if KB has been told $King(John) \vee King(Richard)$, then there is no binding to x for the query $\exists x \; King(x)$, even though the query is true.

8.3.2 The kinship domain

The first example we consider is the domain of family relationships, or kinship. This domain includes facts such as "Elizabeth is the mother of Charles" and "Charles is the father of William" and rules such as "One's grandmother is the mother of one's parent."

Clearly, the objects in our domain are people. We have two unary predicates, Male and Female. Kinship relations—parenthood, brotherhood, marriage, and so on—are represented by binary predicates: Parent, Sibling, Brother, Sister, Child, Daughter, Son, Spouse, Wife, Husband, Grandparent, Grandchild, Cousin, Aunt, and Uncle. We use functions for *Mother* and *Father*, because every person has exactly one of each of these (at least according to nature's design).

We can go through each function and predicate, writing down what we know in terms of the other symbols. For example, one's mother is one's female parent:

 $\forall m, c \; Mother(c) = m \Leftrightarrow Female(m) \wedge Parent(m, c)$.

One's husband is one's male spouse:

 $\forall w, h \; Husband(h, w) \Leftrightarrow Male(h) \wedge Spouse(h, w)$.

Male and female are disjoint categories:

 $\forall x \; Male(x) \Leftrightarrow \neg Female(x)$.

Parent and child are inverse relations:

 $\forall p, c \; Parent(p, c) \Leftrightarrow Child(c, p)$.

A grandparent is a parent of one's parent:

 $\forall g, c \; Grandparent(g, c) \Leftrightarrow \exists p \; Parent(g, p) \wedge Parent(p, c)$.

A sibling is another child of one's parents:

 $\forall x, y \ Sibling(x, y) \Leftrightarrow x \neq y \wedge \exists p \ Parent(p, x) \wedge Parent(p, y)$.

We could go on for several more pages like this, and Exercise 8.15 asks you to do just that.

Each of these sentences can be viewed as an **axiom** of the kinship domain, as explained in Section 7.1. Axioms are commonly associated with purely mathematical domains—we will see some axioms for numbers shortly—but they are needed in all domains. They provide the basic factual information from which useful conclusions can be derived. Our kinship DEFINITION axioms are also **definitions**; they have the form $\forall x, y \ P(x, y) \Leftrightarrow \dots$ The axioms define the Mother function and the Husband, Male, Parent, Grandparent, and Sibling predicates in terms of other predicates. Our definitions "bottom out" at a basic set of predicates (Child, Spouse, and Female) in terms of which the others are ultimately defined. This is a natural way in which to build up the representation of a domain, and it is analogous to the way in which software packages are built up by successive definitions of subroutines from primitive library functions. Notice that there is not necessarily a unique set of primitive predicates; we could equally well have used *Parent, Spouse*, and *Male*. In some domains, as we show, there is no clearly identifiable basic set.

THEOREM Not all logical sentences about a domain are axioms. Some are **theorems**—that is, they are entailed by the axioms. For example, consider the assertion that siblinghood is symmetric:

 $\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x)$.

Is this an axiom or a theorem? In fact, it is a theorem that follows logically from the axiom that defines siblinghood. If we ASK the knowledge base this sentence, it should return true.

From a purely logical point of view, a knowledge base need contain only axioms and no theorems, because the theorems do not increase the set of conclusions that follow from the knowledge base. From a practical point of view, theorems are essential to reduce the computational cost of deriving new sentences. Without them, a reasoning system has to start from first principles every time, rather like a physicist having to rederive the rules of calculus for every new problem.

Not all axioms are definitions. Some provide more general information about certain predicates without constituting a definition. Indeed, some predicates have no complete definition because we do not know enough to characterize them fully. For example, there is no obvious definitive way to complete the sentence

 $\forall x \; Person(x) \Leftrightarrow \ldots$

Fortunately, first-order logic allows us to make use of the Person predicate without completely defining it. Instead, we can write partial specifications of properties that every person has and properties that make something a person:

```
\forall x \; Person(x) \Rightarrow \dots\forall x \dots \Rightarrow Person(x).
```
Axioms can also be "just plain facts," such as $Male(Jim)$ and $Spouse(Jim, Laura)$. Such facts form the descriptions of specific problem instances, enabling specific questions to be answered. The answers to these questions will then be theorems that follow from the axioms. Often, one finds that the expected answers are not forthcoming—for example, from $Spouse(Jim, Laura)$ one expects (under the laws of many countries) to be able to infer $\neg Spouse(George, Laura)$; but this does not follow from the axioms given earlier—even after we add $Jim \neq George$ as suggested in Section 8.2.8. This is a sign that an axiom is missing. Exercise 8.8 asks the reader to supply it.

8.3.3 Numbers, sets, and lists

Numbers are perhaps the most vivid example of how a large theory can be built up from NATURAL NUMBERS a tiny kernel of axioms. We describe here the theory of **natural numbers** or non-negative integers. We need a predicate $NatNum$ that will be true of natural numbers; we need one PEANO AXIOMS constant symbol, 0; and we need one function symbol, S (successor). The **Peano axioms** define natural numbers and addition.⁹ Natural numbers are defined recursively:

> $NatNum(0)$. $\forall n \ NatNum(n) \Rightarrow NatNum(S(n))$.

That is, 0 is a natural number, and for every object n, if n is a natural number, then $S(n)$ is a natural number. So the natural numbers are 0, $S(0)$, $S(S(0))$, and so on. (After reading Section 8.2.8, you will notice that these axioms allow for other natural numbers besides the usual ones; see Exercise 8.13.) We also need axioms to constrain the successor function:

```
\forall n \; 0 \neq S(n).
\forall m, n \ m \neq n \Rightarrow S(m) \neq S(n).
```
Now we can define addition in terms of the successor function:

 $\forall m \; NatNum(m) \Rightarrow + (0, m) = m$.

 $\forall m, n \; NatNum(m) \land NatNum(n) \Rightarrow +(S(m), n) = S(+m, n))$.

The first of these axioms says that adding 0 to any natural number m gives m itself. Notice the use of the binary function symbol "+" in the term $+(m, 0)$; in ordinary mathematics, the INFIX term would be written $m + 0$ using **infix** notation. (The notation we have used for first-order

⁹ The Peano axioms also include the principle of induction, which is a sentence of second-order logic rather than of first-order logic. The importance of this distinction is explained in Chapter 9.

PREFIX logic is called **prefix**.) To make our sentences about numbers easier to read, we allow the use of infix notation. We can also write $S(n)$ as $n + 1$, so the second axiom becomes

 $\forall m, n \; NatNum(m) \land NatNum(n) \Rightarrow (m+1) + n = (m+n) + 1$.

This axiom reduces addition to repeated application of the successor function.

SYNTACTIC SUGAR The use of infix notation is an example of **syntactic sugar**, that is, an extension to or abbreviation of the standard syntax that does not change the semantics. Any sentence that uses sugar can be "desugared" to produce an equivalent sentence in ordinary first-order logic.

> Once we have addition, it is straightforward to define multiplication as repeated addition, exponentiation as repeated multiplication, integer division and remainders, prime numbers, and so on. Thus, the whole of number theory (including cryptography) can be built up from one constant, one function, one predicate and four axioms.

SET The domain of **sets** is also fundamental to mathematics as well as to commonsense reasoning. (In fact, it is possible to define number theory in terms of set theory.) We want to be able to represent individual sets, including the empty set. We need a way to build up sets by adding an element to a set or taking the union or intersection of two sets. We will want to know whether an element is a member of a set and we will want to distinguish sets from objects that are not sets.

> We will use the normal vocabulary of set theory as syntactic sugar. The empty set is a constant written as $\{\}$. There is one unary predicate, Set, which is true of sets. The binary predicates are $x \in s$ (x is a member of set s) and $s_1 \subseteq s_2$ (set s_1 is a subset, not necessarily proper, of set s₂). The binary functions are $s_1 \cap s_2$ (the intersection of two sets), $s_1 \cup s_2$ (the union of two sets), and $\{x|s\}$ (the set resulting from adjoining element x to set s). One possible set of axioms is as follows:

1. The only sets are the empty set and those made by adjoining something to a set:

 $\forall s \; Set(s) \Leftrightarrow (s = \{\}) \vee (\exists x, s_2 \; Set(s_2) \wedge s = \{x | s_2\}).$

2. The empty set has no elements adjoined into it. In other words, there is no way to decompose { } into a smaller set and an element:

 $\neg \exists x, s \ \{x | s\} = \{\}\.$

3. Adjoining an element already in the set has no effect:

 $\forall x, s \ x \in s \Leftrightarrow s = \{x|s\}.$

4. The only members of a set are the elements that were adjoined into it. We express this recursively, saying that x is a member of s if and only if s is equal to some set s_2 adjoined with some element y, where either y is the same as x or x is a member of s_2 .

 $\forall x, s \ x \in s \Leftrightarrow \exists y, s_2 \ (s = \{y | s_2\} \land (x = y \lor x \in s_2))$.

5. A set is a subset of another set if and only if all of the first set's members are members of the second set:

 $\forall s_1, s_2 \ s_1 \subseteq s_2 \Leftrightarrow (\forall x \ x \in s_1 \Rightarrow x \in s_2).$

6. Two sets are equal if and only if each is a subset of the other:

 $\forall s_1, s_2 \ (s_1 = s_2) \Leftrightarrow (s_1 \subseteq s_2 \land s_2 \subseteq s_1).$

7. An object is in the intersection of two sets if and only if it is a member of both sets:

 $\forall x, s_1, s_2 \ x \in (s_1 \cap s_2) \Leftrightarrow (x \in s_1 \land x \in s_2).$

8. An object is in the union of two sets if and only if it is a member of either set:

 $\forall x, s_1, s_2 \ x \in (s_1 \cup s_2) \Leftrightarrow (x \in s_1 \vee x \in s_2).$

LIST **Lists** are similar to sets. The differences are that lists are ordered and the same element can appear more than once in a list. We can use the vocabulary of Lisp for lists: Nil is the constant list with no elements; Cons, Append, First, and Rest are functions; and Find is the predicate that does for lists what Member does for sets. List? is a predicate that is true only of lists. As with sets, it is common to use syntactic sugar in logical sentences involving lists. The empty list is $[]$. The term $Cons(x, y)$, where y is a nonempty list, is written $[x|y]$. The term $Cons(x, Nil)$ (i.e., the list containing the element x) is written as [x]. A list of several elements, such as $[A, B, C]$, corresponds to the nested term $Cons(A, Cons(B, Cons(C, Nil)))$. Exercise 8.17 asks you to write out the axioms for lists.

8.3.4 The wumpus world

Some propositional logic axioms for the wumpus world were given in Chapter 7. The firstorder axioms in this section are much more concise, capturing in a natural way exactly what we want to say.

Recall that the wumpus agent receives a percept vector with five elements. The corresponding first-order sentence stored in the knowledge base must include both the percept and the time at which it occurred; otherwise, the agent will get confused about when it saw what. We use integers for time steps. A typical percept sentence would be

```
Percept([Stench, Breeze, Glitter, None, None], 5).
```
Here, Percept is a binary predicate, and *Stench* and so on are constants placed in a list. The actions in the wumpus world can be represented by logical terms:

```
Turn(Right), Turn(Left), Forward, Shoot, Grab, Climb.
```
To determine which is best, the agent program executes the query

```
AskVARS(∃a BestAction(a, 5)),
```
which returns a binding list such as $\{a/Grab\}$. The agent program can then return Grab as the action to take. The raw percept data implies certain facts about the current state. For example:

```
\forall t, s, g, m, c \, \text{Percept}([s, Breeze, g, m, c], t) \Rightarrow \text{Breeze}(t),
\forall t, s, b, m, c \, \text{Percept}([s, b, Glitter, m, c], t) \Rightarrow Glitter(t),
```
and so on. These rules exhibit a trivial form of the reasoning process called **perception**, which we study in depth in Chapter 24. Notice the quantification over time t. In propositional logic, we would need copies of each sentence for each time step.

Simple "reflex" behavior can also be implemented by quantified implication sentences. For example, we have

 $\forall t \; Glitter(t) \Rightarrow BestAction(Grab, t)$.

Given the percept and rules from the preceding paragraphs, this would yield the desired conclusion $BestAction(Grab, 5)$ —that is, $Grab$ is the right thing to do.

We have represented the agent's inputs and outputs; now it is time to represent the environment itself. Let us begin with objects. Obvious candidates are squares, pits, and the wumpus. We could name each square— $Square_{1,2}$ and so on—but then the fact that $Square_{1,2}$ and $Square_{1,3}$ are adjacent would have to be an "extra" fact, and we would need one such fact for each pair of squares. It is better to use a complex term in which the row and column appear as integers; for example, we can simply use the list term $[1, 2]$. Adjacency of any two squares can be defined as

$$
\forall x, y, a, b \ \ Adjacent([x, y], [a, b]) \Leftrightarrow (x = a \land (y = b - 1 \lor y = b + 1)) \lor (y = b \land (x = a - 1 \lor x = a + 1)).
$$

We could name each pit, but this would be inappropriate for a different reason: there is no reason to distinguish among pits.¹⁰ It is simpler to use a unary predicate *Pit* that is true of squares containing pits. Finally, since there is exactly one wumpus, a constant *Wumpus* is just as good as a unary predicate (and perhaps more dignified from the wumpus's viewpoint).

The agent's location changes over time, so we write $At(Agent, s, t)$ to mean that the agent is at square s at time t. We can fix the wumpus's location with $\forall t \, At(\,Wumpus, [2, 2], t)$. We can then say that objects can only be at one location at a time:

 $\forall x, s_1, s_2, t \; At(x, s_1, t) \wedge At(x, s_2, t) \Rightarrow s_1 = s_2$.

Given its current location, the agent can infer properties of the square from properties of its current percept. For example, if the agent is at a square and perceives a breeze, then that square is breezy:

$$
\forall s, t \ At(Agent, s, t) \land Breeze(t) \Rightarrow Breezy(s) .
$$

It is useful to know that a *square* is breezy because we know that the pits cannot move about. Notice that Breezy has no time argument.

Having discovered which places are breezy (or smelly) and, very important, *not* breezy (or *not* smelly), the agent can deduce where the pits are (and where the wumpus is). Whereas propositional logic necessitates a separate axiom for each square (see R_2 and R_3 on page 247) and would need a different set of axioms for each geographical layout of the world, first-order logic just needs one axiom:

$$
\forall s \ Breezy(s) \Leftrightarrow \exists r \ Adjacent(r, s) \land Pit(r).
$$
\n(8.4)

Similarly, in first-order logic we can quantify over time, so we need just one successor-state axiom for each predicate, rather than a different copy for each time step. For example, the axiom for the arrow (Equation (7.2) on page 267) becomes

$$
\forall t \; HaveArrow(t+1) \Leftrightarrow (HaveArrow(t) \land \neg Action(Shoot, t)).
$$

From these two example sentences, we can see that the first-order logic formulation is no less concise than the original English-language description given in Chapter 7. The reader

 10 Similarly, most of us do not name each bird that flies overhead as it migrates to warmer regions in winter. An ornithologist wishing to study migration patterns, survival rates, and so on *does* name each bird, by means of a ring on its leg, because individual birds must be tracked.

is invited to construct analogous axioms for the agent's location and orientation; in these cases, the axioms quantify over both space and time. As in the case of propositional state estimation, an agent can use logical inference with axioms of this kind to keep track of aspects of the world that are not directly observed. Chapter 10 goes into more depth on the subject of first-order successor-state axioms and their uses for constructing plans.

8.4 KNOWLEDGE ENGINEERING IN FIRST-ORDER LOGIC

KNOWLEDGE
ENGINEERING

The preceding section illustrated the use of first-order logic to represent knowledge in three simple domains. This section describes the general process of knowledge-base construction a process called **knowledge engineering**. A knowledge engineer is someone who investigates a particular domain, learns what concepts are important in that domain, and creates a formal representation of the objects and relations in the domain. We illustrate the knowledge engineering process in an electronic circuit domain that should already be fairly familiar, so that we can concentrate on the representational issues involved. The approach we take is suitable for developing *special-purpose* knowledge bases whose domain is carefully circumscribed and whose range of queries is known in advance. *General-purpose* knowledge bases, which cover a broad range of human knowledge and are intended to support tasks such as natural language understanding, are discussed in Chapter 12.

8.4.1 The knowledge-engineering process

Knowledge engineering projects vary widely in content, scope, and difficulty, but all such projects include the following steps:

- 1. *Identify the task.* The knowledge engineer must delineate the range of questions that the knowledge base will support and the kinds of facts that will be available for each specific problem instance. For example, does the wumpus knowledge base need to be able to choose actions or is it required to answer questions only about the contents of the environment? Will the sensor facts include the current location? The task will determine what knowledge must be represented in order to connect problem instances to answers. This step is analogous to the PEAS process for designing agents in Chapter 2.
- 2. *Assemble the relevant knowledge.* The knowledge engineer might already be an expert in the domain, or might need to work with real experts to extract what they know—a **ENOWLEDGE** process called **knowledge acquisition**. At this stage, the knowledge is not represented formally. The idea is to understand the scope of the knowledge base, as determined by the task, and to understand how the domain actually works.

For the wumpus world, which is defined by an artificial set of rules, the relevant knowledge is easy to identify. (Notice, however, that the definition of adjacency was not supplied explicitly in the wumpus-world rules.) For real domains, the issue of relevance can be quite difficult—for example, a system for simulating VLSI designs might or might not need to take into account stray capacitances and skin effects.

ACQUISITION

- 3. *Decide on a vocabulary of predicates, functions, and constants.* That is, translate the important domain-level concepts into logic-level names. This involves many questions of knowledge-engineering *style*. Like programming style, this can have a significant impact on the eventual success of the project. For example, should pits be represented by objects or by a unary predicate on squares? Should the agent's orientation be a function or a predicate? Should the wumpus's location depend on time? Once the ONTOLOGY choices have been made, the result is a vocabulary that is known as the **ontology** of the domain. The word *ontology* means a particular theory of the nature of being or existence. The ontology determines what kinds of things exist, but does not determine their specific properties and interrelationships.
	- 4. *Encode general knowledge about the domain.* The knowledge engineer writes down the axioms for all the vocabulary terms. This pins down (to the extent possible) the meaning of the terms, enabling the expert to check the content. Often, this step reveals misconceptions or gaps in the vocabulary that must be fixed by returning to step 3 and iterating through the process.
	- 5. *Encode a description of the specific problem instance.* If the ontology is well thought out, this step will be easy. It will involve writing simple atomic sentences about instances of concepts that are already part of the ontology. For a logical agent, problem instances are supplied by the sensors, whereas a "disembodied" knowledge base is supplied with additional sentences in the same way that traditional programs are supplied with input data.
	- 6. *Pose queries to the inference procedure and get answers.* This is where the reward is: we can let the inference procedure operate on the axioms and problem-specific facts to derive the facts we are interested in knowing. Thus, we avoid the need for writing an application-specific solution algorithm.
	- 7. *Debug the knowledge base.* Alas, the answers to queries will seldom be correct on the first try. More precisely, the answers will be correct *for the knowledge base as written*, assuming that the inference procedure is sound, but they will not be the ones that the user is expecting. For example, if an axiom is missing, some queries will not be answerable from the knowledge base. A considerable debugging process could ensue. Missing axioms or axioms that are too weak can be easily identified by noticing places where the chain of reasoning stops unexpectedly. For example, if the knowledge base includes a diagnostic rule (see Exercise 8.14) for finding the wumpus,

 $\forall s \; Smelly(s) \Rightarrow Adjacent(Home(Wumpus),s)$,

instead of the biconditional, then the agent will never be able to prove the *absence* of wumpuses. Incorrect axioms can be identified because they are false statements about the world. For example, the sentence

```
\forall x \; NumOfLegs(x,4) \Rightarrow Mammal(x)
```
is false for reptiles, amphibians, and, more importantly, tables. *The falsehood of this sentence can be determined independently of the rest of the knowledge base.* In contrast,

a typical error in a program looks like this:

 $offset = position + 1$.

It is impossible to tell whether this statement is correct without looking at the rest of the program to see whether, for example, offset is used to refer to the current position, or to one beyond the current position, or whether the value of position is changed by another statement and so offset should also be changed again.

To understand this seven-step process better, we now apply it to an extended example—the domain of electronic circuits.

8.4.2 The electronic circuits domain

We will develop an ontology and knowledge base that allow us to reason about digital circuits of the kind shown in Figure 8.6. We follow the seven-step process for knowledge engineering.

Identify the task

There are many reasoning tasks associated with digital circuits. At the highest level, one analyzes the circuit's functionality. For example, does the circuit in Figure 8.6 actually add properly? If all the inputs are high, what is the output of gate A2? Questions about the circuit's structure are also interesting. For example, what are all the gates connected to the first input terminal? Does the circuit contain feedback loops? These will be our tasks in this section. There are more detailed levels of analysis, including those related to timing delays, circuit area, power consumption, production cost, and so on. Each of these levels would require additional knowledge.

Assemble the relevant knowledge

What do we know about digital circuits? For our purposes, they are composed of wires and gates. Signals flow along wires to the input terminals of gates, and each gate produces a

Figure 8.6 A digital circuit C1, purporting to be a one-bit full adder. The first two inputs are the two bits to be added, and the third input is a carry bit. The first output is the sum, and the second output is a carry bit for the next adder. The circuit contains two XOR gates, two AND gates, and one OR gate.

signal on the output terminal that flows along another wire. To determine what these signals will be, we need to know how the gates transform their input signals. There are four types of gates: AND, OR, and XOR gates have two input terminals, and NOT gates have one. All gates have one output terminal. Circuits, like gates, have input and output terminals.

To reason about functionality and connectivity, we do not need to talk about the wires themselves, the paths they take, or the junctions where they come together. All that matters is the connections between terminals—we can say that one output terminal is connected to another input terminal without having to say what actually connects them. Other factors such as the size, shape, color, or cost of the various components are irrelevant to our analysis.

If our purpose were something other than verifying designs at the gate level, the ontology would be different. For example, if we were interested in debugging faulty circuits, then it would probably be a good idea to include the wires in the ontology, because a faulty wire can corrupt the signal flowing along it. For resolving timing faults, we would need to include gate delays. If we were interested in designing a product that would be profitable, then the cost of the circuit and its speed relative to other products on the market would be important.

Decide on a vocabulary

We now know that we want to talk about circuits, terminals, signals, and gates. The next step is to choose functions, predicates, and constants to represent them. First, we need to be able to distinguish gates from each other and from other objects. Each gate is represented as an object named by a constant, about which we assert that it is a gate with, say, $Gate(X_1)$. The behavior of each gate is determined by its type: one of the constants AND, OR, XOR , or NOT. Because a gate has exactly one type, a function is appropriate: $Type(X_1) = XOR$. Circuits, like gates, are identified by a predicate: $Circuit(C_1)$.

Next we consider terminals, which are identified by the predicate $Terminal(x)$. A gate or circuit can have one or more input terminals and one or more output terminals. We use the function $In(1, X_1)$ to denote the first input terminal for gate X_1 . A similar function Out is used for output terminals. The function $Arity(c, i, j)$ says that circuit c has i input and j output terminals. The connectivity between gates can be represented by a predicate, Connected, which takes two terminals as arguments, as in $Connected(Out(1, X_1), In(1, X_2)).$

Finally, we need to know whether a signal is on or off. One possibility is to use a unary predicate, $On(t)$, which is true when the signal at a terminal is on. This makes it a little difficult, however, to pose questions such as "What are all the possible values of the signals at the output terminals of circuit C_1 ?" We therefore introduce as objects two signal values, 1 and 0, and a function $Signal(t)$ that denotes the signal value for the terminal t.

Encode general knowledge of the domain

One sign that we have a good ontology is that we require only a few general rules, which can be stated clearly and concisely. These are all the axioms we will need:

1. If two terminals are connected, then they have the same signal:

$$
\forall t_1, t_2 \quad Terminal(t_1) \land Terminal(t_2) \land Connected(t_1, t_2) \Rightarrow Signal(t_1) = Signal(t_2).
$$

2. The signal at every terminal is either 1 or 0: $\forall t$ Terminal(t) \Rightarrow Signal(t) = 1 \vee Signal(t) = 0. 3. Connected is commutative: $\forall t_1, t_2 \quad Connected(t_1, t_2) \Leftrightarrow Connected(t_2, t_1)$. 4. There are four types of gates: $\forall g \; Gate(g) \wedge k = Type(g) \Rightarrow k = AND \vee k = OR \vee k = XOR \vee k = NOT$. 5. An AND gate's output is 0 if and only if any of its inputs is 0: $\forall g \; Gate(g) \wedge Type(g) = AND \Rightarrow$ $Signal(Out(1, g)) = 0 \Leftrightarrow \exists n \; Signal(In(n, g)) = 0$. 6. An OR gate's output is 1 if and only if any of its inputs is 1: $\forall g \; Gate(g) \wedge Type(g) = OR \Rightarrow$ $Signal(Out(1, g)) = 1 \Leftrightarrow \exists n \; Signal(In(n, g)) = 1$. 7. An XOR gate's output is 1 if and only if its inputs are different: $\forall g \; Gate(g) \wedge Type(g) = XOR \Rightarrow$ $Signal(Out(1, q)) = 1 \Leftrightarrow Signal(In(1, q)) \neq Signal(In(2, q))$. 8. A NOT gate's output is different from its input: $\forall g \; Gate(g) \wedge (Type(g) = NOT) \Rightarrow$ $Signal(Out(1,g)) \neq Signal(In(1,g))$. 9. The gates (except for NOT) have two inputs and one output. $\forall q \; Gate(q) \wedge Type(q) = NOT \Rightarrow Arity(q, 1, 1)$. $\forall g \; Gate(g) \wedge k = Type(g) \wedge (k = AND \vee k = OR \vee k = XOR) \Rightarrow$ $Arity(g, 2, 1)$ 10. A circuit has terminals, up to its input and output arity, and nothing beyond its arity: $\forall c, i, j \; Circuit(c) \wedge Arity(c, i, j) \Rightarrow$ $\forall n \ (n \leq i \Rightarrow Terminal(In(c, n))) \land (n > i \Rightarrow In(c, n) = Nothing) \land$ $\forall n \ (n \leq j \Rightarrow Terminal(Out(c, n))) \land (n > j \Rightarrow Out(c, n) = Nothing)$ 11. Gates, terminals, signals, gate types, and Nothing are all distinct. $\forall g,t \; Gate(g) \wedge Terminal(t) \Rightarrow$ $g \neq t \neq 1 \neq 0 \neq OR \neq AND \neq XOR \neq NOT \neq Nothing$.

12. Gates are circuits.

 $\forall g \; Gate(g) \Rightarrow Circuit(g)$

Encode the specific problem instance

The circuit shown in Figure 8.6 is encoded as circuit C_1 with the following description. First, we categorize the circuit and its component gates:

 $Circuit(C_1) \wedge Arity(C_1, 3, 2)$ $Gate(X_1) \wedge Type(X_1) = XOR$ $Gate(X_2) \wedge Type(X_2) = XOR$ $Gate(A_1) \wedge Type(A_1) = AND$ $Gate(A_2) \wedge Type(A_2) = AND$ $Gate(O_1) \wedge Type(O_1) = OR$.

Then, we show the connections between them:

 $Connected(Out(1, X_1), In(1, X_2))$ $Connected(In(1, C_1), In(1, X_1))$ $Connected(Out(1, X_1), In(2, A_2))$ $Connected(In(1, C_1), In(1, A_1))$ $Connected(Out(1, A₂), In(1, O₁))$ $Connected(In(2, C₁), In(2, X₁))$ $Connected(Out(1, A₁), In(2, O₁))$ $Connected(In(2, C₁), In(2, A₁))$ $Connected(Out(1, X_2), Out(1, C_1))$ $Connected(In(3, C_1), In(2, X_2))$ $Connected(Out(1, O_1), Out(2, C_1))$ $Connected(In(3, C_1), In(1, A_2))$.

Pose queries to the inference procedure

What combinations of inputs would cause the first output of C_1 (the sum bit) to be 0 and the second output of C_1 (the carry bit) to be 1?

$$
\exists i_1, i_2, i_3 \ \ Signal(In(1, C_1)) = i_1 \land Signal(In(2, C_1)) = i_2 \land Signal(In(3, C_1)) = i_3
$$

$$
\land Signal(Out(1, C_1)) = 0 \land Signal(Out(2, C_1)) = 1.
$$

The answers are substitutions for the variables i_1 , i_2 , and i_3 such that the resulting sentence is entailed by the knowledge base. ASKVARS will give us three such substitutions:

 $\{i_1/1, i_2/1, i_3/0\}$ $\{i_1/1, i_2/0, i_3/1\}$ $\{i_1/0, i_2/1, i_3/1\}$.

What are the possible sets of values of all the terminals for the adder circuit?

 $\exists i_1, i_2, i_3, o_1, o_2$ $Signal(In(1, C_1)) = i_1 \wedge Signal(In(2, C_1)) = i_2$ \land Signal(In(3, C₁)) = i₃ \land Signal(Out(1, C₁)) = o₁ \land Signal(Out(2, C₁)) = o₂.

This final query will return a complete input–output table for the device, which can be used to check that it does in fact add its inputs correctly. This is a simple example of **circuit verification**. We can also use the definition of the circuit to build larger digital systems, for which the same kind of verification procedure can be carried out. (See Exercise 8.28.) Many domains are amenable to the same kind of structured knowledge-base development, in which more complex concepts are defined on top of simpler concepts.

Debug the knowledge base

We can perturb the knowledge base in various ways to see what kinds of erroneous behaviors emerge. For example, suppose we fail to read Section 8.2.8 and hence forget to assert that $1 \neq 0$. Suddenly, the system will be unable to prove any outputs for the circuit, except for the input cases 000 and 110. We can pinpoint the problem by asking for the outputs of each gate. For example, we can ask

$$
\exists i_1, i_2, o \ Signal(In(1, C_1)) = i_1 \land Signal(In(2, C_1)) = i_2 \land Signal(Out(1, X_1)),
$$

which reveals that no outputs are known at X_1 for the input cases 10 and 01. Then, we look at the axiom for XOR gates, as applied to X_1 :

 $Signal(Out(1, X_1)) = 1 \Leftrightarrow Signal(In(1, X_1)) \neq Signal(In(2, X_1))$.

If the inputs are known to be, say, 1 and 0, then this reduces to

 $Signal(Out(1, X_1)) = 1 \Leftrightarrow 1 \neq 0.$

Now the problem is apparent: the system is unable to infer that $Signal(Out(1, X_1)) = 1$, so we need to tell it that $1 \neq 0$.

CIRCUIT
VERIFICATION

8.5 SUMMARY

This chapter has introduced **first-order logic**, a representation language that is far more powerful than propositional logic. The important points are as follows:

- Knowledge representation languages should be declarative, compositional, expressive, context independent, and unambiguous.
- Logics differ in their **ontological commitments** and **epistemological commitments**. While propositional logic commits only to the existence of facts, first-order logic commits to the existence of objects and relations and thereby gains expressive power.
- The syntax of first-order logic builds on that of propositional logic. It adds terms to represent objects, and has universal and existential quantifiers to construct assertions about all or some of the possible values of the quantified variables.
- A **possible world**, or **model**, for first-order logic includes a set of objects and an **interpretation** that maps constant symbols to objects, predicate symbols to relations among objects, and function symbols to functions on objects.
- An atomic sentence is true just when the relation named by the predicate holds between the objects named by the terms. **Extended interpretations**, which map quantifier variables to objects in the model, define the truth of quantified sentences.
- Developing a knowledge base in first-order logic requires a careful process of analyzing the domain, choosing a vocabulary, and encoding the axioms required to support the desired inferences.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Although Aristotle's logic deals with generalizations over objects, it fell far short of the expressive power of first-order logic. A major barrier to its further development was its concentration on one-place predicates to the exclusion of many-place relational predicates. The first systematic treatment of relations was given by Augustus De Morgan (1864), who cited the following example to show the sorts of inferences that Aristotle's logic could not handle: "All horses are animals; therefore, the head of a horse is the head of an animal." This inference is inaccessible to Aristotle because any valid rule that can support this inference must first analyze the sentence using the two-place predicate " x is the head of y ." The logic of relations was studied in depth by Charles Sanders Peirce (1870, 2004).

True first-order logic dates from the introduction of quantifiers in Gottlob Frege's (1879) *Begriffschrift* ("Concept Writing" or "Conceptual Notation"). Peirce (1883) also developed first-order logic independently of Frege, although slightly later. Frege's ability to nest quantifiers was a big step forward, but he used an awkward notation. The present notation for first-order logic is due substantially to Giuseppe Peano (1889), but the semantics is virtually identical to Frege's. Oddly enough, Peano's axioms were due in large measure to Grassmann (1861) and Dedekind (1888).

Leopold Löwenheim (1915) gave a systematic treatment of model theory for first-order logic, including the first proper treatment of the equality symbol. Löwenheim's results were further extended by Thoralf Skolem (1920). Alfred Tarski (1935, 1956) gave an explicit definition of truth and model-theoretic satisfaction in first-order logic, using set theory.

McCarthy (1958) was primarily responsible for the introduction of first-order logic as a tool for building AI systems. The prospects for logic-based AI were advanced significantly by Robinson's (1965) development of resolution, a complete procedure for first-order inference described in Chapter 9. The logicist approach took root at Stanford University. Cordell Green (1969a, 1969b) developed a first-order reasoning system, QA3, leading to the first attempts to build a logical robot at SRI (Fikes and Nilsson, 1971). First-order logic was applied by Zohar Manna and Richard Waldinger (1971) for reasoning about programs and later by Michael Genesereth (1984) for reasoning about circuits. In Europe, logic programming (a restricted form of first-order reasoning) was developed for linguistic analysis (Colmerauer *et al.*, 1973) and for general declarative systems (Kowalski, 1974). Computational logic was also well entrenched at Edinburgh through the LCF (Logic for Computable Functions) project (Gordon *et al.*, 1979). These developments are chronicled further in Chapters 9 and 12.

Practical applications built with first-order logic include a system for evaluating the manufacturing requirements for electronic products (Mannion, 2002), a system for reasoning about policies for file access and digital rights management (Halpern and Weissman, 2008), and a system for the automated composition of Web services (McIlraith and Zeng, 2001).

Reactions to the Whorf hypothesis (Whorf, 1956) and the problem of language and thought in general, appear in several recent books (Gumperz and Levinson, 1996; Bowerman and Levinson, 2001; Pinker, 2003; Gentner and Goldin-Meadow, 2003). The "theory" theory (Gopnik and Glymour, 2002; Tenenbaum *et al.*, 2007) views children's learning about the world as analogous to the construction of scientific theories. Just as the predictions of a machine learning algorithm depend strongly on the vocabulary supplied to it, so will the child's formulation of theories depend on the linguistic environment in which learning occurs.

There are a number of good introductory texts on first-order logic, including some by leading figures in the history of logic: Alfred Tarski (1941), Alonzo Church (1956), and W.V. Quine (1982) (which is one of the most readable). Enderton (1972) gives a more mathematically oriented perspective. A highly formal treatment of first-order logic, along with many more advanced topics in logic, is provided by Bell and Machover (1977). Manna and Waldinger (1985) give a readable introduction to logic from a computer science perspective, as do Huth and Ryan (2004), who concentrate on program verification. Barwise and Etchemendy (2002) take an approach similar to the one used here. Smullyan (1995) presents results concisely, using the tableau format. Gallier (1986) provides an extremely rigorous mathematical exposition of first-order logic, along with a great deal of material on its use in automated reasoning. *Logical Foundations of Artificial Intelligence* (Genesereth and Nilsson, 1987) is both a solid introduction to logic and the first systematic treatment of logical agents with percepts and actions, and there are two good handbooks: van Bentham and ter Meulen (1997) and Robinson and Voronkov (2001). The journal of record for the field of pure mathematical logic is the *Journal of Symbolic Logic*, whereas the *Journal of Applied Logic* deals with concerns closer to those of artificial intelligence.

EXERCISES

8.1 A logical knowledge base represents the world using a set of sentences with no explicit structure. An **analogical** representation, on the other hand, has physical structure that corresponds directly to the structure of the thing represented. Consider a road map of your country as an analogical representation of facts about the country—it represents facts with a map language. The two-dimensional structure of the map corresponds to the two-dimensional surface of the area.

- **a**. Give five examples of *symbols* in the map language.
- **b**. An *explicit* sentence is a sentence that the creator of the representation actually writes down. An *implicit* sentence is a sentence that results from explicit sentences because of properties of the analogical representation. Give three examples each of *implicit* and *explicit* sentences in the map language.
- **c**. Give three examples of facts about the physical structure of your country that cannot be represented in the map language.
- **d**. Give two examples of facts that are much easier to express in the map language than in first-order logic.
- **e**. Give two other examples of useful analogical representations. What are the advantages and disadvantages of each of these languages?

8.2 Consider a knowledge base containing just two sentences: $P(a)$ and $P(b)$. Does this knowledge base entail $\forall x P(x)$? Explain your answer in terms of models.

8.3 Is the sentence $\exists x, y \ x = y$ valid? Explain.

8.4 Write down a logical sentence such that every world in which it is true contains exactly two objects.

8.5 Consider a symbol vocabulary that contains c constant symbols, p_k predicate symbols of each arity k, and f_k function symbols of each arity k, where $1 \leq k \leq A$. Let the domain size be fixed at D . For any given model, each predicate or function symbol is mapped onto a relation or function, respectively, of the same arity. You may assume that the functions in the model allow some input tuples to have no value for the function (i.e., the value is the invisible object). Derive a formula for the number of possible models for a domain with D elements. Don't worry about eliminating redundant combinations.

8.6 Which of the following are valid (necessarily true) sentences?

- **a**. $(\exists x \ x = x) \Rightarrow (\forall y \ \exists z \ y = z).$
- **b**. $\forall x \ P(x) \lor \neg P(x)$.
- **c**. $\forall x \; Smart(x) \lor (x = x)$.

8.7 Consider a version of the semantics for first-order logic in which models with empty domains are allowed. Give at least two examples of sentences that are valid according to the

standard semantics but not according to the new semantics. Discuss which outcome makes more intuitive sense for your examples.

8.8 Does the fact $\neg Spouse(George, Laura)$ follow from the facts $Jim \neq George$ and $Spouse(Jim, Laura)$? If so, give a proof; if not, supply additional axioms as needed. What happens if we use *Spouse* as a unary function symbol instead of a binary predicate?

8.9 Consider a vocabulary with the following symbols:

 $Occurbation(p, o)$: Predicate. Person p has occupation o. Customer $(p1, p2)$: Predicate. Person p1 is a customer of person p2. $Boss(p1,p2)$: Predicate. Person p1 is a boss of person p2. Doctor, Surgeon, Lawyer, Actor: Constants denoting occupations. Emily, Joe: Constants denoting people.

Use these symbols to write the following assertions in first-order logic:

- **a**. Emily is either a surgeon or a lawyer.
- **b**. Joe is an actor, but he also holds another job.
- **c**. All surgeons are doctors.
- **d**. Joe does not have a lawyer (i.e., is not a customer of any lawyer).
- **e**. Emily has a boss who is a lawyer.
- **f**. There exists a lawyer all of whose customers are doctors.
- **g**. Every surgeon has a lawyer.

8.10 In each of the following we give an English sentence and a number of candidate logical expressions. For each of the logical expressions, state whether it (1) correctly expresses the English sentence; (2) is syntactically invalid and therefore meaningless; or (3) is syntactically valid but does not express the meaning of the English sentence.

- **a**. Every cat loves its mother or father.
	- (i) $\forall x \; Cat(x) \Rightarrow Loves(x, Mother(x) \vee Father(x)).$
	- (ii) $\forall x \ \neg Cat(x) \lor Loves(x, Mother(x)) \lor Loves(x, Father(x)).$
	- (iii) $\forall x \; Cat(x) \land (Loves(x, Mother(x)) \lor Loves(x, Father(x))).$

b. Every dog who loves one of its brothers is happy.

- (i) $\forall x \ \text{Dog}(x) \land (\exists y \ \text{Brother}(y, x) \land \text{Loves}(x, y)) \Rightarrow \text{Happy}(x)$.
- (ii) $\forall x, y \; Dog(x) \wedge Brother(y, x) \wedge Loves(x, y) \Rightarrow Happy(x)$.
- (iii) $\forall x \ \text{Dog}(x) \land [\forall y \ \text{Brother}(y, x) \Leftrightarrow \text{Loves}(x, y)] \Rightarrow \text{Happy}(x)$.
- **c**. No dog bites a child of its owner.
	- (i) $\forall x \; Dog(x) \Rightarrow \neg Bites(x, Child(Owner(x))).$
	- (ii) $\neg \exists x, y \; Dog(x) \land Child(y,Owner(x)) \land Bites(x, y).$
	- (iii) $\forall x \; Dog(x) \Rightarrow (\forall y \; Child(y,Owner(x)) \Rightarrow \neg Bites(x,y)).$
	- (iv) $\neg \exists x \; Dog(x) \Rightarrow (\exists y \; Child(y,Owner(x)) \wedge Bites(x,y)).$
- **d**. Everyone's zip code within a state has the same first digit.
- (i) $\forall x, s, z_1$ [State(s) ∧ LivesIn(x, s) ∧ Zip(x) = z₁] \Rightarrow $[\forall y, z_2 \; LivesIn(y, s) \land Zip(y) = z_2 \Rightarrow Digit(1, z_1) = Digit(1, z_2)].$ (ii) $\forall x, s \; [State(s) \land LivesIn(x, s) \land \exists z_1 \; Zip(x) = z_1] \Rightarrow$ $[\forall y, z_2 \; LivesIn(y, s) \land Zip(y) = z_2 \land Digit(1, z_1) = Digit(1, z_2)].$ (iii) $\forall x, y, s \; State(s) \land LivesIn(x, s) \land LivesIn(y, s) \Rightarrow Digit(1, Zip(x) = Zip(y)).$ (iv) $\forall x, y, s \; State(s) \land LivesIn(x, s) \land LivesIn(y, s) \Rightarrow$ $Digit(1, Zip(x)) = Digit(1, Zip(y)).$
- **8.11** Complete the following exercises about logical senntences:
	- **a**. Translate into *good, natural* English (no xs or ys!):

 $∀x, y, l$ SpeaksLanguage $(x, l) \land SpeaksLanguage(y, l)$ \Rightarrow Understands $(x, y) \wedge$ Understands (y, x) .

b. Explain why this sentence is entailed by the sentence

 $∀x, y, l$ SpeaksLanguage $(x, l) \land SpeaksLanguage(y, l)$ \Rightarrow Understands (x, y) .

- **c**. Translate into first-order logic the following sentences:
	- (i) Understanding leads to friendship.
	- (ii) Friendship is transitive.

Remember to define all predicates, functions, and constants you use.

- **8.12** True or false? Explain.
	- **a**. $\exists x \ x = Rumpelstiltskin$ is a valid (necessarily true) sentence of first-order logic.
	- **b**. Every existentially quantified sentence in first-order logic is true in any model that contains exactly one object.
	- **c**. $\forall x, y \ x = y$ is satisfiable.

8.13 Rewrite the first two Peano axioms in Section 8.3.3 as a single axiom that defines $NatNum(x)$ so as to exclude the possibility of natural numbers except for those generated by the successor function.

8.14 Equation (8.4) on page 306 defines the conditions under which a square is breezy. Here we consider two other ways to describe this aspect of the wumpus world.

why it is incomplete compared to Equation (8.4), and supply the missing axiom.

8.15 Write axioms describing the predicates *Grandchild, Greatgrandparent, Ancestor,* Brother , Sister , Daughter , Son, FirstCousin, BrotherInLaw, SisterInLaw, Aunt, and Uncle. Find out the proper definition of mth cousin n times removed, and write the definition in first-order logic. Now write down the basic facts depicted in the family tree in Figure 8.7. Using a suitable logical reasoning system, TELL it all the sentences you have written down, and ASK it who are Elizabeth's grandchildren, Diana's brothers-in-law, Zara's great-grandparents, and Eugenie's ancestors.

8.16 Write down a sentence asserting that + is a commutative function. Does your sentence follow from the Peano axioms? If so, explain why; if not, give a model in which the axioms are true and your sentence is false.

8.17 Using the set axioms as examples, write axioms for the list domain, including all the constants, functions, and predicates mentioned in the chapter.

8.18 Explain what is wrong with the following proposed definition of adjacent squares in the wumpus world:

 $\forall x, y \; Adjacent([x, y], [x + 1, y]) \wedge Adjacent([x, y], [x, y + 1])$.

8.19 Write out the axioms required for reasoning about the wumpus's location, using a constant symbol *Wumpus* and a binary predicate $At(Wumpus, Location)$. Remember that there is only one wumpus.

8.20 Assuming predicates $Parent(p, q)$ and $Female(p)$ and constants *Joan* and *Kevin*, with the obvious meanings, express each of the following sentences in first-order logic. (You may use the abbreviation \exists ¹ to mean "there exists exactly one.")

a. Joan has a daughter (possibly more than one, and possibly sons as well).

- **b**. Joan has exactly one daughter (but may have sons as well).
- **c**. Joan has exactly one child, a daughter.
- **d**. Joan and Kevin have exactly one child together.
- **e**. Joan has at least one child with Kevin, and no children with anyone else.

8.21 Arithmetic assertions can be written in first-order logic with the predicate symbol <, the function symbols $+$ and \times , and the constant symbols 0 and 1. Additional predicates can also be defined with biconditionals.

- **a**. Represent the property " x is an even number."
- **b**. Represent the property " x is prime."
- **c**. Goldbach's conjecture is the conjecture (unproven as yet) that every even number is equal to the sum of two primes. Represent this conjecture as a logical sentence.

8.22 In Chapter 6, we used equality to indicate the relation between a variable and its value. For instance, we wrote $WA = red$ to mean that Western Australia is colored red. Representing this in first-order logic, we must write more verbosely $ColorOf(WA) = red$. What incorrect inference could be drawn if we wrote sentences such as $WA = red$ directly as logical assertions?

8.23 Write in first-order logic the assertion that every key and at least one of every pair of socks will eventually be lost forever, using only the following vocabulary: $Key(x)$, x is a key; $Sock(x)$, x is a sock; $Pair(x, y)$, x and y are a pair; Now, the current time; $Before(t_1, t_2)$, time t_1 comes before time t_2 ; $\text{Loss}(x, t)$, object x is lost at time t.

8.24 Translate into first-order logic the sentence "Everyone's DNA is unique and is derived from their parents' DNA." You must specify the precise intended meaning of your vocabulary terms. (*Hint*: Do not use the predicate $Unique(x)$, since uniqueness is not really a property of an object in itself!)

8.25 For each of the following sentences in English, decide if the accompanying first-order logic sentence is a good translation. If not, explain why not and correct it.

a. Any apartment in London has lower rent than some apartments in Paris.

 $\forall x \ [Apt(x) \land In(x, London)] \Rightarrow \exists y \ ([Apt(y) \land In(y, Paris)] \Rightarrow$ $(Rent(x) < Rent(y))$.

b. There is exactly one apartment in Paris with rent below \$1000.

 $\exists x \;$ Apt $(x) \wedge In(x, Paris) \wedge$ $\forall y \ [Apt(y) \wedge In(y, Paris) \wedge (Rent(y)$

c. If an apartment is more expensive than all apartments in London, it must be in Moscow.

 $\forall x \; Art(x) \land [\forall y \; Apt(y) \land In(y, London) \land (Rent(x) > Rent(y))] \Rightarrow$ $In(x, Moscow).$

8.26 Represent the following sentences in first-order logic, using a consistent vocabulary (which you must define):

- **a**. Some students took French in spring 2009.
- **b**. Every student who takes French passes it.
- **c**. Only one student took Greek in spring 2009.
- **d**. The best score in Greek is always lower than the best score in French.

- **e**. Every person who buys a policy is smart.
- **f**. There is an agent who sells policies only to people who are not insured.
- **g**. There is a barber who shaves all men in town who do not shave themselves.
- **h**. A person born in the UK, each of whose parents is a UK citizen or a UK resident, is a UK citizen by birth.
- **i**. A person born outside the UK, one of whose parents is a UK citizen by birth, is a UK citizen by descent.
- **j**. Politicians can fool some of the people all of the time, and they can fool all of the people some of the time, but they can't fool all of the people all of the time.
- **k**. All Greeks speak the same language. (Use $Speaks(x, l)$ to mean that person x speaks language l .)

8.27 Write a general set of facts and axioms to represent the assertion "Wellington heard about Napoleon's death" and to correctly answer the question "Did Napoleon hear about Wellington's death?"

8.28 Extend the vocabulary from Section 8.4 to define addition for n-bit binary numbers. Then encode the description of the four-bit adder in Figure 8.8, and pose the queries needed to verify that it is in fact correct.

8.29 The circuit representation in the chapter is more detailed than necessary if we care only about circuit functionality. A simpler formulation describes any m -input, n -output gate or circuit using a predicate with $m+n$ arguments, such that the predicate is true exactly when the inputs and outputs are consistent. For example, NOT gates are described by the binary predicate $NOT(i, o)$, for which $NOT(0, 1)$ and $NOT(1, 0)$ are known. Compositions of gates are defined by conjunctions of gate predicates in which shared variables indicate direct connections. For example, a NAND circuit can be composed from ANDs and NOTs:

 $\forall i_1, i_2, o_a, o \; AND(i_1, i_2, o_a) \land NOT(o_a, o) \Rightarrow NAND(i_1, i_2, o)$.

Using this representation, define the one-bit adder in Figure 8.6 and the four-bit adder in Figure 8.8, and explain what queries you would use to verify the designs. What kinds of queries are *not* supported by this representation that *are* supported by the representation in Section 8.4?

8.30 Obtain a passport application for your country, identify the rules determining eligibility for a passport, and translate them into first-order logic, following the steps outlined in Section 8.4.

8.31 Consider a first-order logical knowledge base that describes worlds containing people, songs, albums (e.g., "Meet the Beatles") and disks (i.e., particular physical instances of CDs). The vocabulary contains the following symbols:

 $CopyOf(d, a)$: Predicate. Disk d is a copy of album a. $Owns(p, d)$: Predicate. Person p owns disk d. $Sings(p, s, a)$: Album a includes a recording of song s sung by person p. $Wrote(p, s)$: Person p wrote song s. McCartney, Gershwin, BHoliday, Joe, EleanorRigby, TheManILove, Revolver : Constants with the obvious meanings.

Express the following statements in first-order logic:

- **a**. Gershwin wrote "The Man I Love."
- **b**. Gershwin did not write "Eleanor Rigby."
- **c**. Either Gershwin or McCartney wrote "The Man I Love."
- **d**. Joe has written at least one song.
- **e**. Joe owns a copy of *Revolver*.
- **f**. Every song that McCartney sings on *Revolver* was written by McCartney.
- **g**. Gershwin did not write any of the songs on *Revolver*.
- **h**. Every song that Gershwin wrote has been recorded on some album. (Possibly different songs are recorded on different albums.)
- **i**. There is a single album that contains every song that Joe has written.
- **j**. Joe owns a copy of an album that has Billie Holiday singing "The Man I Love."
- **k**. Joe owns a copy of every album that has a song sung by McCartney. (Of course, each different album is instantiated in a different physical CD.)
- **l**. Joe owns a copy of every album on which all the songs are sung by Billie Holiday.

9 INFERENCE IN FIRST-ORDER LOGIC

In which we define effective procedures for answering questions posed in firstorder logic.

Chapter 7 showed how sound and complete inference can be achieved for propositional logic. In this chapter, we extend those results to obtain algorithms that can answer any answerable question stated in first-order logic. Section 9.1 introduces inference rules for quantifiers and shows how to reduce first-order inference to propositional inference, albeit at potentially great expense. Section 9.2 describes the idea of **unification**, showing how it can be used to construct inference rules that work directly with first-order sentences. We then discuss three major families of first-order inference algorithms. **Forward chaining** and its applications to **deductive databases** and **production systems** are covered in Section 9.3; **backward chaining** and **logic programming** systems are developed in Section 9.4. Forward and backward chaining can be very efficient, but are applicable only to knowledge bases that can be expressed as sets of Horn clauses. General first-order sentences require resolution-based **theorem proving**, which is described in Section 9.5.

9.1 PROPOSITIONAL VS. FIRST-ORDER INFERENCE

This section and the next introduce the ideas underlying modern logical inference systems. We begin with some simple inference rules that can be applied to sentences with quantifiers to obtain sentences without quantifiers. These rules lead naturally to the idea that *first-order* inference can be done by converting the knowledge base to *propositional* logic and using *propositional* inference, which we already know how to do. The next section points out an obvious shortcut, leading to inference methods that manipulate first-order sentences directly.

9.1.1 Inference rules for quantifiers

Let us begin with universal quantifiers. Suppose our knowledge base contains the standard folkloric axiom stating that all greedy kings are evil:

 $\forall x \space King(x) \land Greedy(x) \Rightarrow Evil(x)$.

.

Then it seems quite permissible to infer any of the following sentences:

 $King(John) \wedge Greedy(John) \Rightarrow Evil(John)$ $King(Richard) \wedge Greedy(Richard) \Rightarrow Evil(Richard)$ $King(Father(John)) \wedge Greedy(Father(John)) \Rightarrow Evil(Father(John))$. . .

INSTANTIATION

INSTANTIATION

The rule of **Universal Instantiation** (**UI** for short) says that we can infer any sentence ob- UNIVERSAL GROUND TERM tained by substituting a **ground term** (a term without variables) for the variable.¹ To write out the inference rule formally, we use the notion of **substitutions** introduced in Section 8.3. Let SUBST(θ , α) denote the result of applying the substitution θ to the sentence α . Then the rule is written

$$
\frac{\forall v \ \alpha}{\text{SUBST}(\{v/g\}, \alpha)}
$$

for any variable v and ground term q . For example, the three sentences given earlier are obtained with the substitutions $\{x/John\}$, $\{x/Richard\}$, and $\{x/Father(John)\}$.

EXISTENTIAL
Instantiation **Instantial Instantiation**, the variable is replaced by a single *new constant symbol*. The formal statement is as follows: for any sentence α , variable v, and constant symbol k that does not appear elsewhere in the knowledge base,

```
\exists v \alpha\frac{\exists v \alpha}{\text{SUBST}(\{v/k\},\alpha)}.
```
For example, from the sentence

 $\exists x \; Crown(x) \land OnHead(x, John)$

we can infer the sentence

 $Crown(C_1) \wedge OnHead(C_1, John)$

as long as C_1 does not appear elsewhere in the knowledge base. Basically, the existential sentence says there is some object satisfying a condition, and applying the existential instantiation rule just gives a name to that object. Of course, that name must not already belong to another object. Mathematics provides a nice example: suppose we discover that there is a number that is a little bigger than 2.71828 and that satisfies the equation $d(x^y)/dy = x^y$ for x. We can give this number a name, such as e, but it would be a mistake to give it the name of SKOLEM CONSTANT an existing object, such as π . In logic, the new name is called a **Skolem constant**. Existential Instantiation is a special case of a more general process called **skolemization**, which we cover in Section 9.5.

Whereas Universal Instantiation can be applied many times to produce many different consequences, Existential Instantiation can be applied once, and then the existentially quantified sentence can be discarded. For example, we no longer need $\exists x \; Kill(x, Victim)$ once we have added the sentence $Kill(Murderer, Victim)$. Strictly speaking, the new knowledge INFERENTIAL base is not logically equivalent to the old, but it can be shown to be **inferentially equivalent** in the sense that it is satisfiable exactly when the original knowledge base is satisfiable.

EQUIVALENCE

 1 Do not confuse these substitutions with the extended interpretations used to define the semantics of quantifiers. The substitution replaces a variable with a term (a piece of syntax) to produce a new sentence, whereas an interpretation maps a variable to an object in the domain.

9.1.2 Reduction to propositional inference

Once we have rules for inferring nonquantified sentences from quantified sentences, it becomes possible to reduce first-order inference to propositional inference. In this section we give the main ideas; the details are given in Section 9.5.

The first idea is that, just as an existentially quantified sentence can be replaced by one instantiation, a universally quantified sentence can be replaced by the set of *all possible* instantiations. For example, suppose our knowledge base contains just the sentences

$$
\forall x \ King(x) \land Greedy(x) \Rightarrow Evil(x)
$$

King(John)
Greedy(John)
Brother(Richard, John). (9.1)

Then we apply UI to the first sentence using all possible ground-term substitutions from the vocabulary of the knowledge base—in this case, $\{x/John\}$ and $\{x/Richard\}$. We obtain

 $King(John) \wedge Greedy(John) \Rightarrow Evil(John)$ $King(Richard) \wedge Greedy(Richard) \Rightarrow Evil(Richard)$,

and we discard the universally quantified sentence. Now, the knowledge base is essentially propositional if we view the ground atomic sentences— $King(John)$, $Greedy(John)$, and so on—as proposition symbols. Therefore, we can apply any of the complete propositional algorithms in Chapter 7 to obtain conclusions such as Evil(John).

This technique of **propositionalization** can be made completely general, as we show in Section 9.5; that is, every first-order knowledge base and query can be propositionalized in such a way that entailment is preserved. Thus, we have a complete decision procedure for entailment . . . or perhaps not. There is a problem: when the knowledge base includes a function symbol, the set of possible ground-term substitutions is infinite! For example, if the knowledge base mentions the *Father* symbol, then infinitely many nested terms such as $Father(Father(Father(John)))$ can be constructed. Our propositional algorithms will have difficulty with an infinitely large set of sentences.

Fortunately, there is a famous theorem due to Jacques Herbrand (1930) to the effect that if a sentence is entailed by the original, first-order knowledge base, then there is a proof involving just a *finite* subset of the propositionalized knowledge base. Since any such subset has a maximum depth of nesting among its ground terms, we can find the subset by first generating all the instantiations with constant symbols ($Richard$ and $John$), then all terms of depth 1 (*Father* (*Richard*) and *Father* (*John*)), then all terms of depth 2, and so on, until we are able to construct a propositional proof of the entailed sentence.

We have sketched an approach to first-order inference via propositionalization that is **complete—that is, any entailed sentence can be proved. This is a major achievement, given** that the space of possible models is infinite. On the other hand, we do not know until the proof is done that the sentence *is* entailed! What happens when the sentence is *not* entailed? Can we tell? Well, for first-order logic, it turns out that we cannot. Our proof procedure can go on and on, generating more and more deeply nested terms, but we will not know whether it is stuck in a hopeless loop or whether the proof is just about to pop out. This is very much

like the halting problem for Turing machines. Alan Turing (1936) and Alonzo Church (1936) both proved, in rather different ways, the inevitability of this state of affairs. *The question of entailment for first-order logic issemidecidable—that is, algorithms exist that say yes to every entailed sentence, but no algorithm exists that also says no to every nonentailed sentence.*

9.2 UNIFICATION AND LIFTING

The preceding section described the understanding of first-order inference that existed up to the early 1960s. The sharp-eyed reader (and certainly the computational logicians of the early 1960s) will have noticed that the propositionalization approach is rather inefficient. For example, given the query $Evil(x)$ and the knowledge base in Equation (9.1), it seems perverse to generate sentences such as $King(Richard) \wedge Greedy(Richard) \Rightarrow Evil(Richard)$. Indeed, the inference of $Evil(John)$ from the sentences

 $\forall x \space King(x) \land Greedy(x) \Rightarrow Evil(x)$ King(John) Greedy(John)

seems completely obvious to a human being. We now show how to make it completely obvious to a computer.

9.2.1 A first-order inference rule

The inference that John is evil—that is, that $\{x/John\}$ solves the query $Evil(x)$ —works like this: to use the rule that greedy kings are evil, find some x such that x is a king and x is greedy, and then infer that this x is evil. More generally, if there is some substitution θ that makes each of the conjuncts of the premise of the implication identical to sentences already in the knowledge base, then we can assert the conclusion of the implication, after applying θ . In this case, the substitution $\theta = \{x/John\}$ achieves that aim.

We can actually make the inference step do even more work. Suppose that instead of knowing Greedy(John), we know that *everyone* is greedy:

$$
\forall y \ \text{Greedy}(y) \, . \tag{9.2}
$$

Then we would still like to be able to conclude that $Evil(John)$, because we know that John is a king (given) and John is greedy (because everyone is greedy). What we need for this to work is to find a substitution both for the variables in the implication sentence and for the variables in the sentences that are in the knowledge base. In this case, applying the substitution $\{x/John, y/John\}$ to the implication premises $King(x)$ and $Greedy(x)$ and the knowledge-base sentences $King(John)$ and $Greedy(y)$ will make them identical. Thus, we can infer the conclusion of the implication.

This inference process can be captured as a single inference rule that we call **Generalized Modus Ponens:**² For atomic sentences p_i , p_i' , and q, where there is a substitution θ

GENERALIZED MODUS PONENS such that $SUBST(\theta, p_i') = SUBST(\theta, p_i)$, for all *i*,

$$
\frac{p_1', p_2', \ldots, p_n', (p_1 \wedge p_2 \wedge \ldots \wedge p_n \Rightarrow q)}{\text{SUBST}(\theta, q)}.
$$

There are $n+1$ premises to this rule: the n atomic sentences p_i' and the one implication. The conclusion is the result of applying the substitution θ to the consequent q. For our example:

$$
p_1' \text{ is } King(John) \qquad p_1 \text{ is } King(x) \n p_2' \text{ is } Greedy(y) \qquad p_2 \text{ is } Greedy(x) \n\theta \text{ is } \{x/John, y/John\} \qquad q \text{ is } Evil(x) \nSUBST(\theta, q) \text{ is } Evil(John).
$$

It is easy to show that Generalized Modus Ponens is a sound inference rule. First, we observe that, for any sentence p (whose variables are assumed to be universally quantified) and for any substitution θ ,

 $p \models$ SUBST (θ, p)

holds by Universal Instantiation. It holds in particular for a θ that satisfies the conditions of the Generalized Modus Ponens rule. Thus, from p_1', \ldots, p_n' we can infer

 $\texttt{SUBST}(\theta, {p_1}') \wedge \ldots \wedge \texttt{SUBST}(\theta, {p_n}')$

and from the implication $p_1 \wedge \ldots \wedge p_n \Rightarrow q$ we can infer

 $SUBST(\theta, p_1) \wedge ... \wedge SUBST(\theta, p_n) \Rightarrow SUBST(\theta, q)$.

Now, θ in Generalized Modus Ponens is defined so that $SUBST(\theta, p_i') = SUBST(\theta, p_i)$, for all i ; therefore the first of these two sentences matches the premise of the second exactly. Hence, $SUBST(\theta, q)$ follows by Modus Ponens.

LIFTING Generalized Modus Ponens is a **lifted** version of Modus Ponens—it raises Modus Ponens from ground (variable-free) propositional logic to first-order logic. We will see in the rest of this chapter that we can develop lifted versions of the forward chaining, backward chaining, and resolution algorithms introduced in Chapter 7. The key advantage of lifted inference rules over propositionalization is that they make only those substitutions that are required to allow particular inferences to proceed.

9.2.2 Unification

Lifted inference rules require finding substitutions that make different logical expressions UNIFICATION look identical. This process is called **unification** and is a key component of all first-order UNIFIER inference algorithms. The UNIFY algorithm takes two sentences and returns a **unifier** for them if one exists:

UNIFY $(p, q) = \theta$ where $SUBST(\theta, p) = SUBST(\theta, q)$.

Let us look at some examples of how UNIFY should behave. Suppose we have a query $AskVars(Knows(John, x))$: whom does John know? Answers to this query can be found

² Generalized Modus Ponens is more general than Modus Ponens (page 249) in the sense that the known facts and the premise of the implication need match only up to a substitution, rather than exactly. On the other hand, Modus Ponens allows any sentence α as the premise, rather than just a conjunction of atomic sentences.

by finding all sentences in the knowledge base that unify with $Knows(John, x)$. Here are the results of unification with four different sentences that might be in the knowledge base:

 $UNIFY(Knows(John, x), Knows(John, Jane)) = \{x/Jane\}$ UNIFY $(Knows(John, x), Knows(y, Bill)) = \{x/Bill, y/John\}$ UNIFY $(Knows(John, x), Knows(y, Mother(y))) = \{y/John, x/Mother(John)\}\$ $UNIFY(Knows(John, x), Knows(x, Elizabeth)) = fail$.

The last unification fails because x cannot take on the values *John* and *Elizabeth* at the same time. Now, remember that $Knows(x, Elizabeth)$ means "Everyone knows Elizabeth," so we *should* be able to infer that John knows Elizabeth. The problem arises only because the two sentences happen to use the same variable name, x . The problem can be avoided STANDARDIZING by **standardizing apart** one of the two sentences being unified, which means renaming its variables to avoid name clashes. For example, we can rename x in $Knows(x, Elizabeth)$ to x_{17} (a new variable name) without changing its meaning. Now the unification will work:

UNIFY $(Knows(John, x), Knows(x_{17}, Elizabeth)) = \{x/Elizabeth, x_{17}/John\}$.

Exercise 9.13 delves further into the need for standardizing apart.

There is one more complication: we said that UNIFY should return a substitution that makes the two arguments look the same. But there could be more than one such unifier. For example, $UNIFY(Knows(John, x), Knows(y, z))$ could return $\{y/John, x/z\}$ or $\{y/John, x/John, z/John\}$. The first unifier gives $Knows(John, z)$ as the result of unification, whereas the second gives $Knows(John, John)$. The second result could be obtained from the first by an additional substitution $\{z/John\}$; we say that the first unifier is *more general* than the second, because it places fewer restrictions on the values of the variables. It MOST GENERAL turns out that, for every unifiable pair of expressions, there is a single **most general unifier** (or MGU) that is unique up to renaming and substitution of variables. (For example, $\{x/John\}$ and $\{y/John\}$ are considered equivalent, as are $\{x/John, y/John\}$ and $\{x/John, y/x\}$.) In this case it is $\{y/John, x/z\}.$

An algorithm for computing most general unifiers is shown in Figure 9.1. The process is simple: recursively explore the two expressions simultaneously "side by side," building up a unifier along the way, but failing if two corresponding points in the structures do not match. There is one expensive step: when matching a variable against a complex term, one must check whether the variable itself occurs inside the term; if it does, the match fails because no consistent unifier can be constructed. For example, $S(x)$ can't unify with $S(S(x))$. This so-OCCUR CHECK called **occur check** makes the complexity of the entire algorithm quadratic in the size of the expressions being unified. Some systems, including all logic programming systems, simply omit the occur check and sometimes make unsound inferences as a result; other systems use more complex algorithms with linear-time complexity.

9.2.3 Storage and retrieval

Underlying the TELL and ASK functions used to inform and interrogate a knowledge base are the more primitive STORE and FETCH functions. STORE (s) stores a sentence s into the knowledge base and $FETCH(q)$ returns all unifiers such that the query q unifies with some

APART

UNIFIER

function $UNIFY(x, y, \theta)$ **returns** a substitution to make x and y identical

inputs: x , a variable, constant, list, or compound expression

y, a variable, constant, list, or compound expression

 θ , the substitution built up so far (optional, defaults to empty)

if θ = failure **then return** failure **else if** $x = y$ **then return** θ **else if** VARIABLE?(x) **then return** UNIFY-VAR (x, y, θ) **else if** VARIABLE?(y) **then return** UNIFY-VAR(y, x, θ) **else if** COMPOUND? (x) and COMPOUND? (y) then **return** $UNIFY(x.ARGS, y.ARGS, UNIFY(x.OP, y.OP, \theta))$ **else if** $LIST?(x)$ **and** $LIST?(y)$ **then return** $UNIFY(x.REST, y.REST, UNIFY(x.FIRST, y.FIRST, \theta))$ **else return** failure

function UNIFY-VAR(var, x, θ) **returns** a substitution

if $\{var/val\} \in \theta$ **then return** $UNIFY(val, x, \theta)$ **else if** $\{x/val\} \in \theta$ **then return** UNIFY(var, val, θ) **else if** OCCUR-CHECK?(*var*, x) **then return** failure **else return** add $\{var /x\}$ to θ

Figure 9.1 The unification algorithm. The algorithm works by comparing the structures of the inputs, element by element. The substitution θ that is the argument to UNIFY is built up along the way and is used to make sure that later comparisons are consistent with bindings that were established earlier. In a compound expression such as $F(A, B)$, the OP field picks out the function symbol F and the ARGS field picks out the argument list (A, B) .

sentence in the knowledge base. The problem we used to illustrate unification—finding all facts that unify with $Knows(John, x)$ —is an instance of FETCHing.

The simplest way to implement STORE and FETCH is to keep all the facts in one long list and unify each query against every element of the list. Such a process is inefficient, but it works, and it's all you need to understand the rest of the chapter. The remainder of this section outlines ways to make retrieval more efficient; it can be skipped on first reading.

We can make FETCH more efficient by ensuring that unifications are attempted only with sentences that have *some* chance of unifying. For example, there is no point in trying to unify $Knows(John, x)$ with $Brother(Richard, John)$. We can avoid such unifications by INDEXING **indexing** the facts in the knowledge base. A simple scheme called **predicate indexing** puts PREDICATE all the Knows facts in one bucket and all the Brother facts in another. The buckets can be stored in a hash table for efficient access.

> Predicate indexing is useful when there are many predicate symbols but only a few clauses for each symbol. Sometimes, however, a predicate has many clauses. For example, suppose that the tax authorities want to keep track of who employs whom, using a predicate $Employs(x, y)$. This would be a very large bucket with perhaps millions of employers

PREDICATE

and tens of millions of employees. Answering a query such as $Employs(x, Richard)$ with predicate indexing would require scanning the entire bucket.

For this particular query, it would help if facts were indexed both by predicate and by second argument, perhaps using a combined hash table key. Then we could simply construct the key from the query and retrieve exactly those facts that unify with the query. For other queries, such as $Employs(IBM, y)$, we would need to have indexed the facts by combining the predicate with the first argument. Therefore, facts can be stored under multiple index keys, rendering them instantly accessible to various queries that they might unify with.

Given a sentence to be stored, it is possible to construct indices for *all possible* queries that unify with it. For the fact Employs(IBM , Richard), the queries are

LATTICE

SUBSUMPTION These queries form a **subsumption lattice**, as shown in Figure 9.2(a). The lattice has some interesting properties. For example, the child of any node in the lattice is obtained from its parent by a single substitution; and the "highest" common descendant of any two nodes is the result of applying their most general unifier. The portion of the lattice above any ground fact can be constructed systematically (Exercise 9.5). A sentence with repeated constants has a slightly different lattice, as shown in Figure 9.2(b). Function symbols and variables in the sentences to be stored introduce still more interesting lattice structures.

> The scheme we have described works very well whenever the lattice contains a small number of nodes. For a predicate with n arguments, however, the lattice contains $O(2^n)$ nodes. If function symbols are allowed, the number of nodes is also exponential in the size of the terms in the sentence to be stored. This can lead to a huge number of indices. At some point, the benefits of indexing are outweighed by the costs of storing and maintaining all the indices. We can respond by adopting a fixed policy, such as maintaining indices only on keys composed of a predicate plus each argument, or by using an adaptive policy that creates indices to meet the demands of the kinds of queries being asked. For most AI systems, the number of facts to be stored is small enough that efficient indexing is considered a solved problem. For commercial databases, where facts number in the billions, the problem has been the subject of intensive study and technology development..

9.3 FORWARD CHAINING

A forward-chaining algorithm for propositional definite clauses was given in Section 7.5. The idea is simple: start with the atomic sentences in the knowledge base and apply Modus Ponens in the forward direction, adding new atomic sentences, until no further inferences can be made. Here, we explain how the algorithm is applied to first-order definite clauses. Definite clauses such as *Situation* \Rightarrow *Response* are especially useful for systems that make inferences in response to newly arrived information. Many systems can be defined this way, and forward chaining can be implemented very efficiently.

9.3.1 First-order definite clauses

First-order definite clauses closely resemble propositional definite clauses (page 256): they are disjunctions of literals of which *exactly one is positive*. A definite clause either is atomic or is an implication whose antecedent is a conjunction of positive literals and whose consequent is a single positive literal. The following are first-order definite clauses:

$$
King(x) \land Greedy(x) \Rightarrow Evil(x)
$$
.
\n $King(John)$.
\n $Greedy(y)$.

Unlike propositional literals, first-order literals can include variables, in which case those variables are assumed to be universally quantified. (Typically, we omit universal quantifiers when writing definite clauses.) Not every knowledge base can be converted into a set of definite clauses because of the single-positive-literal restriction, but many can. Consider the following problem:

The law says that it is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is American.

We will prove that West is a criminal. First, we will represent these facts as first-order definite clauses. The next section shows how the forward-chaining algorithm solves the problem.

". . . it is a crime for an American to sell weapons to hostile nations":

$$
American(x) \land Weapon(y) \land Sells(x, y, z) \land Hostile(z) \Rightarrow Criminal(x).
$$
 (9.3)

"Nono . . . has some missiles." The sentence $\exists x \space Owns(Nono, x) \land \spaceMissile(x)$ is transformed into two definite clauses by Existential Instantiation, introducing a new constant M_1 :

$$
Owns(Nono, M_1) \tag{9.4}
$$

$$
Missile(M_1) \tag{9.5}
$$

"All of its missiles were sold to it by Colonel West":

$$
Missile(x) \land Owns(Nono, x) \Rightarrow Sells(West, x, Nono). \tag{9.6}
$$

We will also need to know that missiles are weapons:

$$
Missile(x) \Rightarrow Weapon(x) \tag{9.7}
$$

and we must know that an enemy of America counts as "hostile":

$$
Enemy(x, America) \Rightarrow Hostile(x). \tag{9.8}
$$

"West, who is American . . .":

 $American(West)$. (9.9)

"The country Nono, an enemy of America . . .":

$$
Enemy(Nono, America) . \t\t(9.10)
$$

This knowledge base contains no function symbols and is therefore an instance of the class DATALOG of **Datalog** knowledge bases. Datalog is a language that is restricted to first-order definite clauses with no function symbols. Datalog gets its name because it can represent the type of statements typically made in relational databases. We will see that the absence of function symbols makes inference much easier.

9.3.2 A simple forward-chaining algorithm

The first forward-chaining algorithm we consider is a simple one, shown in Figure 9.3. Starting from the known facts, it triggers all the rules whose premises are satisfied, adding their conclusions to the known facts. The process repeats until the query is answered (assuming that just one answer is required) or no new facts are added. Notice that a fact is not "new" RENAMING if it is just a **renaming** of a known fact. One sentence is a renaming of another if they are identical except for the names of the variables. For example, $Likes(x, IceCream)$ and Likes(y, IceCream) are renamings of each other because they differ only in the choice of x or y; their meanings are identical: everyone likes ice cream.

> We use our crime problem to illustrate how FOL-FC-ASK works. The implication sentences are (9.3) , (9.6) , (9.7) , and (9.8) . Two iterations are required:

- On the first iteration, rule (9.3) has unsatisfied premises. Rule (9.6) is satisfied with $\{x/M_1\}$, and Sells(West, M_1 , Nono) is added. Rule (9.7) is satisfied with $\{x/M_1\}$, and $Weapon(M_1)$ is added. Rule (9.8) is satisfied with $\{x/Nono\}$, and $Hostile(Nono)$ is added.
- On the second iteration, rule (9.3) is satisfied with $\{x/West, y/M_1, z/Nono\}$, and Criminal(West) is added.

Figure 9.4 shows the proof tree that is generated. Notice that no new inferences are possible at this point because every sentence that could be concluded by forward chaining is already contained explicitly in the KB. Such a knowledge base is called a **fixed point** of the inference process. Fixed points reached by forward chaining with first-order definite clauses are similar to those for propositional forward chaining (page 258); the principal difference is that a firstorder fixed point can include universally quantified atomic sentences.

FOL-FC-ASK is easy to analyze. First, it is **sound**, because every inference is just an application of Generalized Modus Ponens, which is sound. Second, it is **complete** for definite clause knowledge bases; that is, it answers every query whose answers are entailed by any knowledge base of definite clauses. For Datalog knowledge bases, which contain no function symbols, the proof of completeness is fairly easy. We begin by counting the number of

function FOL-FC-ASK(KB, α) **returns** a substitution or *false* **inputs**: KB, the knowledge base, a set of first-order definite clauses α , the query, an atomic sentence **local variables**: *new*, the new sentences inferred on each iteration **repeat until** new is empty $new \leftarrow \{\}$ **for each** rule **in** KB **do** $(p_1 \wedge ... \wedge p_n \Rightarrow q) \leftarrow$ STANDARDIZE-VARIABLES(*rule*) **for each** θ such that $\text{SUBST}(\theta, p_1 \land \dots \land p_n) = \text{SUBST}(\theta, p'_1 \land \dots \land p'_n)$ for some p'_1, \ldots, p'_n in KB $q' \leftarrow$ SUBST (θ, q) **if** q' does not unify with some sentence already in KB or new **then** add q' to neu $\phi \leftarrow \overline{\text{UNIFY}(q', \alpha)}$ **if** ϕ is not fail **then return** ϕ add new to KB **return** false

Figure 9.3 A conceptually straightforward, but very inefficient, forward-chaining algorithm. On each iteration, it adds to KB all the atomic sentences that can be inferred in one step from the implication sentences and the atomic sentences already in KB. The function STANDARDIZE-VARIABLES replaces all variables in its arguments with new ones that have not been used before.

Figure 9.4 The proof tree generated by forward chaining on the crime example. The initial facts appear at the bottom level, facts inferred on the first iteration in the middle level, and facts inferred on the second iteration at the top level.

possible facts that can be added, which determines the maximum number of iterations. Let k be the maximum **arity** (number of arguments) of any predicate, p be the number of predicates, and n be the number of constant symbols. Clearly, there can be no more than pn^k distinct ground facts, so after this many iterations the algorithm must have reached a fixed point. Then we can make an argument very similar to the proof of completeness for propositional forward

chaining. (See page 258.) The details of how to make the transition from propositional to first-order completeness are given for the resolution algorithm in Section 9.5.

For general definite clauses with function symbols, FOL-FC-ASK can generate infinitely many new facts, so we need to be more careful. For the case in which an answer to the query sentence q is entailed, we must appeal to Herbrand's theorem to establish that the algorithm will find a proof. (See Section 9.5 for the resolution case.) If the query has no answer, the algorithm could fail to terminate in some cases. For example, if the knowledge base includes the Peano axioms

 $NatNum(0)$ $\forall n \ NatNum(n) \Rightarrow NatNum(S(n))$,

then forward chaining adds $NatNum(S(0)), NatNum(S(S(0))), NatNum(S(S(S(0))))$, and so on. This problem is unavoidable in general. As with general first-order logic, entailment with definite clauses is semidecidable.

9.3.3 Efficient forward chaining

The forward-chaining algorithm in Figure 9.3 is designed for ease of understanding rather than for efficiency of operation. There are three possible sources of inefficiency. First, the "inner loop" of the algorithm involves finding all possible unifiers such that the premise of a rule unifies with a suitable set of facts in the knowledge base. This is often called **pattern** PATTERN MATCHING **matching** and can be very expensive. Second, the algorithm rechecks every rule on every iteration to see whether its premises are satisfied, even if very few additions are made to the knowledge base on each iteration. Finally, the algorithm might generate many facts that are irrelevant to the goal. We address each of these issues in turn.

Matching rules against known facts

The problem of matching the premise of a rule against the facts in the knowledge base might seem simple enough. For example, suppose we want to apply the rule

 $Missile(x) \Rightarrow Weapon(x)$.

Then we need to find all the facts that unify with $Missile(x)$; in a suitably indexed knowledge base, this can be done in constant time per fact. Now consider a rule such as

$$
Missile(x) \land Owns(Nono, x) \Rightarrow Sells(West, x, Nono).
$$

Again, we can find all the objects owned by Nono in constant time per object; then, for each object, we could check whether it is a missile. If the knowledge base contains many objects owned by Nono and very few missiles, however, it would be better to find all the missiles first and then check whether they are owned by Nono. This is the **conjunct ordering** problem: CONJUNCT find an ordering to solve the conjuncts of the rule premise so that the total cost is minimized. It turns out that finding the optimal ordering is NP-hard, but good heuristics are available. For example, the **minimum-remaining-values** (MRV) heuristic used for CSPs in Chapter 6 would suggest ordering the conjuncts to look for missiles first if fewer missiles than objects are owned by Nono.

ORDERING

The connection between pattern matching and constraint satisfaction is actually very close. We can view each conjunct as a constraint on the variables that it contains—for example, $Missile(x)$ is a unary constraint on x. Extending this idea, *we can express every finite-domain CSP as a single definite clause together with some associated ground facts.* Consider the map-coloring problem from Figure 6.1, shown again in Figure 9.5(a). An equivalent formulation as a single definite clause is given in Figure 9.5(b). Clearly, the conclusion $Colorable()$ can be inferred only if the CSP has a solution. Because CSPs in general include 3-SAT problems as special cases, we can conclude that *matching a definite clause against a set of facts is NP-hard.*

It might seem rather depressing that forward chaining has an NP-hard matching problem in its inner loop. There are three ways to cheer ourselves up:

- We can remind ourselves that most rules in real-world knowledge bases are small and simple (like the rules in our crime example) rather than large and complex (like the CSP formulation in Figure 9.5). It is common in the database world to assume that both the sizes of rules and the arities of predicates are bounded by a constant and to DATA COMPLEXITY worry only about **data complexity**—that is, the complexity of inference as a function of the number of ground facts in the knowledge base. It is easy to show that the data complexity of forward chaining is polynomial.
	- We can consider subclasses of rules for which matching is efficient. Essentially every Datalog clause can be viewed as defining a CSP, so matching will be tractable just when the corresponding CSP is tractable. Chapter 6 describes several tractable families of CSPs. For example, if the constraint graph (the graph whose nodes are variables and whose links are constraints) forms a tree, then the CSP can be solved in linear time. Exactly the same result holds for rule matching. For instance, if we remove South

Australia from the map in Figure 9.5, the resulting clause is

 $Diff(wa, nt) \wedge Diff(nt, q) \wedge Diff(q, nsw) \wedge Diff(nsw, v) \Rightarrow Colorable()$

which corresponds to the reduced CSP shown in Figure 6.12 on page 224. Algorithms for solving tree-structured CSPs can be applied directly to the problem of rule matching.

• We can try to to eliminate redundant rule-matching attempts in the forward-chaining algorithm, as described next.

Incremental forward chaining

When we showed how forward chaining works on the crime example, we cheated; in particular, we omitted some of the rule matching done by the algorithm shown in Figure 9.3. For example, on the second iteration, the rule

```
Missile(x) \Rightarrow Weapon(x)
```
matches against $Missile(M_1)$ (again), and of course the conclusion $Weapon(M_1)$ is already known so nothing happens. Such redundant rule matching can be avoided if we make the following observation: *Every new fact inferred on iteration* t *must be derived from at least one new fact inferred on iteration* $t - 1$. This is true because any inference that does not require a new fact from iteration $t - 1$ could have been done at iteration $t - 1$ already.

This observation leads naturally to an incremental forward-chaining algorithm where, at iteration t , we check a rule only if its premise includes a conjunct p_i that unifies with a fact p' η_i' newly inferred at iteration $t - 1$. The rule-matching step then fixes p_i to match with p_i' i' , but allows the other conjuncts of the rule to match with facts from any previous iteration. This algorithm generates exactly the same facts at each iteration as the algorithm in Figure 9.3, but is much more efficient.

With suitable indexing, it is easy to identify all the rules that can be triggered by any given fact, and indeed many real systems operate in an "update" mode wherein forward chaining occurs in response to each new fact that is TELLed to the system. Inferences cascade through the set of rules until the fixed point is reached, and then the process begins again for the next new fact.

Typically, only a small fraction of the rules in the knowledge base are actually triggered by the addition of a given fact. This means that a great deal of redundant work is done in repeatedly constructing partial matches that have some unsatisfied premises. Our crime example is rather too small to show this effectively, but notice that a partial match is constructed on the first iteration between the rule

 $American(x) \wedge Weapon(y) \wedge Sells(x, y, z) \wedge Hostile(z) \Rightarrow Criminal(x)$

and the fact American(West). This partial match is then discarded and rebuilt on the second iteration (when the rule succeeds). It would be better to retain and gradually complete the partial matches as new facts arrive, rather than discarding them.

RETE The **rete** algorithm³ was the first to address this problem. The algorithm preprocesses the set of rules in the knowledge base to construct a sort of dataflow network in which each

³ Rete is Latin for net. The English pronunciation rhymes with treaty.

node is a literal from a rule premise. Variable bindings flow through the network and are filtered out when they fail to match a literal. If two literals in a rule share a variable—for example, $Sells(x, y, z) \wedge Hostile(z)$ in the crime example—then the bindings from each literal are filtered through an equality node. A variable binding reaching a node for an nary literal such as $Sells(x, y, z)$ might have to wait for bindings for the other variables to be established before the process can continue. At any given point, the state of a rete network captures all the partial matches of the rules, avoiding a great deal of recomputation.

Rete networks, and various improvements thereon, have been a key component of so-PRODUCTION called **production systems**, which were among the earliest forward-chaining systems in widespread use.⁴ The XCON system (originally called R1; McDermott, 1982) was built with a production-system architecture. XCON contained several thousand rules for designing configurations of computer components for customers of the Digital Equipment Corporation. It was one of the first clear commercial successes in the emerging field of expert systems. Many other similar systems have been built with the same underlying technology, which has been implemented in the general-purpose language OPS-5.

 $\frac{\text{COGNITIVE}}{\text{OPTCTHIDE}}$ Production systems are also popular in **cognitive architectures**—that is, models of human reasoning—such as ACT (Anderson, 1983) and SOAR (Laird *et al.*, 1987). In such systems, the "working memory" of the system models human short-term memory, and the productions are part of long-term memory. On each cycle of operation, productions are matched against the working memory of facts. A production whose conditions are satisfied can add or delete facts in working memory. In contrast to the typical situation in databases, production systems often have many rules and relatively few facts. With suitably optimized matching technology, some modern systems can operate in real time with tens of millions of rules.

Irrelevant facts

The final source of inefficiency in forward chaining appears to be intrinsic to the approach and also arises in the propositional context. Forward chaining makes all allowable inferences based on the known facts, *even if they are irrelevant to the goal at hand*. In our crime example, there were no rules capable of drawing irrelevant conclusions, so the lack of directedness was not a problem. In other cases (e.g., if many rules describe the eating habits of Americans and the prices of missiles), FOL-FC-ASK will generate many irrelevant conclusions.

One way to avoid drawing irrelevant conclusions is to use backward chaining, as described in Section 9.4. Another solution is to restrict forward chaining to a selected subset of rules, as in PL-FC-ENTAILS? (page 258). A third approach has emerged in the field of **de-DEDUCTIVE ductive databases**, which are large-scale databases, like relational databases, but which use forward chaining as the standard inference tool rather than SQL queries. The idea is to rewrite the rule set, using information from the goal, so that only relevant variable bindings—those MAGIC SET belonging to a so-called **magic set**—are considered during forward inference. For example, if the goal is $Criminal(West)$, the rule that concludes $Criminal(x)$ will be rewritten to include an extra conjunct that constrains the value of x :

 $Maaic(x) \wedge American(x) \wedge Weapon(y) \wedge Sells(x, y, z) \wedge Hostile(z) \Rightarrow Criminal(x)$.

SYSTEM

ARCHITECTURES

DATABASES

⁴ The word **production** in **production systems** denotes a condition–action rule.

The fact *Magic*(*West*) is also added to the KB. In this way, even if the knowledge base contains facts about millions of Americans, only Colonel West will be considered during the forward inference process. The complete process for defining magic sets and rewriting the knowledge base is too complex to go into here, but the basic idea is to perform a sort of "generic" backward inference from the goal in order to work out which variable bindings need to be constrained. The magic sets approach can therefore be thought of as a kind of hybrid between forward inference and backward preprocessing.

9.4 BACKWARD CHAINING

The second major family of logical inference algorithms uses the **backward chaining** approach introduced in Section 7.5 for definite clauses. These algorithms work backward from the goal, chaining through rules to find known facts that support the proof. We describe the basic algorithm, and then we describe how it is used in **logic programming**, which is the most widely used form of automated reasoning. We also see that backward chaining has some disadvantages compared with forward chaining, and we look at ways to overcome them. Finally, we look at the close connection between logic programming and constraint satisfaction problems.

9.4.1 A backward-chaining algorithm

Figure 9.6 shows a backward-chaining algorithm for definite clauses. FOL-BC-ASK(KB, goal) will be proved if the knowledge base contains a clause of the form lhs ⇒ goal, where lhs (left-hand side) is a list of conjuncts. An atomic fact like $American(West)$ is considered as a clause whose lhs is the empty list. Now a query that contains variables might be proved in multiple ways. For example, the query $Person(x)$ could be proved with the substitution GENERATOR $\{x/John\}$ as well as with $\{x/Richard\}$. So we implement FOL-BC-ASK as a **generator** a function that returns multiple times, each time giving one possible result.

> Backward chaining is a kind of AND/OR search—the OR part because the goal query can be proved by any rule in the knowledge base, and the AND part because all the conjuncts in the lhs of a clause must be proved. FOL-BC-OR works by fetching all clauses that might unify with the goal, standardizing the variables in the clause to be brand-new variables, and then, if the rhs of the clause does indeed unify with the goal, proving every conjunct in the lhs, using FOL-BC-AND. That function in turn works by proving each of the conjuncts in turn, keeping track of the accumulated substitution as we go. Figure 9.7 is the proof tree for deriving *Criminal* (*West*) from sentences (9.3) through (9.10).

> Backward chaining, as we have written it, is clearly a depth-first search algorithm. This means that its space requirements are linear in the size of the proof (neglecting, for now, the space required to accumulate the solutions). It also means that backward chaining (unlike forward chaining) suffers from problems with repeated states and incompleteness. We will discuss these problems and some potential solutions, but first we show how backward chaining is used in logic programming systems.

Figure 9.7 Proof tree constructed by backward chaining to prove that West is a criminal. The tree should be read depth first, left to right. To prove *Criminal* (*West*), we have to prove the four conjuncts below it. Some of these are in the knowledge base, and others require further backward chaining. Bindings for each successful unification are shown next to the corresponding subgoal. Note that once one subgoal in a conjunction succeeds, its substitution is applied to subsequent subgoals. Thus, by the time FOL-BC-ASK gets to the last conjunct, originally $Hostile(z)$, z is already bound to Nono.

9.4.2 Logic programming

Logic programming is a technology that comes fairly close to embodying the declarative ideal described in Chapter 7: that systems should be constructed by expressing knowledge in a formal language and that problems should be solved by running inference processes on that knowledge. The ideal is summed up in Robert Kowalski's equation,

 $Algorithm = Logic + Control$.

PROLOG **Prolog** is the most widely used logic programming language. It is used primarily as a rapidprototyping language and for symbol-manipulation tasks such as writing compilers (Van Roy, 1990) and parsing natural language (Pereira and Warren, 1980). Many expert systems have been written in Prolog for legal, medical, financial, and other domains.

> Prolog programs are sets of definite clauses written in a notation somewhat different from standard first-order logic. Prolog uses uppercase letters for variables and lowercase for constants—the opposite of our convention for logic. Commas separate conjuncts in a clause, and the clause is written "backwards" from what we are used to; instead of $A \wedge B \Rightarrow C$ in Prolog we have $C \rightarrow A$, B. Here is a typical example:

```
criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).
```
The notation $[E|L]$ denotes a list whose first element is E and whose rest is L. Here is a Prolog program for append (X, Y, Z) , which succeeds if list Z is the result of appending lists X and Y:

```
append([], Y, Y).
append([A|X],Y,[A|Z]) :- append(X,Y,Z).
```
In English, we can read these clauses as (1) appending an empty list with a list Y produces the same list Y and (2) $[A|Z]$ is the result of appending $[A|X]$ onto Y, provided that Z is the result of appending X onto Y. In most high-level languages we can write a similar recursive function that describes how to append two lists. The Prolog definition is actually much more powerful, however, because it describes a *relation* that holds among three arguments, rather than a *function* computed from two arguments. For example, we can ask the query append $(X, Y, [1, 2])$: what two lists can be appended to give $[1, 2]$? We get back the solutions

```
X = [ Y = [1, 2];
X=[1] Y=[2];X=[1,2] Y=[]
```
The execution of Prolog programs is done through depth-first backward chaining, where clauses are tried in the order in which they are written in the knowledge base. Some aspects of Prolog fall outside standard logical inference:

- Prolog uses the database semantics of Section 8.2.8 rather than first-order semantics, and this is apparent in its treatment of equality and negation (see Section 9.4.5).
- There is a set of built-in functions for arithmetic. Literals using these function symbols are "proved" by executing code rather than doing further inference. For example, the

goal "X is $4+3$ " succeeds with X bound to 7. On the other hand, the goal "5 is $X+Y$ " fails, because the built-in functions do not do arbitrary equation solving.⁵

- There are built-in predicates that have side effects when executed. These include input– output predicates and the assert/retract predicates for modifying the knowledge base. Such predicates have no counterpart in logic and can produce confusing results for example, if facts are asserted in a branch of the proof tree that eventually fails.
- The **occur check** is omitted from Prolog's unification algorithm. This means that some unsound inferences can be made; these are almost never a problem in practice.
- Prolog uses depth-first backward-chaining search with no checks for infinite recursion. This makes it very fast when given the right set of axioms, but incomplete when given the wrong ones.

Prolog's design represents a compromise between declarativeness and execution efficiency inasmuch as efficiency was understood at the time Prolog was designed.

9.4.3 Efficient implementation of logic programs

The execution of a Prolog program can happen in two modes: interpreted and compiled. Interpretation essentially amounts to running the FOL-BC-ASK algorithm from Figure 9.6, with the program as the knowledge base. We say "essentially" because Prolog interpreters contain a variety of improvements designed to maximize speed. Here we consider only two.

First, our implementation had to explicitly manage the iteration over possible results generated by each of the subfunctions. Prolog interpreters have a global data structure, CHOICE POINT a stack of **choice points**, to keep track of the multiple possibilities that we considered in FOL-BC-OR. This global stack is more efficient, and it makes debugging easier, because the debugger can move up and down the stack.

Second, our simple implementation of FOL-BC-ASK spends a good deal of time generating substitutions. Instead of explicitly constructing substitutions, Prolog has logic variables that remember their current binding. At any point in time, every variable in the program either is unbound or is bound to some value. Together, these variables and values implicitly define the substitution for the current branch of the proof. Extending the path can only add new variable bindings, because an attempt to add a different binding for an already bound variable results in a failure of unification. When a path in the search fails, Prolog will back up to a previous choice point, and then it might have to unbind some variables. This is done TRAIL by keeping track of all the variables that have been bound in a stack called the **trail**. As each new variable is bound by UNIFY-VAR, the variable is pushed onto the trail. When a goal fails and it is time to back up to a previous choice point, each of the variables is unbound as it is removed from the trail.

> Even the most efficient Prolog interpreters require several thousand machine instructions per inference step because of the cost of index lookup, unification, and building the recursive call stack. In effect, the interpreter always behaves as if it has never seen the program before; for example, it has to *find* clauses that match the goal. A compiled Prolog

⁵ Note that if the Peano axioms are provided, such goals can be solved by inference within a Prolog program.

procedure APPEND(ax, y, az, continuation)

 $trail \leftarrow \text{GLOBAL-TRAIL-POINTER}()$ **if** $ax = \vert$ and UNIFY(y, az) **then** CALL(*continuation*) RESET-TRAIL(trail) $a, x, z \leftarrow$ NEW-VARIABLE(), NEW-VARIABLE(), NEW-VARIABLE() **if** $UNIFY(ax, [a | x])$ and $UNIFY(az, [a | z])$ **then** $APPEND(x, y, z, continuation)$

Figure 9.8 Pseudocode representing the result of compiling the Append predicate. The function NEW-VARIABLE returns a new variable, distinct from all other variables used so far. The procedure CALL(*continuation*) continues execution with the specified continuation.

program, on the other hand, is an inference procedure for a specific set of clauses, so it *knows* what clauses match the goal. Prolog basically generates a miniature theorem prover for each different predicate, thereby eliminating much of the overhead of interpretation. It is also pos-OPEN-CODE sible to **open-code** the unification routine for each different call, thereby avoiding explicit analysis of term structure. (For details of open-coded unification, see Warren *et al.* (1977).)

> The instruction sets of today's computers give a poor match with Prolog's semantics, so most Prolog compilers compile into an intermediate language rather than directly into machine language. The most popular intermediate language is the Warren Abstract Machine, or WAM, named after David H. D. Warren, one of the implementers of the first Prolog compiler. The WAM is an abstract instruction set that is suitable for Prolog and can be either interpreted or translated into machine language. Other compilers translate Prolog into a highlevel language such as Lisp or C and then use that language's compiler to translate to machine language. For example, the definition of the Append predicate can be compiled into the code shown in Figure 9.8. Several points are worth mentioning:

- Rather than having to search the knowledge base for Append clauses, the clauses become a procedure and the inferences are carried out simply by calling the procedure.
- As described earlier, the current variable bindings are kept on a trail. The first step of the procedure saves the current state of the trail, so that it can be restored by RESET-TRAIL if the first clause fails. This will undo any bindings generated by the first call to UNIFY.

CONTINUATION • The trickiest part is the use of **continuations** to implement choice points. You can think of a continuation as packaging up a procedure and a list of arguments that together define what should be done next whenever the current goal succeeds. It would not do just to return from a procedure like APPEND when the goal succeeds, because it could succeed in several ways, and each of them has to be explored. The continuation argument solves this problem because it can be called each time the goal succeeds. In the APPEND code, if the first argument is empty and the second argument unifies with the third, then the APPEND predicate has succeeded. We then CALL the continuation, with the appropriate bindings on the trail, to do whatever should be done next. For example, if the call to APPEND were at the top level, the continuation would print the bindings of the variables.

Before Warren's work on the compilation of inference in Prolog, logic programming was too slow for general use. Compilers by Warren and others allowed Prolog code to achieve speeds that are competitive with C on a variety of standard benchmarks (Van Roy, 1990). Of course, the fact that one can write a planner or natural language parser in a few dozen lines of Prolog makes it somewhat more desirable than C for prototyping most small-scale AI research projects.

Parallelization can also provide substantial speedup. There are two principal sources of OR-PARALLELISM parallelism. The first, called **OR-parallelism**, comes from the possibility of a goal unifying with many different clauses in the knowledge base. Each gives rise to an independent branch in the search space that can lead to a potential solution, and all such branches can be solved AND-PARALLELISM in parallel. The second, called **AND-parallelism**, comes from the possibility of solving each conjunct in the body of an implication in parallel. AND-parallelism is more difficult to achieve, because solutions for the whole conjunction require consistent bindings for all the variables. Each conjunctive branch must communicate with the other branches to ensure a global solution.

9.4.4 Redundant inference and infinite loops

We now turn to the Achilles heel of Prolog: the mismatch between depth-first search and search trees that include repeated states and infinite paths. Consider the following logic program that decides if a path exists between two points on a directed graph:

```
path(X,Z) :- link(X,Z).
path(X,Z) :- path(X,Y), link(Y,Z).
```
A simple three-node graph, described by the facts $\text{link}(a,b)$ and $\text{link}(b,c)$, is shown in Figure 9.9(a). With this program, the query path(a, c) generates the proof tree shown in Figure 9.10(a). On the other hand, if we put the two clauses in the order

```
path(X,Z) :- path(X,Y), link(Y,Z).
path(X,Z) :- link(X,Z).
```
then Prolog follows the infinite path shown in Figure 9.10(b). Prolog is therefore **incomplete** as a theorem prover for definite clauses—even for Datalog programs, as this example shows because, for some knowledge bases, it fails to prove sentences that are entailed. Notice that forward chaining does not suffer from this problem: once path(a,b), path(b,c), and path(a,c) are inferred, forward chaining halts.

Depth-first backward chaining also has problems with redundant computations. For example, when finding a path from A_1 to J_4 in Figure 9.9(b), Prolog performs 877 inferences, most of which involve finding all possible paths to nodes from which the goal is unreachable. This is similar to the repeated-state problem discussed in Chapter 3. The total amount of inference can be exponential in the number of ground facts that are generated. If we apply forward chaining instead, at most n^2 path(X, Y) facts can be generated linking n nodes. For the problem in Figure 9.9(b), only 62 inferences are needed.

DYNAMIC PROGRAMMING

Forward chaining on graph search problems is an example of **dynamic programming**, in which the solutions to subproblems are constructed incrementally from those of smaller

Figure 9.9 (a) Finding a path from A to C can lead Prolog into an infinite loop. (b) A graph in which each node is connected to two random successors in the next layer. Finding a path from A_1 to J_4 requires 877 inferences.

subproblems and are cached to avoid recomputation. We can obtain a similar effect in a backward chaining system using **memoization**—that is, caching solutions to subgoals as they are found and then reusing those solutions when the subgoal recurs, rather than repeat-TABLED LOGIC ing the previous computation. This is the approach taken by **tabled logic programming** systems, which use efficient storage and retrieval mechanisms to perform memoization. Tabled logic programming combines the goal-directedness of backward chaining with the dynamicprogramming efficiency of forward chaining. It is also complete for Datalog knowledge bases, which means that the programmer need worry less about infinite loops. (It is still possible to get an infinite loop with predicates like $f = \text{ather}(X, Y)$ that refer to a potentially unbounded number of objects.)

9.4.5 Database semantics of Prolog

Prolog uses database semantics, as discussed in Section 8.2.8. The unique names assumption says that every Prolog constant and every ground term refers to a distinct object, and the closed world assumption says that the only sentences that are true are those that are entailed

PROGRAMMING

by the knowledge base. There is no way to assert that a sentence is false in Prolog. This makes Prolog less expressive than first-order logic, but it is part of what makes Prolog more efficient and more concise. Consider the following Prolog assertions about some course offerings:

 $Course(CS, 101), Course(CS, 102), Course(CS, 106), Course(EE, 101).$ (9.11)

Under the unique names assumption, *CS* and *EE* are different (as are 101, 102, and 106), so this means that there are four distinct courses. Under the closed-world assumption there are no other courses, so there are exactly four courses. But if these were assertions in FOL rather than in Prolog, then all we could say is that there are somewhere between one and infinity courses. That's because the assertions (in FOL) do not deny the possibility that other unmentioned courses are also offered, nor do they say that the courses mentioned are different from each other. If we wanted to translate Equation (9.11) into FOL, we would get this:

$$
Course(d, n) \Leftrightarrow (d = CS \land n = 101) \lor (d = CS \land n = 102)
$$

$$
\lor (d = CS \land n = 106) \lor (d = EE \land n = 101). \qquad (9.12)
$$

COMPLETION This is called the **completion** of Equation (9.11). It expresses in FOL the idea that there are at most four courses. To express in FOL the idea that there are at least four courses, we need to write the completion of the equality predicate:

$$
x = y \Leftrightarrow (x = CS \land y = CS) \lor (x = EE \land y = EE) \lor (x = 101 \land y = 101)
$$

$$
\lor (x = 102 \land y = 102) \lor (x = 106 \land y = 106).
$$

The completion is useful for understanding database semantics, but for practical purposes, if your problem can be described with database semantics, it is more efficient to reason with Prolog or some other database semantics system, rather than translating into FOL and reasoning with a full FOL theorem prover.

9.4.6 Constraint logic programming

In our discussion of forward chaining (Section 9.3), we showed how constraint satisfaction problems (CSPs) can be encoded as definite clauses. Standard Prolog solves such problems in exactly the same way as the backtracking algorithm given in Figure 6.5.

Because backtracking enumerates the domains of the variables, it works only for **finitedomain** CSPs. In Prolog terms, there must be a finite number of solutions for any goal with unbound variables. (For example, the goal diff(Q , SA), which says that Queensland and South Australia must be different colors, has six solutions if three colors are allowed.) Infinite-domain CSPs—for example, with integer or real-valued variables—require quite different algorithms, such as bounds propagation or linear programming.

Consider the following example. We define $triangle(X, Y, Z)$ as a predicate that holds if the three arguments are numbers that satisfy the triangle inequality:

triangle(X,Y,Z) :- $X>0$, $Y>0$, $Z>0$, $X+Y>=Z$, $Y+Z>=X$, $X+Z>=Y$.

If we ask Prolog the query $triangle(3, 4, 5)$, it succeeds. On the other hand, if we ask triangle(3,4,Z), no solution will be found, because the subgoal $Z>=0$ cannot be handled by Prolog; we can't compare an unbound value to 0.

PROGRAMMING

CONSTRAINT LOGIC CONSTRAINT LOGIC programming (CLP) allows variables to be *constrained* rather than *bound*. A CLP solution is the most specific set of constraints on the query variables that can be derived from the knowledge base. For example, the solution to the $triangle(3,4,Z)$ query is the constraint $7 \ge 2 \ge 1$. Standard logic programs are just a special case of CLP in which the solution constraints must be equality constraints—that is, bindings.

> CLP systems incorporate various constraint-solving algorithms for the constraints allowed in the language. For example, a system that allows linear inequalities on real-valued variables might include a linear programming algorithm for solving those constraints. CLP systems also adopt a much more flexible approach to solving standard logic programming queries. For example, instead of depth-first, left-to-right backtracking, they might use any of the more efficient algorithms discussed in Chapter 6, including heuristic conjunct ordering, backjumping, cutset conditioning, and so on. CLP systems therefore combine elements of constraint satisfaction algorithms, logic programming, and deductive databases.

Several systems that allow the programmer more control over the search order for inference have been defined. The MRS language (Genesereth and Smith, 1981; Russell, 1985) METARULE allows the programmer to write **metarules** to determine which conjuncts are tried first. The user could write a rule saying that the goal with the fewest variables should be tried first or could write domain-specific rules for particular predicates.

9.5 RESOLUTION

The last of our three families of logical systems is based on **resolution**. We saw on page 250 that propositional resolution using refutation is a complete inference procedure for propositional logic. In this section, we describe how to extend resolution to first-order logic.

9.5.1 Conjunctive normal form for first-order logic

As in the propositional case, first-order resolution requires that sentences be in **conjunctive normal form** (CNF)—that is, a conjunction of clauses, where each clause is a disjunction of literals.⁶ Literals can contain variables, which are assumed to be universally quantified. For example, the sentence

$$
\forall x \ American(x) \land Weapon(y) \land Sells(x, y, z) \land Hostile(z) \Rightarrow Criminal(x)
$$

becomes, in CNF,

 $\neg American(x) \lor \neg Weapon(y) \lor \neg Sells(x, y, z) \lor \neg Hostile(z) \lor Criminal(x)$.

Every sentence of first-order logic can be converted into an inferentially equivalent CNF sentence. In particular, the CNF sentence will be unsatisfiable just when the original sentence is unsatisfiable, so we have a basis for doing proofs by contradiction on the CNF sentences.

⁶ A clause can also be represented as an implication with a conjunction of atoms in the premise and a disjunction of atoms in the conclusion (Exercise 7.13). This is called **implicative normal form** or **Kowalski form** (especially when written with a right-to-left implication symbol (Kowalski, 1979)) and is often much easier to read.

The procedure for conversion to CNF is similar to the propositional case, which we saw on page 253. The principal difference arises from the need to eliminate existential quantifiers. We illustrate the procedure by translating the sentence "Everyone who loves all animals is loved by someone," or

 $\forall x \ \forall y \ Animal(y) \Rightarrow Loves(x, y) \Rightarrow \exists y \ Loves(y, x)$.

The steps are as follows:

• **Eliminate implications**:

 $\forall x \ [\neg \forall y \ \neg Animal(y) \lor Loves(x, y)] \lor [\exists y \ Loves(y, x)].$

• **Move** \neg **inwards**: In addition to the usual rules for negated connectives, we need rules for negated quantifiers. Thus, we have

Our sentence goes through the following transformations:

 $\forall x \ [\exists y \ \neg(\neg Animal(y) \lor Loves(x, y))] \lor [\exists y \ Loves(y, x)].$ $\forall x \ [\exists y \ \neg \neg Animal(y) \land \neg Loves(x, y)] \lor [\exists y \ Loves(y, x)].$ $\forall x \ [\exists y \ Animal(y) \land \neg Loves(x, y)] \lor [\exists y \ Loves(y, x)].$

Notice how a universal quantifier ($\forall y$) in the premise of the implication has become an existential quantifier. The sentence now reads "Either there is some animal that x doesn't love, or (if this is not the case) someone loves x ." Clearly, the meaning of the original sentence has been preserved.

• **Standardize variables**: For sentences like $(\exists x P(x)) \lor (\exists x Q(x))$ which use the same variable name twice, change the name of one of the variables. This avoids confusion later when we drop the quantifiers. Thus, we have

 $\forall x \ [\exists y \ Animal(y) \land \neg Loves(x, y)] \lor [\exists z \ Loves(z, x)].$

SKOLEMIZATION • **Skolemize**: **Skolemization** is the process of removing existential quantifiers by elimination. In the simple case, it is just like the Existential Instantiation rule of Section 9.1: translate $\exists x P(x)$ into $P(A)$, where A is a new constant. However, we can't apply Existential Instantiation to our sentence above because it doesn't match the pattern $\exists v \alpha$; only parts of the sentence match the pattern. If we blindly apply the rule to the two matching parts we get

$$
\forall x \ [Animal(A) \land \neg Loves(x,A)] \lor Loves(B,x),
$$

which has the wrong meaning entirely: it says that everyone either fails to love a particular animal \vec{A} or is loved by some particular entity \vec{B} . In fact, our original sentence allows each person to fail to love a different animal or to be loved by a different person. Thus, we want the Skolem entities to depend on x and z :

 $\forall x \; [Animal(F(x)) \land \neg Loves(x, F(x))] \lor Loves(G(z), x)$.

SKOLEM FUNCTION Here F and G are **Skolem functions**. The general rule is that the arguments of the Skolem function are all the universally quantified variables in whose scope the existential quantifier appears. As with Existential Instantiation, the Skolemized sentence is satisfiable exactly when the original sentence is satisfiable.

• **Drop universal quantifiers**: At this point, all remaining variables must be universally quantified. Moreover, the sentence is equivalent to one in which all the universal quantifiers have been moved to the left. We can therefore drop the universal quantifiers:

 $[Animal(F(x)) \wedge \neg Loves(x, F(x))] \vee Loves(G(z), x)$.

• **Distribute** ∨ **over** ∧:

 $[Animal(F(x)) \vee Loves(G(z), x)] \wedge [\neg Loves(x, F(x)) \vee Loves(G(z), x)].$

This step may also require flattening out nested conjunctions and disjunctions.

The sentence is now in CNF and consists of two clauses. It is quite unreadable. (It may help to explain that the Skolem function $F(x)$ refers to the animal potentially unloved by x, whereas $G(z)$ refers to someone who might love x.) Fortunately, humans seldom need look at CNF sentences—the translation process is easily automated.

9.5.2 The resolution inference rule

The resolution rule for first-order clauses is simply a lifted version of the propositional resolution rule given on page 253. Two clauses, which are assumed to be standardized apart so that they share no variables, can be resolved if they contain complementary literals. Propositional literals are complementary if one is the negation of the other; first-order literals are complementary if one *unifies with* the negation of the other. Thus, we have

$$
\frac{\ell_1 \vee \dots \vee \ell_k, \quad m_1 \vee \dots \vee m_n}{\text{SUBST}(\theta, \ell_1 \vee \dots \vee \ell_{i-1} \vee \ell_{i+1} \vee \dots \vee \ell_k \vee m_1 \vee \dots \vee m_{j-1} \vee m_{j+1} \vee \dots \vee m_n)}
$$

where $UNIFY(\ell_i, \neg m_j) = \theta$. For example, we can resolve the two clauses

 $[Animal(F(x)) \vee Loves(G(x), x)]$ and $[\neg Loves(u, v) \vee \neg Kills(u, v)]$

by eliminating the complementary literals $Loves(G(x), x)$ and $\neg Loves(u, v)$, with unifier $\theta = \{u/G(x), v/x\}$, to produce the **resolvent** clause

 $[Animal(F(x)) \vee \neg Kills(G(x), x)]$.

BINARY RESOLUTION This rule is called the **binary resolution** rule because it resolves exactly two literals. The binary resolution rule by itself does not yield a complete inference procedure. The full resolution rule resolves subsets of literals in each clause that are unifiable. An alternative approach is to extend **factoring**—the removal of redundant literals—to the first-order case. Propositional factoring reduces two literals to one if they are *identical*; first-order factoring reduces two literals to one if they are *unifiable*. The unifier must be applied to the entire clause. The combination of binary resolution and factoring is complete.

9.5.3 Example proofs

Resolution proves that $KB \models \alpha$ by proving $KB \land \neg \alpha$ unsatisfiable, that is, by deriving the empty clause. The algorithmic approach is identical to the propositional case, described in

Figure 7.12, so we need not repeat it here. Instead, we give two example proofs. The first is the crime example from Section 9.3. The sentences in CNF are

$$
\neg American(x) \lor \neg Weapon(y) \lor \neg Sells(x, y, z) \lor \neg Hostile(z) \lor Criminal(x)
$$

\n
$$
\neg Missile(x) \lor \neg Owns(Nono, x) \lor Sells(West, x, Nono)
$$

\n
$$
\neg Enewy(x, America) \lor Hostile(x)
$$

\n
$$
\neg Missile(x) \lor Weapon(x)
$$

\n
$$
Owns(Nono, M_1)
$$

\n
$$
American(West)
$$

\n
$$
Enemy(Nono, America)
$$
.

We also include the negated goal $\neg Criminal(West)$. The resolution proof is shown in Figure 9.11. Notice the structure: single "spine" beginning with the goal clause, resolving against clauses from the knowledge base until the empty clause is generated. This is characteristic of resolution on Horn clause knowledge bases. In fact, the clauses along the main spine correspond *exactly* to the consecutive values of the goals variable in the backward-chaining algorithm of Figure 9.6. This is because we always choose to resolve with a clause whose positive literal unified with the leftmost literal of the "current" clause on the spine; this is exactly what happens in backward chaining. Thus, backward chaining is just a special case of resolution with a particular control strategy to decide which resolution to perform next.

Our second example makes use of Skolemization and involves clauses that are not definite clauses. This results in a somewhat more complex proof structure. In English, the problem is as follows:

Everyone who loves all animals is loved by someone. Anyone who kills an animal is loved by no one. Jack loves all animals. Either Jack or Curiosity killed the cat, who is named Tuna. Did Curiosity kill the cat?

First, we express the original sentences, some background knowledge, and the negated goal G in first-order logic:

- A. $\forall x \ \forall y \ Animal(y) \Rightarrow Loves(x, y) \Rightarrow \exists y \ Loves(y, x)$
- B. $\forall x \ [\exists z \ Animal(z) \land Kills(x, z)] \Rightarrow [\forall y \ \neg Loves(y, x)]$
- C. $\forall x \; Animal(x) \Rightarrow Loves(Jack, x)$
- D. Kills(Jack, Tuna) \vee Kills(Curiosity, Tuna)
- E. $Cat(Tuna)$
- F. $\forall x \; Cat(x) \Rightarrow Animal(x)$
- $\neg G.$ $\neg Kills(Curiosity, Tuna)$

Now we apply the conversion procedure to convert each sentence to CNF:

- A1. $Animal(F(x)) \vee Loves(G(x), x)$
- A2. $\neg Loves(x, F(x)) \lor Loves(G(x), x)$
	- B. $\neg Loves(y, x) \lor \neg Animal(z) \lor \neg Kills(x, z)$
	- C. ¬Animal(x) $\vee Loves(Jack, x)$
- D. Kills(Jack, Tuna) \vee Kills(Curiosity, Tuna)
- E. $Cat(Tuna)$
- F. $\neg Cat(x) \vee Animal(x)$
- $\neg G.$ \neg Kills(Curiosity, Tuna)

The resolution proof that Curiosity killed the cat is given in Figure 9.12. In English, the proof could be paraphrased as follows:

Suppose Curiosity did not kill Tuna. We know that either Jack or Curiosity did; thus Jack must have. Now, Tuna is a cat and cats are animals, so Tuna is an animal. Because anyone who kills an animal is loved by no one, we know that no one loves Jack. On the other hand, Jack loves all animals, so someone loves him; so we have a contradiction. Therefore, Curiosity killed the cat.

The proof answers the question "Did Curiosity kill the cat?" but often we want to pose more general questions, such as "Who killed the cat?" Resolution can do this, but it takes a little more work to obtain the answer. The goal is $\exists w \; Kills(w, Tuna)$, which, when negated, becomes $\neg Kills(w, Tuna)$ in CNF. Repeating the proof in Figure 9.12 with the new negated goal, we obtain a similar proof tree, but with the substitution $\{w/Curiosity\}$ in one of the steps. So, in this case, finding out who killed the cat is just a matter of keeping track of the bindings for the query variables in the proof.

PROOF

NONCONSTRUCTIVE Unfortunately, resolution can produce **nonconstructive proofs** for existential goals. For example, \neg Kills(w, Tuna) resolves with Kills(Jack, Tuna) \vee Kills(Curiosity, Tuna) to give Kills(Jack, Tuna), which resolves again with \neg Kills(w, Tuna) to yield the empty clause. Notice that w has two different bindings in this proof; resolution is telling us that, yes, someone killed Tuna—either Jack or Curiosity. This is no great surprise! One solution is to restrict the allowed resolution steps so that the query variables can be bound only once in a given proof; then we need to be able to backtrack over the possible bind-ANSWER LITERAL ings. Another solution is to add a special **answer literal** to the negated goal, which becomes $\neg Kills(w, Tuna) \lor Answer(w)$. Now, the resolution process generates an answer whenever a clause is generated containing just a *single* answer literal. For the proof in Figure 9.12, this is $Answer(Curiosity)$. The nonconstructive proof would generate the clause Answer (Curiosity) \vee Answer (Jack), which does not constitute an answer.

9.5.4 Completeness of resolution

This section gives a completeness proof of resolution. It can be safely skipped by those who are willing to take it on faith.

COMPLETENESS

 $R_{\text{CDMILTENESS}}$ We show that resolution is **refutation-complete**, which means that *if* a set of sentences is unsatisfiable, then resolution will always be able to derive a contradiction. Resolution cannot be used to generate all logical consequences of a set of sentences, but it can be used to establish that a given sentence is entailed by the set of sentences. Hence, it can be used to find all answers to a given question, $Q(x)$, by proving that $KB \wedge \neg Q(x)$ is unsatisfiable.

> We take it as given that any sentence in first-order logic (without equality) can be rewritten as a set of clauses in CNF. This can be proved by induction on the form of the sentence, using atomic sentences as the base case (Davis and Putnam, 1960). Our goal therefore is to prove the following: *if* S *is an unsatisfiable set of clauses, then the application of a finite number of resolution steps to* S *will yield a contradiction.*

> Our proof sketch follows Robinson's original proof with some simplifications from Genesereth and Nilsson (1987). The basic structure of the proof (Figure 9.13) is as follows:

- 1. First, we observe that if S is unsatisfiable, then there exists a particular set of *ground instances* of the clauses of S such that this set is also unsatisfiable (Herbrand's theorem).
- 2. We then appeal to the **ground resolution theorem** given in Chapter 7, which states that propositional resolution is complete for ground sentences.
- 3. We then use a **lifting lemma** to show that, for any propositional resolution proof using the set of ground sentences, there is a corresponding first-order resolution proof using the first-order sentences from which the ground sentences were obtained.

THEOREM

These definitions allow us to state a form of **Herbrand's theorem** (Herbrand, 1930):

If a set S of clauses is unsatisfiable, then there exists a finite subset of $H_S(S)$ that is also unsatisfiable.

 $\neg P(F(A, B), F(F(A, B), A)) \vee \neg Q(F(A, B), A) \vee R(F(A, B), B), \dots)$

Let S' be this finite subset of ground sentences. Now, we can appeal to the ground resolution theorem (page 255) to show that the **resolution closure** $RC(S')$ contains the empty clause. That is, running propositional resolution to completion on S' will derive a contradiction.

Now that we have established that there is always a resolution proof involving some finite subset of the Herbrand base of S , the next step is to show that there is a resolution

GÖDEL'S INCOMPLETENESS THEOREM

By slightly extending the language of first-order logic to allow for the **mathematical induction schema** in arithmetic, Kurt Gödel was able to show, in his **incompleteness theorem**, that there are true arithmetic sentences that cannot be proved.

The proof of the incompleteness theorem is somewhat beyond the scope of this book, occupying, as it does, at least 30 pages, but we can give a hint here. We begin with the logical theory of numbers. In this theory, there is a single constant, 0, and a single function, S (the successor function). In the intended model, $S(0)$ denotes 1, $S(S(0))$ denotes 2, and so on; the language therefore has names for all the natural numbers. The vocabulary also includes the function symbols $+$, \times , and Expt (exponentiation) and the usual set of logical connectives and quantifiers. The first step is to notice that the set of sentences that we can write in this language can be enumerated. (Imagine defining an alphabetical order on the symbols and then arranging, in alphabetical order, each of the sets of sentences of length 1, 2, and so on.) We can then number each sentence α with a unique natural number $\#\alpha$ (the **Gödel number**). This is crucial: number theory contains a name for each of its own sentences. Similarly, we can number each possible proof P with a Gödel number $G(P)$, because a proof is simply a finite sequence of sentences.

Now suppose we have a recursively enumerable set A of sentences that are true statements about the natural numbers. Recalling that A can be named by a given set of integers, we can imagine writing in our language a sentence $\alpha(j, A)$ of the following sort:

 $\forall i$ *i* is not the Gödel number of a proof of the sentence whose Gödel number is j , where the proof uses only premises in A .

Then let σ be the sentence $\alpha(\text{#}\sigma, A)$, that is, a sentence that states its own unprovability from A. (That this sentence always exists is true but not entirely obvious.)

Now we make the following ingenious argument: Suppose that σ *is* provable from A; then σ is false (because σ says it cannot be proved). But then we have a false sentence that is provable from A , so A cannot consist of only true sentences a violation of our premise. Therefore, σ is *not* provable from A. But this is exactly what σ itself claims; hence σ is a true sentence.

So, we have shown (barring $29\frac{1}{2}$ pages) that for any set of true sentences of number theory, and in particular any set of basic axioms, there are other true sentences that *cannot* be proved from those axioms. This establishes, among other things, that we can never prove all the theorems of mathematics *within any given system of axioms*. Clearly, this was an important discovery for mathematics. Its significance for AI has been widely debated, beginning with speculations by Gödel himself. We take up the debate in Chapter 26.

proof using the clauses of S itself, which are not necessarily ground clauses. We start by considering a single application of the resolution rule. Robinson stated this lemma:

Let C_1 and C_2 be two clauses with no shared variables, and let C'_1 and C'_2 be ground instances of C_1 and C_2 . If C' is a resolvent of C'_1 and C'_2 , then there exists a clause C such that (1) C is a resolvent of C_1 and C_2 and (2) C' is a ground instance of C.

LIFTING LEMMA This is called a **lifting lemma**, because it lifts a proof step from ground clauses up to general first-order clauses. In order to prove his basic lifting lemma, Robinson had to invent unification and derive all of the properties of most general unifiers. Rather than repeat the proof here, we simply illustrate the lemma:

$$
C_1 = \neg P(x, F(x, A)) \lor \neg Q(x, A) \lor R(x, B)
$$

\n
$$
C_2 = \neg N(G(y), z) \lor P(H(y), z)
$$

\n
$$
C'_1 = \neg P(H(B), F(H(B), A)) \lor \neg Q(H(B), A) \lor R(H(B), B)
$$

\n
$$
C'_2 = \neg N(G(B), F(H(B), A)) \lor P(H(B), F(H(B), A))
$$

\n
$$
C' = \neg N(G(B), F(H(B), A)) \lor \neg Q(H(B), A) \lor R(H(B), B)
$$

\n
$$
C = \neg N(G(y), F(H(y), A)) \lor \neg Q(H(y), A) \lor R(H(y), B)
$$
.

We see that indeed C' is a ground instance of C. In general, for C'_1 and C'_2 to have any resolvents, they must be constructed by first applying to C_1 and C_2 the most general unifier of a pair of complementary literals in C_1 and C_2 . From the lifting lemma, it is easy to derive a similar statement about any sequence of applications of the resolution rule:

For any clause C' in the resolution closure of S' there is a clause C in the resolution closure of S such that C' is a ground instance of C and the derivation of C is the same length as the derivation of C' .

From this fact, it follows that if the empty clause appears in the resolution closure of S' , it must also appear in the resolution closure of S. This is because the empty clause cannot be a ground instance of any other clause. To recap: we have shown that if S is unsatisfiable, then there is a finite derivation of the empty clause using the resolution rule.

The lifting of theorem proving from ground clauses to first-order clauses provides a vast increase in power. This increase comes from the fact that the first-order proof need instantiate variables only as far as necessary for the proof, whereas the ground-clause methods were required to examine a huge number of arbitrary instantiations.

9.5.5 Equality

None of the inference methods described so far in this chapter handle an assertion of the form $x = y$. Three distinct approaches can be taken. The first approach is to axiomatize equality to write down sentences about the equality relation in the knowledge base. We need to say that equality is reflexive, symmetric, and transitive, and we also have to say that we can substitute equals for equals in any predicate or function. So we need three basic axioms, and then one

for each predicate and function:

 $\forall x \ x = x$ $\forall x, y \ x = y \Rightarrow y = x$ $\forall x, y, z \ x = y \land y = z \Rightarrow x = z$ $\forall x, y \ x=y \Rightarrow (P_1(x) \Leftrightarrow P_1(y))$ $\forall x, y \ x=y \Rightarrow (P_2(x) \Leftrightarrow P_2(y))$. . . $\forall w, x, y, z \quad w = y \land x = z \implies (F_1(w, x) = F_1(y, z))$ $\forall w, x, y, z \quad w = y \land x = z \Rightarrow (F_2(w, x) = F_2(y, z))$. . .

Given these sentences, a standard inference procedure such as resolution can perform tasks requiring equality reasoning, such as solving mathematical equations. However, these axioms will generate a lot of conclusions, most of them not helpful to a proof. So there has been a search for more efficient ways of handling equality. One alternative is to add inference rules rather than axioms. The simplest rule, **demodulation**, takes a unit clause $x = y$ and some clause α that contains the term x, and yields a new clause formed by substituting y for x within α . It works if the term within α unifies with x; it need not be exactly equal to x. Note that demodulation is directional; given $x = y$, the x always gets replaced with y, never vice versa. That means that demodulation can be used for simplifying expressions using demodulators such as $x + 0 = x$ or $x^1 = x$. As another example, given

 $Father(Father(x)) = PaternalGrandfather(x)$ $Birthdate(Father(Father(Bella)), 1926)$

we can conclude by demodulation

```
Birthdate(PaternalGrandfather(Bella), 1926).
```
More formally, we have

• **Demodulation**: For any terms x, y, and z, where z appears somewhere in literal m_i and where $UNIFY(x, z) = \theta$,

$$
\frac{x = y, \quad m_1 \vee \cdots \vee m_n}{\text{SUB}(\text{SUBST}(\theta, x), \text{SUBST}(\theta, y), m_1 \vee \cdots \vee m_n)}
$$

where SUBST is the usual substitution of a binding list, and $SUB(x, y, m)$ means to replace x with y everywhere that x occurs within m .

The rule can also be extended to handle non-unit clauses in which an equality literal appears:

PARAMODULATION • **Paramodulation**: For any terms x, y , and z , where z appears somewhere in literal m_i , and where $UNIFY(x, z) = \theta$,

$$
\frac{\ell_1 \vee \cdots \vee \ell_k \vee x = y, \qquad m_1 \vee \cdots \vee m_n}{\text{SUB}(\text{SUBST}(\theta, x), \text{SUBST}(\theta, y), \text{SUBST}(\theta, \ell_1 \vee \cdots \vee \ell_k \vee m_1 \vee \cdots \vee m_n))}.
$$

.

For example, from

 $P(F(x, B), x) \vee Q(x)$ and $F(A, y) = y \vee R(y)$

DEMODULATION

we have $\theta = \text{UNIFY}(F(A, y), F(x, B)) = \{x/A, y/B\}$, and we can conclude by paramodulation the sentence

 $P(B, A) \vee Q(A) \vee R(B)$.

Paramodulation yields a complete inference procedure for first-order logic with equality.

A third approach handles equality reasoning entirely within an extended unification algorithm. That is, terms are unifiable if they are *provably* equal under some substitution, where "provably" allows for equality reasoning. For example, the terms $1 + 2$ and $2 + 1$ normally are not unifiable, but a unification algorithm that knows that $x + y = y + x$ could $EQUATIONAL$ unify them with the empty substitution. **Equational unification** of this kind can be done with efficient algorithms designed for the particular axioms used (commutativity, associativity, and so on) rather than through explicit inference with those axioms. Theorem provers using this technique are closely related to the CLP systems described in Section 9.4.

9.5.6 Resolution strategies

We know that repeated applications of the resolution inference rule will eventually find a proof if one exists. In this subsection, we examine strategies that help find proofs *efficiently*.

UNIT PREFERENCE **Unit preference**: This strategy prefers to do resolutions where one of the sentences is a single literal (also known as a **unit clause**). The idea behind the strategy is that we are trying to produce an empty clause, so it might be a good idea to prefer inferences that produce shorter clauses. Resolving a unit sentence (such as P) with any other sentence (such as $\neg P \vee \neg Q \vee R$) always yields a clause (in this case, $\neg Q \lor R$) that is shorter than the other clause. When the unit preference strategy was first tried for propositional inference in 1964, it led to a dramatic speedup, making it feasible to prove theorems that could not be handled without the preference. **Unit resolution** is a restricted form of resolution in which every resolution step must involve a unit clause. Unit resolution is incomplete in general, but complete for Horn clauses. Unit resolution proofs on Horn clauses resemble forward chaining.

> The OTTER theorem prover (Organized Techniques for Theorem-proving and Effective Research, McCune, 1992), uses a form of best-first search. Its heuristic function measures the "weight" of each clause, where lighter clauses are preferred. The exact choice of heuristic is up to the user, but generally, the weight of a clause should be correlated with its size or difficulty. Unit clauses are treated as light; the search can thus be seen as a generalization of the unit preference strategy.

SET OF SUPPORT **Set of support**: Preferences that try certain resolutions first are helpful, but in general it is more effective to try to eliminate some potential resolutions altogether. For example, we can insist that every resolution step involve at least one element of a special set of clauses—the *set of support*. The resolvent is then added into the set of support. If the set of support is small relative to the whole knowledge base, the search space will be reduced dramatically.

We have to be careful with this approach because a bad choice for the set of support will make the algorithm incomplete. However, if we choose the set of support S so that the remainder of the sentences are jointly satisfiable, then set-of-support resolution is complete. For example, one can use the negated query as the set of support, on the assumption that the

UNIFICATION

original knowledge base is consistent. (After all, if it is not consistent, then the fact that the query follows from it is vacuous.) The set-of-support strategy has the additional advantage of generating goal-directed proof trees that are often easy for humans to understand.

- INPUT RESOLUTION **Input resolution**: In this strategy, every resolution combines one of the input sentences (from the KB or the query) with some other sentence. The proof in Figure 9.11 on page 348 uses only input resolutions and has the characteristic shape of a single "spine" with single sentences combining onto the spine. Clearly, the space of proof trees of this shape is smaller than the space of all proof graphs. In Horn knowledge bases, Modus Ponens is a kind of input resolution strategy, because it combines an implication from the original KB with some other sentences. Thus, it is no surprise that input resolution is complete for knowledge bases LINEAR RESOLUTION that are in Horn form, but incomplete in the general case. The **linear resolution** strategy is a slight generalization that allows P and Q to be resolved together either if P is in the original KB or if P is an ancestor of Q in the proof tree. Linear resolution is complete.
- SUBSUMPTION **Subsumption**: The subsumption method eliminates all sentences that are subsumed by (that is, more specific than) an existing sentence in the KB. For example, if $P(x)$ is in the KB, then there is no sense in adding $P(A)$ and even less sense in adding $P(A) \vee Q(B)$. Subsumption helps keep the KB small and thus helps keep the search space small.

Practical uses of resolution theorem provers

SYNTHESIS Theorem provers can be applied to the problems involved in the **synthesis** and **verification** VERIFICATION of both hardware and software. Thus, theorem-proving research is carried out in the fields of hardware design, programming languages, and software engineering—not just in AI.

In the case of hardware, the axioms describe the interactions between signals and circuit elements. (See Section 8.4.2 on page 309 for an example.) Logical reasoners designed specially for verification have been able to verify entire CPUs, including their timing properties (Srivas and Bickford, 1990). The AURA theorem prover has been applied to design circuits that are more compact than any previous design (Wojciechowski and Wojcik, 1983).

In the case of software, reasoning about programs is quite similar to reasoning about actions, as in Chapter 7: axioms describe the preconditions and effects of each statement. The formal synthesis of algorithms was one of the first uses of theorem provers, as outlined by Cordell Green (1969a), who built on earlier ideas by Herbert Simon (1963). The idea is to constructively prove a theorem to the effect that "there exists a program p satisfying a certain specification." Although fully automated **deductive synthesis**, as it is called, has not DEDUCTIVE yet become feasible for general-purpose programming, hand-guided deductive synthesis has been successful in designing several novel and sophisticated algorithms. Synthesis of specialpurpose programs, such as scientific computing code, is also an active area of research.

> Similar techniques are now being applied to software verification by systems such as the SPIN model checker (Holzmann, 1997). For example, the Remote Agent spacecraft control program was verified before and after flight (Havelund *et al.*, 2000). The RSA public key encryption algorithm and the Boyer–Moore string-matching algorithm have been verified this way (Boyer and Moore, 1984).

SYNTHESIS
9.6 SUMMARY

We have presented an analysis of logical inference in first-order logic and a number of algorithms for doing it.

- A first approach uses inference rules (**universal instantiation** and **existential instantiation**) to **propositionalize** the inference problem. Typically, this approach is slow, unless the domain is small.
- The use of **unification** to identify appropriate substitutions for variables eliminates the instantiation step in first-order proofs, making the process more efficient in many cases.
- A lifted version of **Modus Ponens** uses unification to provide a natural and powerful inference rule, **generalized Modus Ponens**. The **forward-chaining** and **backwardchaining** algorithms apply this rule to sets of definite clauses.
- Generalized Modus Ponens is complete for definite clauses, although the entailment problem is **semidecidable**. For **Datalog** knowledge bases consisting of function-free definite clauses, entailment is decidable.
- Forward chaining is used in **deductive databases**, where it can be combined with relational database operations. It is also used in **production systems**, which perform efficient updates with very large rule sets. Forward chaining is complete for Datalog and runs in polynomial time.
- Backward chaining is used in **logic programming systems**, which employ sophisticated compiler technology to provide very fast inference. Backward chaining suffers from redundant inferences and infinite loops; these can be alleviated by **memoization**.
- Prolog, unlike first-order logic, uses a closed world with the unique names assumption and negation as failure. These make Prolog a more practical programming language, but bring it further from pure logic.
- The generalized **resolution** inference rule provides a complete proof system for firstorder logic, using knowledge bases in conjunctive normal form.
- Several strategies exist for reducing the search space of a resolution system without compromising completeness. One of the most important issues is dealing with equality; we showed how **demodulation** and **paramodulation** can be used.
- Efficient resolution-based theorem provers have been used to prove interesting mathematical theorems and to verify and synthesize software and hardware.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Gottlob Frege, who developed full first-order logic in 1879, based his system of inference on a collection of valid schemas plus a single inference rule, Modus Ponens. Whitehead and Russell (1910) expounded the so-called *rules of passage* (the actual term is from Herbrand (1930)) that are used to move quantifiers to the front of formulas. Skolem constants

and Skolem functions were introduced, appropriately enough, by Thoralf Skolem (1920). Oddly enough, it was Skolem who introduced the Herbrand universe (Skolem, 1928).

Herbrand's theorem (Herbrand, 1930) has played a vital role in the development of automated reasoning. Herbrand is also the inventor of unification. Gödel (1930) built on the ideas of Skolem and Herbrand to show that first-order logic has a complete proof procedure. Alan Turing (1936) and Alonzo Church (1936) simultaneously showed, using very different proofs, that validity in first-order logic was not decidable. The excellent text by Enderton (1972) explains all of these results in a rigorous yet understandable fashion.

Abraham Robinson proposed that an automated reasoner could be built using propositionalization and Herbrand's theorem, and Paul Gilmore (1960) wrote the first program. Davis and Putnam (1960) introduced the propositionalization method of Section 9.1. Prawitz (1960) developed the key idea of letting the quest for propositional inconsistency drive the search, and generating terms from the Herbrand universe only when they were necessary to establish propositional inconsistency. After further development by other researchers, this idea led J. A. Robinson (no relation) to develop resolution (Robinson, 1965).

In AI, resolution was adopted for question-answering systems by Cordell Green and Bertram Raphael (1968). Early AI implementations put a good deal of effort into data structures that would allow efficient retrieval of facts; this work is covered in AI programming texts (Charniak *et al.*, 1987; Norvig, 1992; Forbus and de Kleer, 1993). By the early 1970s, **forward chaining** was well established in AI as an easily understandable alternative to resolution. AI applications typically involved large numbers of rules, so it was important to develop efficient rule-matching technology, particularly for incremental updates. The technology for **production systems** was developed to support such applications. The production system language OPS-5 (Forgy, 1981; Brownston *et al.*, 1985), incorporating the efficient RETE **rete** match process (Forgy, 1982), was used for applications such as the R1 expert system for minicomputer configuration (McDermott, 1982).

> The SOAR cognitive architecture (Laird *et al.*, 1987; Laird, 2008) was designed to handle very large rule sets—up to a million rules (Doorenbos, 1994). Example applications of SOAR include controlling simulated fighter aircraft (Jones *et al.*, 1998), airspace management (Taylor *et al.*, 2007), AI characters for computer games (Wintermute *et al.*, 2007), and training tools for soldiers (Wray and Jones, 2005).

> The field of **deductive databases** began with a workshop in Toulouse in 1977 that brought together experts in logical inference and database systems (Gallaire and Minker, 1978). Influential work by Chandra and Harel (1980) and Ullman (1985) led to the adoption of Datalog as a standard language for deductive databases. The development of the **magic sets** technique for rule rewriting by Bancilhon *et al.* (1986) allowed forward chaining to borrow the advantage of goal-directedness from backward chaining. Current work includes the idea of integrating multiple databases into a consistent dataspace (Halevy, 2007).

> **Backward chaining** for logical inference appeared first in Hewitt's PLANNER language (1969). Meanwhile, in 1972, Alain Colmerauer had developed and implemented **Prolog** for the purpose of parsing natural language—Prolog's clauses were intended initially as context-free grammar rules (Roussel, 1975; Colmerauer *et al.*, 1973). Much of the theoretical background for logic programming was developed by Robert Kowalski, working

with Colmerauer; see Kowalski (1988) and Colmerauer and Roussel (1993) for a historical overview. Efficient Prolog compilers are generally based on the Warren Abstract Machine (WAM) model of computation developed by David H. D. Warren (1983). Van Roy (1990) showed that Prolog programs can be competitive with C programs in terms of speed.

Methods for avoiding unnecessary looping in recursive logic programs were developed independently by Smith *et al.* (1986) and Tamaki and Sato (1986). The latter paper also included memoization for logic programs, a method developed extensively as **tabled logic programming** by David S. Warren. Swift and Warren (1994) show how to extend the WAM to handle tabling, enabling Datalog programs to execute an order of magnitude faster than forward-chaining deductive database systems.

Early work on constraint logic programming was done by Jaffar and Lassez (1987). Jaffar *et al.* (1992) developed the CLP(R) system for handling real-valued constraints. There are now commercial products for solving large-scale configuration and optimization problems with constraint programming; one of the best known is ILOG (Junker, 2003). Answer set programming (Gelfond, 2008) extends Prolog, allowing disjunction and negation.

Texts on logic programming and Prolog, including Shoham (1994), Bratko (2001), Clocksin (2003), and Clocksin and Mellish (2003). Prior to 2000, the *Journal of Logic Programming* was the journal of record; it has now been replaced by *Theory and Practice of Logic Programming*. Logic programming conferences include the International Conference on Logic Programming (ICLP) and the International Logic Programming Symposium (ILPS).

Research into **mathematical theorem proving** began even before the first complete first-order systems were developed. Herbert Gelernter's Geometry Theorem Prover (Gelernter, 1959) used heuristic search methods combined with diagrams for pruning false subgoals and was able to prove some quite intricate results in Euclidean geometry. The demodulation and paramodulation rules for equality reasoning were introduced by Wos *et al.* (1967) and Wos and Robinson (1968), respectively. These rules were also developed independently in the context of term-rewriting systems (Knuth and Bendix, 1970). The incorporation of equality reasoning into the unification algorithm is due to Gordon Plotkin (1972). Jouannaud and Kirchner (1991) survey equational unification from a term-rewriting perspective. An overview of unification is given by Baader and Snyder (2001).

A number of control strategies have been proposed for resolution, beginning with the unit preference strategy (Wos *et al.*, 1964). The set-of-support strategy was proposed by Wos *et al.* (1965) to provide a degree of goal-directedness in resolution. Linear resolution first appeared in Loveland (1970). Genesereth and Nilsson (1987, Chapter 5) provide a short but thorough analysis of a wide variety of control strategies.

A Computational Logic (Boyer and Moore, 1979) is the basic reference on the Boyer-Moore theorem prover. Stickel (1992) covers the Prolog Technology Theorem Prover (PTTP), which combines the advantages of Prolog compilation with the completeness of model elimination. SETHEO (Letz *et al.*, 1992) is another widely used theorem prover based on this approach. LEANTAP (Beckert and Posegga, 1995) is an efficient theorem prover implemented in only 25 lines of Prolog. Weidenbach (2001) describes SPASS, one of the strongest current theorem provers. The most successful theorem prover in recent annual competitions has been VAMPIRE (Riazanov and Voronkov, 2002). The COQ system (Bertot *et al.*, 2004) and the E

equational solver (Schulz, 2004) have also proven to be valuable tools for proving correctness. Theorem provers have been used to automatically synthesize and verify software for controlling spacecraft (Denney *et al.*, 2006), including NASA's new Orion capsule (Lowry, 2008). The design of the FM9001 32-bit microprocessor was proved correct by the NQTHM system (Hunt and Brock, 1992). The Conference on Automated Deduction (CADE) runs an annual contest for automated theorem provers. From 2002 through 2008, the most successful system has been VAMPIRE (Riazanov and Voronkov, 2002). Wiedijk (2003) compares the strength of 15 mathematical provers. TPTP (Thousands of Problems for Theorem Provers) is a library of theorem-proving problems, useful for comparing the performance of systems (Sutcliffe and Suttner, 1998; Sutcliffe *et al.*, 2006).

Theorem provers have come up with novel mathematical results that eluded human mathematicians for decades, as detailed in the book *Automated Reasoning and the Discovery of Missing Elegant Proofs* (Wos and Pieper, 2003). The SAM (Semi-Automated Mathematics) program was the first, proving a lemma in lattice theory (Guard *et al.*, 1969). The AURA program has also answered open questions in several areas of mathematics (Wos and Winker, 1983). The Boyer–Moore theorem prover (Boyer and Moore, 1979) was used by Natarajan Shankar to give the first fully rigorous formal proof of Gödel's Incompleteness Theorem (Shankar, 1986). The NUPRL system proved Girard's paradox (Howe, 1987) and Higman's Lemma (Murthy and Russell, 1990). In 1933, Herbert Robbins proposed a simple ROBBINS ALGEBRA set of axioms—the **Robbins algebra**—that appeared to define Boolean algebra, but no proof could be found (despite serious work by Alfred Tarski and others). On October 10, 1996, after eight days of computation, EQP (a version of OTTER) found a proof (McCune, 1997).

Many early papers in mathematical logic are to be found in *From Frege to Godel: ¨ A Source Book in Mathematical Logic* (van Heijenoort, 1967). Textbooks geared toward automated deduction include the classic *Symbolic Logic and Mechanical Theorem Proving* (Chang and Lee, 1973), as well as more recent works by Duffy (1991), Wos *et al.* (1992), Bibel (1993), and Kaufmann *et al.* (2000). The principal journal for theorem proving is the *Journal of Automated Reasoning*; the main conferences are the annual Conference on Automated Deduction (CADE) and the International Joint Conference on Automated Reasoning (IJCAR). The *Handbook of Automated Reasoning* (Robinson and Voronkov, 2001) collects papers in the field. MacKenzie's *Mechanizing Proof* (2004) covers the history and technology of theorem proving for the popular audience.

EXERCISES

9.1 Prove that Universal Instantiation is sound and that Existential Instantiation produces an inferentially equivalent knowledge base.

INTRODUCTION

9.2 From Likes(Jerry, IceCream) it seems reasonable to infer $\exists x \;$ Likes(x, IceCream). EXISTENTIAL Write down a general inference rule, **Existential Introduction**, that sanctions this inference. State carefully the conditions that must be satisfied by the variables and terms involved.

9.3 Suppose a knowledge base contains just one sentence, $\exists x \; AsHighAs(x, Everest)$. Which of the following are legitimate results of applying Existential Instantiation?

- **a**. AsHighAs(Everest, Everest).
- **b**. $AsHighAs(Kilimanjaro, Everest)$.
- **c**. AsHighAs(Kilimanjaro,Everest) ∧ AsHighAs(BenNevis,Everest) (after two applications).
- **9.4** For each pair of atomic sentences, give the most general unifier if it exists:
	- **a**. $P(A, A, B), P(x, y, z)$.
	- **b**. $Q(y, G(A, B)), Q(G(x, x), y)$.
	- **c**. $Older(Father(y), y)$, $Older(Father(x), Jerry)$.
	- **d**. $Knows(Father(y), y)$, $Knows(x, x)$.
- **9.5** Consider the subsumption lattices shown in Figure 9.2 (page 329).
	- **a**. Construct the lattice for the sentence $Employs(Mother(John), Father(Richard)).$
	- **b**. Construct the lattice for the sentence $Employs(IBM, y)$ ("Everyone works for IBM"). Remember to include every kind of query that unifies with the sentence.
	- **c**. Assume that STORE indexes each sentence under every node in its subsumption lattice. Explain how FETCH should work when some of these sentences contain variables; use as examples the sentences in (a) and (b) and the query $Employs(x,Father(x))$.

9.6 Write down logical representations for the following sentences, suitable for use with Generalized Modus Ponens:

- **a**. Horses, cows, and pigs are mammals.
- **b**. An offspring of a horse is a horse.
- **c**. Bluebeard is a horse.
- **d**. Bluebeard is Charlie's parent.
- **e**. Offspring and parent are inverse relations.
- **f**. Every mammal has a parent.
- **9.7** These questions concern concern issues with substitution and Skolemization.
	- **a**. Given the premise $\forall x \exists y \ P(x, y)$, it is not valid to conclude that $\exists q \ P(q, q)$. Give an example of a predicate P where the first is true but the second is false.
	- **b**. Suppose that an inference engine is incorrectly written with the occurs check omitted, so that it allows a literal like $P(x, F(x))$ to be unified with $P(q, q)$. (As mentioned, most standard implementations of Prolog actually do allow this.) Show that such an inference engine will allow the conclusion $\exists y \ P(q,q)$ to be inferred from the premise $\forall x \; \exists y \; P(x,y).$
- **c**. Suppose that a procedure that converts first-order logic to clausal form incorrectly Skolemizes $\forall x \exists y \ P(x, y)$ to $P(x, Sk0)$ —that is, it replaces y by a Skolem constant rather than by a Skolem function of x . Show that an inference engine that uses such a procedure will likewise allow $\exists q \quad P(q,q)$ to be inferred from the premise $\forall x \; \exists y \; P(x,y).$
- **d**. A common error among students is to suppose that, in unification, one is allowed to substitute a term for a Skolem constant instead of for a variable. For instance, they will say that the formulas $P(Sk1)$ and $P(A)$ can be unified under the substitution $\{Sk1/A\}$. Give an example where this leads to an invalid inference.
- **9.8** This question considers Horn KBs, such as the following:

 $P(F(x)) \Rightarrow P(x)$ $Q(x) \Rightarrow P(F(x))$ $P(A)$ $Q(B)$

Let FC be a breadth-first forward-chaining algorithm that repeatedly adds all consequences of currently satisfied rules; let BC be a depth-first left-to-right backward-chaining algorithm that tries clauses in the order given in the KB. Which of the following are true?

- **a**. FC will infer the literal $Q(A)$.
- **b**. FC will infer the literal $P(B)$.
- **c**. If FC has failed to infer a given literal, then it is not entailed by the KB.
- **d**. BC will return *true* given the query $P(B)$.
- **e**. If BC does not return *true* given a query literal, then it is not entailed by the KB.

9.9 Explain how to write any given 3-SAT problem of arbitrary size using a single first-order definite clause and no more than 30 ground facts.

9.10 Suppose you are given the following axioms:

```
1. 0 \leq 4.
2. 5 \leq 9.
3. \forall x \quad x \leq x.
4. \forall x \quad x \leq x + 0.5. \forall x \quad x + 0 \leq x.6. \forall x, y \quad x + y \leq y + x.
7. \forall w, x, y, z \quad w \leq y \land x \leq z \Rightarrow w + x \leq y + z.
8. \forall x, y, z \quad x \leq y \land y \leq z \Rightarrow x \leq z
```
- **a**. Give a backward-chaining proof of the sentence $5 \leq 4 + 9$. (Be sure, of course, to use only the axioms given here, not anything else you may know about arithmetic.) Show only the steps that leads to success, not the irrelevant steps.
- **b**. Give a forward-chaining proof of the sentence $5 \leq 4 + 9$. Again, show only the steps that lead to success.

Exercises 363

9.11 A popular children's riddle is "Brothers and sisters have I none, but that man's father is my father's son." Use the rules of the family domain (Section 8.3.2 on page 301) to show who that man is. You may apply any of the inference methods described in this chapter. Why do you think that this riddle is difficult?

9.12 Suppose we put into a logical knowledge base a segment of the U.S. census data listing the age, city of residence, date of birth, and mother of every person, using social security numbers as identifying constants for each person. Thus, George's age is given by $Age(443-65-1282, 56)$. Which of the following indexing schemes S1–S5 enable an efficient solution for which of the queries Q1–Q4 (assuming normal backward chaining)?

- **S1**: an index for each atom in each position.
- **S2**: an index for each first argument.
- **S3**: an index for each predicate atom.
- **S4**: an index for each *combination* of predicate and first argument.
- **S5**: an index for each *combination* of predicate and second argument and an index for each first argument.
- **Q1**: $Age(443-44-4321, x)$
- $Q2: ResidesIn(x, Houston)$
- **Q3**: $Mother(x, y)$
- **Q4**: $Aqe(x, 34) \wedge ResidesIn(x, TinyTownUSA)$

9.13 One might suppose that we can avoid the problem of variable conflict in unification during backward chaining by standardizing apart all of the sentences in the knowledge base once and for all. Show that, for some sentences, this approach cannot work. (*Hint*: Consider a sentence in which one part unifies with another.)

9.14 In this exercise, use the sentences you wrote in Exercise 9.6 to answer a question by using a backward-chaining algorithm.

- **a**. Draw the proof tree generated by an exhaustive backward-chaining algorithm for the query $\exists h$ Horse(h), where clauses are matched in the order given.
- **b**. What do you notice about this domain?
- **c**. How many solutions for h actually follow from your sentences?
- **d**. Can you think of a way to find all of them? (*Hint*: See Smith *et al.* (1986).)

9.15 Trace the execution of the backward-chaining algorithm in Figure 9.6 (page 338) when it is applied to solve the crime problem (page 330). Show the sequence of values taken on by the goals variable, and arrange them into a tree.

9.16 The following Prolog code defines a predicate P. (Remember that uppercase terms are variables, not constants, in Prolog.)

```
P(X,[X|Y]).
P(X, [Y|Z]) :- P(X, Z).
```
- **a**. Show proof trees and solutions for the queries $P(A, [1,2,3])$ and $P(2, [1,A,3])$.
- **b**. What standard list operation does P represent?
- **9.17** This exercise looks at sorting in Prolog.
	- **a**. Write Prolog clauses that define the predicate sorted(L), which is true if and only if list L is sorted in ascending order.
	- **b**. Write a Prolog definition for the predicate $perm(L,M)$, which is true if and only if L is a permutation of M.
	- **c**. Define sort(L,M) (M is a sorted version of L) using perm and sorted.
	- **d**. Run sort on longer and longer lists until you lose patience. What is the time complexity of your program?
	- **e**. Write a faster sorting algorithm, such as insertion sort or quicksort, in Prolog.

9.18 This exercise looks at the recursive application of rewrite rules, using logic programming. A rewrite rule (or **demodulator** in OTTER terminology) is an equation with a specified direction. For example, the rewrite rule $x + 0 \rightarrow x$ suggests replacing any expression that matches $x+0$ with the expression x. Rewrite rules are a key component of equational reasoning systems. Use the predicate rewrite (X, Y) to represent rewrite rules. For example, the earlier rewrite rule is written as $rewrite(X+0, X)$. Some terms are *primitive* and cannot be further simplified; thus, we write $\text{primitive}(0)$ to say that 0 is a primitive term.

- **a**. Write a definition of a predicate $\sinh(y(X, Y))$, that is true when Y is a simplified version of X—that is, when no further rewrite rules apply to any subexpression of Y.
- **b**. Write a collection of rules for the simplification of expressions involving arithmetic operators, and apply your simplification algorithm to some sample expressions.
- **c**. Write a collection of rewrite rules for symbolic differentiation, and use them along with your simplification rules to differentiate and simplify expressions involving arithmetic expressions, including exponentiation.

9.19 This exercise considers the implementation of search algorithms in Prolog. Suppose that successor (X, Y) is true when state Y is a successor of state X; and that goal (X) is true when X is a goal state. Write a definition for $\text{solve}(X, P)$, which means that P is a path (list of states) beginning with X, ending in a goal state, and consisting of a sequence of legal steps as defined by successor. You will find that depth-first search is the easiest way to do this. How easy would it be to add heuristic search control?

9.20 Let \mathcal{L} be the first-order language with a single predicate $S(p, q)$, meaning "p shaves q." Assume a domain of people.

- **a**. Consider the sentence "There exists a person P who shaves every one who does not shave themselves, and only people that do not shave themselves." Express this in \mathcal{L} .
- **b**. Convert the sentence in (a) to clausal form.

c. Construct a resolution proof to show that the clauses in (b) are inherently inconsistent. (Note: you do not need any additional axioms.)

9.21 How can resolution be used to show that a sentence is valid? Unsatisfiable?

9.22 Construct an example of two clauses that can be resolved together in two different ways giving two different outcomes.

9.23 From "Sheep are animals," it follows that "The head of a sheep is the head of an animal." Demonstrate that this inference is valid by carrying out the following steps:

- **a**. Translate the premise and the conclusion into the language of first-order logic. Use three predicates: $HeadOf(h, x)$ (meaning "h is the head of x"), $Sheep(x)$, and $Animal(x)$.
- **b**. Negate the conclusion, and convert the premise and the negated conclusion into conjunctive normal form.
- **c**. Use resolution to show that the conclusion follows from the premise.
- **9.24** Here are two sentences in the language of first-order logic:

(A) ∀ $x \exists y$ $(x \ge y)$ **(B)** ∃ *y* $\forall x$ $(x \geq y)$

- **a**. Assume that the variables range over all the natural numbers $0, 1, 2, \ldots, \infty$ and that the "≥" predicate means "is greater than or equal to." Under this interpretation, translate (A) and (B) into English.
- **b**. Is (A) true under this interpretation?
- **c**. Is (B) true under this interpretation?
- **d**. Does (A) logically entail (B)?
- **e**. Does (B) logically entail (A)?
- **f**. Using resolution, try to prove that (A) follows from (B). Do this even if you think that (B) does not logically entail (A); continue until the proof breaks down and you cannot proceed (if it does break down). Show the unifying substitution for each resolution step. If the proof fails, explain exactly where, how, and why it breaks down.
- **g**. Now try to prove that (B) follows from (A).

9.25 Resolution can produce nonconstructive proofs for queries with variables, so we had to introduce special mechanisms to extract definite answers. Explain why this issue does not arise with knowledge bases containing only definite clauses.

9.26 We said in this chapter that resolution cannot be used to generate all logical consequences of a set of sentences. Can any algorithm do this?