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3.5 INFORMED (HEURISTIC) SEARCH STRATEGIES

This section shows how an informed search strategy—one that uses problem-specific knowl-INFORMED SEARCH

edge beyond the definition of the problem itself—can find solutions more efficiently than can
an uninformed strategy.

The general approach we consider is called best-first search. Best-first search is anBEST­FIRST SEARCH

instance of the general TREE-SEARCH or GRAPH-SEARCH algorithm in which a node is
selected for expansion based on an evaluation function, f(n). The evaluation function isEVALUATION

FUNCTION

construed as a cost estimate, so the node with the lowest evaluation is expanded first. The
implementation of best-first graph search is identical to that for uniform-cost search (Fig-
ure 3.14), except for the use of f instead of g to order the priority queue.

The choice of f determines the search strategy. (For example, as Exercise 3.22 shows,
best-first tree search includes depth-first search as a special case.) Most best-first algorithms
include as a component of f a heuristic function, denoted h(n):HEURISTIC

FUNCTION

h(n) = estimated cost of the cheapest path from the state at node n to a goal state.

(Notice that h(n) takes a node as input, but, unlike g(n), it depends only on the state at that
node.) For example, in Romania, one might estimate the cost of the cheapest path from Arad
to Bucharest via the straight-line distance from Arad to Bucharest.

Heuristic functions are the most common form in which additional knowledge of the
problem is imparted to the search algorithm. We study heuristics in more depth in Section 3.6.
For now, we consider them to be arbitrary, nonnegative, problem-specific functions, with one
constraint: if n is a goal node, then h(n)= 0. The remainder of this section covers two ways
to use heuristic information to guide search.

3.5.1 Greedy best-first search

Greedy best-first search8 tries to expand the node that is closest to the goal, on the groundsGREEDY BEST­FIRST

SEARCH

that this is likely to lead to a solution quickly. Thus, it evaluates nodes by using just the
heuristic function; that is, f(n) = h(n).

Let us see how this works for route-finding problems in Romania; we use the straight-
line distance heuristic, which we will call hSLD . If the goal is Bucharest, we need toSTRAIGHT­LINE

DISTANCE

know the straight-line distances to Bucharest, which are shown in Figure 3.22. For exam-
ple, hSLD(In(Arad))= 366. Notice that the values of hSLD cannot be computed from the
problem description itself. Moreover, it takes a certain amount of experience to know that
hSLD is correlated with actual road distances and is, therefore, a useful heuristic.

Figure 3.23 shows the progress of a greedy best-first search using hSLD to find a path
from Arad to Bucharest. The first node to be expanded from Arad will be Sibiu because it
is closer to Bucharest than either Zerind or Timisoara. The next node to be expanded will
be Fagaras because it is closest. Fagaras in turn generates Bucharest, which is the goal. For
this particular problem, greedy best-first search using hSLD finds a solution without ever

8 Our first edition called this greedy search; other authors have called it best-first search. Our more general
usage of the latter term follows Pearl (1984).
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Figure 3.22 Values of hSLD—straight-line distances to Bucharest.

expanding a node that is not on the solution path; hence, its search cost is minimal. It is
not optimal, however: the path via Sibiu and Fagaras to Bucharest is 32 kilometers longer
than the path through Rimnicu Vilcea and Pitesti. This shows why the algorithm is called
“greedy”—at each step it tries to get as close to the goal as it can.

Greedy best-first tree search is also incomplete even in a finite state space, much like
depth-first search. Consider the problem of getting from Iasi to Fagaras. The heuristic sug-
gests that Neamt be expanded first because it is closest to Fagaras, but it is a dead end. The
solution is to go first to Vaslui—a step that is actually farther from the goal according to
the heuristic—and then to continue to Urziceni, Bucharest, and Fagaras. The algorithm will
never find this solution, however, because expanding Neamt puts Iasi back into the frontier,
Iasi is closer to Fagaras than Vaslui is, and so Iasi will be expanded again, leading to an infi-
nite loop. (The graph search version is complete in finite spaces, but not in infinite ones.) The
worst-case time and space complexity for the tree version is O(bm), where m is the maximum
depth of the search space. With a good heuristic function, however, the complexity can be
reduced substantially. The amount of the reduction depends on the particular problem and on
the quality of the heuristic.

3.5.2 A* search: Minimizing the total estimated solution cost

The most widely known form of best-first search is called A∗ search (pronounced “A-starA
∗

SEARCH

search”). It evaluates nodes by combining g(n), the cost to reach the node, and h(n), the cost
to get from the node to the goal:

f(n) = g(n) + h(n) .

Since g(n) gives the path cost from the start node to node n, and h(n) is the estimated cost
of the cheapest path from n to the goal, we have

f(n) = estimated cost of the cheapest solution through n .

Thus, if we are trying to find the cheapest solution, a reasonable thing to try first is the
node with the lowest value of g(n) + h(n). It turns out that this strategy is more than just
reasonable: provided that the heuristic function h(n) satisfies certain conditions, A∗ search is
both complete and optimal. The algorithm is identical to UNIFORM-COST-SEARCH except
that A∗ uses g + h instead of g.
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Figure 3.23 Stages in a greedy best-first tree search for Bucharest with the straight-line
distance heuristic hSLD . Nodes are labeled with their h-values.

Conditions for optimality: Admissibility and consistency

The first condition we require for optimality is that h(n) be an admissible heuristic. AnADMISSIBLE

HEURISTIC

admissible heuristic is one that never overestimates the cost to reach the goal. Because g(n)

is the actual cost to reach n along the current path, and f(n)= g(n) + h(n), we have as an
immediate consequence that f(n) never overestimates the true cost of a solution along the
current path through n.

Admissible heuristics are by nature optimistic because they think the cost of solving
the problem is less than it actually is. An obvious example of an admissible heuristic is the
straight-line distance hSLD that we used in getting to Bucharest. Straight-line distance is
admissible because the shortest path between any two points is a straight line, so the straight
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line cannot be an overestimate. In Figure 3.24, we show the progress of an A∗ tree search for
Bucharest. The values of g are computed from the step costs in Figure 3.2, and the values of
hSLD are given in Figure 3.22. Notice in particular that Bucharest first appears on the frontier
at step (e), but it is not selected for expansion because its f -cost (450) is higher than that of
Pitesti (417). Another way to say this is that there might be a solution through Pitesti whose
cost is as low as 417, so the algorithm will not settle for a solution that costs 450.

A second, slightly stronger condition called consistency (or sometimes monotonicity)CONSISTENCY

MONOTONICITY is required only for applications of A∗ to graph search.9 A heuristic h(n) is consistent if, for
every node n and every successor n

′ of n generated by any action a, the estimated cost of
reaching the goal from n is no greater than the step cost of getting to n

′ plus the estimated
cost of reaching the goal from n

′:

h(n) ≤ c(n, a, n
′

) + h(n
′

) .

This is a form of the general triangle inequality, which stipulates that each side of a triangleTRIANGLE

INEQUALITY

cannot be longer than the sum of the other two sides. Here, the triangle is formed by n, n
′,

and the goal Gn closest to n. For an admissible heuristic, the inequality makes perfect sense:
if there were a route from n to Gn via n

′ that was cheaper than h(n), that would violate the
property that h(n) is a lower bound on the cost to reach Gn.

It is fairly easy to show (Exercise 3.32) that every consistent heuristic is also admissible.
Consistency is therefore a stricter requirement than admissibility, but one has to work quite
hard to concoct heuristics that are admissible but not consistent. All the admissible heuristics
we discuss in this chapter are also consistent. Consider, for example, hSLD . We know that
the general triangle inequality is satisfied when each side is measured by the straight-line
distance and that the straight-line distance between n and n

′ is no greater than c(n, a, n
′).

Hence, hSLD is a consistent heuristic.

Optimality of A*

As we mentioned earlier, A∗ has the following properties: the tree-search version of A
∗ is

optimal if h(n) is admissible, while the graph-search version is optimal if h(n) is consistent.
We show the second of these two claims since it is more useful. The argument es-

sentially mirrors the argument for the optimality of uniform-cost search, with g replaced by
f—just as in the A∗ algorithm itself.

The first step is to establish the following: if h(n) is consistent, then the values of
f(n) along any path are nondecreasing. The proof follows directly from the definition of
consistency. Suppose n

′ is a successor of n; then g(n′)= g(n) + c(n, a, n
′) for some action

a, and we have

f(n
′

) = g(n
′

) + h(n
′

) = g(n) + c(n, a, n
′

) + h(n
′

) ≥ g(n) + h(n) = f(n) .

The next step is to prove that whenever A
∗ selects a node n for expansion, the optimal path

to that node has been found. Were this not the case, there would have to be another frontier
node n

′ on the optimal path from the start node to n, by the graph separation property of

9 With an admissible but inconsistent heuristic, A∗ requires some extra bookkeeping to ensure optimality.
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Figure 3.24 Stages in an A∗ search for Bucharest. Nodes are labeled with f = g +h. The
h values are the straight-line distances to Bucharest taken from Figure 3.22.
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Figure 3.25 Map of Romania showing contours at f = 380, f = 400, and f = 420, with
Arad as the start state. Nodes inside a given contour have f -costs less than or equal to the
contour value.

Figure 3.9; because f is nondecreasing along any path, n
′ would have lower f -cost than n

and would have been selected first.
From the two preceding observations, it follows that the sequence of nodes expanded

by A∗ using GRAPH-SEARCH is in nondecreasing order of f(n). Hence, the first goal node
selected for expansion must be an optimal solution because f is the true cost for goal nodes
(which have h= 0) and all later goal nodes will be at least as expensive.

The fact that f -costs are nondecreasing along any path also means that we can draw
contours in the state space, just like the contours in a topographic map. Figure 3.25 showsCONTOUR

an example. Inside the contour labeled 400, all nodes have f(n) less than or equal to 400,
and so on. Then, because A∗ expands the frontier node of lowest f -cost, we can see that an
A∗ search fans out from the start node, adding nodes in concentric bands of increasing f -cost.

With uniform-cost search (A∗ search using h(n) = 0), the bands will be “circular”
around the start state. With more accurate heuristics, the bands will stretch toward the goal
state and become more narrowly focused around the optimal path. If C

∗ is the cost of the
optimal solution path, then we can say the following:

• A∗ expands all nodes with f(n) < C
∗.

• A∗ might then expand some of the nodes right on the “goal contour” (where f(n) = C
∗)

before selecting a goal node.

Completeness requires that there be only finitely many nodes with cost less than or equal to
C

∗, a condition that is true if all step costs exceed some finite ǫ and if b is finite.
Notice that A∗ expands no nodes with f(n) > C

∗—for example, Timisoara is not
expanded in Figure 3.24 even though it is a child of the root. We say that the subtree below
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Timisoara is pruned; because hSLD is admissible, the algorithm can safely ignore this subtreePRUNING

while still guaranteeing optimality. The concept of pruning—eliminating possibilities from
consideration without having to examine them—is important for many areas of AI.

One final observation is that among optimal algorithms of this type—algorithms that
extend search paths from the root and use the same heuristic information—A∗ is optimally
efficient for any given consistent heuristic. That is, no other optimal algorithm is guaran-OPTIMALLY

EFFICIENT

teed to expand fewer nodes than A∗ (except possibly through tie-breaking among nodes with
f(n)= C

∗). This is because any algorithm that does not expand all nodes with f(n) < C
∗

runs the risk of missing the optimal solution.
That A∗ search is complete, optimal, and optimally efficient among all such algorithms

is rather satisfying. Unfortunately, it does not mean that A∗ is the answer to all our searching
needs. The catch is that, for most problems, the number of states within the goal contour
search space is still exponential in the length of the solution. The details of the analysis are
beyond the scope of this book, but the basic results are as follows. For problems with constant
step costs, the growth in run time as a function of the optimal solution depth d is analyzed in
terms of the the absolute error or the relative error of the heuristic. The absolute error isABSOLUTE ERROR

RELATIVE ERROR defined as ∆ ≡ h
∗ − h, where h

∗ is the actual cost of getting from the root to the goal, and
the relative error is defined as ǫ ≡ (h∗ − h)/h∗.

The complexity results depend very strongly on the assumptions made about the state
space. The simplest model studied is a state space that has a single goal and is essentially a
tree with reversible actions. (The 8-puzzle satisfies the first and third of these assumptions.)
In this case, the time complexity of A∗ is exponential in the maximum absolute error, that is,
O(b∆). For constant step costs, we can write this as O(bǫd), where d is the solution depth.
For almost all heuristics in practical use, the absolute error is at least proportional to the path
cost h

∗, so ǫ is constant or growing and the time complexity is exponential in d. We can
also see the effect of a more accurate heuristic: O(bǫd)= O((bǫ)d), so the effective branching
factor (defined more formally in the next section) is b

ǫ.
When the state space has many goal states—particularly near-optimal goal states—the

search process can be led astray from the optimal path and there is an extra cost proportional
to the number of goals whose cost is within a factor ǫ of the optimal cost. Finally, in the
general case of a graph, the situation is even worse. There can be exponentially many states
with f(n) < C

∗ even if the absolute error is bounded by a constant. For example, consider
a version of the vacuum world where the agent can clean up any square for unit cost without
even having to visit it: in that case, squares can be cleaned in any order. With N initially dirty
squares, there are 2N states where some subset has been cleaned and all of them are on an
optimal solution path—and hence satisfy f(n) < C

∗—even if the heuristic has an error of 1.
The complexity of A∗ often makes it impractical to insist on finding an optimal solution.

One can use variants of A∗ that find suboptimal solutions quickly, or one can sometimes
design heuristics that are more accurate but not strictly admissible. In any case, the use of a
good heuristic still provides enormous savings compared to the use of an uninformed search.
In Section 3.6, we look at the question of designing good heuristics.

Computation time is not, however, A∗’s main drawback. Because it keeps all generated
nodes in memory (as do all GRAPH-SEARCH algorithms), A∗ usually runs out of space long
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function RECURSIVE-BEST-FIRST-SEARCH(problem) returns a solution, or failure
return RBFS(problem , MAKE-NODE(problem .INITIAL-STATE),∞)

function RBFS(problem ,node , f limit ) returns a solution, or failure and a new f -cost limit
if problem .GOAL-TEST(node .STATE) then return SOLUTION(node)
successors← [ ]
for each action in problem .ACTIONS(node.STATE) do

add CHILD-NODE(problem ,node ,action) into successors

if successors is empty then return failure ,∞
for each s in successors do /* update f with value from previous search, if any */

s .f ←max(s .g + s .h, node.f ))
loop do

best← the lowest f -value node in successors

if best .f > f limit then return failure , best .f
alternative← the second-lowest f -value among successors

result , best .f←RBFS(problem , best , min( f limit , alternative))
if result 6= failure then return result

Figure 3.26 The algorithm for recursive best-first search.

before it runs out of time. For this reason, A∗ is not practical for many large-scale prob-
lems. There are, however, algorithms that overcome the space problem without sacrificing
optimality or completeness, at a small cost in execution time. We discuss these next.

3.5.3 Memory-bounded heuristic search

The simplest way to reduce memory requirements for A∗ is to adapt the idea of iterative
deepening to the heuristic search context, resulting in the iterative-deepening A∗ (IDA∗) al-

ITERATIVE­

DEEPENING

A
∗

gorithm. The main difference between IDA∗ and standard iterative deepening is that the cutoff
used is the f -cost (g +h) rather than the depth; at each iteration, the cutoff value is the small-
est f -cost of any node that exceeded the cutoff on the previous iteration. IDA∗ is practical
for many problems with unit step costs and avoids the substantial overhead associated with
keeping a sorted queue of nodes. Unfortunately, it suffers from the same difficulties with real-
valued costs as does the iterative version of uniform-cost search described in Exercise 3.18.
This section briefly examines two other memory-bounded algorithms, called RBFS and MA∗.

Recursive best-first search (RBFS) is a simple recursive algorithm that attempts toRECURSIVE

BEST­FIRST SEARCH

mimic the operation of standard best-first search, but using only linear space. The algorithm
is shown in Figure 3.26. Its structure is similar to that of a recursive depth-first search, but
rather than continuing indefinitely down the current path, it uses the f limit variable to keep
track of the f -value of the best alternative path available from any ancestor of the current
node. If the current node exceeds this limit, the recursion unwinds back to the alternative
path. As the recursion unwinds, RBFS replaces the f -value of each node along the path
with a backed-up value—the best f -value of its children. In this way, RBFS remembers theBACKED­UP VALUE

f -value of the best leaf in the forgotten subtree and can therefore decide whether it’s worth
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Figure 3.27 Stages in an RBFS search for the shortest route to Bucharest. The f -limit
value for each recursive call is shown on top of each current node, and every node is labeled
with its f -cost. (a) The path via Rimnicu Vilcea is followed until the current best leaf (Pitesti)
has a value that is worse than the best alternative path (Fagaras). (b) The recursion unwinds
and the best leaf value of the forgotten subtree (417) is backed up to Rimnicu Vilcea; then
Fagaras is expanded, revealing a best leaf value of 450. (c) The recursion unwinds and the
best leaf value of the forgotten subtree (450) is backed up to Fagaras; then Rimnicu Vilcea is
expanded. This time, because the best alternative path (through Timisoara) costs at least 447,
the expansion continues to Bucharest.

reexpanding the subtree at some later time. Figure 3.27 shows how RBFS reaches Bucharest.
RBFS is somewhat more efficient than IDA∗, but still suffers from excessive node re-

generation. In the example in Figure 3.27, RBFS follows the path via Rimnicu Vilcea, then
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“changes its mind” and tries Fagaras, and then changes its mind back again. These mind
changes occur because every time the current best path is extended, its f -value is likely to
increase—h is usually less optimistic for nodes closer to the goal. When this happens, the
second-best path might become the best path, so the search has to backtrack to follow it.
Each mind change corresponds to an iteration of IDA∗ and could require many reexpansions
of forgotten nodes to recreate the best path and extend it one more node.

Like A∗ tree search, RBFS is an optimal algorithm if the heuristic function h(n) is
admissible. Its space complexity is linear in the depth of the deepest optimal solution, but
its time complexity is rather difficult to characterize: it depends both on the accuracy of the
heuristic function and on how often the best path changes as nodes are expanded.

IDA∗ and RBFS suffer from using too little memory. Between iterations, IDA∗ retains
only a single number: the current f -cost limit. RBFS retains more information in memory,
but it uses only linear space: even if more memory were available, RBFS has no way to make
use of it. Because they forget most of what they have done, both algorithms may end up reex-
panding the same states many times over. Furthermore, they suffer the potentially exponential
increase in complexity associated with redundant paths in graphs (see Section 3.3).

It seems sensible, therefore, to use all available memory. Two algorithms that do this
are MA∗ (memory-bounded A∗) and SMA∗ (simplified MA∗). SMA∗ is—well—simpler, soMA*

SMA* we will describe it. SMA∗ proceeds just like A∗, expanding the best leaf until memory is full.
At this point, it cannot add a new node to the search tree without dropping an old one. SMA∗

always drops the worst leaf node—the one with the highest f -value. Like RBFS, SMA∗

then backs up the value of the forgotten node to its parent. In this way, the ancestor of a
forgotten subtree knows the quality of the best path in that subtree. With this information,
SMA∗ regenerates the subtree only when all other paths have been shown to look worse than
the path it has forgotten. Another way of saying this is that, if all the descendants of a node n

are forgotten, then we will not know which way to go from n, but we will still have an idea
of how worthwhile it is to go anywhere from n.

The complete algorithm is too complicated to reproduce here,10 but there is one subtlety
worth mentioning. We said that SMA∗ expands the best leaf and deletes the worst leaf. What
if all the leaf nodes have the same f -value? To avoid selecting the same node for deletion
and expansion, SMA∗ expands the newest best leaf and deletes the oldest worst leaf. These
coincide when there is only one leaf, but in that case, the current search tree must be a single
path from root to leaf that fills all of memory. If the leaf is not a goal node, then even if it is on
an optimal solution path, that solution is not reachable with the available memory. Therefore,
the node can be discarded exactly as if it had no successors.

SMA∗ is complete if there is any reachable solution—that is, if d, the depth of the
shallowest goal node, is less than the memory size (expressed in nodes). It is optimal if any
optimal solution is reachable; otherwise, it returns the best reachable solution. In practical
terms, SMA∗ is a fairly robust choice for finding optimal solutions, particularly when the state
space is a graph, step costs are not uniform, and node generation is expensive compared to
the overhead of maintaining the frontier and the explored set.

10 A rough sketch appeared in the first edition of this book.
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On very hard problems, however, it will often be the case that SMA∗ is forced to switch
back and forth continually among many candidate solution paths, only a small subset of which
can fit in memory. (This resembles the problem of thrashing in disk paging systems.) ThenTHRASHING

the extra time required for repeated regeneration of the same nodes means that problems
that would be practically solvable by A∗, given unlimited memory, become intractable for
SMA∗. That is to say, memory limitations can make a problem intractable from the point
of view of computation time. Although no current theory explains the tradeoff between time
and memory, it seems that this is an inescapable problem. The only way out is to drop the
optimality requirement.

3.5.4 Learning to search better

We have presented several fixed strategies—breadth-first, greedy best-first, and so on—that
have been designed by computer scientists. Could an agent learn how to search better? The
answer is yes, and the method rests on an important concept called the metalevel state space.METALEVEL STATE

SPACE

Each state in a metalevel state space captures the internal (computational) state of a program
that is searching in an object-level state space such as Romania. For example, the internalOBJECT­LEVEL STATE

SPACE

state of the A∗ algorithm consists of the current search tree. Each action in the metalevel state
space is a computation step that alters the internal state; for example, each computation step
in A∗ expands a leaf node and adds its successors to the tree. Thus, Figure 3.24, which shows
a sequence of larger and larger search trees, can be seen as depicting a path in the metalevel
state space where each state on the path is an object-level search tree.

Now, the path in Figure 3.24 has five steps, including one step, the expansion of Fagaras,
that is not especially helpful. For harder problems, there will be many such missteps, and a
metalevel learning algorithm can learn from these experiences to avoid exploring unpromis-METALEVEL

LEARNING

ing subtrees. The techniques used for this kind of learning are described in Chapter 21. The
goal of learning is to minimize the total cost of problem solving, trading off computational
expense and path cost.

3.6 HEURISTIC FUNCTIONS

In this section, we look at heuristics for the 8-puzzle, in order to shed light on the nature of
heuristics in general.

The 8-puzzle was one of the earliest heuristic search problems. As mentioned in Sec-
tion 3.2, the object of the puzzle is to slide the tiles horizontally or vertically into the empty
space until the configuration matches the goal configuration (Figure 3.28).

The average solution cost for a randomly generated 8-puzzle instance is about 22 steps.
The branching factor is about 3. (When the empty tile is in the middle, four moves are
possible; when it is in a corner, two; and when it is along an edge, three.) This means
that an exhaustive tree search to depth 22 would look at about 322 ≈ 3.1× 1010 states.
A graph search would cut this down by a factor of about 170,000 because only 9!/2 =

181, 440 distinct states are reachable. (See Exercise 3.5.) This is a manageable number, but
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Figure 3.28 A typical instance of the 8-puzzle. The solution is 26 steps long.

the corresponding number for the 15-puzzle is roughly 1013, so the next order of business is
to find a good heuristic function. If we want to find the shortest solutions by using A∗, we
need a heuristic function that never overestimates the number of steps to the goal. There is a
long history of such heuristics for the 15-puzzle; here are two commonly used candidates:

• h1 = the number of misplaced tiles. For Figure 3.28, all of the eight tiles are out of
position, so the start state would have h1 = 8. h1 is an admissible heuristic because it
is clear that any tile that is out of place must be moved at least once.

• h2 = the sum of the distances of the tiles from their goal positions. Because tiles
cannot move along diagonals, the distance we will count is the sum of the horizontal
and vertical distances. This is sometimes called the city block distance or Manhattan
distance. h2 is also admissible because all any move can do is move one tile one stepMANHATTAN

DISTANCE

closer to the goal. Tiles 1 to 8 in the start state give a Manhattan distance of

h2 = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18 .

As expected, neither of these overestimates the true solution cost, which is 26.

3.6.1 The effect of heuristic accuracy on performance

One way to characterize the quality of a heuristic is the effective branching factor b
∗. If theEFFECTIVE

BRANCHING FACTOR

total number of nodes generated by A∗ for a particular problem is N and the solution depth is
d, then b

∗ is the branching factor that a uniform tree of depth d would have to have in order
to contain N + 1 nodes. Thus,

N + 1 = 1 + b
∗

+ (b
∗

)
2
+ · · ·+ (b

∗

)
d

.

For example, if A∗ finds a solution at depth 5 using 52 nodes, then the effective branching
factor is 1.92. The effective branching factor can vary across problem instances, but usually
it is fairly constant for sufficiently hard problems. (The existence of an effective branching
factor follows from the result, mentioned earlier, that the number of nodes expanded by A∗

grows exponentially with solution depth.) Therefore, experimental measurements of b
∗ on a

small set of problems can provide a good guide to the heuristic’s overall usefulness. A well-
designed heuristic would have a value of b

∗ close to 1, allowing fairly large problems to be
solved at reasonable computational cost.
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To test the heuristic functions h1 and h2, we generated 1200 random problems with
solution lengths from 2 to 24 (100 for each even number) and solved them with iterative
deepening search and with A∗ tree search using both h1 and h2. Figure 3.29 gives the average
number of nodes generated by each strategy and the effective branching factor. The results
suggest that h2 is better than h1, and is far better than using iterative deepening search. Even
for small problems with d= 12, A∗ with h2 is 50,000 times more efficient than uninformed
iterative deepening search.

Search Cost (nodes generated) Effective Branching Factor

d IDS A∗(h1) A∗(h2) IDS A∗(h1) A∗(h2)

2 10 6 6 2.45 1.79 1.79
4 112 13 12 2.87 1.48 1.45
6 680 20 18 2.73 1.34 1.30
8 6384 39 25 2.80 1.33 1.24

10 47127 93 39 2.79 1.38 1.22
12 3644035 227 73 2.78 1.42 1.24
14 – 539 113 – 1.44 1.23
16 – 1301 211 – 1.45 1.25
18 – 3056 363 – 1.46 1.26
20 – 7276 676 – 1.47 1.27
22 – 18094 1219 – 1.48 1.28
24 – 39135 1641 – 1.48 1.26

Figure 3.29 Comparison of the search costs and effective branching factors for the
ITERATIVE-DEEPENING-SEARCH and A∗ algorithms with h1, h2. Data are averaged over
100 instances of the 8-puzzle for each of various solution lengths d.

One might ask whether h2 is always better than h1. The answer is “Essentially, yes.” It
is easy to see from the definitions of the two heuristics that, for any node n, h2(n) ≥ h1(n).
We thus say that h2 dominates h1. Domination translates directly into efficiency: A∗ usingDOMINATION

h2 will never expand more nodes than A∗ using h1 (except possibly for some nodes with
f(n)= C

∗). The argument is simple. Recall the observation on page 97 that every node
with f(n) < C

∗ will surely be expanded. This is the same as saying that every node with
h(n) < C

∗ − g(n) will surely be expanded. But because h2 is at least as big as h1 for all
nodes, every node that is surely expanded by A∗ search with h2 will also surely be expanded
with h1, and h1 might cause other nodes to be expanded as well. Hence, it is generally
better to use a heuristic function with higher values, provided it is consistent and that the
computation time for the heuristic is not too long.

3.6.2 Generating admissible heuristics from relaxed problems

We have seen that both h1 (misplaced tiles) and h2 (Manhattan distance) are fairly good
heuristics for the 8-puzzle and that h2 is better. How might one have come up with h2? Is it
possible for a computer to invent such a heuristic mechanically?

h1 and h2 are estimates of the remaining path length for the 8-puzzle, but they are also
perfectly accurate path lengths for simplified versions of the puzzle. If the rules of the puzzle
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were changed so that a tile could move anywhere instead of just to the adjacent empty square,
then h1 would give the exact number of steps in the shortest solution. Similarly, if a tile could
move one square in any direction, even onto an occupied square, then h2 would give the exact
number of steps in the shortest solution. A problem with fewer restrictions on the actions is
called a relaxed problem. The state-space graph of the relaxed problem is a supergraph ofRELAXED PROBLEM

the original state space because the removal of restrictions creates added edges in the graph.
Because the relaxed problem adds edges to the state space, any optimal solution in the

original problem is, by definition, also a solution in the relaxed problem; but the relaxed
problem may have better solutions if the added edges provide short cuts. Hence, the cost of
an optimal solution to a relaxed problem is an admissible heuristic for the original problem.
Furthermore, because the derived heuristic is an exact cost for the relaxed problem, it must
obey the triangle inequality and is therefore consistent (see page 95).

If a problem definition is written down in a formal language, it is possible to construct
relaxed problems automatically.11 For example, if the 8-puzzle actions are described as

A tile can move from square A to square B if
A is horizontally or vertically adjacent to B and B is blank,

we can generate three relaxed problems by removing one or both of the conditions:

(a) A tile can move from square A to square B if A is adjacent to B.
(b) A tile can move from square A to square B if B is blank.
(c) A tile can move from square A to square B.

From (a), we can derive h2 (Manhattan distance). The reasoning is that h2 would be the
proper score if we moved each tile in turn to its destination. The heuristic derived from (b) is
discussed in Exercise 3.34. From (c), we can derive h1 (misplaced tiles) because it would be
the proper score if tiles could move to their intended destination in one step. Notice that it is
crucial that the relaxed problems generated by this technique can be solved essentially without
search, because the relaxed rules allow the problem to be decomposed into eight independent
subproblems. If the relaxed problem is hard to solve, then the values of the corresponding
heuristic will be expensive to obtain.12

A program called ABSOLVER can generate heuristics automatically from problem def-
initions, using the “relaxed problem” method and various other techniques (Prieditis, 1993).
ABSOLVER generated a new heuristic for the 8-puzzle that was better than any preexisting
heuristic and found the first useful heuristic for the famous Rubik’s Cube puzzle.

One problem with generating new heuristic functions is that one often fails to get a
single “clearly best” heuristic. If a collection of admissible heuristics h1 . . . hm is available
for a problem and none of them dominates any of the others, which should we choose? As it
turns out, we need not make a choice. We can have the best of all worlds, by defining

h(n) = max{h1(n), . . . , hm(n)} .

11 In Chapters 8 and 10, we describe formal languages suitable for this task; with formal descriptions that can be
manipulated, the construction of relaxed problems can be automated. For now, we use English.
12 Note that a perfect heuristic can be obtained simply by allowing h to run a full breadth-first search “on the
sly.” Thus, there is a tradeoff between accuracy and computation time for heuristic functions.
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Figure 3.30 A subproblem of the 8-puzzle instance given in Figure 3.28. The task is to
get tiles 1, 2, 3, and 4 into their correct positions, without worrying about what happens to
the other tiles.

This composite heuristic uses whichever function is most accurate on the node in question.
Because the component heuristics are admissible, h is admissible; it is also easy to prove that
h is consistent. Furthermore, h dominates all of its component heuristics.

3.6.3 Generating admissible heuristics from subproblems: Pattern databases

Admissible heuristics can also be derived from the solution cost of a subproblem of a givenSUBPROBLEM

problem. For example, Figure 3.30 shows a subproblem of the 8-puzzle instance in Fig-
ure 3.28. The subproblem involves getting tiles 1, 2, 3, 4 into their correct positions. Clearly,
the cost of the optimal solution of this subproblem is a lower bound on the cost of the com-
plete problem. It turns out to be more accurate than Manhattan distance in some cases.

The idea behind pattern databases is to store these exact solution costs for every pos-PATTERN DATABASE

sible subproblem instance—in our example, every possible configuration of the four tiles
and the blank. (The locations of the other four tiles are irrelevant for the purposes of solv-
ing the subproblem, but moves of those tiles do count toward the cost.) Then we compute
an admissible heuristic hDB for each complete state encountered during a search simply by
looking up the corresponding subproblem configuration in the database. The database itself is
constructed by searching back13 from the goal and recording the cost of each new pattern en-
countered; the expense of this search is amortized over many subsequent problem instances.

The choice of 1-2-3-4 is fairly arbitrary; we could also construct databases for 5-6-7-8,
for 2-4-6-8, and so on. Each database yields an admissible heuristic, and these heuristics can
be combined, as explained earlier, by taking the maximum value. A combined heuristic of
this kind is much more accurate than the Manhattan distance; the number of nodes generated
when solving random 15-puzzles can be reduced by a factor of 1000.

One might wonder whether the heuristics obtained from the 1-2-3-4 database and the
5-6-7-8 could be added, since the two subproblems seem not to overlap. Would this still give
an admissible heuristic? The answer is no, because the solutions of the 1-2-3-4 subproblem
and the 5-6-7-8 subproblem for a given state will almost certainly share some moves—it is

13 By working backward from the goal, the exact solution cost of every instance encountered is immediately
available. This is an example of dynamic programming, which we discuss further in Chapter 17.



Section 3.6. Heuristic Functions 107

unlikely that 1-2-3-4 can be moved into place without touching 5-6-7-8, and vice versa. But
what if we don’t count those moves? That is, we record not the total cost of solving the 1-2-
3-4 subproblem, but just the number of moves involving 1-2-3-4. Then it is easy to see that
the sum of the two costs is still a lower bound on the cost of solving the entire problem. This
is the idea behind disjoint pattern databases. With such databases, it is possible to solveDISJOINT PATTERN

DATABASES

random 15-puzzles in a few milliseconds—the number of nodes generated is reduced by a
factor of 10,000 compared with the use of Manhattan distance. For 24-puzzles, a speedup of
roughly a factor of a million can be obtained.

Disjoint pattern databases work for sliding-tile puzzles because the problem can be
divided up in such a way that each move affects only one subproblem—because only one tile
is moved at a time. For a problem such as Rubik’s Cube, this kind of subdivision is difficult
because each move affects 8 or 9 of the 26 cubies. More general ways of defining additive,
admissible heuristics have been proposed that do apply to Rubik’s cube (Yang et al., 2008),
but they have not yielded a heuristic better than the best nonadditive heuristic for the problem.

3.6.4 Learning heuristics from experience

A heuristic function h(n) is supposed to estimate the cost of a solution beginning from the
state at node n. How could an agent construct such a function? One solution was given in
the preceding sections—namely, to devise relaxed problems for which an optimal solution
can be found easily. Another solution is to learn from experience. “Experience” here means
solving lots of 8-puzzles, for instance. Each optimal solution to an 8-puzzle problem provides
examples from which h(n) can be learned. Each example consists of a state from the solu-
tion path and the actual cost of the solution from that point. From these examples, a learning
algorithm can be used to construct a function h(n) that can (with luck) predict solution costs
for other states that arise during search. Techniques for doing just this using neural nets, de-
cision trees, and other methods are demonstrated in Chapter 18. (The reinforcement learning
methods described in Chapter 21 are also applicable.)

Inductive learning methods work best when supplied with features of a state that areFEATURE

relevant to predicting the state’s value, rather than with just the raw state description. For
example, the feature “number of misplaced tiles” might be helpful in predicting the actual
distance of a state from the goal. Let’s call this feature x1(n). We could take 100 randomly
generated 8-puzzle configurations and gather statistics on their actual solution costs. We
might find that when x1(n) is 5, the average solution cost is around 14, and so on. Given
these data, the value of x1 can be used to predict h(n). Of course, we can use several features.
A second feature x2(n) might be “number of pairs of adjacent tiles that are not adjacent in the
goal state.” How should x1(n) and x2(n) be combined to predict h(n)? A common approach
is to use a linear combination:

h(n) = c1x1(n) + c2x2(n) .

The constants c1 and c2 are adjusted to give the best fit to the actual data on solution costs.
One expects both c1 and c2 to be positive because misplaced tiles and incorrect adjacent pairs
make the problem harder to solve. Notice that this heuristic does satisfy the condition that
h(n)= 0 for goal states, but it is not necessarily admissible or consistent.
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3.7 SUMMARY

This chapter has introduced methods that an agent can use to select actions in environments
that are deterministic, observable, static, and completely known. In such cases, the agent can
construct sequences of actions that achieve its goals; this process is called search.

• Before an agent can start searching for solutions, a goal must be identified and a well-
defined problem must be formulated.

• A problem consists of five parts: the initial state, a set of actions, a transition model
describing the results of those actions, a goal test function, and a path cost function.
The environment of the problem is represented by a state space. A path through the
state space from the initial state to a goal state is a solution.

• Search algorithms treat states and actions as atomic: they do not consider any internal
structure they might possess.

• A general TREE-SEARCH algorithm considers all possible paths to find a solution,
whereas a GRAPH-SEARCH algorithm avoids consideration of redundant paths.

• Search algorithms are judged on the basis of completeness, optimality, time complex-
ity, and space complexity. Complexity depends on b, the branching factor in the state
space, and d, the depth of the shallowest solution.

• Uninformed search methods have access only to the problem definition. The basic
algorithms are as follows:

– Breadth-first search expands the shallowest nodes first; it is complete, optimal
for unit step costs, but has exponential space complexity.

– Uniform-cost search expands the node with lowest path cost, g(n), and is optimal
for general step costs.

– Depth-first search expands the deepest unexpanded node first. It is neither com-
plete nor optimal, but has linear space complexity. Depth-limited search adds a
depth bound.

– Iterative deepening search calls depth-first search with increasing depth limits
until a goal is found. It is complete, optimal for unit step costs, has time complexity
comparable to breadth-first search, and has linear space complexity.

– Bidirectional search can enormously reduce time complexity, but it is not always
applicable and may require too much space.

• Informed search methods may have access to a heuristic function h(n) that estimates
the cost of a solution from n.

– The generic best-first search algorithm selects a node for expansion according to
an evaluation function.

– Greedy best-first search expands nodes with minimal h(n). It is not optimal but
is often efficient.
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– A∗ search expands nodes with minimal f(n) = g(n) + h(n). A∗ is complete and
optimal, provided that h(n) is admissible (for TREE-SEARCH) or consistent (for
GRAPH-SEARCH). The space complexity of A∗ is still prohibitive.

– RBFS (recursive best-first search) and SMA∗ (simplified memory-bounded A∗)
are robust, optimal search algorithms that use limited amounts of memory; given
enough time, they can solve problems that A∗ cannot solve because it runs out of
memory.

• The performance of heuristic search algorithms depends on the quality of the heuristic
function. One can sometimes construct good heuristics by relaxing the problem defi-
nition, by storing precomputed solution costs for subproblems in a pattern database, or
by learning from experience with the problem class.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The topic of state-space search originated in more or less its current form in the early years of
AI. Newell and Simon’s work on the Logic Theorist (1957) and GPS (1961) led to the estab-
lishment of search algorithms as the primary weapons in the armory of 1960s AI researchers
and to the establishment of problem solving as the canonical AI task. Work in operations
research by Richard Bellman (1957) showed the importance of additive path costs in sim-
plifying optimization algorithms. The text on Automated Problem Solving by Nils Nilsson
(1971) established the area on a solid theoretical footing.

Most of the state-space search problems analyzed in this chapter have a long history
in the literature and are less trivial than they might seem. The missionaries and cannibals
problem used in Exercise 3.9 was analyzed in detail by Amarel (1968). It had been consid-
ered earlier—in AI by Simon and Newell (1961) and in operations research by Bellman and
Dreyfus (1962).

The 8-puzzle is a smaller cousin of the 15-puzzle, whose history is recounted at length
by Slocum and Sonneveld (2006). It was widely believed to have been invented by the fa-
mous American game designer Sam Loyd, based on his claims to that effect from 1891 on-
ward (Loyd, 1959). Actually it was invented by Noyes Chapman, a postmaster in Canastota,
New York, in the mid-1870s. (Chapman was unable to patent his invention, as a generic
patent covering sliding blocks with letters, numbers, or pictures was granted to Ernest Kinsey
in 1878.) It quickly attracted the attention of the public and of mathematicians (Johnson and
Story, 1879; Tait, 1880). The editors of the American Journal of Mathematics stated, “The
‘15’ puzzle for the last few weeks has been prominently before the American public, and may
safely be said to have engaged the attention of nine out of ten persons of both sexes and all
ages and conditions of the community.” Ratner and Warmuth (1986) showed that the general
n× n version of the 15-puzzle belongs to the class of NP-complete problems.

The 8-queens problem was first published anonymously in the German chess maga-
zine Schach in 1848; it was later attributed to one Max Bezzel. It was republished in 1850
and at that time drew the attention of the eminent mathematician Carl Friedrich Gauss, who
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attempted to enumerate all possible solutions; initially he found only 72, but eventually he
found the correct answer of 92, although Nauck published all 92 solutions first, in 1850.
Netto (1901) generalized the problem to n queens, and Abramson and Yung (1989) found an
O(n) algorithm.

Each of the real-world search problems listed in the chapter has been the subject of a
good deal of research effort. Methods for selecting optimal airline flights remain proprietary
for the most part, but Carl de Marcken (personal communication) has shown that airline ticket
pricing and restrictions have become so convoluted that the problem of selecting an optimal
flight is formally undecidable. The traveling-salesperson problem is a standard combinato-
rial problem in theoretical computer science (Lawler et al., 1992). Karp (1972) proved the
TSP to be NP-hard, but effective heuristic approximation methods were developed (Lin and
Kernighan, 1973). Arora (1998) devised a fully polynomial approximation scheme for Eu-
clidean TSPs. VLSI layout methods are surveyed by Shahookar and Mazumder (1991), and
many layout optimization papers appear in VLSI journals. Robotic navigation and assembly
problems are discussed in Chapter 25.

Uninformed search algorithms for problem solving are a central topic of classical com-
puter science (Horowitz and Sahni, 1978) and operations research (Dreyfus, 1969). Breadth-
first search was formulated for solving mazes by Moore (1959). The method of dynamic
programming (Bellman, 1957; Bellman and Dreyfus, 1962), which systematically records
solutions for all subproblems of increasing lengths, can be seen as a form of breadth-first
search on graphs. The two-point shortest-path algorithm of Dijkstra (1959) is the origin
of uniform-cost search. These works also introduced the idea of explored and frontier sets
(closed and open lists).

A version of iterative deepening designed to make efficient use of the chess clock was
first used by Slate and Atkin (1977) in the CHESS 4.5 game-playing program. Martelli’s
algorithm B (1977) includes an iterative deepening aspect and also dominates A∗’s worst-case
performance with admissible but inconsistent heuristics. The iterative deepening technique
came to the fore in work by Korf (1985a). Bidirectional search, which was introduced by
Pohl (1971), can also be effective in some cases.

The use of heuristic information in problem solving appears in an early paper by Simon
and Newell (1958), but the phrase “heuristic search” and the use of heuristic functions that
estimate the distance to the goal came somewhat later (Newell and Ernst, 1965; Lin, 1965).
Doran and Michie (1966) conducted extensive experimental studies of heuristic search. Al-
though they analyzed path length and “penetrance” (the ratio of path length to the total num-
ber of nodes examined so far), they appear to have ignored the information provided by the
path cost g(n). The A∗ algorithm, incorporating the current path cost into heuristic search,
was developed by Hart, Nilsson, and Raphael (1968), with some later corrections (Hart et al.,
1972). Dechter and Pearl (1985) demonstrated the optimal efficiency of A∗.

The original A∗ paper introduced the consistency condition on heuristic functions. The
monotone condition was introduced by Pohl (1977) as a simpler replacement, but Pearl (1984)
showed that the two were equivalent.

Pohl (1977) pioneered the study of the relationship between the error in heuristic func-
tions and the time complexity of A∗. Basic results were obtained for tree search with unit step



Bibliographical and Historical Notes 111

costs and a single goal node (Pohl, 1977; Gaschnig, 1979; Huyn et al., 1980; Pearl, 1984) and
with multiple goal nodes (Dinh et al., 2007). The “effective branching factor” was proposed
by Nilsson (1971) as an empirical measure of the efficiency; it is equivalent to assuming a
time cost of O((b∗)d). For tree search applied to a graph, Korf et al. (2001) argue that the time
cost is better modeled as O(bd−k), where k depends on the heuristic accuracy; this analysis
has elicited some controversy, however. For graph search, Helmert and Röger (2008) noted
that several well-known problems contained exponentially many nodes on optimal solution
paths, implying exponential time complexity for A∗ even with constant absolute error in h.

There are many variations on the A∗ algorithm. Pohl (1973) proposed the use of dynamic
weighting, which uses a weighted sum fw(n)= wgg(n) + whh(n) of the current path length
and the heuristic function as an evaluation function, rather than the simple sum f(n)= g(n)+

h(n) used in A∗. The weights wg and wh are adjusted dynamically as the search progresses.
Pohl’s algorithm can be shown to be ǫ-admissible—that is, guaranteed to find solutions within
a factor 1 + ǫ of the optimal solution, where ǫ is a parameter supplied to the algorithm. The
same property is exhibited by the A∗

ǫ algorithm (Pearl, 1984), which can select any node from
the frontier provided its f -cost is within a factor 1+ ǫ of the lowest-f -cost frontier node. The
selection can be done so as to minimize search cost.

Bidirectional versions of A∗ have been investigated; a combination of bidirectional A∗

and known landmarks was used to efficiently find driving routes for Microsoft’s online map
service (Goldberg et al., 2006). After caching a set of paths between landmarks, the algorithm
can find an optimal path between any pair of points in a 24 million point graph of the United
States, searching less than 0.1% of the graph. Others approaches to bidirectional search
include a breadth-first search backward from the goal up to a fixed depth, followed by a
forward IDA∗ search (Dillenburg and Nelson, 1994; Manzini, 1995).

A∗ and other state-space search algorithms are closely related to the branch-and-bound
techniques that are widely used in operations research (Lawler and Wood, 1966). The
relationships between state-space search and branch-and-bound have been investigated in
depth (Kumar and Kanal, 1983; Nau et al., 1984; Kumar et al., 1988). Martelli and Monta-
nari (1978) demonstrate a connection between dynamic programming (see Chapter 17) and
certain types of state-space search. Kumar and Kanal (1988) attempt a “grand unification” of
heuristic search, dynamic programming, and branch-and-bound techniques under the name
of CDP—the “composite decision process.”

Because computers in the late 1950s and early 1960s had at most a few thousand words
of main memory, memory-bounded heuristic search was an early research topic. The Graph
Traverser (Doran and Michie, 1966), one of the earliest search programs, commits to an
operator after searching best-first up to the memory limit. IDA∗ (Korf, 1985a, 1985b) was the
first widely used optimal, memory-bounded heuristic search algorithm, and a large number
of variants have been developed. An analysis of the efficiency of IDA∗ and of its difficulties
with real-valued heuristics appears in Patrick et al. (1992).

RBFS (Korf, 1993) is actually somewhat more complicated than the algorithm shown
in Figure 3.26, which is closer to an independently developed algorithm called iterative ex-
pansion (Russell, 1992). RBFS uses a lower bound as well as the upper bound; the two al-ITERATIVE

EXPANSION

gorithms behave identically with admissible heuristics, but RBFS expands nodes in best-first
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order even with an inadmissible heuristic. The idea of keeping track of the best alternative
path appeared earlier in Bratko’s (1986) elegant Prolog implementation of A∗ and in the DTA∗

algorithm (Russell and Wefald, 1991). The latter work also discusses metalevel state spaces
and metalevel learning.

The MA∗ algorithm appeared in Chakrabarti et al. (1989). SMA∗, or Simplified MA∗,
emerged from an attempt to implement MA∗ as a comparison algorithm for IE (Russell, 1992).
Kaindl and Khorsand (1994) have applied SMA∗ to produce a bidirectional search algorithm
that is substantially faster than previous algorithms. Korf and Zhang (2000) describe a divide-
and-conquer approach, and Zhou and Hansen (2002) introduce memory-bounded A∗ graph
search and a strategy for switching to breadth-first search to increase memory-efficiency
(Zhou and Hansen, 2006). Korf (1995) surveys memory-bounded search techniques.

The idea that admissible heuristics can be derived by problem relaxation appears in the
seminal paper by Held and Karp (1970), who used the minimum-spanning-tree heuristic to
solve the TSP. (See Exercise 3.33.)

The automation of the relaxation process was implemented successfully by Priedi-
tis (1993), building on earlier work with Mostow (Mostow and Prieditis, 1989). Holte and
Hernadvolgyi (2001) describe more recent steps towards automating the process. The use of
pattern databases to derive admissible heuristics is due to Gasser (1995) and Culberson and
Schaeffer (1996, 1998); disjoint pattern databases are described by Korf and Felner (2002);
a similar method using symbolic patterns is due to Edelkamp (2009). Felner et al. (2007)
show how to compress pattern databases to save space. The probabilistic interpretation of
heuristics was investigated in depth by Pearl (1984) and Hansson and Mayer (1989).

By far the most comprehensive source on heuristics and heuristic search algorithms
is Pearl’s (1984) Heuristics text. This book provides especially good coverage of the wide
variety of offshoots and variations of A∗, including rigorous proofs of their formal properties.
Kanal and Kumar (1988) present an anthology of important articles on heuristic search, and
Rayward-Smith et al. (1996) cover approaches from Operations Research. Papers about new
search algorithms—which, remarkably, continue to be discovered—appear in journals such
as Artificial Intelligence and Journal of the ACM.

The topic of parallel search algorithms was not covered in the chapter, partly becausePARALLEL SEARCH

it requires a lengthy discussion of parallel computer architectures. Parallel search became a
popular topic in the 1990s in both AI and theoretical computer science (Mahanti and Daniels,
1993; Grama and Kumar, 1995; Crauser et al., 1998) and is making a comeback in the era
of new multicore and cluster architectures (Ralphs et al., 2004; Korf and Schultze, 2005).
Also of increasing importance are search algorithms for very large graphs that require disk
storage (Korf, 2008).

EXERCISES

3.1 Explain why problem formulation must follow goal formulation.

3.2 Give a complete problem formulation for each of the following problems. Choose a
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formulation that is precise enough to be implemented.

a. There are six glass boxes in a row, each with a lock. Each of the first five boxes holds a
key unlocking the next box in line; the last box holds a banana. You have the key to the
first box, and you want the banana.

b. You start with the sequence ABABAECCEC, or in general any sequence made from A,
B, C, and E. You can transform this sequence using the following equalities: AC = E,
AB = BC, BB = E, and Ex = x for any x. For example, ABBC can be transformed into
AEC, and then AC, and then E. Your goal is to produce the sequence E.

c. There is an n×n grid of squares, each square initially being either unpainted floor or a
bottomless pit. You start standing on an unpainted floor square, and can either paint the
square under you or move onto an adjacent unpainted floor square. You want the whole
floor painted.

d. A container ship is in port, loaded high with containers. There 13 rows of containers,
each 13 containers wide and 5 containers tall. You control a crane that can move to any
location above the ship, pick up the container under it, and move it onto the dock. You
want the ship unloaded.

3.3 You have a 9× 9 grid of squares, each of which can be colored red or blue. The grid
is initially colored all blue, but you can change the color of any square any number of times.
Imagining the grid divided into nine 3× 3 sub-squares, you want each sub-square to be all
one color but neighboring sub-squares to be different colors.

a. Formulate this problem in the straightforward way. Compute the size of the state space.
b. You need color a square only once. Reformulate, and compute the size of the state

space. Would breadth-first graph search perform faster on this problem than on the one
in (a)? How about iterative deepening tree search?

c. Given the goal, we need consider only colorings where each sub-square is uniformly
colored. Reformulate the problem and compute the size of the state space.

d. How many solutions does this problem have?
e. Parts (b) and (c) successively abstracted the original problem (a). Can you give a trans-

lation from solutions in problem (c) into solutions in problem (b), and from solutions in
problem (b) into solutions for problem (a)?

3.4 Suppose two friends live in different cities on a map, such as the Romania map shown
in Figure 3.2. On every turn, we can simultaneously move each friend to a neighboring city
on the map. The amount of time needed to move from city i to neighbor j is equal to the road
distance d(i, j) between the cities, but on each turn the friend that arrives first must wait until
the other one arrives (and calls the first on his/her cell phone) before the next turn can begin.
We want the two friends to meet as quickly as possible.

a. Write a detailed formulation for this search problem. (You will find it helpful to define
some formal notation here.)

b. Let D(i, j) be the straight-line distance between cities i and j. Which of the following
heuristic functions are admissible? (i) D(i, j); (ii) 2 ·D(i, j); (iii) D(i, j)/2.
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S

G

Figure 3.31 A scene with polygonal obstacles. S and G are the start and goal states.

c. Are there completely connected maps for which no solution exists?

d. Are there maps in which all solutions require one friend to visit the same city twice?

3.5 Show that the 8-puzzle states are divided into two disjoint sets, such that any state is
reachable from any other state in the same set, while no state is reachable from any state in
the other set. (Hint: See Berlekamp et al. (1982).) Devise a procedure to decide which set a
given state is in, and explain why this is useful for generating random states.

3.6 Consider the n-queens problem using the “efficient” incremental formulation given on
page 72. Explain why the state space has at least 3

√
n! states and estimate the largest n for

which exhaustive exploration is feasible. (Hint: Derive a lower bound on the branching factor
by considering the maximum number of squares that a queen can attack in any column.)

3.7 Consider the problem of finding the shortest path between two points on a plane that has
convex polygonal obstacles as shown in Figure 3.31. This is an idealization of the problem
that a robot has to solve to navigate in a crowded environment.

a. Suppose the state space consists of all positions (x, y) in the plane. How many states
are there? How many paths are there to the goal?

b. Explain briefly why the shortest path from one polygon vertex to any other in the scene
must consist of straight-line segments joining some of the vertices of the polygons.
Define a good state space now. How large is this state space?

c. Define the necessary functions to implement the search problem, including an ACTIONS

function that takes a vertex as input and returns a set of vectors, each of which maps the
current vertex to one of the vertices that can be reached in a straight line. (Do not forget
the neighbors on the same polygon.) Use the straight-line distance for the heuristic
function.

d. Apply one or more of the algorithms in this chapter to solve a range of problems in the
domain, and comment on their performance.
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3.8 On page 68, we said that we would not consider problems with negative path costs. In
this exercise, we explore this decision in more depth.

a. Suppose that actions can have arbitrarily large negative costs; explain why this possi-
bility would force any optimal algorithm to explore the entire state space.

b. Does it help if we insist that step costs must be greater than or equal to some negative
constant c? Consider both trees and graphs.

c. Suppose that a set of actions forms a loop in the state space such that executing the set in
some order results in no net change to the state. If all of these actions have negative cost,
what does this imply about the optimal behavior for an agent in such an environment?

d. One can easily imagine actions with high negative cost, even in domains such as route
finding. For example, some stretches of road might have such beautiful scenery as to
far outweigh the normal costs in terms of time and fuel. Explain, in precise terms,
within the context of state-space search, why humans do not drive around scenic loops
indefinitely, and explain how to define the state space and actions for route finding so
that artificial agents can also avoid looping.

e. Can you think of a real domain in which step costs are such as to cause looping?

3.9 The missionaries and cannibals problem is usually stated as follows. Three mission-
aries and three cannibals are on one side of a river, along with a boat that can hold one or
two people. Find a way to get everyone to the other side without ever leaving a group of mis-
sionaries in one place outnumbered by the cannibals in that place. This problem is famous in
AI because it was the subject of the first paper that approached problem formulation from an
analytical viewpoint (Amarel, 1968).

a. Formulate the problem precisely, making only those distinctions necessary to ensure a
valid solution. Draw a diagram of the complete state space.

b. Implement and solve the problem optimally using an appropriate search algorithm. Is it
a good idea to check for repeated states?

c. Why do you think people have a hard time solving this puzzle, given that the state space
is so simple?

3.10 Define in your own words the following terms: state, state space, search tree, search
node, goal, action, transition model, and branching factor.

3.11 What’s the difference between a world state, a state description, and a search node?
Why is this distinction useful?

3.12 An action such as Go(Sibiu) really consists of a long sequence of finer-grained actions:
turn on the car, release the brake, accelerate forward, etc. Having composite actions of this
kind reduces the number of steps in a solution sequence, thereby reducing the search time.
Suppose we take this to the logical extreme, by making super-composite actions out of every
possible sequence of Go actions. Then every problem instance is solved by a single super-
composite action, such as Go(Sibiu)Go(Rimnicu Vilcea)Go(Pitesti)Go(Bucharest). Explain
how search would work in this formulation. Is this a practical approach for speeding up
problem solving?



116 Chapter 3. Solving Problems by Searching

x 12

x 16

x 2 x 2

Figure 3.32 The track pieces in a wooden railway set; each is labeled with the number of
copies in the set. Note that curved pieces and “fork” pieces (“switches” or “points”) can be
flipped over so they can curve in either direction. Each curve subtends 45 degrees.

3.13 Does a finite state space always lead to a finite search tree? How about a finite state
space that is a tree? Can you be more precise about what types of state spaces always lead to
finite search trees? (Adapted from Bender, 1996.)

3.14 Prove that GRAPH-SEARCH satisfies the graph separation property illustrated in Fig-
ure 3.9. (Hint: Begin by showing that the property holds at the start, then show that if it holds
before an iteration of the algorithm, it holds afterwards.) Describe a search algorithm that
violates the property.

3.15 Which of the following are true and which are false? Explain your answers.

a. Depth-first search always expands at least as many nodes as A∗ search with an admissi-
ble heuristic.

b. h(n) = 0 is an admissible heuristic for the 8-puzzle.

c. A∗ is of no use in robotics because percepts, states, and actions are continuous.

d. Breadth-first search is complete even if zero step costs are allowed.

e. Assume that a rook can move on a chessboard any number of squares in a straight line,
vertically or horizontally, but cannot jump over other pieces. Manhattan distance is an
admissible heuristic for the problem of moving the rook from square A to square B in
the smallest number of moves.

3.16 A basic wooden railway set contains the pieces shown in Figure 3.32. The task is to
connect these pieces into a railway that has no overlapping tracks and no loose ends where a
train could run off onto the floor.

a. Suppose that the pieces fit together exactly with no slack. Give a precise formulation of
the task as a search problem.

b. Identify a suitable uninformed search algorithm for this task and explain your choice.

c. Explain why removing any one of the “fork” pieces makes the problem unsolvable.

d. Give an upper bound on the total size of the state space defined by your formulation.
(Hint: think about the maximum branching factor for the construction process and the
maximum depth, ignoring the problem of overlapping pieces and loose ends. Begin by
pretending that every piece is unique.)

3.17 Implement two versions of the RESULT(s, a) function for the 8-puzzle: one that copies
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and edits the data structure for the parent node s and one that modifies the parent state di-
rectly (undoing the modifications as needed). Write versions of iterative deepening depth-first
search that use these functions and compare their performance.

3.18 On page 90, we mentioned iterative lengthening search, an iterative analog of uni-
form cost search. The idea is to use increasing limits on path cost. If a node is generated
whose path cost exceeds the current limit, it is immediately discarded. For each new itera-
tion, the limit is set to the lowest path cost of any node discarded in the previous iteration.

a. Show that this algorithm is optimal for general path costs.

b. Consider a uniform tree with branching factor b, solution depth d, and unit step costs.
How many iterations will iterative lengthening require?

c. Now consider step costs drawn from the continuous range [ǫ, 1], where 0 < ǫ < 1. How
many iterations are required in the worst case?

d. Implement the algorithm and apply it to instances of the 8-puzzle and traveling sales-
person problems. Compare the algorithm’s performance to that of uniform-cost search,
and comment on your results.

3.19 Describe a state space in which iterative deepening search performs much worse than
depth-first search (for example, O(n2) vs. O(n)).

3.20 Write a program that will take as input two Web page URLs and find a path of links
from one to the other. What is an appropriate search strategy? Is bidirectional search a good
idea? Could a search engine be used to implement a predecessor function?

3.21 Consider the vacuum-world problem defined in Figure 2.2.

a. Which of the algorithms defined in this chapter would be appropriate for this problem?
Should the algorithm use tree search or graph search?

b. Apply your chosen algorithm to compute an optimal sequence of actions for a 3× 3

world whose initial state has dirt in the three top squares and the agent in the center.

c. Construct a search agent for the vacuum world, and evaluate its performance in a set of
3× 3 worlds with probability 0.2 of dirt in each square. Include the search cost as well
as path cost in the performance measure, using a reasonable exchange rate.

d. Compare your best search agent with a simple randomized reflex agent that sucks if
there is dirt and otherwise moves randomly.

e. Consider what would happen if the world were enlarged to n × n. How does the per-
formance of the search agent and of the reflex agent vary with n?

3.22 Prove each of the following statements, or give a counterexample:

a. Breadth-first search is a special case of uniform-cost search.

b. Depth-first search is a special case of best-first tree search.

c. Uniform-cost search is a special case of A∗ search.

3.23 Compare the performance of A∗ and RBFS on a set of randomly generated problems
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in the 8-puzzle (with Manhattan distance) and TSP (with MST—see Exercise 3.33) domains.
Discuss your results. What happens to the performance of RBFS when a small random num-
ber is added to the heuristic values in the 8-puzzle domain?

3.24 Trace the operation of A∗ search applied to the problem of getting to Bucharest from
Lugoj using the straight-line distance heuristic. That is, show the sequence of nodes that the
algorithm will consider and the f , g, and h score for each node.

3.25 Sometimes there is no good evaluation function for a problem but there is a good
comparison method: a way to tell whether one node is better than another without assigning
numerical values to either. Show that this is enough to do a best-first search. Is there an
analog of A∗ for this setting?

3.26 Devise a state space in which A∗ using GRAPH-SEARCH returns a suboptimal solution
with an h(n) function that is admissible but inconsistent.

3.27 Accurate heuristics don’t necessarily reduce search time in the worst case. Given any
depth d, define a search problem with a goal node at depth d, and write a heuristic function
such that |h(n)−h

∗(n)| ≤ O(log h
∗(n)) but A∗ expands all nodes of depth less than d.

3.28 The heuristic path algorithm (Pohl, 1977) is a best-first search in which the evalu-HEURISTIC PATH

ALGORITHM

ation function is f(n) = (2 − w)g(n) + wh(n). For what values of w is this complete?
For what values is it optimal, assuming that h is admissible? What kind of search does this
perform for w = 0, w = 1, and w = 2?

3.29 Consider the unbounded version of the regular 2D grid shown in Figure 3.9. The start
state is at the origin, (0,0), and the goal state is at (x, y).

a. What is the branching factor b in this state space?

b. How many distinct states are there at depth k (for k > 0)?

c. What is the maximum number of nodes expanded by breadth-first tree search?

d. What is the maximum number of nodes expanded by breadth-first graph search?

e. Is h = |u− x|+ |v − y| an admissible heuristic for a state at (u, v)? Explain.

f. How many nodes are expanded by A∗ graph search using h?

g. Does h remain admissible if some links are removed?

h. Does h remain admissible if some links are added between nonadjacent states?

3.30 Consider the problem of moving k knights from k starting squares s1, . . . , sk to k goal
squares g1, . . . , gk , on an unbounded chessboard, subject to the rule that no two knights can
land on the same square at the same time. Each action consists of moving up to k knights
simultaneously. We would like to complete the maneuver in the smallest number of actions.

a. What is the maximum branching factor in this state space, expressed as a function of k?

b. Suppose hi is an admissible heuristic for the problem of moving knight i to goal gi by
itself. Which of the following heuristics are admissible for the k-knight problem? Of
those, which is the best?

(i) min{h1, . . . , hk}.
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(ii) max{h1, . . . , hk}.
(iii)

∑k
i = 1

hi.

c. Repeat (b) for the case where you are allowed to move only one knight at a time.

3.31 We saw on page 93 that the straight-line distance heuristic leads greedy best-first
search astray on the problem of going from Iasi to Fagaras. However, the heuristic is per-
fect on the opposite problem: going from Fagaras to Iasi. Are there problems for which the
heuristic is misleading in both directions?

3.32 Prove that if a heuristic is consistent, it must be admissible. Construct an admissible
heuristic that is not consistent.

3.33 The traveling salesperson problem (TSP) can be solved with the minimum-spanning-
tree (MST) heuristic, which estimates the cost of completing a tour, given that a partial tour
has already been constructed. The MST cost of a set of cities is the smallest sum of the link
costs of any tree that connects all the cities.

a. Show how this heuristic can be derived from a relaxed version of the TSP.

b. Show that the MST heuristic dominates straight-line distance.

c. Write a problem generator for instances of the TSP where cities are represented by
random points in the unit square.

d. Find an efficient algorithm in the literature for constructing the MST, and use it with A∗

graph search to solve instances of the TSP.

3.34 On page 105, we defined the relaxation of the 8-puzzle in which a tile can move from
square A to square B if B is blank. The exact solution of this problem defines Gaschnig’s
heuristic (Gaschnig, 1979). Explain why Gaschnig’s heuristic is at least as accurate as h1

(misplaced tiles), and show cases where it is more accurate than both h1 and h2 (Manhattan
distance). Explain how to calculate Gaschnig’s heuristic efficiently.

3.35 We gave two simple heuristics for the 8-puzzle: Manhattan distance and misplaced
tiles. Several heuristics in the literature purport to improve on this—see, for example, Nils-
son (1971), Mostow and Prieditis (1989), and Hansson et al. (1992). Test these claims by
implementing the heuristics and comparing the performance of the resulting algorithms.



7 LOGICAL AGENTS

In which we design agents that can form representations of a complex world, use a
process of inference to derive new representations about the world, and use these
new representations to deduce what to do.

Humans, it seems, know things; and what they know helps them do things. These are
not empty statements. They make strong claims about how the intelligence of humans is
achieved—not by purely reflex mechanisms but by processes of reasoning that operate onREASONING

internal representations of knowledge. In AI, this approach to intelligence is embodied inREPRESENTATION

knowledge-based agents.KNOWLEDGE­BASED

AGENTS

The problem-solving agents of Chapters 3 and 4 know things, but only in a very limited,
inflexible sense. For example, the transition model for the 8-puzzle—knowledge of what the
actions do—is hidden inside the domain-specific code of the RESULT function. It can be
used to predict the outcome of actions but not to deduce that two tiles cannot occupy the
same space or that states with odd parity cannot be reached from states with even parity. The
atomic representations used by problem-solving agents are also very limiting. In a partially
observable environment, an agent’s only choice for representing what it knows about the
current state is to list all possible concrete states—a hopeless prospect in large environments.

Chapter 6 introduced the idea of representing states as assignments of values to vari-
ables; this is a step in the right direction, enabling some parts of the agent to work in a
domain-independent way and allowing for more efficient algorithms. In this chapter and
those that follow, we take this step to its logical conclusion, so to speak—we develop logicLOGIC

as a general class of representations to support knowledge-based agents. Such agents can
combine and recombine information to suit myriad purposes. Often, this process can be quite
far removed from the needs of the moment—as when a mathematician proves a theorem or
an astronomer calculates the earth’s life expectancy. Knowledge-based agents can accept new
tasks in the form of explicitly described goals; they can achieve competence quickly by being
told or learning new knowledge about the environment; and they can adapt to changes in the
environment by updating the relevant knowledge.

We begin in Section 7.1 with the overall agent design. Section 7.2 introduces a sim-
ple new environment, the wumpus world, and illustrates the operation of a knowledge-based
agent without going into any technical detail. Then we explain the general principles of logic

234
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in Section 7.3 and the specifics of propositional logic in Section 7.4. While less expressive
than first-order logic (Chapter 8), propositional logic illustrates all the basic concepts of
logic; it also comes with well-developed inference technologies, which we describe in sec-
tions 7.5 and 7.6. Finally, Section 7.7 combines the concept of knowledge-based agents with
the technology of propositional logic to build some simple agents for the wumpus world.

7.1 KNOWLEDGE-BASED AGENTS

The central component of a knowledge-based agent is its knowledge base, or KB. A knowl-KNOWLEDGE BASE

edge base is a set of sentences. (Here “sentence” is used as a technical term. It is relatedSENTENCE

but not identical to the sentences of English and other natural languages.) Each sentence is
expressed in a language called a knowledge representation language and represents some

KNOWLEDGE

REPRESENTATION

LANGUAGE

assertion about the world. Sometimes we dignify a sentence with the name axiom, when theAXIOM

sentence is taken as given without being derived from other sentences.
There must be a way to add new sentences to the knowledge base and a way to query

what is known. The standard names for these operations are TELL and ASK, respectively.
Both operations may involve inference—that is, deriving new sentences from old. InferenceINFERENCE

must obey the requirement that when one ASKs a question of the knowledge base, the answer
should follow from what has been told (or TELLed) to the knowledge base previously. Later
in this chapter, we will be more precise about the crucial word “follow.” For now, take it to
mean that the inference process should not make things up as it goes along.

Figure 7.1 shows the outline of a knowledge-based agent program. Like all our agents,
it takes a percept as input and returns an action. The agent maintains a knowledge base, KB ,
which may initially contain some background knowledge.BACKGROUND

KNOWLEDGE

Each time the agent program is called, it does three things. First, it TELLs the knowl-
edge base what it perceives. Second, it ASKs the knowledge base what action it should
perform. In the process of answering this query, extensive reasoning may be done about
the current state of the world, about the outcomes of possible action sequences, and so on.
Third, the agent program TELLs the knowledge base which action was chosen, and the agent
executes the action.

The details of the representation language are hidden inside three functions that imple-
ment the interface between the sensors and actuators on one side and the core representation
and reasoning system on the other. MAKE-PERCEPT-SENTENCE constructs a sentence as-
serting that the agent perceived the given percept at the given time. MAKE-ACTION-QUERY

constructs a sentence that asks what action should be done at the current time. Finally,
MAKE-ACTION-SENTENCE constructs a sentence asserting that the chosen action was ex-
ecuted. The details of the inference mechanisms are hidden inside TELL and ASK. Later
sections will reveal these details.

The agent in Figure 7.1 appears quite similar to the agents with internal state described
in Chapter 2. Because of the definitions of TELL and ASK, however, the knowledge-based
agent is not an arbitrary program for calculating actions. It is amenable to a description at
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function KB-AGENT(percept) returns an action

persistent: KB , a knowledge base
t , a counter, initially 0, indicating time

TELL(KB , MAKE-PERCEPT-SENTENCE(percept , t ))
action←ASK(KB , MAKE-ACTION-QUERY(t ))
TELL(KB , MAKE-ACTION-SENTENCE(action , t ))
t← t + 1
return action

Figure 7.1 A generic knowledge-based agent. Given a percept, the agent adds the percept
to its knowledge base, asks the knowledge base for the best action, and tells the knowledge
base that it has in fact taken that action.

the knowledge level, where we need specify only what the agent knows and what its goalsKNOWLEDGE LEVEL

are, in order to fix its behavior. For example, an automated taxi might have the goal of
taking a passenger from San Francisco to Marin County and might know that the Golden
Gate Bridge is the only link between the two locations. Then we can expect it to cross the
Golden Gate Bridge because it knows that that will achieve its goal. Notice that this analysis
is independent of how the taxi works at the implementation level. It doesn’t matter whetherIMPLEMENTATION

LEVEL

its geographical knowledge is implemented as linked lists or pixel maps, or whether it reasons
by manipulating strings of symbols stored in registers or by propagating noisy signals in a
network of neurons.

A knowledge-based agent can be built simply by TELLing it what it needs to know.
Starting with an empty knowledge base, the agent designer can TELL sentences one by one
until the agent knows how to operate in its environment. This is called the declarative ap-DECLARATIVE

proach to system building. In contrast, the procedural approach encodes desired behaviors
directly as program code. In the 1970s and 1980s, advocates of the two approaches engaged
in heated debates. We now understand that a successful agent often combines both declarative
and procedural elements in its design, and that declarative knowledge can often be compiled
into more efficient procedural code.

We can also provide a knowledge-based agent with mechanisms that allow it to learn
for itself. These mechanisms, which are discussed in Chapter 18, create general knowledge
about the environment from a series of percepts. A learning agent can be fully autonomous.

7.2 THE WUMPUS WORLD

In this section we describe an environment in which knowledge-based agents can show their
worth. The wumpus world is a cave consisting of rooms connected by passageways. LurkingWUMPUS WORLD

somewhere in the cave is the terrible wumpus, a beast that eats anyone who enters its room.
The wumpus can be shot by an agent, but the agent has only one arrow. Some rooms contain
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bottomless pits that will trap anyone who wanders into these rooms (except for the wumpus,
which is too big to fall in). The only mitigating feature of this bleak environment is the
possibility of finding a heap of gold. Although the wumpus world is rather tame by modern
computer game standards, it illustrates some important points about intelligence.

A sample wumpus world is shown in Figure 7.2. The precise definition of the task
environment is given, as suggested in Section 2.3, by the PEAS description:

• Performance measure: +1000 for climbing out of the cave with the gold, –1000 for
falling into a pit or being eaten by the wumpus, –1 for each action taken and –10 for
using up the arrow. The game ends either when the agent dies or when the agent climbs
out of the cave.

• Environment: A 4× 4 grid of rooms. The agent always starts in the square labeled
[1,1], facing to the right. The locations of the gold and the wumpus are chosen ran-
domly, with a uniform distribution, from the squares other than the start square. In
addition, each square other than the start can be a pit, with probability 0.2.

• Actuators: The agent can move Forward, TurnLeft by 90◦, or TurnRight by 90◦. The
agent dies a miserable death if it enters a square containing a pit or a live wumpus. (It
is safe, albeit smelly, to enter a square with a dead wumpus.) If an agent tries to move
forward and bumps into a wall, then the agent does not move. The action Grab can be
used to pick up the gold if it is in the same square as the agent. The action Shoot can
be used to fire an arrow in a straight line in the direction the agent is facing. The arrow
continues until it either hits (and hence kills) the wumpus or hits a wall. The agent has
only one arrow, so only the first Shoot action has any effect. Finally, the action Climb
can be used to climb out of the cave, but only from square [1,1].

• Sensors: The agent has five sensors, each of which gives a single bit of information:

– In the square containing the wumpus and in the directly (not diagonally) adjacent
squares, the agent will perceive a Stench.

– In the squares directly adjacent to a pit, the agent will perceive a Breeze.
– In the square where the gold is, the agent will perceive a Glitter.
– When an agent walks into a wall, it will perceive a Bump.
– When the wumpus is killed, it emits a woeful Scream that can be perceived any-

where in the cave.

The percepts will be given to the agent program in the form of a list of five symbols;
for example, if there is a stench and a breeze, but no glitter, bump, or scream, the agent
program will get [Stench,Breeze ,None,None,None ].

We can characterize the wumpus environment along the various dimensions given in Chap-
ter 2. Clearly, it is discrete, static, and single-agent. (The wumpus doesn’t move, fortunately.)
It is sequential, because rewards may come only after many actions are taken. It is partially
observable, because some aspects of the state are not directly perceivable: the agent’s lo-
cation, the wumpus’s state of health, and the availability of an arrow. As for the locations
of the pits and the wumpus: we could treat them as unobserved parts of the state that hap-
pen to be immutable—in which case, the transition model for the environment is completely
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Figure 7.2 A typical wumpus world. The agent is in the bottom left corner, facing right.

known; or we could say that the transition model itself is unknown because the agent doesn’t
know which Forward actions are fatal—in which case, discovering the locations of pits and
wumpus completes the agent’s knowledge of the transition model.

For an agent in the environment, the main challenge is its initial ignorance of the con-
figuration of the environment; overcoming this ignorance seems to require logical reasoning.
In most instances of the wumpus world, it is possible for the agent to retrieve the gold safely.
Occasionally, the agent must choose between going home empty-handed and risking death to
find the gold. About 21% of the environments are utterly unfair, because the gold is in a pit
or surrounded by pits.

Let us watch a knowledge-based wumpus agent exploring the environment shown in
Figure 7.2. We use an informal knowledge representation language consisting of writing
down symbols in a grid (as in Figures 7.3 and 7.4).

The agent’s initial knowledge base contains the rules of the environment, as described
previously; in particular, it knows that it is in [1,1] and that [1,1] is a safe square; we denote
that with an “A” and “OK,” respectively, in square [1,1].

The first percept is [None,None,None,None ,None], from which the agent can con-
clude that its neighboring squares, [1,2] and [2,1], are free of dangers—they are OK. Fig-
ure 7.3(a) shows the agent’s state of knowledge at this point.

A cautious agent will move only into a square that it knows to be OK. Let us suppose
the agent decides to move forward to [2,1]. The agent perceives a breeze (denoted by “B”) in
[2,1], so there must be a pit in a neighboring square. The pit cannot be in [1,1], by the rules of
the game, so there must be a pit in [2,2] or [3,1] or both. The notation “P?” in Figure 7.3(b)
indicates a possible pit in those squares. At this point, there is only one known square that is
OK and that has not yet been visited. So the prudent agent will turn around, go back to [1,1],
and then proceed to [1,2].

The agent perceives a stench in [1,2], resulting in the state of knowledge shown in
Figure 7.4(a). The stench in [1,2] means that there must be a wumpus nearby. But the
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Figure 7.3 The first step taken by the agent in the wumpus world. (a) The initial sit-
uation, after percept [None,None,None,None,None]. (b) After one move, with percept
[None,Breeze,None,None,None].
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Figure 7.4 Two later stages in the progress of the agent. (a) After the third move,
with percept [Stench,None,None,None,None]. (b) After the fifth move, with percept
[Stench,Breeze,Glitter ,None,None].

wumpus cannot be in [1,1], by the rules of the game, and it cannot be in [2,2] (or the agent
would have detected a stench when it was in [2,1]). Therefore, the agent can infer that the
wumpus is in [1,3]. The notation W! indicates this inference. Moreover, the lack of a breeze
in [1,2] implies that there is no pit in [2,2]. Yet the agent has already inferred that there must
be a pit in either [2,2] or [3,1], so this means it must be in [3,1]. This is a fairly difficult
inference, because it combines knowledge gained at different times in different places and
relies on the lack of a percept to make one crucial step.



240 Chapter 7. Logical Agents

The agent has now proved to itself that there is neither a pit nor a wumpus in [2,2], so it
is OK to move there. We do not show the agent’s state of knowledge at [2,2]; we just assume
that the agent turns and moves to [2,3], giving us Figure 7.4(b). In [2,3], the agent detects a
glitter, so it should grab the gold and then return home.

Note that in each case for which the agent draws a conclusion from the available in-
formation, that conclusion is guaranteed to be correct if the available information is correct.
This is a fundamental property of logical reasoning. In the rest of this chapter, we describe
how to build logical agents that can represent information and draw conclusions such as those
described in the preceding paragraphs.

7.3 LOGIC

This section summarizes the fundamental concepts of logical representation and reasoning.
These beautiful ideas are independent of any of logic’s particular forms. We therefore post-
pone the technical details of those forms until the next section, using instead the familiar
example of ordinary arithmetic.

In Section 7.1, we said that knowledge bases consist of sentences. These sentences
are expressed according to the syntax of the representation language, which specifies all theSYNTAX

sentences that are well formed. The notion of syntax is clear enough in ordinary arithmetic:
“x + y = 4” is a well-formed sentence, whereas “x4y+ =” is not.

A logic must also define the semantics or meaning of sentences. The semantics definesSEMANTICS

the truth of each sentence with respect to each possible world. For example, the semanticsTRUTH

POSSIBLE WORLD for arithmetic specifies that the sentence “x + y = 4” is true in a world where x is 2 and y

is 2, but false in a world where x is 1 and y is 1. In standard logics, every sentence must be
either true or false in each possible world—there is no “in between.”1

When we need to be precise, we use the term model in place of “possible world.”MODEL

Whereas possible worlds might be thought of as (potentially) real environments that the agent
might or might not be in, models are mathematical abstractions, each of which simply fixes
the truth or falsehood of every relevant sentence. Informally, we may think of a possible world
as, for example, having x men and y women sitting at a table playing bridge, and the sentence
x + y = 4 is true when there are four people in total. Formally, the possible models are just
all possible assignments of real numbers to the variables x and y. Each such assignment fixes
the truth of any sentence of arithmetic whose variables are x and y. If a sentence α is true in
model m, we say that m satisfies α or sometimes m is a model of α. We use the notationSATISFACTION

M(α) to mean the set of all models of α.
Now that we have a notion of truth, we are ready to talk about logical reasoning. This

involves the relation of logical entailment between sentences—the idea that a sentence fol-ENTAILMENT

lows logically from another sentence. In mathematical notation, we write

α |= β

1 Fuzzy logic, discussed in Chapter 14, allows for degrees of truth.
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Figure 7.5 Possible models for the presence of pits in squares [1,2], [2,2], and [3,1]. The
KB corresponding to the observations of nothing in [1,1] and a breeze in [2,1] is shown by
the solid line. (a) Dotted line shows models of α1 (no pit in [1,2]). (b) Dotted line shows
models of α2 (no pit in [2,2]).

to mean that the sentence α entails the sentence β. The formal definition of entailment is this:
α |= β if and only if, in every model in which α is true, β is also true. Using the notation just
introduced, we can write

α |= β if and only if M(α) ⊆M(β) .

(Note the direction of the ⊆ here: if α |= β, then α is a stronger assertion than β: it rules out
more possible worlds.) The relation of entailment is familiar from arithmetic; we are happy
with the idea that the sentence x = 0 entails the sentence xy = 0. Obviously, in any model
where x is zero, it is the case that xy is zero (regardless of the value of y).

We can apply the same kind of analysis to the wumpus-world reasoning example given
in the preceding section. Consider the situation in Figure 7.3(b): the agent has detected
nothing in [1,1] and a breeze in [2,1]. These percepts, combined with the agent’s knowledge
of the rules of the wumpus world, constitute the KB. The agent is interested (among other
things) in whether the adjacent squares [1,2], [2,2], and [3,1] contain pits. Each of the three
squares might or might not contain a pit, so (for the purposes of this example) there are 23 =8

possible models. These eight models are shown in Figure 7.5.2

The KB can be thought of as a set of sentences or as a single sentence that asserts all
the individual sentences. The KB is false in models that contradict what the agent knows—
for example, the KB is false in any model in which [1,2] contains a pit, because there is
no breeze in [1,1]. There are in fact just three models in which the KB is true, and these are

2 Although the figure shows the models as partial wumpus worlds, they are really nothing more than assignments
of true and false to the sentences “there is a pit in [1,2]” etc. Models, in the mathematical sense, do not need to
have ’orrible ’airy wumpuses in them.
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shown surrounded by a solid line in Figure 7.5. Now let us consider two possible conclusions:

α1 = “There is no pit in [1,2].”
α2 = “There is no pit in [2,2].”

We have surrounded the models of α1 and α2 with dotted lines in Figures 7.5(a) and 7.5(b),
respectively. By inspection, we see the following:

in every model in which KB is true, α1 is also true.

Hence, KB |= α1: there is no pit in [1,2]. We can also see that

in some models in which KB is true, α2 is false.

Hence, KB 6|= α2: the agent cannot conclude that there is no pit in [2,2]. (Nor can it conclude
that there is a pit in [2,2].)3

The preceding example not only illustrates entailment but also shows how the definition
of entailment can be applied to derive conclusions—that is, to carry out logical inference.LOGICAL INFERENCE

The inference algorithm illustrated in Figure 7.5 is called model checking, because it enu-MODEL CHECKING

merates all possible models to check that α is true in all models in which KB is true, that is,
that M(KB) ⊆M(α).

In understanding entailment and inference, it might help to think of the set of all conse-
quences of KB as a haystack and of α as a needle. Entailment is like the needle being in the
haystack; inference is like finding it. This distinction is embodied in some formal notation: if
an inference algorithm i can derive α from KB , we write

KB ⊢i α ,

which is pronounced “α is derived from KB by i” or “i derives α from KB .”
An inference algorithm that derives only entailed sentences is called sound or truth-SOUND

preserving. Soundness is a highly desirable property. An unsound inference procedure es-TRUTH­PRESERVING

sentially makes things up as it goes along—it announces the discovery of nonexistent needles.
It is easy to see that model checking, when it is applicable,4 is a sound procedure.

The property of completeness is also desirable: an inference algorithm is complete ifCOMPLETENESS

it can derive any sentence that is entailed. For real haystacks, which are finite in extent,
it seems obvious that a systematic examination can always decide whether the needle is in
the haystack. For many knowledge bases, however, the haystack of consequences is infinite,
and completeness becomes an important issue.5 Fortunately, there are complete inference
procedures for logics that are sufficiently expressive to handle many knowledge bases.

We have described a reasoning process whose conclusions are guaranteed to be true
in any world in which the premises are true; in particular, if KB is true in the real world,
then any sentence α derived from KB by a sound inference procedure is also true in the real
world. So, while an inference process operates on “syntax”—internal physical configurations
such as bits in registers or patterns of electrical blips in brains—the process corresponds
3 The agent can calculate the probability that there is a pit in [2,2]; Chapter 13 shows how.
4 Model checking works if the space of models is finite—for example, in wumpus worlds of fixed size. For
arithmetic, on the other hand, the space of models is infinite: even if we restrict ourselves to the integers, there
are infinitely many pairs of values for x and y in the sentence x + y = 4.
5 Compare with the case of infinite search spaces in Chapter 3, where depth-first search is not complete.
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Figure 7.6 Sentences are physical configurations of the agent, and reasoning is a process
of constructing new physical configurations from old ones. Logical reasoning should en-
sure that the new configurations represent aspects of the world that actually follow from the
aspects that the old configurations represent.

to the real-world relationship whereby some aspect of the real world is the case6 by virtue
of other aspects of the real world being the case. This correspondence between world and
representation is illustrated in Figure 7.6.

The final issue to consider is grounding—the connection between logical reasoningGROUNDING

processes and the real environment in which the agent exists. In particular, how do we know
that KB is true in the real world? (After all, KB is just “syntax” inside the agent’s head.)
This is a philosophical question about which many, many books have been written. (See
Chapter 26.) A simple answer is that the agent’s sensors create the connection. For example,
our wumpus-world agent has a smell sensor. The agent program creates a suitable sentence
whenever there is a smell. Then, whenever that sentence is in the knowledge base, it is
true in the real world. Thus, the meaning and truth of percept sentences are defined by the
processes of sensing and sentence construction that produce them. What about the rest of the
agent’s knowledge, such as its belief that wumpuses cause smells in adjacent squares? This
is not a direct representation of a single percept, but a general rule—derived, perhaps, from
perceptual experience but not identical to a statement of that experience. General rules like
this are produced by a sentence construction process called learning, which is the subject
of Part V. Learning is fallible. It could be the case that wumpuses cause smells except on
February 29 in leap years, which is when they take their baths. Thus, KB may not be true in
the real world, but with good learning procedures, there is reason for optimism.

7.4 PROPOSITIONAL LOGIC: A VERY SIMPLE LOGIC

We now present a simple but powerful logic called propositional logic. We cover the syntaxPROPOSITIONAL

LOGIC

of propositional logic and its semantics—the way in which the truth of sentences is deter-
mined. Then we look at entailment—the relation between a sentence and another sentence
that follows from it—and see how this leads to a simple algorithm for logical inference. Ev-
erything takes place, of course, in the wumpus world.

6 As Wittgenstein (1922) put it in his famous Tractatus: “The world is everything that is the case.”
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7.4.1 Syntax

The syntax of propositional logic defines the allowable sentences. The atomic sentencesATOMIC SENTENCES

consist of a single proposition symbol. Each such symbol stands for a proposition that canPROPOSITION

SYMBOL

be true or false. We use symbols that start with an uppercase letter and may contain other
letters or subscripts, for example: P , Q, R, W1,3 and North . The names are arbitrary but
are often chosen to have some mnemonic value—we use W1,3 to stand for the proposition
that the wumpus is in [1,3]. (Remember that symbols such as W1,3 are atomic, i.e., W , 1,
and 3 are not meaningful parts of the symbol.) There are two proposition symbols with fixed
meanings: True is the always-true proposition and False is the always-false proposition.
Complex sentences are constructed from simpler sentences, using parentheses and logicalCOMPLEX

SENTENCES

connectives. There are five connectives in common use:LOGICAL

CONNECTIVES

¬ (not). A sentence such as ¬W1,3 is called the negation of W1,3. A literal is either anNEGATION

LITERAL atomic sentence (a positive literal) or a negated atomic sentence (a negative literal).
∧ (and). A sentence whose main connective is ∧, such as W1,3 ∧ P3,1, is called a con-

junction; its parts are the conjuncts. (The ∧ looks like an “A” for “And.”)CONJUNCTION

∨ (or). A sentence using ∨, such as (W1,3∧P3,1)∨W2,2, is a disjunction of the disjunctsDISJUNCTION

(W1,3 ∧ P3,1) and W2,2. (Historically, the ∨ comes from the Latin “vel,” which means
“or.” For most people, it is easier to remember ∨ as an upside-down ∧.)

⇒ (implies). A sentence such as (W1,3∧P3,1) ⇒ ¬W2,2 is called an implication (or con-IMPLICATION

ditional). Its premise or antecedent is (W1,3∧P3,1), and its conclusion or consequentPREMISE

CONCLUSION is ¬W2,2. Implications are also known as rules or if–then statements. The implication
RULES symbol is sometimes written in other books as ⊃ or→.

⇔ (if and only if). The sentence W1,3 ⇔ ¬W2,2 is a biconditional. Some other booksBICONDITIONAL

write this as ≡.

Sentence → AtomicSentence | ComplexSentence

AtomicSentence → True | False | P | Q | R | . . .

ComplexSentence → ( Sentence ) | [ Sentence ]
| ¬ Sentence

| Sentence ∧ Sentence

| Sentence ∨ Sentence

| Sentence ⇒ Sentence

| Sentence ⇔ Sentence

OPERATOR PRECEDENCE : ¬,∧,∨,⇒,⇔

Figure 7.7 A BNF (Backus–Naur Form) grammar of sentences in propositional logic,
along with operator precedences, from highest to lowest.
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Figure 7.7 gives a formal grammar of propositional logic; see page 1066 if you are not
familiar with the BNF notation. The BNF grammar by itself is ambiguous; a sentence with
several operators can be parsed by the grammar in multiple ways. To eliminate the ambiguity
we define a precedence for each operator. The “not” operator (¬) has the highest precedence,
which means that in the sentence ¬A ∧ B the ¬ binds most tightly, giving us the equivalent
of (¬A)∧B rather than ¬(A∧B). (The notation for ordinary arithmetic is the same: −2+4

is 2, not –6.) When in doubt, use parentheses to make sure of the right interpretation. Square
brackets mean the same thing as parentheses; the choice of square brackets or parentheses is
solely to make it easier for a human to read a sentence.

7.4.2 Semantics

Having specified the syntax of propositional logic, we now specify its semantics. The se-
mantics defines the rules for determining the truth of a sentence with respect to a particular
model. In propositional logic, a model simply fixes the truth value—true or false—for ev-TRUTH VALUE

ery proposition symbol. For example, if the sentences in the knowledge base make use of the
proposition symbols P1,2, P2,2, and P3,1, then one possible model is

m1 = {P1,2 = false, P2,2 = false, P3,1 = true} .

With three proposition symbols, there are 23 = 8 possible models—exactly those depicted
in Figure 7.5. Notice, however, that the models are purely mathematical objects with no
necessary connection to wumpus worlds. P1,2 is just a symbol; it might mean “there is a pit
in [1,2]” or “I’m in Paris today and tomorrow.”

The semantics for propositional logic must specify how to compute the truth value of
any sentence, given a model. This is done recursively. All sentences are constructed from
atomic sentences and the five connectives; therefore, we need to specify how to compute the
truth of atomic sentences and how to compute the truth of sentences formed with each of the
five connectives. Atomic sentences are easy:

• True is true in every model and False is false in every model.

• The truth value of every other proposition symbol must be specified directly in the
model. For example, in the model m1 given earlier, P1,2 is false.

For complex sentences, we have five rules, which hold for any subsentences P and Q in any
model m (here “iff” means “if and only if”):

• ¬P is true iff P is false in m.

• P ∧Q is true iff both P and Q are true in m.

• P ∨Q is true iff either P or Q is true in m.

• P ⇒ Q is true unless P is true and Q is false in m.

• P ⇔ Q is true iff P and Q are both true or both false in m.

The rules can also be expressed with truth tables that specify the truth value of a complexTRUTH TABLE

sentence for each possible assignment of truth values to its components. Truth tables for the
five connectives are given in Figure 7.8. From these tables, the truth value of any sentence s

can be computed with respect to any model m by a simple recursive evaluation. For example,
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P Q ¬P P ∧Q P ∨Q P ⇒ Q P ⇔ Q

false false true false false true true

false true true false true true false

true false false false true false false

true true false true true true true

Figure 7.8 Truth tables for the five logical connectives. To use the table to compute, for
example, the value of P ∨Q when P is true and Q is false, first look on the left for the row
where P is true and Q is false (the third row). Then look in that row under the P ∨Q column
to see the result: true.

the sentence ¬P1,2 ∧ (P2,2 ∨ P3,1), evaluated in m1, gives true ∧ (false ∨ true)= true ∧

true = true . Exercise 7.3 asks you to write the algorithm PL-TRUE?(s , m), which computes
the truth value of a propositional logic sentence s in a model m.

The truth tables for “and,” “or,” and “not” are in close accord with our intuitions about
the English words. The main point of possible confusion is that P ∨Q is true when P is true
or Q is true or both. A different connective, called “exclusive or” (“xor” for short), yields
false when both disjuncts are true.7 There is no consensus on the symbol for exclusive or;
some choices are ∨̇ or 6= or ⊕.

The truth table for⇒ may not quite fit one’s intuitive understanding of “P implies Q”
or “if P then Q.” For one thing, propositional logic does not require any relation of causation
or relevance between P and Q. The sentence “5 is odd implies Tokyo is the capital of Japan”
is a true sentence of propositional logic (under the normal interpretation), even though it is
a decidedly odd sentence of English. Another point of confusion is that any implication is
true whenever its antecedent is false. For example, “5 is even implies Sam is smart” is true,
regardless of whether Sam is smart. This seems bizarre, but it makes sense if you think of
“P ⇒ Q” as saying, “If P is true, then I am claiming that Q is true. Otherwise I am making
no claim.” The only way for this sentence to be false is if P is true but Q is false.

The biconditional, P ⇔ Q, is true whenever both P ⇒ Q and Q ⇒ P are true. In
English, this is often written as “P if and only if Q.” Many of the rules of the wumpus world
are best written using ⇔. For example, a square is breezy if a neighboring square has a pit,
and a square is breezy only if a neighboring square has a pit. So we need a biconditional,

B1,1 ⇔ (P1,2 ∨ P2,1) ,

where B1,1 means that there is a breeze in [1,1].

7.4.3 A simple knowledge base

Now that we have defined the semantics for propositional logic, we can construct a knowledge
base for the wumpus world. We focus first on the immutable aspects of the wumpus world,
leaving the mutable aspects for a later section. For now, we need the following symbols for
each [x, y] location:

7 Latin has a separate word, aut, for exclusive or.
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Px,y is true if there is a pit in [x, y].
Wx,y is true if there is a wumpus in [x, y], dead or alive.
Bx,y is true if the agent perceives a breeze in [x, y].
Sx,y is true if the agent perceives a stench in [x, y].

The sentences we write will suffice to derive ¬P1,2 (there is no pit in [1,2]), as was done
informally in Section 7.3. We label each sentence Ri so that we can refer to them:

• There is no pit in [1,1]:

R1 : ¬P1,1 .

• A square is breezy if and only if there is a pit in a neighboring square. This has to be
stated for each square; for now, we include just the relevant squares:

R2 : B1,1 ⇔ (P1,2 ∨ P2,1) .

R3 : B2,1 ⇔ (P1,1 ∨ P2,2 ∨ P3,1) .

• The preceding sentences are true in all wumpus worlds. Now we include the breeze
percepts for the first two squares visited in the specific world the agent is in, leading up
to the situation in Figure 7.3(b).

R4 : ¬B1,1 .

R5 : B2,1 .

7.4.4 A simple inference procedure

Our goal now is to decide whether KB |= α for some sentence α. For example, is ¬P1,2

entailed by our KB? Our first algorithm for inference is a model-checking approach that is a
direct implementation of the definition of entailment: enumerate the models, and check that
α is true in every model in which KB is true. Models are assignments of true or false to
every proposition symbol. Returning to our wumpus-world example, the relevant proposi-
tion symbols are B1,1, B2,1, P1,1, P1,2, P2,1, P2,2, and P3,1. With seven symbols, there are
27 = 128 possible models; in three of these, KB is true (Figure 7.9). In those three models,
¬P1,2 is true, hence there is no pit in [1,2]. On the other hand, P2,2 is true in two of the three
models and false in one, so we cannot yet tell whether there is a pit in [2,2].

Figure 7.9 reproduces in a more precise form the reasoning illustrated in Figure 7.5. A
general algorithm for deciding entailment in propositional logic is shown in Figure 7.10. Like
the BACKTRACKING-SEARCH algorithm on page 215, TT-ENTAILS? performs a recursive
enumeration of a finite space of assignments to symbols. The algorithm is sound because it
implements directly the definition of entailment, and complete because it works for any KB

and α and always terminates—there are only finitely many models to examine.
Of course, “finitely many” is not always the same as “few.” If KB and α contain n

symbols in all, then there are 2n models. Thus, the time complexity of the algorithm is
O(2n). (The space complexity is only O(n) because the enumeration is depth-first.) Later in
this chapter we show algorithms that are much more efficient in many cases. Unfortunately,
propositional entailment is co-NP-complete (i.e., probably no easier than NP-complete—see
Appendix A), so every known inference algorithm for propositional logic has a worst-case
complexity that is exponential in the size of the input.
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B1,1 B2,1 P1,1 P1,2 P2,1 P2,2 P3,1 R1 R2 R3 R4 R5 KB

false false false false false false false true true true true false false

false false false false false false true true true false true false false
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...
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...
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...

false true false false false false false true true false true true false

false true false false false false true true true true true true true

false true false false false true false true true true true true true

false true false false false true true true true true true true true

false true false false true false false true false false true true false
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...

true true true true true true true false true true false true false

Figure 7.9 A truth table constructed for the knowledge base given in the text. KB is true
if R1 through R5 are true, which occurs in just 3 of the 128 rows (the ones underlined in the
right-hand column). In all 3 rows, P1,2 is false, so there is no pit in [1,2]. On the other hand,
there might (or might not) be a pit in [2,2].

function TT-ENTAILS?(KB , α) returns true or false

inputs: KB , the knowledge base, a sentence in propositional logic
α, the query, a sentence in propositional logic

symbols← a list of the proposition symbols in KB and α

return TT-CHECK-ALL(KB , α, symbols ,{ })

function TT-CHECK-ALL(KB , α, symbols ,model ) returns true or false

if EMPTY?(symbols) then
if PL-TRUE?(KB ,model ) then return PL-TRUE?(α,model )
else return true // when KB is false, always return true

else do
P← FIRST(symbols)
rest←REST(symbols)
return (TT-CHECK-ALL(KB , α, rest ,model ∪ {P = true})

and
TT-CHECK-ALL(KB , α, rest ,model ∪ {P = false }))

Figure 7.10 A truth-table enumeration algorithm for deciding propositional entailment.
(TT stands for truth table.) PL-TRUE? returns true if a sentence holds within a model. The
variable model represents a partial model—an assignment to some of the symbols. The key-
word “and” is used here as a logical operation on its two arguments, returning true or false .
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(α ∧ β) ≡ (β ∧ α) commutativity of ∧
(α ∨ β) ≡ (β ∨ α) commutativity of ∨

((α ∧ β) ∧ γ) ≡ (α ∧ (β ∧ γ)) associativity of ∧
((α ∨ β) ∨ γ) ≡ (α ∨ (β ∨ γ)) associativity of ∨

¬(¬α) ≡ α double-negation elimination
(α ⇒ β) ≡ (¬β ⇒ ¬α) contraposition
(α ⇒ β) ≡ (¬α ∨ β) implication elimination
(α ⇔ β) ≡ ((α ⇒ β) ∧ (β ⇒ α)) biconditional elimination
¬(α ∧ β) ≡ (¬α ∨ ¬β) De Morgan
¬(α ∨ β) ≡ (¬α ∧ ¬β) De Morgan

(α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ)) distributivity of ∧ over ∨
(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ)) distributivity of ∨ over ∧

Figure 7.11 Standard logical equivalences. The symbols α, β, and γ stand for arbitrary
sentences of propositional logic.

7.5 PROPOSITIONAL THEOREM PROVING

So far, we have shown how to determine entailment by model checking: enumerating models
and showing that the sentence must hold in all models. In this section, we show how entail-
ment can be done by theorem proving—applying rules of inference directly to the sentencesTHEOREM PROVING

in our knowledge base to construct a proof of the desired sentence without consulting models.
If the number of models is large but the length of the proof is short, then theorem proving can
be more efficient than model checking.

Before we plunge into the details of theorem-proving algorithms, we will need some
additional concepts related to entailment. The first concept is logical equivalence: two sen-LOGICAL

EQUIVALENCE

tences α and β are logically equivalent if they are true in the same set of models. We write
this as α ≡ β. For example, we can easily show (using truth tables) that P ∧ Q and Q ∧ P

are logically equivalent; other equivalences are shown in Figure 7.11. These equivalences
play much the same role in logic as arithmetic identities do in ordinary mathematics. An
alternative definition of equivalence is as follows: any two sentences α and β are equivalent
only if each of them entails the other:

α ≡ β if and only if α |= β and β |= α .

The second concept we will need is validity. A sentence is valid if it is true in all models. ForVALIDITY

example, the sentence P ∨¬P is valid. Valid sentences are also known as tautologies—theyTAUTOLOGY

are necessarily true. Because the sentence True is true in all models, every valid sentence
is logically equivalent to True . What good are valid sentences? From our definition of
entailment, we can derive the deduction theorem, which was known to the ancient Greeks:DEDUCTION

THEOREM

For any sentences α and β, α |= β if and only if the sentence (α⇒ β) is valid.
(Exercise 7.5 asks for a proof.) Hence, we can decide if α |= β by checking that (α ⇒ β) is
true in every model—which is essentially what the inference algorithm in Figure 7.10 does—
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or by proving that (α ⇒ β) is equivalent to True . Conversely, the deduction theorem states
that every valid implication sentence describes a legitimate inference.

The final concept we will need is satisfiability. A sentence is satisfiable if it is trueSATISFIABILITY

in, or satisfied by, some model. For example, the knowledge base given earlier, (R1 ∧ R2 ∧

R3 ∧ R4 ∧ R5), is satisfiable because there are three models in which it is true, as shown
in Figure 7.9. Satisfiability can be checked by enumerating the possible models until one is
found that satisfies the sentence. The problem of determining the satisfiability of sentences
in propositional logic—the SAT problem—was the first problem proved to be NP-complete.SAT

Many problems in computer science are really satisfiability problems. For example, all the
constraint satisfaction problems in Chapter 6 ask whether the constraints are satisfiable by
some assignment.

Validity and satisfiability are of course connected: α is valid iff ¬α is unsatisfiable;
contrapositively, α is satisfiable iff ¬α is not valid. We also have the following useful result:

α |= β if and only if the sentence (α ∧ ¬β) is unsatisfiable.
Proving β from α by checking the unsatisfiability of (α ∧ ¬β) corresponds exactly to the
standard mathematical proof technique of reductio ad absurdum (literally, “reduction to anREDUCTIO AD

ABSURDUM

absurd thing”). It is also called proof by refutation or proof by contradiction. One assumes aREFUTATION

CONTRADICTION sentence β to be false and shows that this leads to a contradiction with known axioms α. This
contradiction is exactly what is meant by saying that the sentence (α ∧ ¬β) is unsatisfiable.

7.5.1 Inference and proofs

This section covers inference rules that can be applied to derive a proof—a chain of conclu-INFERENCE RULES

PROOF sions that leads to the desired goal. The best-known rule is called Modus Ponens (Latin for
MODUS PONENS mode that affirms) and is written

α ⇒ β, α

β

.

The notation means that, whenever any sentences of the form α ⇒ β and α are given, then
the sentence β can be inferred. For example, if (WumpusAhead ∧WumpusAlive)⇒ Shoot

and (WumpusAhead ∧WumpusAlive) are given, then Shoot can be inferred.
Another useful inference rule is And-Elimination, which says that, from a conjunction,AND­ELIMINATION

any of the conjuncts can be inferred:
α ∧ β

α

.

For example, from (WumpusAhead ∧WumpusAlive), WumpusAlive can be inferred.
By considering the possible truth values of α and β, one can show easily that Modus

Ponens and And-Elimination are sound once and for all. These rules can then be used in
any particular instances where they apply, generating sound inferences without the need for
enumerating models.

All of the logical equivalences in Figure 7.11 can be used as inference rules. For exam-
ple, the equivalence for biconditional elimination yields the two inference rules

α ⇔ β

(α ⇒ β) ∧ (β ⇒ α)
and

(α ⇒ β) ∧ (β ⇒ α)

α ⇔ β

.
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Not all inference rules work in both directions like this. For example, we cannot run Modus
Ponens in the opposite direction to obtain α⇒ β and α from β.

Let us see how these inference rules and equivalences can be used in the wumpus world.
We start with the knowledge base containing R1 through R5 and show how to prove ¬P1,2,
that is, there is no pit in [1,2]. First, we apply biconditional elimination to R2 to obtain

R6 : (B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) ⇒ B1,1) .

Then we apply And-Elimination to R6 to obtain

R7 : ((P1,2 ∨ P2,1) ⇒ B1,1) .

Logical equivalence for contrapositives gives

R8 : (¬B1,1 ⇒ ¬(P1,2 ∨ P2,1)) .

Now we can apply Modus Ponens with R8 and the percept R4 (i.e., ¬B1,1), to obtain

R9 : ¬(P1,2 ∨ P2,1) .

Finally, we apply De Morgan’s rule, giving the conclusion

R10 : ¬P1,2 ∧ ¬P2,1 .

That is, neither [1,2] nor [2,1] contains a pit.
We found this proof by hand, but we can apply any of the search algorithms in Chapter 3

to find a sequence of steps that constitutes a proof. We just need to define a proof problem as
follows:

• INITIAL STATE: the initial knowledge base.

• ACTIONS: the set of actions consists of all the inference rules applied to all the sen-
tences that match the top half of the inference rule.

• RESULT: the result of an action is to add the sentence in the bottom half of the inference
rule.

• GOAL: the goal is a state that contains the sentence we are trying to prove.

Thus, searching for proofs is an alternative to enumerating models. In many practical cases
finding a proof can be more efficient because the proof can ignore irrelevant propositions, no
matter how many of them there are. For example, the proof given earlier leading to ¬P1,2 ∧

¬P2,1 does not mention the propositions B2,1, P1,1, P2,2, or P3,1. They can be ignored
because the goal proposition, P1,2, appears only in sentence R2; the other propositions in R2

appear only in R4 and R2; so R1, R3, and R5 have no bearing on the proof. The same would
hold even if we added a million more sentences to the knowledge base; the simple truth-table
algorithm, on the other hand, would be overwhelmed by the exponential explosion of models.

One final property of logical systems is monotonicity, which says that the set of en-MONOTONICITY

tailed sentences can only increase as information is added to the knowledge base.8 For any
sentences α and β,

if KB |= α then KB ∧ β |= α .

8 Nonmonotonic logics, which violate the monotonicity property, capture a common property of human rea-
soning: changing one’s mind. They are discussed in Section 12.6.
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For example, suppose the knowledge base contains the additional assertion β stating that there
are exactly eight pits in the world. This knowledge might help the agent draw additional con-
clusions, but it cannot invalidate any conclusion α already inferred—such as the conclusion
that there is no pit in [1,2]. Monotonicity means that inference rules can be applied whenever
suitable premises are found in the knowledge base—the conclusion of the rule must follow
regardless of what else is in the knowledge base.

7.5.2 Proof by resolution

We have argued that the inference rules covered so far are sound, but we have not discussed
the question of completeness for the inference algorithms that use them. Search algorithms
such as iterative deepening search (page 89) are complete in the sense that they will find
any reachable goal, but if the available inference rules are inadequate, then the goal is not
reachable—no proof exists that uses only those inference rules. For example, if we removed
the biconditional elimination rule, the proof in the preceding section would not go through.
The current section introduces a single inference rule, resolution, that yields a complete
inference algorithm when coupled with any complete search algorithm.

We begin by using a simple version of the resolution rule in the wumpus world. Let us
consider the steps leading up to Figure 7.4(a): the agent returns from [2,1] to [1,1] and then
goes to [1,2], where it perceives a stench, but no breeze. We add the following facts to the
knowledge base:

R11 : ¬B1,2 .

R12 : B1,2 ⇔ (P1,1 ∨ P2,2 ∨ P1,3) .

By the same process that led to R10 earlier, we can now derive the absence of pits in [2,2]
and [1,3] (remember that [1,1] is already known to be pitless):

R13 : ¬P2,2 .

R14 : ¬P1,3 .

We can also apply biconditional elimination to R3, followed by Modus Ponens with R5, to
obtain the fact that there is a pit in [1,1], [2,2], or [3,1]:

R15 : P1,1 ∨ P2,2 ∨ P3,1 .

Now comes the first application of the resolution rule: the literal ¬P2,2 in R13 resolves with
the literal P2,2 in R15 to give the resolventRESOLVENT

R16 : P1,1 ∨ P3,1 .

In English; if there’s a pit in one of [1,1], [2,2], and [3,1] and it’s not in [2,2], then it’s in [1,1]
or [3,1]. Similarly, the literal ¬P1,1 in R1 resolves with the literal P1,1 in R16 to give

R17 : P3,1 .

In English: if there’s a pit in [1,1] or [3,1] and it’s not in [1,1], then it’s in [3,1]. These last
two inference steps are examples of the unit resolution inference rule,UNIT RESOLUTION

ℓ1 ∨ · · · ∨ ℓk, m

ℓ1 ∨ · · · ∨ ℓi−1 ∨ ℓi+1 ∨ · · · ∨ ℓk

,

where each ℓ is a literal and ℓi and m are complementary literals (i.e., one is the negationCOMPLEMENTARY

LITERALS
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of the other). Thus, the unit resolution rule takes a clause—a disjunction of literals—and aCLAUSE

literal and produces a new clause. Note that a single literal can be viewed as a disjunction of
one literal, also known as a unit clause.UNIT CLAUSE

The unit resolution rule can be generalized to the full resolution rule,RESOLUTION

ℓ1 ∨ · · · ∨ ℓk, m1 ∨ · · · ∨mn

ℓ1 ∨ · · · ∨ ℓi−1 ∨ ℓi+1 ∨ · · · ∨ ℓk ∨m1 ∨ · · · ∨mj−1 ∨mj+1 ∨ · · · ∨mn

,

where ℓi and mj are complementary literals. This says that resolution takes two clauses and
produces a new clause containing all the literals of the two original clauses except the two
complementary literals. For example, we have

P1,1 ∨ P3,1, ¬P1,1 ∨ ¬P2,2

P3,1 ∨ ¬P2,2

.

There is one more technical aspect of the resolution rule: the resulting clause should contain
only one copy of each literal.9 The removal of multiple copies of literals is called factoring.FACTORING

For example, if we resolve (A ∨B) with (A ∨ ¬B), we obtain (A ∨A), which is reduced to
just A.

The soundness of the resolution rule can be seen easily by considering the literal ℓi that
is complementary to literal mj in the other clause. If ℓi is true, then mj is false, and hence
m1 ∨ · · · ∨mj−1 ∨mj+1 ∨ · · · ∨mn must be true, because m1 ∨ · · · ∨mn is given. If ℓi is
false, then ℓ1 ∨ · · · ∨ ℓi−1 ∨ ℓi+1 ∨ · · · ∨ ℓk must be true because ℓ1 ∨ · · · ∨ ℓk is given. Now
ℓi is either true or false, so one or other of these conclusions holds—exactly as the resolution
rule states.

What is more surprising about the resolution rule is that it forms the basis for a family
of complete inference procedures. A resolution-based theorem prover can, for any sentences
α and β in propositional logic, decide whether α |= β. The next two subsections explain
how resolution accomplishes this.

Conjunctive normal form

The resolution rule applies only to clauses (that is, disjunctions of literals), so it would seem
to be relevant only to knowledge bases and queries consisting of clauses. How, then, can
it lead to a complete inference procedure for all of propositional logic? The answer is that
every sentence of propositional logic is logically equivalent to a conjunction of clauses. A
sentence expressed as a conjunction of clauses is said to be in conjunctive normal form orCONJUNCTIVE

NORMAL FORM

CNF (see Figure 7.14). We now describe a procedure for converting to CNF. We illustrate
the procedure by converting the sentence B1,1 ⇔ (P1,2 ∨ P2,1) into CNF. The steps are as
follows:

1. Eliminate⇔, replacing α⇔ β with (α ⇒ β) ∧ (β ⇒ α).

(B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) ⇒ B1,1) .

2. Eliminate⇒, replacing α⇒ β with ¬α ∨ β:

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨B1,1) .

9 If a clause is viewed as a set of literals, then this restriction is automatically respected. Using set notation for
clauses makes the resolution rule much cleaner, at the cost of introducing additional notation.
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3. CNF requires ¬ to appear only in literals, so we “move ¬ inwards” by repeated appli-
cation of the following equivalences from Figure 7.11:

¬(¬α) ≡ α (double-negation elimination)
¬(α ∧ β) ≡ (¬α ∨ ¬β) (De Morgan)
¬(α ∨ β) ≡ (¬α ∧ ¬β) (De Morgan)

In the example, we require just one application of the last rule:

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨B1,1) .

4. Now we have a sentence containing nested ∧ and ∨ operators applied to literals. We
apply the distributivity law from Figure 7.11, distributing ∨ over ∧ wherever possible.

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨B1,1) ∧ (¬P2,1 ∨B1,1) .

The original sentence is now in CNF, as a conjunction of three clauses. It is much harder to
read, but it can be used as input to a resolution procedure.

A resolution algorithm

Inference procedures based on resolution work by using the principle of proof by contradic-
tion introduced on page 250. That is, to show that KB |= α, we show that (KB ∧ ¬α) is
unsatisfiable. We do this by proving a contradiction.

A resolution algorithm is shown in Figure 7.12. First, (KB ∧ ¬α) is converted into
CNF. Then, the resolution rule is applied to the resulting clauses. Each pair that contains
complementary literals is resolved to produce a new clause, which is added to the set if it is
not already present. The process continues until one of two things happens:

• there are no new clauses that can be added, in which case KB does not entail α; or,

• two clauses resolve to yield the empty clause, in which case KB entails α.

The empty clause—a disjunction of no disjuncts—is equivalent to False because a disjunction
is true only if at least one of its disjuncts is true. Another way to see that an empty clause
represents a contradiction is to observe that it arises only from resolving two complementary
unit clauses such as P and ¬P .

We can apply the resolution procedure to a very simple inference in the wumpus world.
When the agent is in [1,1], there is no breeze, so there can be no pits in neighboring squares.
The relevant knowledge base is

KB = R2 ∧R4 = (B1,1 ⇔ (P1,2 ∨ P2,1)) ∧ ¬B1,1

and we wish to prove α which is, say, ¬P1,2. When we convert (KB ∧ ¬α) into CNF, we
obtain the clauses shown at the top of Figure 7.13. The second row of the figure shows
clauses obtained by resolving pairs in the first row. Then, when P1,2 is resolved with ¬P1,2,
we obtain the empty clause, shown as a small square. Inspection of Figure 7.13 reveals that
many resolution steps are pointless. For example, the clause B1,1∨¬B1,1∨P1,2 is equivalent
to True ∨ P1,2 which is equivalent to True . Deducing that True is true is not very helpful.
Therefore, any clause in which two complementary literals appear can be discarded.
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function PL-RESOLUTION(KB , α) returns true or false

inputs: KB , the knowledge base, a sentence in propositional logic
α, the query, a sentence in propositional logic

clauses← the set of clauses in the CNF representation of KB ∧ ¬α

new←{}

loop do
for each pair of clauses Ci, Cj in clauses do

resolvents← PL-RESOLVE(Ci, Cj )
if resolvents contains the empty clause then return true

new←new ∪ resolvents

if new ⊆ clauses then return false

clauses← clauses ∪new

Figure 7.12 A simple resolution algorithm for propositional logic. The function
PL-RESOLVE returns the set of all possible clauses obtained by resolving its two inputs.

¬P2,1  B1,1 ¬B1,1  P1,2  P2,1 ¬P1,2  B1,1 ¬B1,1 P1,2

¬P2,1 ¬P1,2P1,2   P2,1  ¬P2,1 ¬B1,1  P2,1  B1,1 P1,2  P2,1  ¬P1,2¬B1,1  P1,2  B1,1

^ ^ ^

^^ ^ ^ ^ ^ ^ ^

^

Figure 7.13 Partial application of PL-RESOLUTION to a simple inference in the wumpus
world. ¬P1,2 is shown to follow from the first four clauses in the top row.

Completeness of resolution

To conclude our discussion of resolution, we now show why PL-RESOLUTION is complete.
To do this, we introduce the resolution closure RC (S) of a set of clauses S, which is the setRESOLUTION

CLOSURE

of all clauses derivable by repeated application of the resolution rule to clauses in S or their
derivatives. The resolution closure is what PL-RESOLUTION computes as the final value of
the variable clauses . It is easy to see that RC (S) must be finite, because there are only finitely
many distinct clauses that can be constructed out of the symbols P1, . . . , Pk that appear in S.
(Notice that this would not be true without the factoring step that removes multiple copies of
literals.) Hence, PL-RESOLUTION always terminates.

The completeness theorem for resolution in propositional logic is called the ground
resolution theorem:

GROUND

RESOLUTION

THEOREM

If a set of clauses is unsatisfiable, then the resolution closure of those clauses
contains the empty clause.

This theorem is proved by demonstrating its contrapositive: if the closure RC (S) does not
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contain the empty clause, then S is satisfiable. In fact, we can construct a model for S with
suitable truth values for P1, . . . , Pk. The construction procedure is as follows:

For i from 1 to k,

– If a clause in RC (S) contains the literal ¬Pi and all its other literals are false under
the assignment chosen for P1, . . . , Pi−1, then assign false to Pi.

– Otherwise, assign true to Pi.

This assignment to P1, . . . , Pk is a model of S. To see this, assume the opposite—that, at
some stage i in the sequence, assigning symbol Pi causes some clause C to become false.
For this to happen, it must be the case that all the other literals in C must already have been
falsified by assignments to P1, . . . , Pi−1. Thus, C must now look like either (false ∨ false ∨

· · · false∨Pi) or like (false∨false∨· · · false∨¬Pi). If just one of these two is in RC(S), then
the algorithm will assign the appropriate truth value to Pi to make C true, so C can only be
falsified if both of these clauses are in RC(S). Now, since RC(S) is closed under resolution,
it will contain the resolvent of these two clauses, and that resolvent will have all of its literals
already falsified by the assignments to P1, . . . , Pi−1. This contradicts our assumption that
the first falsified clause appears at stage i. Hence, we have proved that the construction never
falsifies a clause in RC(S); that is, it produces a model of RC(S) and thus a model of S

itself (since S is contained in RC(S)).

7.5.3 Horn clauses and definite clauses

The completeness of resolution makes it a very important inference method. In many practical
situations, however, the full power of resolution is not needed. Some real-world knowledge
bases satisfy certain restrictions on the form of sentences they contain, which enables them
to use a more restricted and efficient inference algorithm.

One such restricted form is the definite clause, which is a disjunction of literals ofDEFINITE CLAUSE

which exactly one is positive. For example, the clause (¬L1,1 ∨¬Breeze ∨B1,1) is a definite
clause, whereas (¬B1,1 ∨ P1,2 ∨ P2,1) is not.

Slightly more general is the Horn clause, which is a disjunction of literals of which atHORN CLAUSE

most one is positive. So all definite clauses are Horn clauses, as are clauses with no positive
literals; these are called goal clauses. Horn clauses are closed under resolution: if you resolveGOAL CLAUSES

two Horn clauses, you get back a Horn clause.
Knowledge bases containing only definite clauses are interesting for three reasons:

1. Every definite clause can be written as an implication whose premise is a conjunction
of positive literals and whose conclusion is a single positive literal. (See Exercise 7.13.)
For example, the definite clause (¬L1,1 ∨ ¬Breeze ∨ B1,1) can be written as the im-
plication (L1,1 ∧ Breeze) ⇒ B1,1. In the implication form, the sentence is easier to
understand: it says that if the agent is in [1,1] and there is a breeze, then [1,1] is breezy.
In Horn form, the premise is called the body and the conclusion is called the head. ABODY

HEAD sentence consisting of a single positive literal, such as L1,1, is called a fact. It too can
FACT be written in implication form as True ⇒ L1,1, but it is simpler to write just L1,1.
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CNFSentence → Clause1 ∧ · · · ∧ Clausen

Clause → Literal1 ∨ · · · ∨ Literalm

Literal → Symbol | ¬Symbol

Symbol → P | Q | R | . . .

HornClauseForm → DefiniteClauseForm | GoalClauseForm

DefiniteClauseForm → (Symbol
1
∧ · · · ∧ Symbol l) ⇒ Symbol

GoalClauseForm → (Symbol
1
∧ · · · ∧ Symbol l) ⇒ False

Figure 7.14 A grammar for conjunctive normal form, Horn clauses, and definite clauses.
A clause such as A ∧ B ⇒ C is still a definite clause when it is written as ¬A ∨ ¬B ∨ C,
but only the former is considered the canonical form for definite clauses. One more class is
the k-CNF sentence, which is a CNF sentence where each clause has at most k literals.

2. Inference with Horn clauses can be done through the forward-chaining and backward-FORWARD­CHAINING

chaining algorithms, which we explain next. Both of these algorithms are natural,BACKWARD­

CHAINING

in that the inference steps are obvious and easy for humans to follow. This type of
inference is the basis for logic programming, which is discussed in Chapter 9.

3. Deciding entailment with Horn clauses can be done in time that is linear in the size of
the knowledge base—a pleasant surprise.

7.5.4 Forward and backward chaining

The forward-chaining algorithm PL-FC-ENTAILS?(KB , q) determines if a single proposi-
tion symbol q—the query—is entailed by a knowledge base of definite clauses. It begins
from known facts (positive literals) in the knowledge base. If all the premises of an implica-
tion are known, then its conclusion is added to the set of known facts. For example, if L1,1

and Breeze are known and (L1,1 ∧ Breeze) ⇒ B1,1 is in the knowledge base, then B1,1 can
be added. This process continues until the query q is added or until no further inferences can
be made. The detailed algorithm is shown in Figure 7.15; the main point to remember is that
it runs in linear time.

The best way to understand the algorithm is through an example and a picture. Fig-
ure 7.16(a) shows a simple knowledge base of Horn clauses with A and B as known facts.
Figure 7.16(b) shows the same knowledge base drawn as an AND–OR graph (see Chap-
ter 4). In AND–OR graphs, multiple links joined by an arc indicate a conjunction—every
link must be proved—while multiple links without an arc indicate a disjunction—any link
can be proved. It is easy to see how forward chaining works in the graph. The known leaves
(here, A and B) are set, and inference propagates up the graph as far as possible. Wher-
ever a conjunction appears, the propagation waits until all the conjuncts are known before
proceeding. The reader is encouraged to work through the example in detail.
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function PL-FC-ENTAILS?(KB , q) returns true or false

inputs: KB , the knowledge base, a set of propositional definite clauses
q , the query, a proposition symbol

count← a table, where count[c] is the number of symbols in c’s premise
inferred← a table, where inferred [s] is initially false for all symbols
agenda← a queue of symbols, initially symbols known to be true in KB

while agenda is not empty do
p← POP(agenda)
if p = q then return true

if inferred [p] = false then
inferred [p]← true

for each clause c in KB where p is in c.PREMISE do
decrement count[c]
if count[c] = 0 then add c.CONCLUSION to agenda

return false

Figure 7.15 The forward-chaining algorithm for propositional logic. The agenda keeps
track of symbols known to be true but not yet “processed.” The count table keeps track of
how many premises of each implication are as yet unknown. Whenever a new symbol p from
the agenda is processed, the count is reduced by one for each implication in whose premise
p appears (easily identified in constant time with appropriate indexing.) If a count reaches
zero, all the premises of the implication are known, so its conclusion can be added to the
agenda. Finally, we need to keep track of which symbols have been processed; a symbol that
is already in the set of inferred symbols need not be added to the agenda again. This avoids
redundant work and prevents loops caused by implications such as P ⇒ Q and Q⇒ P .

It is easy to see that forward chaining is sound: every inference is essentially an appli-
cation of Modus Ponens. Forward chaining is also complete: every entailed atomic sentence
will be derived. The easiest way to see this is to consider the final state of the inferred table
(after the algorithm reaches a fixed point where no new inferences are possible). The tableFIXED POINT

contains true for each symbol inferred during the process, and false for all other symbols.
We can view the table as a logical model; moreover, every definite clause in the original KB is
true in this model. To see this, assume the opposite, namely that some clause a1∧. . .∧ak ⇒ b

is false in the model. Then a1 ∧ . . . ∧ ak must be true in the model and b must be false in
the model. But this contradicts our assumption that the algorithm has reached a fixed point!
We can conclude, therefore, that the set of atomic sentences inferred at the fixed point defines
a model of the original KB. Furthermore, any atomic sentence q that is entailed by the KB
must be true in all its models and in this model in particular. Hence, every entailed atomic
sentence q must be inferred by the algorithm.

Forward chaining is an example of the general concept of data-driven reasoning—thatDATA­DRIVEN

is, reasoning in which the focus of attention starts with the known data. It can be used within
an agent to derive conclusions from incoming percepts, often without a specific query in
mind. For example, the wumpus agent might TELL its percepts to the knowledge base using
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P ⇒ Q

L ∧M ⇒ P

B ∧ L ⇒ M

A ∧ P ⇒ L

A ∧B ⇒ L

A

B

Q

P

M

L

BA
(a) (b)

Figure 7.16 (a) A set of Horn clauses. (b) The corresponding AND–OR graph.

an incremental forward-chaining algorithm in which new facts can be added to the agenda to
initiate new inferences. In humans, a certain amount of data-driven reasoning occurs as new
information arrives. For example, if I am indoors and hear rain starting to fall, it might occur
to me that the picnic will be canceled. Yet it will probably not occur to me that the seventeenth
petal on the largest rose in my neighbor’s garden will get wet; humans keep forward chaining
under careful control, lest they be swamped with irrelevant consequences.

The backward-chaining algorithm, as its name suggests, works backward from the
query. If the query q is known to be true, then no work is needed. Otherwise, the algorithm
finds those implications in the knowledge base whose conclusion is q . If all the premises of
one of those implications can be proved true (by backward chaining), then q is true. When
applied to the query Q in Figure 7.16, it works back down the graph until it reaches a set of
known facts, A and B, that forms the basis for a proof. The algorithm is essentially identical
to the AND-OR-GRAPH-SEARCH algorithm in Figure 4.11. As with forward chaining, an
efficient implementation runs in linear time.

Backward chaining is a form of goal-directed reasoning. It is useful for answeringGOAL­DIRECTED

REASONING

specific questions such as “What shall I do now?” and “Where are my keys?” Often, the cost
of backward chaining is much less than linear in the size of the knowledge base, because the
process touches only relevant facts.

7.6 EFFECTIVE PROPOSITIONAL MODEL CHECKING

In this section, we describe two families of efficient algorithms for general propositional
inference based on model checking: One approach based on backtracking search, and one
on local hill-climbing search. These algorithms are part of the “technology” of propositional
logic. This section can be skimmed on a first reading of the chapter.
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