
1 INTRODUCTION

In which we try to explain why we consider artificial intelligence to be a subject
most worthy of study, and in which we try to decide what exactly it is, this being a
good thing to decide before embarking.

We call ourselves Homo sapiens—man the wise—because our intelligence is so importantINTELLIGENCE

to us. For thousands of years, we have tried to understand how we think; that is, how a mere
handful of matter can perceive, understand, predict, and manipulate a world far larger and
more complicated than itself. The field of artificial intelligence, or AI, goes further still: itARTIFICIAL

INTELLIGENCE

attempts not just to understand but also to build intelligent entities.
AI is one of the newest fields in science and engineering. Work started in earnest soon

after World War II, and the name itself was coined in 1956. Along with molecular biology,
AI is regularly cited as the “field I would most like to be in” by scientists in other disciplines.
A student in physics might reasonably feel that all the good ideas have already been taken by
Galileo, Newton, Einstein, and the rest. AI, on the other hand, still has openings for several
full-time Einsteins and Edisons.

AI currently encompasses a huge variety of subfields, ranging from the general (learning
and perception) to the specific, such as playing chess, proving mathematical theorems, writing
poetry, driving a car on a crowded street, and diagnosing diseases. AI is relevant to any
intellectual task; it is truly a universal field.

1.1 WHAT IS AI?

We have claimed that AI is exciting, but we have not said what it is. In Figure 1.1 we see
eight definitions of AI, laid out along two dimensions. The definitions on top are concerned
with thought processes and reasoning, whereas the ones on the bottom address behavior. The
definitions on the left measure success in terms of fidelity to human performance, whereas
the ones on the right measure against an ideal performance measure, called rationality. ARATIONALITY

system is rational if it does the “right thing,” given what it knows.
Historically, all four approaches to AI have been followed, each by different people

with different methods. A human-centered approach must be in part an empirical science, in-

1

2 Chapter 1. Introduction

Thinking Humanly Thinking Rationally
“The exciting new effort to make comput-
ers think . . . machines with minds, in the
full and literal sense.” (Haugeland, 1985)

“The study of mental faculties through the
use of computational models.”
(Charniak and McDermott, 1985)

“[The automation of] activities that we
associate with human thinking, activities
such as decision-making, problem solv-
ing, learning . . .” (Bellman, 1978)

“The study of the computations that make
it possible to perceive, reason, and act.”
(Winston, 1992)

Acting Humanly Acting Rationally

“The art of creating machines that per-
form functions that require intelligence
when performed by people.” (Kurzweil,
1990)

“Computational Intelligence is the study
of the design of intelligent agents.” (Poole
et al., 1998)

“The study of how to make computers do
things at which, at the moment, people are
better.” (Rich and Knight, 1991)

“AI . . . is concerned with intelligent be-
havior in artifacts.” (Nilsson, 1998)

Figure 1.1 Some definitions of artificial intelligence, organized into four categories.

volving observations and hypotheses about human behavior. A rationalist1 approach involves
a combination of mathematics and engineering. The various group have both disparaged and
helped each other. Let us look at the four approaches in more detail.

1.1.1 Acting humanly: The Turing Test approach

The Turing Test, proposed by Alan Turing (1950), was designed to provide a satisfactoryTURING TEST

operational definition of intelligence. A computer passes the test if a human interrogator, after
posing some written questions, cannot tell whether the written responses come from a person
or from a computer. Chapter 26 discusses the details of the test and whether a computer would
really be intelligent if it passed. For now, we note that programming a computer to pass a
rigorously applied test provides plenty to work on. The computer would need to possess the
following capabilities:

• natural language processing to enable it to communicate successfully in English;NATURAL LANGUAGE

PROCESSING

• knowledge representation to store what it knows or hears;KNOWLEDGE

REPRESENTATION

• automated reasoning to use the stored information to answer questions and to drawAUTOMATED

REASONING

new conclusions;

• machine learning to adapt to new circumstances and to detect and extrapolate patterns.MACHINE LEARNING

1 By distinguishing between human and rational behavior, we are not suggesting that humans are necessarily
“irrational” in the sense of “emotionally unstable” or “insane.” One merely need note that we are not perfect:
not all chess players are grandmasters; and, unfortunately, not everyone gets an A on the exam. Some systematic
errors in human reasoning are cataloged by Kahneman et al. (1982).

Section 1.1. What Is AI? 3

Turing’s test deliberately avoided direct physical interaction between the interrogator and the
computer, because physical simulation of a person is unnecessary for intelligence. However,
the so-called total Turing Test includes a video signal so that the interrogator can test theTOTAL TURING TEST

subject’s perceptual abilities, as well as the opportunity for the interrogator to pass physical
objects “through the hatch.” To pass the total Turing Test, the computer will need

• computer vision to perceive objects, andCOMPUTER VISION

• robotics to manipulate objects and move about.ROBOTICS

These six disciplines compose most of AI, and Turing deserves credit for designing a test
that remains relevant 60 years later. Yet AI researchers have devoted little effort to passing
the Turing Test, believing that it is more important to study the underlying principles of in-
telligence than to duplicate an exemplar. The quest for “artificial flight” succeeded when the
Wright brothers and others stopped imitating birds and started using wind tunnels and learn-
ing about aerodynamics. Aeronautical engineering texts do not define the goal of their field
as making “machines that fly so exactly like pigeons that they can fool even other pigeons.”

1.1.2 Thinking humanly: The cognitive modeling approach

If we are going to say that a given program thinks like a human, we must have some way of
determining how humans think. We need to get inside the actual workings of human minds.
There are three ways to do this: through introspection—trying to catch our own thoughts as
they go by; through psychological experiments—observing a person in action; and through
brain imaging—observing the brain in action. Once we have a sufficiently precise theory of
the mind, it becomes possible to express the theory as a computer program. If the program’s
input–output behavior matches corresponding human behavior, that is evidence that some of
the program’s mechanisms could also be operating in humans. For example, Allen Newell
and Herbert Simon, who developed GPS, the “General Problem Solver” (Newell and Simon,
1961), were not content merely to have their program solve problems correctly. They were
more concerned with comparing the trace of its reasoning steps to traces of human subjects
solving the same problems. The interdisciplinary field of cognitive science brings togetherCOGNITIVE SCIENCE

computer models from AI and experimental techniques from psychology to construct precise
and testable theories of the human mind.

Cognitive science is a fascinating field in itself, worthy of several textbooks and at least
one encyclopedia (Wilson and Keil, 1999). We will occasionally comment on similarities or
differences between AI techniques and human cognition. Real cognitive science, however, is
necessarily based on experimental investigation of actual humans or animals. We will leave
that for other books, as we assume the reader has only a computer for experimentation.

In the early days of AI there was often confusion between the approaches: an author
would argue that an algorithm performs well on a task and that it is therefore a good model
of human performance, or vice versa. Modern authors separate the two kinds of claims;
this distinction has allowed both AI and cognitive science to develop more rapidly. The two
fields continue to fertilize each other, most notably in computer vision, which incorporates
neurophysiological evidence into computational models.

4 Chapter 1. Introduction

1.1.3 Thinking rationally: The “laws of thought” approach

The Greek philosopher Aristotle was one of the first to attempt to codify “right thinking,” that
is, irrefutable reasoning processes. His syllogisms provided patterns for argument structuresSYLLOGISM

that always yielded correct conclusions when given correct premises—for example, “Socrates
is a man; all men are mortal; therefore, Socrates is mortal.” These laws of thought were
supposed to govern the operation of the mind; their study initiated the field called logic.LOGIC

Logicians in the 19th century developed a precise notation for statements about all kinds
of objects in the world and the relations among them. (Contrast this with ordinary arithmetic
notation, which provides only for statements about numbers.) By 1965, programs existed
that could, in principle, solve any solvable problem described in logical notation. (Although
if no solution exists, the program might loop forever.) The so-called logicist tradition withinLOGICIST

artificial intelligence hopes to build on such programs to create intelligent systems.
There are two main obstacles to this approach. First, it is not easy to take informal

knowledge and state it in the formal terms required by logical notation, particularly when
the knowledge is less than 100% certain. Second, there is a big difference between solving
a problem “in principle” and solving it in practice. Even problems with just a few hundred
facts can exhaust the computational resources of any computer unless it has some guidance
as to which reasoning steps to try first. Although both of these obstacles apply to any attempt
to build computational reasoning systems, they appeared first in the logicist tradition.

1.1.4 Acting rationally: The rational agent approach

An agent is just something that acts (agent comes from the Latin agere, to do). Of course,AGENT

all computer programs do something, but computer agents are expected to do more: operate
autonomously, perceive their environment, persist over a prolonged time period, adapt to
change, and create and pursue goals. A rational agent is one that acts so as to achieve theRATIONAL AGENT

best outcome or, when there is uncertainty, the best expected outcome.
In the “laws of thought” approach to AI, the emphasis was on correct inferences. Mak-

ing correct inferences is sometimes part of being a rational agent, because one way to act
rationally is to reason logically to the conclusion that a given action will achieve one’s goals
and then to act on that conclusion. On the other hand, correct inference is not all of ration-
ality; in some situations, there is no provably correct thing to do, but something must still be
done. There are also ways of acting rationally that cannot be said to involve inference. For
example, recoiling from a hot stove is a reflex action that is usually more successful than a
slower action taken after careful deliberation.

All the skills needed for the Turing Test also allow an agent to act rationally. Knowledge
representation and reasoning enable agents to reach good decisions. We need to be able to
generate comprehensible sentences in natural language to get by in a complex society. We
need learning not only for erudition, but also because it improves our ability to generate
effective behavior.

The rational-agent approach has two advantages over the other approaches. First, it
is more general than the “laws of thought” approach because correct inference is just one
of several possible mechanisms for achieving rationality. Second, it is more amenable to

Section 1.2. The Foundations of Artificial Intelligence 5

scientific development than are approaches based on human behavior or human thought. The
standard of rationality is mathematically well defined and completely general, and can be
“unpacked” to generate agent designs that provably achieve it. Human behavior, on the other
hand, is well adapted for one specific environment and is defined by, well, the sum total
of all the things that humans do. This book therefore concentrates on general principles
of rational agents and on components for constructing them. We will see that despite the
apparent simplicity with which the problem can be stated, an enormous variety of issues
come up when we try to solve it. Chapter 2 outlines some of these issues in more detail.

One important point to keep in mind: We will see before too long that achieving perfect
rationality—always doing the right thing—is not feasible in complicated environments. The
computational demands are just too high. For most of the book, however, we will adopt the
working hypothesis that perfect rationality is a good starting point for analysis. It simplifies
the problem and provides the appropriate setting for most of the foundational material in
the field. Chapters 5 and 17 deal explicitly with the issue of limited rationality—actingLIMITED

RATIONALITY

appropriately when there is not enough time to do all the computations one might like.

1.2 THE FOUNDATIONS OF ARTIFICIAL INTELLIGENCE

In this section, we provide a brief history of the disciplines that contributed ideas, viewpoints,
and techniques to AI. Like any history, this one is forced to concentrate on a small number
of people, events, and ideas and to ignore others that also were important. We organize the
history around a series of questions. We certainly would not wish to give the impression that
these questions are the only ones the disciplines address or that the disciplines have all been
working toward AI as their ultimate fruition.

1.2.1 Philosophy

• Can formal rules be used to draw valid conclusions?
• How does the mind arise from a physical brain?
• Where does knowledge come from?
• How does knowledge lead to action?

Aristotle (384–322 B.C.), whose bust appears on the front cover of this book, was the first
to formulate a precise set of laws governing the rational part of the mind. He developed an
informal system of syllogisms for proper reasoning, which in principle allowed one to gener-
ate conclusions mechanically, given initial premises. Much later, Ramon Lull (d. 1315) had
the idea that useful reasoning could actually be carried out by a mechanical artifact. Thomas
Hobbes (1588–1679) proposed that reasoning was like numerical computation, that “we add
and subtract in our silent thoughts.” The automation of computation itself was already well
under way. Around 1500, Leonardo da Vinci (1452–1519) designed but did not build a me-
chanical calculator; recent reconstructions have shown the design to be functional. The first
known calculating machine was constructed around 1623 by the German scientist Wilhelm
Schickard (1592–1635), although the Pascaline, built in 1642 by Blaise Pascal (1623–1662),

6 Chapter 1. Introduction

is more famous. Pascal wrote that “the arithmetical machine produces effects which appear
nearer to thought than all the actions of animals.” Gottfried Wilhelm Leibniz (1646–1716)
built a mechanical device intended to carry out operations on concepts rather than numbers,
but its scope was rather limited. Leibniz did surpass Pascal by building a calculator that
could add, subtract, multiply, and take roots, whereas the Pascaline could only add and sub-
tract. Some speculated that machines might not just do calculations but actually be able to
think and act on their own. In his 1651 book Leviathan, Thomas Hobbes suggested the idea
of an “artificial animal,” arguing “For what is the heart but a spring; and the nerves, but so
many strings; and the joints, but so many wheels.”

It’s one thing to say that the mind operates, at least in part, according to logical rules, and
to build physical systems that emulate some of those rules; it’s another to say that the mind
itself is such a physical system. René Descartes (1596–1650) gave the first clear discussion
of the distinction between mind and matter and of the problems that arise. One problem with
a purely physical conception of the mind is that it seems to leave little room for free will:
if the mind is governed entirely by physical laws, then it has no more free will than a rock
“deciding” to fall toward the center of the earth. Descartes was a strong advocate of the power
of reasoning in understanding the world, a philosophy now called rationalism, and one thatRATIONALISM

counts Aristotle and Leibnitz as members. But Descartes was also a proponent of dualism.DUALISM

He held that there is a part of the human mind (or soul or spirit) that is outside of nature,
exempt from physical laws. Animals, on the other hand, did not possess this dual quality;
they could be treated as machines. An alternative to dualism is materialism, which holdsMATERIALISM

that the brain’s operation according to the laws of physics constitutes the mind. Free will is
simply the way that the perception of available choices appears to the choosing entity.

Given a physical mind that manipulates knowledge, the next problem is to establish
the source of knowledge. The empiricism movement, starting with Francis Bacon’s (1561–EMPIRICISM

1626) Novum Organum,2 is characterized by a dictum of John Locke (1632–1704): “Nothing
is in the understanding, which was not first in the senses.” David Hume’s (1711–1776) A
Treatise of Human Nature (Hume, 1739) proposed what is now known as the principle of
induction: that general rules are acquired by exposure to repeated associations between theirINDUCTION

elements. Building on the work of Ludwig Wittgenstein (1889–1951) and Bertrand Russell
(1872–1970), the famous Vienna Circle, led by Rudolf Carnap (1891–1970), developed the
doctrine of logical positivism. This doctrine holds that all knowledge can be characterized byLOGICAL POSITIVISM

logical theories connected, ultimately, to observation sentences that correspond to sensoryOBSERVATION

SENTENCES

inputs; thus logical positivism combines rationalism and empiricism.3 The confirmation the-
ory of Carnap and Carl Hempel (1905–1997) attempted to analyze the acquisition of knowl-CONFIRMATION

THEORY

edge from experience. Carnap’s book The Logical Structure of the World (1928) defined an
explicit computational procedure for extracting knowledge from elementary experiences. It
was probably the first theory of mind as a computational process.

2 The Novum Organum is an update of Aristotle’s Organon, or instrument of thought. Thus Aristotle can be
seen as both an empiricist and a rationalist.
3 In this picture, all meaningful statements can be verified or falsified either by experimentation or by analysis
of the meaning of the words. Because this rules out most of metaphysics, as was the intention, logical positivism
was unpopular in some circles.

Section 1.2. The Foundations of Artificial Intelligence 7

The final element in the philosophical picture of the mind is the connection between
knowledge and action. This question is vital to AI because intelligence requires action as well
as reasoning. Moreover, only by understanding how actions are justified can we understand
how to build an agent whose actions are justifiable (or rational). Aristotle argued (in De Motu
Animalium) that actions are justified by a logical connection between goals and knowledge of
the action’s outcome (the last part of this extract also appears on the front cover of this book,
in the original Greek):

But how does it happen that thinking is sometimes accompanied by action and sometimes
not, sometimes by motion, and sometimes not? It looks as if almost the same thing
happens as in the case of reasoning and making inferences about unchanging objects. But
in that case the end is a speculative proposition . . . whereas here the conclusion which
results from the two premises is an action. . . . I need covering; a cloak is a covering. I
need a cloak. What I need, I have to make; I need a cloak. I have to make a cloak. And
the conclusion, the “I have to make a cloak,” is an action.

In the Nicomachean Ethics (Book III. 3, 1112b), Aristotle further elaborates on this topic,
suggesting an algorithm:

We deliberate not about ends, but about means. For a doctor does not deliberate whether
he shall heal, nor an orator whether he shall persuade, . . . They assume the end and
consider how and by what means it is attained, and if it seems easily and best produced
thereby; while if it is achieved by one means only they consider how it will be achieved
by this and by what means this will be achieved, till they come to the first cause, . . . and
what is last in the order of analysis seems to be first in the order of becoming. And if we
come on an impossibility, we give up the search, e.g., if we need money and this cannot
be got; but if a thing appears possible we try to do it.

Aristotle’s algorithm was implemented 2300 years later by Newell and Simon in their GPS
program. We would now call it a regression planning system (see Chapter 10).

Goal-based analysis is useful, but does not say what to do when several actions will
achieve the goal or when no action will achieve it completely. Antoine Arnauld (1612–1694)
correctly described a quantitative formula for deciding what action to take in cases like this
(see Chapter 16). John Stuart Mill’s (1806–1873) book Utilitarianism (Mill, 1863) promoted
the idea of rational decision criteria in all spheres of human activity. The more formal theory
of decisions is discussed in the following section.

1.2.2 Mathematics

• What are the formal rules to draw valid conclusions?

• What can be computed?

• How do we reason with uncertain information?

Philosophers staked out some of the fundamental ideas of AI, but the leap to a formal science
required a level of mathematical formalization in three fundamental areas: logic, computa-
tion, and probability.

The idea of formal logic can be traced back to the philosophers of ancient Greece, but
its mathematical development really began with the work of George Boole (1815–1864), who

8 Chapter 1. Introduction

worked out the details of propositional, or Boolean, logic (Boole, 1847). In 1879, Gottlob
Frege (1848–1925) extended Boole’s logic to include objects and relations, creating the first-
order logic that is used today.4 Alfred Tarski (1902–1983) introduced a theory of reference
that shows how to relate the objects in a logic to objects in the real world.

The next step was to determine the limits of what could be done with logic and com-
putation. The first nontrivial algorithm is thought to be Euclid’s algorithm for computingALGORITHM

greatest common divisors. The word algorithm (and the idea of studying them) comes from
al-Khowarazmi, a Persian mathematician of the 9th century, whose writings also introduced
Arabic numerals and algebra to Europe. Boole and others discussed algorithms for logical
deduction, and, by the late 19th century, efforts were under way to formalize general mathe-
matical reasoning as logical deduction. In 1930, Kurt Gödel (1906–1978) showed that there
exists an effective procedure to prove any true statement in the first-order logic of Frege and
Russell, but that first-order logic could not capture the principle of mathematical induction
needed to characterize the natural numbers. In 1931, Gödel showed that limits on deduc-
tion do exist. His incompleteness theorem showed that in any formal theory as strong asINCOMPLETENESS

THEOREM

Peano arithmetic (the elementary theory of natural numbers), there are true statements that
are undecidable in the sense that they have no proof within the theory.

This fundamental result can also be interpreted as showing that some functions on the
integers cannot be represented by an algorithm—that is, they cannot be computed. This
motivated Alan Turing (1912–1954) to try to characterize exactly which functions are com-
putable—capable of being computed. This notion is actually slightly problematic becauseCOMPUTABLE

the notion of a computation or effective procedure really cannot be given a formal definition.
However, the Church–Turing thesis, which states that the Turing machine (Turing, 1936) is
capable of computing any computable function, is generally accepted as providing a sufficient
definition. Turing also showed that there were some functions that no Turing machine can
compute. For example, no machine can tell in general whether a given program will return
an answer on a given input or run forever.

Although decidability and computability are important to an understanding of computa-
tion, the notion of tractability has had an even greater impact. Roughly speaking, a problemTRACTABILITY

is called intractable if the time required to solve instances of the problem grows exponentially
with the size of the instances. The distinction between polynomial and exponential growth
in complexity was first emphasized in the mid-1960s (Cobham, 1964; Edmonds, 1965). It is
important because exponential growth means that even moderately large instances cannot be
solved in any reasonable time. Therefore, one should strive to divide the overall problem of
generating intelligent behavior into tractable subproblems rather than intractable ones.

How can one recognize an intractable problem? The theory of NP-completeness, pio-NPCOMPLETENESS

neered by Steven Cook (1971) and Richard Karp (1972), provides a method. Cook and Karp
showed the existence of large classes of canonical combinatorial search and reasoning prob-
lems that are NP-complete. Any problem class to which the class of NP-complete problems
can be reduced is likely to be intractable. (Although it has not been proved that NP-complete

4 Frege’s proposed notation for first-order logic—an arcane combination of textual and geometric features—
never became popular.

Section 1.2. The Foundations of Artificial Intelligence 9

problems are necessarily intractable, most theoreticians believe it.) These results contrast
with the optimism with which the popular press greeted the first computers—“Electronic
Super-Brains” that were “Faster than Einstein!” Despite the increasing speed of computers,
careful use of resources will characterize intelligent systems. Put crudely, the world is an
extremely large problem instance! Work in AI has helped explain why some instances of
NP-complete problems are hard, yet others are easy (Cheeseman et al., 1991).

Besides logic and computation, the third great contribution of mathematics to AI is the
theory of probability. The Italian Gerolamo Cardano (1501–1576) first framed the idea ofPROBABILITY

probability, describing it in terms of the possible outcomes of gambling events. In 1654,
Blaise Pascal (1623–1662), in a letter to Pierre Fermat (1601–1665), showed how to pre-
dict the future of an unfinished gambling game and assign average payoffs to the gamblers.
Probability quickly became an invaluable part of all the quantitative sciences, helping to deal
with uncertain measurements and incomplete theories. James Bernoulli (1654–1705), Pierre
Laplace (1749–1827), and others advanced the theory and introduced new statistical meth-
ods. Thomas Bayes (1702–1761), who appears on the front cover of this book, proposed
a rule for updating probabilities in the light of new evidence. Bayes’ rule underlies most
modern approaches to uncertain reasoning in AI systems.

1.2.3 Economics

• How should we make decisions so as to maximize payoff?

• How should we do this when others may not go along?

• How should we do this when the payoff may be far in the future?

The science of economics got its start in 1776, when Scottish philosopher Adam Smith
(1723–1790) published An Inquiry into the Nature and Causes of the Wealth of Nations.
While the ancient Greeks and others had made contributions to economic thought, Smith was
the first to treat it as a science, using the idea that economies can be thought of as consist-
ing of individual agents maximizing their own economic well-being. Most people think of
economics as being about money, but economists will say that they are really studying how
people make choices that lead to preferred outcomes. When McDonald’s offers a hamburger
for a dollar, they are asserting that they would prefer the dollar and hoping that customers will
prefer the hamburger. The mathematical treatment of “preferred outcomes” or utility wasUTILITY

first formalized by Léon Walras (pronounced “Valrasse”) (1834-1910) and was improved by
Frank Ramsey (1931) and later by John von Neumann and Oskar Morgenstern in their book
The Theory of Games and Economic Behavior (1944).

Decision theory, which combines probability theory with utility theory, provides a for-DECISION THEORY

mal and complete framework for decisions (economic or otherwise) made under uncertainty—
that is, in cases where probabilistic descriptions appropriately capture the decision maker’s
environment. This is suitable for “large” economies where each agent need pay no attention
to the actions of other agents as individuals. For “small” economies, the situation is much
more like a game: the actions of one player can significantly affect the utility of another
(either positively or negatively). Von Neumann and Morgenstern’s development of game
theory (see also Luce and Raiffa, 1957) included the surprising result that, for some games,GAME THEORY

10 Chapter 1. Introduction

a rational agent should adopt policies that are (or least appear to be) randomized. Unlike de-
cision theory, game theory does not offer an unambiguous prescription for selecting actions.

For the most part, economists did not address the third question listed above, namely,
how to make rational decisions when payoffs from actions are not immediate but instead re-
sult from several actions taken in sequence. This topic was pursued in the field of operations
research, which emerged in World War II from efforts in Britain to optimize radar installa-OPERATIONS

RESEARCH

tions, and later found civilian applications in complex management decisions. The work of
Richard Bellman (1957) formalized a class of sequential decision problems called Markov
decision processes, which we study in Chapters 17 and 21.

Work in economics and operations research has contributed much to our notion of ra-
tional agents, yet for many years AI research developed along entirely separate paths. One
reason was the apparent complexity of making rational decisions. The pioneering AI re-
searcher Herbert Simon (1916–2001) won the Nobel Prize in economics in 1978 for his early
work showing that models based on satisficing—making decisions that are “good enough,”SATISFICING

rather than laboriously calculating an optimal decision—gave a better description of actual
human behavior (Simon, 1947). Since the 1990s, there has been a resurgence of interest in
decision-theoretic techniques for agent systems (Wellman, 1995).

1.2.4 Neuroscience

• How do brains process information?

Neuroscience is the study of the nervous system, particularly the brain. Although the exactNEUROSCIENCE

way in which the brain enables thought is one of the great mysteries of science, the fact that it
does enable thought has been appreciated for thousands of years because of the evidence that
strong blows to the head can lead to mental incapacitation. It has also long been known that
human brains are somehow different; in about 335 B.C. Aristotle wrote, “Of all the animals,
man has the largest brain in proportion to his size.”5 Still, it was not until the middle of the
18th century that the brain was widely recognized as the seat of consciousness. Before then,
candidate locations included the heart and the spleen.

Paul Broca’s (1824–1880) study of aphasia (speech deficit) in brain-damaged patients
in 1861 demonstrated the existence of localized areas of the brain responsible for specific
cognitive functions. In particular, he showed that speech production was localized to the
portion of the left hemisphere now called Broca’s area.6 By that time, it was known that
the brain consisted of nerve cells, or neurons, but it was not until 1873 that Camillo GolgiNEURON

(1843–1926) developed a staining technique allowing the observation of individual neurons
in the brain (see Figure 1.2). This technique was used by Santiago Ramon y Cajal (1852–
1934) in his pioneering studies of the brain’s neuronal structures.7 Nicolas Rashevsky (1936,
1938) was the first to apply mathematical models to the study of the nervous sytem.

5 Since then, it has been discovered that the tree shrew (Scandentia) has a higher ratio of brain to body mass.
6 Many cite Alexander Hood (1824) as a possible prior source.
7 Golgi persisted in his belief that the brain’s functions were carried out primarily in a continuous medium in
which neurons were embedded, whereas Cajal propounded the “neuronal doctrine.” The two shared the Nobel
prize in 1906 but gave mutually antagonistic acceptance speeches.

Section 1.2. The Foundations of Artificial Intelligence 11

Axon

Cell body or Soma

Nucleus

Dendrite

Synapses

Axonal arborization

Axon from another cell

Synapse

Figure 1.2 The parts of a nerve cell or neuron. Each neuron consists of a cell body,
or soma, that contains a cell nucleus. Branching out from the cell body are a number of
fibers called dendrites and a single long fiber called the axon. The axon stretches out for a
long distance, much longer than the scale in this diagram indicates. Typically, an axon is
1 cm long (100 times the diameter of the cell body), but can reach up to 1 meter. A neuron
makes connections with 10 to 100,000 other neurons at junctions called synapses. Signals are
propagated from neuron to neuron by a complicated electrochemical reaction. The signals
control brain activity in the short term and also enable long-term changes in the connectivity
of neurons. These mechanisms are thought to form the basis for learning in the brain. Most
information processing goes on in the cerebral cortex, the outer layer of the brain. The basic
organizational unit appears to be a column of tissue about 0.5 mm in diameter, containing
about 20,000 neurons and extending the full depth of the cortex about 4 mm in humans).

We now have some data on the mapping between areas of the brain and the parts of the
body that they control or from which they receive sensory input. Such mappings are able to
change radically over the course of a few weeks, and some animals seem to have multiple
maps. Moreover, we do not fully understand how other areas can take over functions when
one area is damaged. There is almost no theory on how an individual memory is stored.

The measurement of intact brain activity began in 1929 with the invention by Hans
Berger of the electroencephalograph (EEG). The recent development of functional magnetic
resonance imaging (fMRI) (Ogawa et al., 1990; Cabeza and Nyberg, 2001) is giving neu-
roscientists unprecedentedly detailed images of brain activity, enabling measurements that
correspond in interesting ways to ongoing cognitive processes. These are augmented by
advances in single-cell recording of neuron activity. Individual neurons can be stimulated
electrically, chemically, or even optically (Han and Boyden, 2007), allowing neuronal input–
output relationships to be mapped. Despite these advances, we are still a long way from
understanding how cognitive processes actually work.

The truly amazing conclusion is that a collection of simple cells can lead to thought,
action, and consciousness or, in the pithy words of John Searle (1992), brains cause minds.

12 Chapter 1. Introduction

Supercomputer Personal Computer Human Brain

Computational units 104 CPUs, 1012 transistors 4 CPUs, 109 transistors 1011 neurons
Storage units 1014 bits RAM 1011 bits RAM 1011 neurons

1015 bits disk 1013 bits disk 1014 synapses
Cycle time 10−9 sec 10−9 sec 10−3 sec
Operations/sec 1015 1010 1017

Memory updates/sec 1014 1010 1014

Figure 1.3 A crude comparison of the raw computational resources available to the IBM
BLUE GENE supercomputer, a typical personal computer of 2008, and the human brain. The
brain’s numbers are essentially fixed, whereas the supercomputer’s numbers have been in-
creasing by a factor of 10 every 5 years or so, allowing it to achieve rough parity with the
brain. The personal computer lags behind on all metrics except cycle time.

The only real alternative theory is mysticism: that minds operate in some mystical realm that
is beyond physical science.

Brains and digital computers have somewhat different properties. Figure 1.3 shows that
computers have a cycle time that is a million times faster than a brain. The brain makes up
for that with far more storage and interconnection than even a high-end personal computer,
although the largest supercomputers have a capacity that is similar to the brain’s. (It should
be noted, however, that the brain does not seem to use all of its neurons simultaneously.)
Futurists make much of these numbers, pointing to an approaching singularity at whichSINGULARITY

computers reach a superhuman level of performance (Vinge, 1993; Kurzweil, 2005), but the
raw comparisons are not especially informative. Even with a computer of virtually unlimited
capacity, we still would not know how to achieve the brain’s level of intelligence.

1.2.5 Psychology

• How do humans and animals think and act?

The origins of scientific psychology are usually traced to the work of the German physi-
cist Hermann von Helmholtz (1821–1894) and his student Wilhelm Wundt (1832–1920).
Helmholtz applied the scientific method to the study of human vision, and his Handbook
of Physiological Optics is even now described as “the single most important treatise on the
physics and physiology of human vision” (Nalwa, 1993, p.15). In 1879, Wundt opened the
first laboratory of experimental psychology, at the University of Leipzig. Wundt insisted
on carefully controlled experiments in which his workers would perform a perceptual or as-
sociative task while introspecting on their thought processes. The careful controls went a
long way toward making psychology a science, but the subjective nature of the data made
it unlikely that an experimenter would ever disconfirm his or her own theories. Biologists
studying animal behavior, on the other hand, lacked introspective data and developed an ob-
jective methodology, as described by H. S. Jennings (1906) in his influential work Behavior of
the Lower Organisms. Applying this viewpoint to humans, the behaviorism movement, ledBEHAVIORISM

by John Watson (1878–1958), rejected any theory involving mental processes on the grounds

Section 1.2. The Foundations of Artificial Intelligence 13

that introspection could not provide reliable evidence. Behaviorists insisted on studying only
objective measures of the percepts (or stimulus) given to an animal and its resulting actions
(or response). Behaviorism discovered a lot about rats and pigeons but had less success at
understanding humans.

Cognitive psychology, which views the brain as an information-processing device,COGNITIVE

PSYCHOLOGY

can be traced back at least to the works of William James (1842–1910). Helmholtz also
insisted that perception involved a form of unconscious logical inference. The cognitive
viewpoint was largely eclipsed by behaviorism in the United States, but at Cambridge’s Ap-
plied Psychology Unit, directed by Frederic Bartlett (1886–1969), cognitive modeling was
able to flourish. The Nature of Explanation, by Bartlett’s student and successor Kenneth
Craik (1943), forcefully reestablished the legitimacy of such “mental” terms as beliefs and
goals, arguing that they are just as scientific as, say, using pressure and temperature to talk
about gases, despite their being made of molecules that have neither. Craik specified the
three key steps of a knowledge-based agent: (1) the stimulus must be translated into an inter-
nal representation, (2) the representation is manipulated by cognitive processes to derive new
internal representations, and (3) these are in turn retranslated back into action. He clearly
explained why this was a good design for an agent:

If the organism carries a “small-scale model” of external reality and of its own possible
actions within its head, it is able to try out various alternatives, conclude which is the best
of them, react to future situations before they arise, utilize the knowledge of past events
in dealing with the present and future, and in every way to react in a much fuller, safer,
and more competent manner to the emergencies which face it. (Craik, 1943)

After Craik’s death in a bicycle accident in 1945, his work was continued by Donald Broad-
bent, whose book Perception and Communication (1958) was one of the first works to model
psychological phenomena as information processing. Meanwhile, in the United States, the
development of computer modeling led to the creation of the field of cognitive science. The
field can be said to have started at a workshop in September 1956 at MIT. (We shall see that
this is just two months after the conference at which AI itself was “born.”) At the workshop,
George Miller presented The Magic Number Seven, Noam Chomsky presented Three Models
of Language, and Allen Newell and Herbert Simon presented The Logic Theory Machine.
These three influential papers showed how computer models could be used to address the
psychology of memory, language, and logical thinking, respectively. It is now a common
(although far from universal) view among psychologists that “a cognitive theory should be
like a computer program” (Anderson, 1980); that is, it should describe a detailed information-
processing mechanism whereby some cognitive function might be implemented.

1.2.6 Computer engineering

• How can we build an efficient computer?

For artificial intelligence to succeed, we need two things: intelligence and an artifact. The
computer has been the artifact of choice. The modern digital electronic computer was in-
vented independently and almost simultaneously by scientists in three countries embattled in

14 Chapter 1. Introduction

World War II. The first operational computer was the electromechanical Heath Robinson,8

built in 1940 by Alan Turing’s team for a single purpose: deciphering German messages. In
1943, the same group developed the Colossus, a powerful general-purpose machine based
on vacuum tubes.9 The first operational programmable computer was the Z-3, the inven-
tion of Konrad Zuse in Germany in 1941. Zuse also invented floating-point numbers and the
first high-level programming language, Plankalkül. The first electronic computer, the ABC,
was assembled by John Atanasoff and his student Clifford Berry between 1940 and 1942
at Iowa State University. Atanasoff’s research received little support or recognition; it was
the ENIAC, developed as part of a secret military project at the University of Pennsylvania
by a team including John Mauchly and John Eckert, that proved to be the most influential
forerunner of modern computers.

Since that time, each generation of computer hardware has brought an increase in speed
and capacity and a decrease in price. Performance doubled every 18 months or so until around
2005, when power dissipation problems led manufacturers to start multiplying the number of
CPU cores rather than the clock speed. Current expectations are that future increases in power
will come from massive parallelism—a curious convergence with the properties of the brain.

Of course, there were calculating devices before the electronic computer. The earliest
automated machines, dating from the 17th century, were discussed on page 6. The first pro-
grammable machine was a loom, devised in 1805 by Joseph Marie Jacquard (1752–1834),
that used punched cards to store instructions for the pattern to be woven. In the mid-19th
century, Charles Babbage (1792–1871) designed two machines, neither of which he com-
pleted. The Difference Engine was intended to compute mathematical tables for engineering
and scientific projects. It was finally built and shown to work in 1991 at the Science Museum
in London (Swade, 2000). Babbage’s Analytical Engine was far more ambitious: it included
addressable memory, stored programs, and conditional jumps and was the first artifact capa-
ble of universal computation. Babbage’s colleague Ada Lovelace, daughter of the poet Lord
Byron, was perhaps the world’s first programmer. (The programming language Ada is named
after her.) She wrote programs for the unfinished Analytical Engine and even speculated that
the machine could play chess or compose music.

AI also owes a debt to the software side of computer science, which has supplied the
operating systems, programming languages, and tools needed to write modern programs (and
papers about them). But this is one area where the debt has been repaid: work in AI has pio-
neered many ideas that have made their way back to mainstream computer science, including
time sharing, interactive interpreters, personal computers with windows and mice, rapid de-
velopment environments, the linked list data type, automatic storage management, and key
concepts of symbolic, functional, declarative, and object-oriented programming.

8 Heath Robinson was a cartoonist famous for his depictions of whimsical and absurdly complicated contrap-
tions for everyday tasks such as buttering toast.
9 In the postwar period, Turing wanted to use these computers for AI research—for example, one of the first
chess programs (Turing et al., 1953). His efforts were blocked by the British government.

Section 1.2. The Foundations of Artificial Intelligence 15

1.2.7 Control theory and cybernetics

• How can artifacts operate under their own control?

Ktesibios of Alexandria (c. 250 B.C.) built the first self-controlling machine: a water clock
with a regulator that maintained a constant flow rate. This invention changed the definition
of what an artifact could do. Previously, only living things could modify their behavior in
response to changes in the environment. Other examples of self-regulating feedback control
systems include the steam engine governor, created by James Watt (1736–1819), and the
thermostat, invented by Cornelis Drebbel (1572–1633), who also invented the submarine.
The mathematical theory of stable feedback systems was developed in the 19th century.

The central figure in the creation of what is now called control theory was NorbertCONTROL THEORY

Wiener (1894–1964). Wiener was a brilliant mathematician who worked with Bertrand Rus-
sell, among others, before developing an interest in biological and mechanical control systems
and their connection to cognition. Like Craik (who also used control systems as psychological
models), Wiener and his colleagues Arturo Rosenblueth and Julian Bigelow challenged the
behaviorist orthodoxy (Rosenblueth et al., 1943). They viewed purposive behavior as aris-
ing from a regulatory mechanism trying to minimize “error”—the difference between current
state and goal state. In the late 1940s, Wiener, along with Warren McCulloch, Walter Pitts,
and John von Neumann, organized a series of influential conferences that explored the new
mathematical and computational models of cognition. Wiener’s book Cybernetics (1948) be-CYBERNETICS

came a bestseller and awoke the public to the possibility of artificially intelligent machines.
Meanwhile, in Britain, W. Ross Ashby (Ashby, 1940) pioneered similar ideas. Ashby, Alan
Turing, Grey Walter, and others formed the Ratio Club for “those who had Wiener’s ideas
before Wiener’s book appeared.” Ashby’s Design for a Brain (1948, 1952) elaborated on his
idea that intelligence could be created by the use of homeostatic devices containing appro-HOMEOSTATIC

priate feedback loops to achieve stable adaptive behavior.
Modern control theory, especially the branch known as stochastic optimal control, has

as its goal the design of systems that maximize an objective function over time. This roughlyOBJECTIVE

FUNCTION

matches our view of AI: designing systems that behave optimally. Why, then, are AI and
control theory two different fields, despite the close connections among their founders? The
answer lies in the close coupling between the mathematical techniques that were familiar to
the participants and the corresponding sets of problems that were encompassed in each world
view. Calculus and matrix algebra, the tools of control theory, lend themselves to systems that
are describable by fixed sets of continuous variables, whereas AI was founded in part as a way
to escape from the these perceived limitations. The tools of logical inference and computation
allowed AI researchers to consider problems such as language, vision, and planning that fell
completely outside the control theorist’s purview.

1.2.8 Linguistics

• How does language relate to thought?

In 1957, B. F. Skinner published Verbal Behavior. This was a comprehensive, detailed ac-
count of the behaviorist approach to language learning, written by the foremost expert in

16 Chapter 1. Introduction

the field. But curiously, a review of the book became as well known as the book itself, and
served to almost kill off interest in behaviorism. The author of the review was the linguist
Noam Chomsky, who had just published a book on his own theory, Syntactic Structures.
Chomsky pointed out that the behaviorist theory did not address the notion of creativity in
language—it did not explain how a child could understand and make up sentences that he or
she had never heard before. Chomsky’s theory—based on syntactic models going back to the
Indian linguist Panini (c. 350 B.C.)—could explain this, and unlike previous theories, it was
formal enough that it could in principle be programmed.

Modern linguistics and AI, then, were “born” at about the same time, and grew up
together, intersecting in a hybrid field called computational linguistics or natural languageCOMPUTATIONAL

LINGUISTICS

processing. The problem of understanding language soon turned out to be considerably more
complex than it seemed in 1957. Understanding language requires an understanding of the
subject matter and context, not just an understanding of the structure of sentences. This might
seem obvious, but it was not widely appreciated until the 1960s. Much of the early work in
knowledge representation (the study of how to put knowledge into a form that a computer
can reason with) was tied to language and informed by research in linguistics, which was
connected in turn to decades of work on the philosophical analysis of language.

1.3 THE HISTORY OF ARTIFICIAL INTELLIGENCE

With the background material behind us, we are ready to cover the development of AI itself.

1.3.1 The gestation of artificial intelligence (1943–1955)

The first work that is now generally recognized as AI was done by Warren McCulloch and
Walter Pitts (1943). They drew on three sources: knowledge of the basic physiology and
function of neurons in the brain; a formal analysis of propositional logic due to Russell and
Whitehead; and Turing’s theory of computation. They proposed a model of artificial neurons
in which each neuron is characterized as being “on” or “off,” with a switch to “on” occurring
in response to stimulation by a sufficient number of neighboring neurons. The state of a
neuron was conceived of as “factually equivalent to a proposition which proposed its adequate
stimulus.” They showed, for example, that any computable function could be computed by
some network of connected neurons, and that all the logical connectives (and, or, not, etc.)
could be implemented by simple net structures. McCulloch and Pitts also suggested that
suitably defined networks could learn. Donald Hebb (1949) demonstrated a simple updating
rule for modifying the connection strengths between neurons. His rule, now called Hebbian
learning, remains an influential model to this day.HEBBIAN LEARNING

Two undergraduate students at Harvard, Marvin Minsky and Dean Edmonds, built the
first neural network computer in 1950. The SNARC, as it was called, used 3000 vacuum
tubes and a surplus automatic pilot mechanism from a B-24 bomber to simulate a network of
40 neurons. Later, at Princeton, Minsky studied universal computation in neural networks.
His Ph.D. committee was skeptical about whether this kind of work should be considered

Section 1.3. The History of Artificial Intelligence 17

mathematics, but von Neumann reportedly said, “If it isn’t now, it will be someday.” Minsky
was later to prove influential theorems showing the limitations of neural network research.

There were a number of early examples of work that can be characterized as AI, but
Alan Turing’s vision was perhaps the most influential. He gave lectures on the topic as early
as 1947 at the London Mathematical Society and articulated a persuasive agenda in his 1950
article “Computing Machinery and Intelligence.” Therein, he introduced the Turing Test,
machine learning, genetic algorithms, and reinforcement learning. He proposed the Child
Programme idea, explaining “Instead of trying to produce a programme to simulate the adult
mind, why not rather try to produce one which simulated the child’s?”

1.3.2 The birth of artificial intelligence (1956)

Princeton was home to another influential figure in AI, John McCarthy. After receiving his
PhD there in 1951 and working for two years as an instructor, McCarthy moved to Stan-
ford and then to Dartmouth College, which was to become the official birthplace of the field.
McCarthy convinced Minsky, Claude Shannon, and Nathaniel Rochester to help him bring
together U.S. researchers interested in automata theory, neural nets, and the study of intel-
ligence. They organized a two-month workshop at Dartmouth in the summer of 1956. The
proposal states:10

We propose that a 2 month, 10 man study of artificial intelligence be carried
out during the summer of 1956 at Dartmouth College in Hanover, New Hamp-
shire. The study is to proceed on the basis of the conjecture that every aspect of
learning or any other feature of intelligence can in principle be so precisely de-
scribed that a machine can be made to simulate it. An attempt will be made to find
how to make machines use language, form abstractions and concepts, solve kinds
of problems now reserved for humans, and improve themselves. We think that a
significant advance can be made in one or more of these problems if a carefully
selected group of scientists work on it together for a summer.

There were 10 attendees in all, including Trenchard More from Princeton, Arthur Samuel
from IBM, and Ray Solomonoff and Oliver Selfridge from MIT.

Two researchers from Carnegie Tech,11 Allen Newell and Herbert Simon, rather stole
the show. Although the others had ideas and in some cases programs for particular appli-
cations such as checkers, Newell and Simon already had a reasoning program, the Logic
Theorist (LT), about which Simon claimed, “We have invented a computer program capable
of thinking non-numerically, and thereby solved the venerable mind–body problem.”12 Soon
after the workshop, the program was able to prove most of the theorems in Chapter 2 of Rus-

10 This was the first official usage of McCarthy’s term artificial intelligence. Perhaps “computational rationality”
would have been more precise and less threatening, but “AI” has stuck. At the 50th anniversary of the Dartmouth
conference, McCarthy stated that he resisted the terms “computer” or “computational” in deference to Norbert
Weiner, who was promoting analog cybernetic devices rather than digital computers.
11 Now Carnegie Mellon University (CMU).
12 Newell and Simon also invented a list-processing language, IPL, to write LT. They had no compiler and
translated it into machine code by hand. To avoid errors, they worked in parallel, calling out binary numbers to
each other as they wrote each instruction to make sure they agreed.

18 Chapter 1. Introduction

sell and Whitehead’s Principia Mathematica. Russell was reportedly delighted when Simon
showed him that the program had come up with a proof for one theorem that was shorter than
the one in Principia. The editors of the Journal of Symbolic Logic were less impressed; they
rejected a paper coauthored by Newell, Simon, and Logic Theorist.

The Dartmouth workshop did not lead to any new breakthroughs, but it did introduce
all the major figures to each other. For the next 20 years, the field would be dominated by
these people and their students and colleagues at MIT, CMU, Stanford, and IBM.

Looking at the proposal for the Dartmouth workshop (McCarthy et al., 1955), we can
see why it was necessary for AI to become a separate field. Why couldn’t all the work done
in AI have taken place under the name of control theory or operations research or decision
theory, which, after all, have objectives similar to those of AI? Or why isn’t AI a branch
of mathematics? The first answer is that AI from the start embraced the idea of duplicating
human faculties such as creativity, self-improvement, and language use. None of the other
fields were addressing these issues. The second answer is methodology. AI is the only one
of these fields that is clearly a branch of computer science (although operations research does
share an emphasis on computer simulations), and AI is the only field to attempt to build
machines that will function autonomously in complex, changing environments.

1.3.3 Early enthusiasm, great expectations (1952–1969)

The early years of AI were full of successes—in a limited way. Given the primitive comput-
ers and programming tools of the time and the fact that only a few years earlier computers
were seen as things that could do arithmetic and no more, it was astonishing whenever a com-
puter did anything remotely clever. The intellectual establishment, by and large, preferred to
believe that “a machine can never do X.” (See Chapter 26 for a long list of X’s gathered
by Turing.) AI researchers naturally responded by demonstrating one X after another. John
McCarthy referred to this period as the “Look, Ma, no hands!” era.

Newell and Simon’s early success was followed up with the General Problem Solver,
or GPS. Unlike Logic Theorist, this program was designed from the start to imitate human
problem-solving protocols. Within the limited class of puzzles it could handle, it turned out
that the order in which the program considered subgoals and possible actions was similar to
that in which humans approached the same problems. Thus, GPS was probably the first pro-
gram to embody the “thinking humanly” approach. The success of GPS and subsequent pro-
grams as models of cognition led Newell and Simon (1976) to formulate the famous physical
symbol system hypothesis, which states that “a physical symbol system has the necessary andPHYSICAL SYMBOL

SYSTEM

sufficient means for general intelligent action.” What they meant is that any system (human
or machine) exhibiting intelligence must operate by manipulating data structures composed
of symbols. We will see later that this hypothesis has been challenged from many directions.

At IBM, Nathaniel Rochester and his colleagues produced some of the first AI pro-
grams. Herbert Gelernter (1959) constructed the Geometry Theorem Prover, which was
able to prove theorems that many students of mathematics would find quite tricky. Starting
in 1952, Arthur Samuel wrote a series of programs for checkers (draughts) that eventually
learned to play at a strong amateur level. Along the way, he disproved the idea that comput-

Section 1.3. The History of Artificial Intelligence 19

ers can do only what they are told to: his program quickly learned to play a better game than
its creator. The program was demonstrated on television in February 1956, creating a strong
impression. Like Turing, Samuel had trouble finding computer time. Working at night, he
used machines that were still on the testing floor at IBM’s manufacturing plant. Chapter 5
covers game playing, and Chapter 21 explains the learning techniques used by Samuel.

John McCarthy moved from Dartmouth to MIT and there made three crucial contribu-
tions in one historic year: 1958. In MIT AI Lab Memo No. 1, McCarthy defined the high-level
language Lisp, which was to become the dominant AI programming language for the next 30LISP

years. With Lisp, McCarthy had the tool he needed, but access to scarce and expensive com-
puting resources was also a serious problem. In response, he and others at MIT invented time
sharing. Also in 1958, McCarthy published a paper entitled Programs with Common Sense,
in which he described the Advice Taker, a hypothetical program that can be seen as the first
complete AI system. Like the Logic Theorist and Geometry Theorem Prover, McCarthy’s
program was designed to use knowledge to search for solutions to problems. But unlike the
others, it was to embody general knowledge of the world. For example, he showed how
some simple axioms would enable the program to generate a plan to drive to the airport. The
program was also designed to accept new axioms in the normal course of operation, thereby
allowing it to achieve competence in new areas without being reprogrammed. The Advice
Taker thus embodied the central principles of knowledge representation and reasoning: that
it is useful to have a formal, explicit representation of the world and its workings and to be
able to manipulate that representation with deductive processes. It is remarkable how much
of the 1958 paper remains relevant today.

1958 also marked the year that Marvin Minsky moved to MIT. His initial collaboration
with McCarthy did not last, however. McCarthy stressed representation and reasoning in for-
mal logic, whereas Minsky was more interested in getting programs to work and eventually
developed an anti-logic outlook. In 1963, McCarthy started the AI lab at Stanford. His plan
to use logic to build the ultimate Advice Taker was advanced by J. A. Robinson’s discov-
ery in 1965 of the resolution method (a complete theorem-proving algorithm for first-order
logic; see Chapter 9). Work at Stanford emphasized general-purpose methods for logical
reasoning. Applications of logic included Cordell Green’s question-answering and planning
systems (Green, 1969b) and the Shakey robotics project at the Stanford Research Institute
(SRI). The latter project, discussed further in Chapter 25, was the first to demonstrate the
complete integration of logical reasoning and physical activity.

Minsky supervised a series of students who chose limited problems that appeared to
require intelligence to solve. These limited domains became known as microworlds. JamesMICROWORLD

Slagle’s SAINT program (1963) was able to solve closed-form calculus integration problems
typical of first-year college courses. Tom Evans’s ANALOGY program (1968) solved geo-
metric analogy problems that appear in IQ tests. Daniel Bobrow’s STUDENT program (1967)
solved algebra story problems, such as the following:

If the number of customers Tom gets is twice the square of 20 percent of the number
of advertisements he runs, and the number of advertisements he runs is 45, what is the
number of customers Tom gets?

20 Chapter 1. Introduction

Red

Green

Red

Green

Green

Blue

Blue

Red

Figure 1.4 A scene from the blocks world. SHRDLU (Winograd, 1972) has just completed
the command “Find a block which is taller than the one you are holding and put it in the box.”

The most famous microworld was the blocks world, which consists of a set of solid blocks
placed on a tabletop (or more often, a simulation of a tabletop), as shown in Figure 1.4.
A typical task in this world is to rearrange the blocks in a certain way, using a robot hand
that can pick up one block at a time. The blocks world was home to the vision project of
David Huffman (1971), the vision and constraint-propagation work of David Waltz (1975),
the learning theory of Patrick Winston (1970), the natural-language-understanding program
of Terry Winograd (1972), and the planner of Scott Fahlman (1974).

Early work building on the neural networks of McCulloch and Pitts also flourished.
The work of Winograd and Cowan (1963) showed how a large number of elements could
collectively represent an individual concept, with a corresponding increase in robustness and
parallelism. Hebb’s learning methods were enhanced by Bernie Widrow (Widrow and Hoff,
1960; Widrow, 1962), who called his networks adalines, and by Frank Rosenblatt (1962)
with his perceptrons. The perceptron convergence theorem (Block et al., 1962) says that
the learning algorithm can adjust the connection strengths of a perceptron to match any input
data, provided such a match exists. These topics are covered in Chapter 20.

1.3.4 A dose of reality (1966–1973)

From the beginning, AI researchers were not shy about making predictions of their coming
successes. The following statement by Herbert Simon in 1957 is often quoted:

It is not my aim to surprise or shock you—but the simplest way I can summarize is to say
that there are now in the world machines that think, that learn and that create. Moreover,

Section 1.3. The History of Artificial Intelligence 21

their ability to do these things is going to increase rapidly until—in a visible future—the
range of problems they can handle will be coextensive with the range to which the human
mind has been applied.

Terms such as “visible future” can be interpreted in various ways, but Simon also made
more concrete predictions: that within 10 years a computer would be chess champion, and
a significant mathematical theorem would be proved by machine. These predictions came
true (or approximately true) within 40 years rather than 10. Simon’s overconfidence was due
to the promising performance of early AI systems on simple examples. In almost all cases,
however, these early systems turned out to fail miserably when tried out on wider selections
of problems and on more difficult problems.

The first kind of difficulty arose because most early programs knew nothing of their
subject matter; they succeeded by means of simple syntactic manipulations. A typical story
occurred in early machine translation efforts, which were generously funded by the U.S. Na-
tional Research Council in an attempt to speed up the translation of Russian scientific papers
in the wake of the Sputnik launch in 1957. It was thought initially that simple syntactic trans-
formations based on the grammars of Russian and English, and word replacement from an
electronic dictionary, would suffice to preserve the exact meanings of sentences. The fact is
that accurate translation requires background knowledge in order to resolve ambiguity and
establish the content of the sentence. The famous retranslation of “the spirit is willing but
the flesh is weak” as “the vodka is good but the meat is rotten” illustrates the difficulties en-
countered. In 1966, a report by an advisory committee found that “there has been no machine
translation of general scientific text, and none is in immediate prospect.” All U.S. government
funding for academic translation projects was canceled. Today, machine translation is an im-
perfect but widely used tool for technical, commercial, government, and Internet documents.

The second kind of difficulty was the intractability of many of the problems that AI was
attempting to solve. Most of the early AI programs solved problems by trying out different
combinations of steps until the solution was found. This strategy worked initially because
microworlds contained very few objects and hence very few possible actions and very short
solution sequences. Before the theory of computational complexity was developed, it was
widely thought that “scaling up” to larger problems was simply a matter of faster hardware
and larger memories. The optimism that accompanied the development of resolution theorem
proving, for example, was soon dampened when researchers failed to prove theorems involv-
ing more than a few dozen facts. The fact that a program can find a solution in principle does
not mean that the program contains any of the mechanisms needed to find it in practice.

The illusion of unlimited computational power was not confined to problem-solving
programs. Early experiments in machine evolution (now called genetic algorithms) (Fried-MACHINE EVOLUTION

GENETIC

ALGORITHM
berg, 1958; Friedberg et al., 1959) were based on the undoubtedly correct belief that by
making an appropriate series of small mutations to a machine-code program, one can gen-
erate a program with good performance for any particular task. The idea, then, was to try
random mutations with a selection process to preserve mutations that seemed useful. De-
spite thousands of hours of CPU time, almost no progress was demonstrated. Modern genetic
algorithms use better representations and have shown more success.

22 Chapter 1. Introduction

Failure to come to grips with the “combinatorial explosion” was one of the main criti-
cisms of AI contained in the Lighthill report (Lighthill, 1973), which formed the basis for the
decision by the British government to end support for AI research in all but two universities.
(Oral tradition paints a somewhat different and more colorful picture, with political ambitions
and personal animosities whose description is beside the point.)

A third difficulty arose because of some fundamental limitations on the basic structures
being used to generate intelligent behavior. For example, Minsky and Papert’s book Percep-
trons (1969) proved that, although perceptrons (a simple form of neural network) could be
shown to learn anything they were capable of representing, they could represent very little. In
particular, a two-input perceptron (restricted to be simpler than the form Rosenblatt originally
studied) could not be trained to recognize when its two inputs were different. Although their
results did not apply to more complex, multilayer networks, research funding for neural-net
research soon dwindled to almost nothing. Ironically, the new back-propagation learning al-
gorithms for multilayer networks that were to cause an enormous resurgence in neural-net
research in the late 1980s were actually discovered first in 1969 (Bryson and Ho, 1969).

1.3.5 Knowledge-based systems: The key to power? (1969–1979)

The picture of problem solving that had arisen during the first decade of AI research was of
a general-purpose search mechanism trying to string together elementary reasoning steps to
find complete solutions. Such approaches have been called weak methods because, althoughWEAK METHOD

general, they do not scale up to large or difficult problem instances. The alternative to weak
methods is to use more powerful, domain-specific knowledge that allows larger reasoning
steps and can more easily handle typically occurring cases in narrow areas of expertise. One
might say that to solve a hard problem, you have to almost know the answer already.

The DENDRAL program (Buchanan et al., 1969) was an early example of this approach.
It was developed at Stanford, where Ed Feigenbaum (a former student of Herbert Simon),
Bruce Buchanan (a philosopher turned computer scientist), and Joshua Lederberg (a Nobel
laureate geneticist) teamed up to solve the problem of inferring molecular structure from the
information provided by a mass spectrometer. The input to the program consists of the ele-
mentary formula of the molecule (e.g., C6H13NO2) and the mass spectrum giving the masses
of the various fragments of the molecule generated when it is bombarded by an electron beam.
For example, the mass spectrum might contain a peak at m = 15, corresponding to the mass
of a methyl (CH3) fragment.

The naive version of the program generated all possible structures consistent with the
formula, and then predicted what mass spectrum would be observed for each, comparing this
with the actual spectrum. As one might expect, this is intractable for even moderate-sized
molecules. The DENDRAL researchers consulted analytical chemists and found that they
worked by looking for well-known patterns of peaks in the spectrum that suggested common
substructures in the molecule. For example, the following rule is used to recognize a ketone
(C=O) subgroup (which weighs 28):

if there are two peaks at x1 and x2 such that
(a) x1 + x2 = M + 28 (M is the mass of the whole molecule);

Section 1.3. The History of Artificial Intelligence 23

(b) x1 − 28 is a high peak;
(c) x2 − 28 is a high peak;
(d) At least one of x1 and x2 is high.
then there is a ketone subgroup

Recognizing that the molecule contains a particular substructure reduces the number of pos-
sible candidates enormously. DENDRAL was powerful because

All the relevant theoretical knowledge to solve these problems has been mapped over from
its general form in the [spectrum prediction component] (“first principles”) to efficient
special forms (“cookbook recipes”). (Feigenbaum et al., 1971)

The significance of DENDRAL was that it was the first successful knowledge-intensive sys-
tem: its expertise derived from large numbers of special-purpose rules. Later systems also
incorporated the main theme of McCarthy’s Advice Taker approach—the clean separation of
the knowledge (in the form of rules) from the reasoning component.

With this lesson in mind, Feigenbaum and others at Stanford began the Heuristic Pro-
gramming Project (HPP) to investigate the extent to which the new methodology of expert
systems could be applied to other areas of human expertise. The next major effort was inEXPERT SYSTEMS

the area of medical diagnosis. Feigenbaum, Buchanan, and Dr. Edward Shortliffe developed
MYCIN to diagnose blood infections. With about 450 rules, MYCIN was able to perform
as well as some experts, and considerably better than junior doctors. It also contained two
major differences from DENDRAL. First, unlike the DENDRAL rules, no general theoretical
model existed from which the MYCIN rules could be deduced. They had to be acquired from
extensive interviewing of experts, who in turn acquired them from textbooks, other experts,
and direct experience of cases. Second, the rules had to reflect the uncertainty associated with
medical knowledge. MYCIN incorporated a calculus of uncertainty called certainty factorsCERTAINTY FACTOR

(see Chapter 14), which seemed (at the time) to fit well with how doctors assessed the impact
of evidence on the diagnosis.

The importance of domain knowledge was also apparent in the area of understanding
natural language. Although Winograd’s SHRDLU system for understanding natural language
had engendered a good deal of excitement, its dependence on syntactic analysis caused some
of the same problems as occurred in the early machine translation work. It was able to
overcome ambiguity and understand pronoun references, but this was mainly because it was
designed specifically for one area—the blocks world. Several researchers, including Eugene
Charniak, a fellow graduate student of Winograd’s at MIT, suggested that robust language
understanding would require general knowledge about the world and a general method for
using that knowledge.

At Yale, linguist-turned-AI-researcher Roger Schank emphasized this point, claiming,
“There is no such thing as syntax,” which upset a lot of linguists but did serve to start a useful
discussion. Schank and his students built a series of programs (Schank and Abelson, 1977;
Wilensky, 1978; Schank and Riesbeck, 1981; Dyer, 1983) that all had the task of under-
standing natural language. The emphasis, however, was less on language per se and more on
the problems of representing and reasoning with the knowledge required for language under-
standing. The problems included representing stereotypical situations (Cullingford, 1981),

24 Chapter 1. Introduction

describing human memory organization (Rieger, 1976; Kolodner, 1983), and understanding
plans and goals (Wilensky, 1983).

The widespread growth of applications to real-world problems caused a concurrent in-
crease in the demands for workable knowledge representation schemes. A large number
of different representation and reasoning languages were developed. Some were based on
logic—for example, the Prolog language became popular in Europe, and the PLANNER fam-
ily in the United States. Others, following Minsky’s idea of frames (1975), adopted a moreFRAMES

structured approach, assembling facts about particular object and event types and arranging
the types into a large taxonomic hierarchy analogous to a biological taxonomy.

1.3.6 AI becomes an industry (1980–present)

The first successful commercial expert system, R1, began operation at the Digital Equipment
Corporation (McDermott, 1982). The program helped configure orders for new computer
systems; by 1986, it was saving the company an estimated $40 million a year. By 1988,
DEC’s AI group had 40 expert systems deployed, with more on the way. DuPont had 100 in
use and 500 in development, saving an estimated $10 million a year. Nearly every major U.S.
corporation had its own AI group and was either using or investigating expert systems.

In 1981, the Japanese announced the “Fifth Generation” project, a 10-year plan to build
intelligent computers running Prolog. In response, the United States formed the Microelec-
tronics and Computer Technology Corporation (MCC) as a research consortium designed to
assure national competitiveness. In both cases, AI was part of a broad effort, including chip
design and human-interface research. In Britain, the Alvey report reinstated the funding that
was cut by the Lighthill report.13 In all three countries, however, the projects never met their
ambitious goals.

Overall, the AI industry boomed from a few million dollars in 1980 to billions of dollars
in 1988, including hundreds of companies building expert systems, vision systems, robots,
and software and hardware specialized for these purposes. Soon after that came a period
called the “AI Winter,” in which many companies fell by the wayside as they failed to deliver
on extravagant promises.

1.3.7 The return of neural networks (1986–present)

In the mid-1980s at least four different groups reinvented the back-propagation learningBACKPROPAGATION

algorithm first found in 1969 by Bryson and Ho. The algorithm was applied to many learn-
ing problems in computer science and psychology, and the widespread dissemination of the
results in the collection Parallel Distributed Processing (Rumelhart and McClelland, 1986)
caused great excitement.

These so-called connectionist models of intelligent systems were seen by some as di-CONNECTIONIST

rect competitors both to the symbolic models promoted by Newell and Simon and to the
logicist approach of McCarthy and others (Smolensky, 1988). It might seem obvious that
at some level humans manipulate symbols—in fact, Terrence Deacon’s book The Symbolic
13 To save embarrassment, a new field called IKBS (Intelligent Knowledge-Based Systems) was invented because
Artificial Intelligence had been officially canceled.

Section 1.3. The History of Artificial Intelligence 25

Species (1997) suggests that this is the defining characteristic of humans—but the most ar-
dent connectionists questioned whether symbol manipulation had any real explanatory role in
detailed models of cognition. This question remains unanswered, but the current view is that
connectionist and symbolic approaches are complementary, not competing. As occurred with
the separation of AI and cognitive science, modern neural network research has bifurcated
into two fields, one concerned with creating effective network architectures and algorithms
and understanding their mathematical properties, the other concerned with careful modeling
of the empirical properties of actual neurons and ensembles of neurons.

1.3.8 AI adopts the scientific method (1987–present)

Recent years have seen a revolution in both the content and the methodology of work in
artificial intelligence.14 It is now more common to build on existing theories than to propose
brand-new ones, to base claims on rigorous theorems or hard experimental evidence rather
than on intuition, and to show relevance to real-world applications rather than toy examples.

AI was founded in part as a rebellion against the limitations of existing fields like control
theory and statistics, but now it is embracing those fields. As David McAllester (1998) put it:

In the early period of AI it seemed plausible that new forms of symbolic computation,
e.g., frames and semantic networks, made much of classical theory obsolete. This led to
a form of isolationism in which AI became largely separated from the rest of computer
science. This isolationism is currently being abandoned. There is a recognition that
machine learning should not be isolated from information theory, that uncertain reasoning
should not be isolated from stochastic modeling, that search should not be isolated from
classical optimization and control, and that automated reasoning should not be isolated
from formal methods and static analysis.

In terms of methodology, AI has finally come firmly under the scientific method. To be ac-
cepted, hypotheses must be subjected to rigorous empirical experiments, and the results must
be analyzed statistically for their importance (Cohen, 1995). It is now possible to replicate
experiments by using shared repositories of test data and code.

The field of speech recognition illustrates the pattern. In the 1970s, a wide variety of
different architectures and approaches were tried. Many of these were rather ad hoc and
fragile, and were demonstrated on only a few specially selected examples. In recent years,
approaches based on hidden Markov models (HMMs) have come to dominate the area. TwoHIDDEN MARKOV

MODELS

aspects of HMMs are relevant. First, they are based on a rigorous mathematical theory. This
has allowed speech researchers to build on several decades of mathematical results developed
in other fields. Second, they are generated by a process of training on a large corpus of
real speech data. This ensures that the performance is robust, and in rigorous blind tests the
HMMs have been improving their scores steadily. Speech technology and the related field of
handwritten character recognition are already making the transition to widespread industrial

14 Some have characterized this change as a victory of the neats—those who think that AI theories should be
grounded in mathematical rigor—over the scruffies—those who would rather try out lots of ideas, write some
programs, and then assess what seems to be working. Both approaches are important. A shift toward neatness
implies that the field has reached a level of stability and maturity. Whether that stability will be disrupted by a
new scruffy idea is another question.

26 Chapter 1. Introduction

and consumer applications. Note that there is no scientific claim that humans use HMMs to
recognize speech; rather, HMMs provide a mathematical framework for understanding the
problem and support the engineering claim that they work well in practice.

Machine translation follows the same course as speech recognition. In the 1950s there
was initial enthusiasm for an approach based on sequences of words, with models learned
according to the principles of information theory. That approach fell out of favor in the
1960s, but returned in the late 1990s and now dominates the field.

Neural networks also fit this trend. Much of the work on neural nets in the 1980s was
done in an attempt to scope out what could be done and to learn how neural nets differ from
“traditional” techniques. Using improved methodology and theoretical frameworks, the field
arrived at an understanding in which neural nets can now be compared with corresponding
techniques from statistics, pattern recognition, and machine learning, and the most promising
technique can be applied to each application. As a result of these developments, so-called
data mining technology has spawned a vigorous new industry.DATA MINING

Judea Pearl’s (1988) Probabilistic Reasoning in Intelligent Systems led to a new accep-
tance of probability and decision theory in AI, following a resurgence of interest epitomized
by Peter Cheeseman’s (1985) article “In Defense of Probability.” The Bayesian networkBAYESIAN NETWORK

formalism was invented to allow efficient representation of, and rigorous reasoning with,
uncertain knowledge. This approach largely overcomes many problems of the probabilistic
reasoning systems of the 1960s and 1970s; it now dominates AI research on uncertain reason-
ing and expert systems. The approach allows for learning from experience, and it combines
the best of classical AI and neural nets. Work by Judea Pearl (1982a) and by Eric Horvitz and
David Heckerman (Horvitz and Heckerman, 1986; Horvitz et al., 1986) promoted the idea of
normative expert systems: ones that act rationally according to the laws of decision theory
and do not try to imitate the thought steps of human experts. The WindowsTM operating sys-
tem includes several normative diagnostic expert systems for correcting problems. Chapters
13 to 16 cover this area.

Similar gentle revolutions have occurred in robotics, computer vision, and knowledge
representation. A better understanding of the problems and their complexity properties, com-
bined with increased mathematical sophistication, has led to workable research agendas and
robust methods. Although increased formalization and specialization led fields such as vision
and robotics to become somewhat isolated from “mainstream” AI in the 1990s, this trend has
reversed in recent years as tools from machine learning in particular have proved effective for
many problems. The process of reintegration is already yielding significant benefits

1.3.9 The emergence of intelligent agents (1995–present)

Perhaps encouraged by the progress in solving the subproblems of AI, researchers have also
started to look at the “whole agent” problem again. The work of Allen Newell, John Laird,
and Paul Rosenbloom on SOAR (Newell, 1990; Laird et al., 1987) is the best-known example
of a complete agent architecture. One of the most important environments for intelligent
agents is the Internet. AI systems have become so common in Web-based applications that
the “-bot” suffix has entered everyday language. Moreover, AI technologies underlie many

Section 1.3. The History of Artificial Intelligence 27

Internet tools, such as search engines, recommender systems, and Web site aggregators.
One consequence of trying to build complete agents is the realization that the previously

isolated subfields of AI might need to be reorganized somewhat when their results are to be
tied together. In particular, it is now widely appreciated that sensory systems (vision, sonar,
speech recognition, etc.) cannot deliver perfectly reliable information about the environment.
Hence, reasoning and planning systems must be able to handle uncertainty. A second major
consequence of the agent perspective is that AI has been drawn into much closer contact
with other fields, such as control theory and economics, that also deal with agents. Recent
progress in the control of robotic cars has derived from a mixture of approaches ranging from
better sensors, control-theoretic integration of sensing, localization and mapping, as well as
a degree of high-level planning.

Despite these successes, some influential founders of AI, including John McCarthy
(2007), Marvin Minsky (2007), Nils Nilsson (1995, 2005) and Patrick Winston (Beal and
Winston, 2009), have expressed discontent with the progress of AI. They think that AI should
put less emphasis on creating ever-improved versions of applications that are good at a spe-
cific task, such as driving a car, playing chess, or recognizing speech. Instead, they believe
AI should return to its roots of striving for, in Simon’s words, “machines that think, that learn
and that create.” They call the effort human-level AI or HLAI; their first symposium was inHUMANLEVEL AI

2004 (Minsky et al., 2004). The effort will require very large knowledge bases; Hendler et al.
(1995) discuss where these knowledge bases might come from.

A related idea is the subfield of Artificial General Intelligence or AGI (Goertzel andARTIFICIAL GENERAL

INTELLIGENCE

Pennachin, 2007), which held its first conference and organized the Journal of Artificial Gen-
eral Intelligence in 2008. AGI looks for a universal algorithm for learning and acting in
any environment, and has its roots in the work of Ray Solomonoff (1964), one of the atten-
dees of the original 1956 Dartmouth conference. Guaranteeing that what we create is really
Friendly AI is also a concern (Yudkowsky, 2008; Omohundro, 2008), one we will return toFRIENDLY AI

in Chapter 26.

1.3.10 The availability of very large data sets (2001–present)

Throughout the 60-year history of computer science, the emphasis has been on the algorithm
as the main subject of study. But some recent work in AI suggests that for many problems, it
makes more sense to worry about the data and be less picky about what algorithm to apply.
This is true because of the increasing availability of very large data sources: for example,
trillions of words of English and billions of images from the Web (Kilgarriff and Grefenstette,
2006); or billions of base pairs of genomic sequences (Collins et al., 2003).

One influential paper in this line was Yarowsky’s (1995) work on word-sense disam-
biguation: given the use of the word “plant” in a sentence, does that refer to flora or factory?
Previous approaches to the problem had relied on human-labeled examples combined with
machine learning algorithms. Yarowsky showed that the task can be done, with accuracy
above 96%, with no labeled examples at all. Instead, given a very large corpus of unanno-
tated text and just the dictionary definitions of the two senses—“works, industrial plant” and
“flora, plant life”—one can label examples in the corpus, and from there bootstrap to learn

28 Chapter 1. Introduction

new patterns that help label new examples. Banko and Brill (2001) show that techniques
like this perform even better as the amount of available text goes from a million words to a
billion and that the increase in performance from using more data exceeds any difference in
algorithm choice; a mediocre algorithm with 100 million words of unlabeled training data
outperforms the best known algorithm with 1 million words.

As another example, Hays and Efros (2007) discuss the problem of filling in holes in a
photograph. Suppose you use Photoshop to mask out an ex-friend from a group photo, but
now you need to fill in the masked area with something that matches the background. Hays
and Efros defined an algorithm that searches through a collection of photos to find something
that will match. They found the performance of their algorithm was poor when they used
a collection of only ten thousand photos, but crossed a threshold into excellent performance
when they grew the collection to two million photos.

Work like this suggests that the “knowledge bottleneck” in AI—the problem of how to
express all the knowledge that a system needs—may be solved in many applications by learn-
ing methods rather than hand-coded knowledge engineering, provided the learning algorithms
have enough data to go on (Halevy et al., 2009). Reporters have noticed the surge of new ap-
plications and have written that “AI Winter” may be yielding to a new Spring (Havenstein,
2005). As Kurzweil (2005) writes, “today, many thousands of AI applications are deeply
embedded in the infrastructure of every industry.”

1.4 THE STATE OF THE ART

What can AI do today? A concise answer is difficult because there are so many activities in
so many subfields. Here we sample a few applications; others appear throughout the book.

Robotic vehicles: A driverless robotic car named STANLEY sped through the rough
terrain of the Mojave dessert at 22 mph, finishing the 132-mile course first to win the 2005
DARPA Grand Challenge. STANLEY is a Volkswagen Touareg outfitted with cameras, radar,
and laser rangefinders to sense the environment and onboard software to command the steer-
ing, braking, and acceleration (Thrun, 2006). The following year CMU’s BOSS won the Ur-
ban Challenge, safely driving in traffic through the streets of a closed Air Force base, obeying
traffic rules and avoiding pedestrians and other vehicles.

Speech recognition: A traveler calling United Airlines to book a flight can have the en-
tire conversation guided by an automated speech recognition and dialog management system.

Autonomous planning and scheduling: A hundred million miles from Earth, NASA’s
Remote Agent program became the first on-board autonomous planning program to control
the scheduling of operations for a spacecraft (Jonsson et al., 2000). REMOTE AGENT gen-
erated plans from high-level goals specified from the ground and monitored the execution of
those plans—detecting, diagnosing, and recovering from problems as they occurred. Succes-
sor program MAPGEN (Al-Chang et al., 2004) plans the daily operations for NASA’s Mars
Exploration Rovers, and MEXAR2 (Cesta et al., 2007) did mission planning—both logistics
and science planning—for the European Space Agency’s Mars Express mission in 2008.

2 INTELLIGENT AGENTS

In which we discuss the nature of agents, perfect or otherwise, the diversity of
environments, and the resulting menagerie of agent types.

Chapter 1 identified the concept of rational agents as central to our approach to artificial
intelligence. In this chapter, we make this notion more concrete. We will see that the concept
of rationality can be applied to a wide variety of agents operating in any imaginable environ-
ment. Our plan in this book is to use this concept to develop a small set of design principles
for building successful agents—systems that can reasonably be called intelligent.

We begin by examining agents, environments, and the coupling between them. The
observation that some agents behave better than others leads naturally to the idea of a rational
agent—one that behaves as well as possible. How well an agent can behave depends on
the nature of the environment; some environments are more difficult than others. We give a
crude categorization of environments and show how properties of an environment influence
the design of suitable agents for that environment. We describe a number of basic “skeleton”
agent designs, which we flesh out in the rest of the book.

2.1 AGENTS AND ENVIRONMENTS

An agent is anything that can be viewed as perceiving its environment through sensors andENVIRONMENT

SENSOR acting upon that environment through actuators. This simple idea is illustrated in Figure 2.1.
ACTUATOR A human agent has eyes, ears, and other organs for sensors and hands, legs, vocal tract, and so

on for actuators. A robotic agent might have cameras and infrared range finders for sensors
and various motors for actuators. A software agent receives keystrokes, file contents, and
network packets as sensory inputs and acts on the environment by displaying on the screen,
writing files, and sending network packets.

We use the term percept to refer to the agent’s perceptual inputs at any given instant. AnPERCEPT

agent’s percept sequence is the complete history of everything the agent has ever perceived.PERCEPT SEQUENCE

In general, an agent’s choice of action at any given instant can depend on the entire percept
sequence observed to date, but not on anything it hasn’t perceived. By specifying the agent’s
choice of action for every possible percept sequence, we have said more or less everything

34

Section 2.1. Agents and Environments 35

Agent Sensors

Actuators

E
nvironm

ent

Percepts

Actions

?

Figure 2.1 Agents interact with environments through sensors and actuators.

there is to say about the agent. Mathematically speaking, we say that an agent’s behavior is
described by the agent function that maps any given percept sequence to an action.AGENT FUNCTION

We can imagine tabulating the agent function that describes any given agent; for most
agents, this would be a very large table—infinite, in fact, unless we place a bound on the
length of percept sequences we want to consider. Given an agent to experiment with, we can,
in principle, construct this table by trying out all possible percept sequences and recording
which actions the agent does in response.1 The table is, of course, an external characterization
of the agent. Internally, the agent function for an artificial agent will be implemented by an
agent program. It is important to keep these two ideas distinct. The agent function is anAGENT PROGRAM

abstract mathematical description; the agent program is a concrete implementation, running
within some physical system.

To illustrate these ideas, we use a very simple example—the vacuum-cleaner world
shown in Figure 2.2. This world is so simple that we can describe everything that happens;
it’s also a made-up world, so we can invent many variations. This particular world has just two
locations: squares A and B. The vacuum agent perceives which square it is in and whether
there is dirt in the square. It can choose to move left, move right, suck up the dirt, or do
nothing. One very simple agent function is the following: if the current square is dirty, then
suck; otherwise, move to the other square. A partial tabulation of this agent function is shown
in Figure 2.3 and an agent program that implements it appears in Figure 2.8 on page 48.

Looking at Figure 2.3, we see that various vacuum-world agents can be defined simply
by filling in the right-hand column in various ways. The obvious question, then, is this: What
is the right way to fill out the table? In other words, what makes an agent good or bad,
intelligent or stupid? We answer these questions in the next section.

1 If the agent uses some randomization to choose its actions, then we would have to try each sequence many
times to identify the probability of each action. One might imagine that acting randomly is rather silly, but we
show later in this chapter that it can be very intelligent.

36 Chapter 2. Intelligent Agents

A B

Figure 2.2 A vacuum-cleaner world with just two locations.

Percept sequence Action

[A,Clean] Right

[A,Dirty] Suck

[B,Clean] Left

[B,Dirty] Suck

[A,Clean], [A,Clean] Right

[A,Clean], [A,Dirty] Suck
...

...
[A,Clean], [A,Clean], [A,Clean] Right

[A,Clean], [A,Clean], [A,Dirty] Suck
...

...

Figure 2.3 Partial tabulation of a simple agent function for the vacuum-cleaner world
shown in Figure 2.2.

Before closing this section, we should emphasize that the notion of an agent is meant to
be a tool for analyzing systems, not an absolute characterization that divides the world into
agents and non-agents. One could view a hand-held calculator as an agent that chooses the
action of displaying “4” when given the percept sequence “2 + 2 =,” but such an analysis
would hardly aid our understanding of the calculator. In a sense, all areas of engineering can
be seen as designing artifacts that interact with the world; AI operates at (what the authors
consider to be) the most interesting end of the spectrum, where the artifacts have significant
computational resources and the task environment requires nontrivial decision making.

2.2 GOOD BEHAVIOR: THE CONCEPT OF RATIONALITY

A rational agent is one that does the right thing—conceptually speaking, every entry in theRATIONAL AGENT

table for the agent function is filled out correctly. Obviously, doing the right thing is better
than doing the wrong thing, but what does it mean to do the right thing?

Section 2.2. Good Behavior: The Concept of Rationality 37

We answer this age-old question in an age-old way: by considering the consequences
of the agent’s behavior. When an agent is plunked down in an environment, it generates a
sequence of actions according to the percepts it receives. This sequence of actions causes the
environment to go through a sequence of states. If the sequence is desirable, then the agent
has performed well. This notion of desirability is captured by a performance measure thatPERFORMANCE

MEASURE

evaluates any given sequence of environment states.
Notice that we said environment states, not agent states. If we define success in terms

of agent’s opinion of its own performance, an agent could achieve perfect rationality simply
by deluding itself that its performance was perfect. Human agents in particular are notorious
for “sour grapes”—believing they did not really want something (e.g., a Nobel Prize) after
not getting it.

Obviously, there is not one fixed performance measure for all tasks and agents; typically,
a designer will devise one appropriate to the circumstances. This is not as easy as it sounds.
Consider, for example, the vacuum-cleaner agent from the preceding section. We might
propose to measure performance by the amount of dirt cleaned up in a single eight-hour shift.
With a rational agent, of course, what you ask for is what you get. A rational agent can
maximize this performance measure by cleaning up the dirt, then dumping it all on the floor,
then cleaning it up again, and so on. A more suitable performance measure would reward the
agent for having a clean floor. For example, one point could be awarded for each clean square
at each time step (perhaps with a penalty for electricity consumed and noise generated). As
a general rule, it is better to design performance measures according to what one actually
wants in the environment, rather than according to how one thinks the agent should behave.

Even when the obvious pitfalls are avoided, there remain some knotty issues to untangle.
For example, the notion of “clean floor” in the preceding paragraph is based on average
cleanliness over time. Yet the same average cleanliness can be achieved by two different
agents, one of which does a mediocre job all the time while the other cleans energetically but
takes long breaks. Which is preferable might seem to be a fine point of janitorial science, but
in fact it is a deep philosophical question with far-reaching implications. Which is better—
a reckless life of highs and lows, or a safe but humdrum existence? Which is better—an
economy where everyone lives in moderate poverty, or one in which some live in plenty
while others are very poor? We leave these questions as an exercise for the diligent reader.

2.2.1 Rationality

What is rational at any given time depends on four things:

• The performance measure that defines the criterion of success.
• The agent’s prior knowledge of the environment.
• The actions that the agent can perform.
• The agent’s percept sequence to date.

This leads to a definition of a rational agent:DEFINITION OF A

RATIONAL AGENT

For each possible percept sequence, a rational agent should select an action that is ex-
pected to maximize its performance measure, given the evidence provided by the percept
sequence and whatever built-in knowledge the agent has.

38 Chapter 2. Intelligent Agents

Consider the simple vacuum-cleaner agent that cleans a square if it is dirty and moves to the
other square if not; this is the agent function tabulated in Figure 2.3. Is this a rational agent?
That depends! First, we need to say what the performance measure is, what is known about
the environment, and what sensors and actuators the agent has. Let us assume the following:

• The performance measure awards one point for each clean square at each time step,
over a “lifetime” of 1000 time steps.

• The “geography” of the environment is known a priori (Figure 2.2) but the dirt distri-
bution and the initial location of the agent are not. Clean squares stay clean and sucking
cleans the current square. The Left and Right actions move the agent left and right
except when this would take the agent outside the environment, in which case the agent
remains where it is.

• The only available actions are Left , Right , and Suck .

• The agent correctly perceives its location and whether that location contains dirt.

We claim that under these circumstances the agent is indeed rational; its expected perfor-
mance is at least as high as any other agent’s. Exercise 2.1 asks you to prove this.

One can see easily that the same agent would be irrational under different circum-
stances. For example, once all the dirt is cleaned up, the agent will oscillate needlessly back
and forth; if the performance measure includes a penalty of one point for each movement left
or right, the agent will fare poorly. A better agent for this case would do nothing once it is
sure that all the squares are clean. If clean squares can become dirty again, the agent should
occasionally check and re-clean them if needed. If the geography of the environment is un-
known, the agent will need to explore it rather than stick to squares A and B. Exercise 2.1
asks you to design agents for these cases.

2.2.2 Omniscience, learning, and autonomy

We need to be careful to distinguish between rationality and omniscience. An omniscientOMNISCIENCE

agent knows the actual outcome of its actions and can act accordingly; but omniscience is
impossible in reality. Consider the following example: I am walking along the Champs
Elysées one day and I see an old friend across the street. There is no traffic nearby and I’m
not otherwise engaged, so, being rational, I start to cross the street. Meanwhile, at 33,000
feet, a cargo door falls off a passing airliner,2 and before I make it to the other side of the
street I am flattened. Was I irrational to cross the street? It is unlikely that my obituary would
read “Idiot attempts to cross street.”

This example shows that rationality is not the same as perfection. Rationality max-
imizes expected performance, while perfection maximizes actual performance. Retreating
from a requirement of perfection is not just a question of being fair to agents. The point is
that if we expect an agent to do what turns out to be the best action after the fact, it will be
impossible to design an agent to fulfill this specification—unless we improve the performance
of crystal balls or time machines.

2 See N. Henderson, “New door latches urged for Boeing 747 jumbo jets,” Washington Post, August 24, 1989.

Section 2.2. Good Behavior: The Concept of Rationality 39

Our definition of rationality does not require omniscience, then, because the rational
choice depends only on the percept sequence to date. We must also ensure that we haven’t
inadvertently allowed the agent to engage in decidedly underintelligent activities. For exam-
ple, if an agent does not look both ways before crossing a busy road, then its percept sequence
will not tell it that there is a large truck approaching at high speed. Does our definition of
rationality say that it’s now OK to cross the road? Far from it! First, it would not be rational
to cross the road given this uninformative percept sequence: the risk of accident from cross-
ing without looking is too great. Second, a rational agent should choose the “looking” action
before stepping into the street, because looking helps maximize the expected performance.
Doing actions in order to modify future percepts—sometimes called information gather-
ing—is an important part of rationality and is covered in depth in Chapter 16. A secondINFORMATION

GATHERING

example of information gathering is provided by the exploration that must be undertaken byEXPLORATION

a vacuum-cleaning agent in an initially unknown environment.
Our definition requires a rational agent not only to gather information but also to learnLEARNING

as much as possible from what it perceives. The agent’s initial configuration could reflect
some prior knowledge of the environment, but as the agent gains experience this may be
modified and augmented. There are extreme cases in which the environment is completely
known a priori. In such cases, the agent need not perceive or learn; it simply acts correctly.
Of course, such agents are fragile. Consider the lowly dung beetle. After digging its nest and
laying its eggs, it fetches a ball of dung from a nearby heap to plug the entrance. If the ball of
dung is removed from its grasp en route, the beetle continues its task and pantomimes plug-
ging the nest with the nonexistent dung ball, never noticing that it is missing. Evolution has
built an assumption into the beetle’s behavior, and when it is violated, unsuccessful behavior
results. Slightly more intelligent is the sphex wasp. The female sphex will dig a burrow, go
out and sting a caterpillar and drag it to the burrow, enter the burrow again to check all is
well, drag the caterpillar inside, and lay its eggs. The caterpillar serves as a food source when
the eggs hatch. So far so good, but if an entomologist moves the caterpillar a few inches
away while the sphex is doing the check, it will revert to the “drag” step of its plan and will
continue the plan without modification, even after dozens of caterpillar-moving interventions.
The sphex is unable to learn that its innate plan is failing, and thus will not change it.

To the extent that an agent relies on the prior knowledge of its designer rather than
on its own percepts, we say that the agent lacks autonomy. A rational agent should beAUTONOMY

autonomous—it should learn what it can to compensate for partial or incorrect prior knowl-
edge. For example, a vacuum-cleaning agent that learns to foresee where and when additional
dirt will appear will do better than one that does not. As a practical matter, one seldom re-
quires complete autonomy from the start: when the agent has had little or no experience, it
would have to act randomly unless the designer gave some assistance. So, just as evolution
provides animals with enough built-in reflexes to survive long enough to learn for themselves,
it would be reasonable to provide an artificial intelligent agent with some initial knowledge
as well as an ability to learn. After sufficient experience of its environment, the behavior
of a rational agent can become effectively independent of its prior knowledge. Hence, the
incorporation of learning allows one to design a single rational agent that will succeed in a
vast variety of environments.

40 Chapter 2. Intelligent Agents

2.3 THE NATURE OF ENVIRONMENTS

Now that we have a definition of rationality, we are almost ready to think about building
rational agents. First, however, we must think about task environments, which are essen-TASK ENVIRONMENT

tially the “problems” to which rational agents are the “solutions.” We begin by showing how
to specify a task environment, illustrating the process with a number of examples. We then
show that task environments come in a variety of flavors. The flavor of the task environment
directly affects the appropriate design for the agent program.

2.3.1 Specifying the task environment

In our discussion of the rationality of the simple vacuum-cleaner agent, we had to specify
the performance measure, the environment, and the agent’s actuators and sensors. We group
all these under the heading of the task environment. For the acronymically minded, we call
this the PEAS (Performance, Environment, Actuators, Sensors) description. In designing anPEAS

agent, the first step must always be to specify the task environment as fully as possible.
The vacuum world was a simple example; let us consider a more complex problem: an

automated taxi driver. We should point out, before the reader becomes alarmed, that a fully
automated taxi is currently somewhat beyond the capabilities of existing technology. (page 28
describes an existing driving robot.) The full driving task is extremely open-ended. There is
no limit to the novel combinations of circumstances that can arise—another reason we chose
it as a focus for discussion. Figure 2.4 summarizes the PEAS description for the taxi’s task
environment. We discuss each element in more detail in the following paragraphs.

Agent Type Performance
Measure

Environment Actuators Sensors

Taxi driver Safe, fast, legal,
comfortable trip,
maximize profits

Roads, other
traffic,
pedestrians,
customers

Steering,
accelerator,
brake, signal,
horn, display

Cameras, sonar,
speedometer,
GPS, odometer,
accelerometer,
engine sensors,
keyboard

Figure 2.4 PEAS description of the task environment for an automated taxi.

First, what is the performance measure to which we would like our automated driver
to aspire? Desirable qualities include getting to the correct destination; minimizing fuel con-
sumption and wear and tear; minimizing the trip time or cost; minimizing violations of traffic
laws and disturbances to other drivers; maximizing safety and passenger comfort; maximiz-
ing profits. Obviously, some of these goals conflict, so tradeoffs will be required.

Next, what is the driving environment that the taxi will face? Any taxi driver must
deal with a variety of roads, ranging from rural lanes and urban alleys to 12-lane freeways.
The roads contain other traffic, pedestrians, stray animals, road works, police cars, puddles,

Section 2.3. The Nature of Environments 41

and potholes. The taxi must also interact with potential and actual passengers. There are also
some optional choices. The taxi might need to operate in Southern California, where snow
is seldom a problem, or in Alaska, where it seldom is not. It could always be driving on the
right, or we might want it to be flexible enough to drive on the left when in Britain or Japan.
Obviously, the more restricted the environment, the easier the design problem.

The actuators for an automated taxi include those available to a human driver: control
over the engine through the accelerator and control over steering and braking. In addition, it
will need output to a display screen or voice synthesizer to talk back to the passengers, and
perhaps some way to communicate with other vehicles, politely or otherwise.

The basic sensors for the taxi will include one or more controllable video cameras so
that it can see the road; it might augment these with infrared or sonar sensors to detect dis-
tances to other cars and obstacles. To avoid speeding tickets, the taxi should have a speedome-
ter, and to control the vehicle properly, especially on curves, it should have an accelerometer.
To determine the mechanical state of the vehicle, it will need the usual array of engine, fuel,
and electrical system sensors. Like many human drivers, it might want a global positioning
system (GPS) so that it doesn’t get lost. Finally, it will need a keyboard or microphone for
the passenger to request a destination.

In Figure 2.5, we have sketched the basic PEAS elements for a number of additional
agent types. Further examples appear in Exercise 2.4. It may come as a surprise to some read-
ers that our list of agent types includes some programs that operate in the entirely artificial
environment defined by keyboard input and character output on a screen. “Surely,” one might
say, “this is not a real environment, is it?” In fact, what matters is not the distinction between
“real” and “artificial” environments, but the complexity of the relationship among the behav-
ior of the agent, the percept sequence generated by the environment, and the performance
measure. Some “real” environments are actually quite simple. For example, a robot designed
to inspect parts as they come by on a conveyor belt can make use of a number of simplifying
assumptions: that the lighting is always just so, that the only thing on the conveyor belt will
be parts of a kind that it knows about, and that only two actions (accept or reject) are possible.

In contrast, some software agents (or software robots or softbots) exist in rich, unlim-SOFTWARE AGENT

SOFTBOT ited domains. Imagine a softbot Web site operator designed to scan Internet news sources and
show the interesting items to its users, while selling advertising space to generate revenue.
To do well, that operator will need some natural language processing abilities, it will need
to learn what each user and advertiser is interested in, and it will need to change its plans
dynamically—for example, when the connection for one news source goes down or when a
new one comes online. The Internet is an environment whose complexity rivals that of the
physical world and whose inhabitants include many artificial and human agents.

2.3.2 Properties of task environments

The range of task environments that might arise in AI is obviously vast. We can, however,
identify a fairly small number of dimensions along which task environments can be catego-
rized. These dimensions determine, to a large extent, the appropriate agent design and the
applicability of each of the principal families of techniques for agent implementation. First,

42 Chapter 2. Intelligent Agents

Agent Type Performance
Measure

Environment Actuators Sensors

Medical
diagnosis system

Healthy patient,
reduced costs

Patient, hospital,
staff

Display of
questions, tests,
diagnoses,
treatments,
referrals

Keyboard entry
of symptoms,
findings, patient’s
answers

Satellite image
analysis system

Correct image
categorization

Downlink from
orbiting satellite

Display of scene
categorization

Color pixel
arrays

Part-picking
robot

Percentage of
parts in correct
bins

Conveyor belt
with parts; bins

Jointed arm and
hand

Camera, joint
angle sensors

Refinery
controller

Purity, yield,
safety

Refinery,
operators

Valves, pumps,
heaters, displays

Temperature,
pressure,
chemical sensors

Interactive
English tutor

Student’s score
on test

Set of students,
testing agency

Display of
exercises,
suggestions,
corrections

Keyboard entry

Figure 2.5 Examples of agent types and their PEAS descriptions.

we list the dimensions, then we analyze several task environments to illustrate the ideas. The
definitions here are informal; later chapters provide more precise statements and examples of
each kind of environment.

Fully observable vs. partially observable: If an agent’s sensors give it access to theFULLY OBSERVABLE

PARTIALLY

OBSERVABLE
complete state of the environment at each point in time, then we say that the task environ-
ment is fully observable. A task environment is effectively fully observable if the sensors
detect all aspects that are relevant to the choice of action; relevance, in turn, depends on the
performance measure. Fully observable environments are convenient because the agent need
not maintain any internal state to keep track of the world. An environment might be partially
observable because of noisy and inaccurate sensors or because parts of the state are simply
missing from the sensor data—for example, a vacuum agent with only a local dirt sensor
cannot tell whether there is dirt in other squares, and an automated taxi cannot see what other
drivers are thinking. If the agent has no sensors at all then the environment is unobserv-
able. One might think that in such cases the agent’s plight is hopeless, but, as we discuss inUNOBSERVABLE

Chapter 4, the agent’s goals may still be achievable, sometimes with certainty.
Single agent vs. multiagent: The distinction between single-agent and multiagent en-SINGLE AGENT

MULTIAGENT

Section 2.3. The Nature of Environments 43

vironments may seem simple enough. For example, an agent solving a crossword puzzle by
itself is clearly in a single-agent environment, whereas an agent playing chess is in a two-
agent environment. There are, however, some subtle issues. First, we have described how an
entity may be viewed as an agent, but we have not explained which entities must be viewed
as agents. Does an agent A (the taxi driver for example) have to treat an object B (another
vehicle) as an agent, or can it be treated merely as an object behaving according to the laws of
physics, analogous to waves at the beach or leaves blowing in the wind? The key distinction
is whether B’s behavior is best described as maximizing a performance measure whose value
depends on agent A’s behavior. For example, in chess, the opponent entity B is trying to
maximize its performance measure, which, by the rules of chess, minimizes agent A’s per-
formance measure. Thus, chess is a competitive multiagent environment. In the taxi-drivingCOMPETITIVE

environment, on the other hand, avoiding collisions maximizes the performance measure of
all agents, so it is a partially cooperative multiagent environment. It is also partially com-COOPERATIVE

petitive because, for example, only one car can occupy a parking space. The agent-design
problems in multiagent environments are often quite different from those in single-agent en-
vironments; for example, communication often emerges as a rational behavior in multiagent
environments; in some competitive environments, randomized behavior is rational because
it avoids the pitfalls of predictability.

Deterministic vs. stochastic. If the next state of the environment is completely deter-DETERMINISTIC

STOCHASTIC mined by the current state and the action executed by the agent, then we say the environment
is deterministic; otherwise, it is stochastic. In principle, an agent need not worry about uncer-
tainty in a fully observable, deterministic environment. (In our definition, we ignore uncer-
tainty that arises purely from the actions of other agents in a multiagent environment; thus,
a game can be deterministic even though each agent may be unable to predict the actions of
the others.) If the environment is partially observable, however, then it could appear to be
stochastic. Most real situations are so complex that it is impossible to keep track of all the
unobserved aspects; for practical purposes, they must be treated as stochastic. Taxi driving is
clearly stochastic in this sense, because one can never predict the behavior of traffic exactly;
moreover, one’s tires blow out and one’s engine seizes up without warning. The vacuum
world as we described it is deterministic, but variations can include stochastic elements such
as randomly appearing dirt and an unreliable suction mechanism (Exercise 2.13). We say an
environment is uncertain if it is not fully observable or not deterministic. One final note:UNCERTAIN

our use of the word “stochastic” generally implies that uncertainty about outcomes is quan-
tified in terms of probabilities; a nondeterministic environment is one in which actions areNONDETERMINISTIC

characterized by their possible outcomes, but no probabilities are attached to them. Nonde-
terministic environment descriptions are usually associated with performance measures that
require the agent to succeed for all possible outcomes of its actions.

Episodic vs. sequential: In an episodic task environment, the agent’s experience isEPISODIC

SEQUENTIAL divided into atomic episodes. In each episode the agent receives a percept and then performs
a single action. Crucially, the next episode does not depend on the actions taken in previous
episodes. Many classification tasks are episodic. For example, an agent that has to spot
defective parts on an assembly line bases each decision on the current part, regardless of
previous decisions; moreover, the current decision doesn’t affect whether the next part is

44 Chapter 2. Intelligent Agents

defective. In sequential environments, on the other hand, the current decision could affect
all future decisions.3 Chess and taxi driving are sequential: in both cases, short-term actions
can have long-term consequences. Episodic environments are much simpler than sequential
environments because the agent does not need to think ahead.

Static vs. dynamic: If the environment can change while an agent is deliberating, thenSTATIC

DYNAMIC we say the environment is dynamic for that agent; otherwise, it is static. Static environments
are easy to deal with because the agent need not keep looking at the world while it is deciding
on an action, nor need it worry about the passage of time. Dynamic environments, on the
other hand, are continuously asking the agent what it wants to do; if it hasn’t decided yet,
that counts as deciding to do nothing. If the environment itself does not change with the
passage of time but the agent’s performance score does, then we say the environment is
semidynamic. Taxi driving is clearly dynamic: the other cars and the taxi itself keep movingSEMIDYNAMIC

while the driving algorithm dithers about what to do next. Chess, when played with a clock,
is semidynamic. Crossword puzzles are static.

Discrete vs. continuous: The discrete/continuous distinction applies to the state of theDISCRETE

CONTINUOUS environment, to the way time is handled, and to the percepts and actions of the agent. For
example, the chess environment has a finite number of distinct states (excluding the clock).
Chess also has a discrete set of percepts and actions. Taxi driving is a continuous-state and
continuous-time problem: the speed and location of the taxi and of the other vehicles sweep
through a range of continuous values and do so smoothly over time. Taxi-driving actions are
also continuous (steering angles, etc.). Input from digital cameras is discrete, strictly speak-
ing, but is typically treated as representing continuously varying intensities and locations.

Known vs. unknown: Strictly speaking, this distinction refers not to the environmentKNOWN

UNKNOWN itself but to the agent’s (or designer’s) state of knowledge about the “laws of physics” of
the environment. In a known environment, the outcomes (or outcome probabilities if the
environment is stochastic) for all actions are given. Obviously, if the environment is unknown,
the agent will have to learn how it works in order to make good decisions. Note that the
distinction between known and unknown environments is not the same as the one between
fully and partially observable environments. It is quite possible for a known environment
to be partially observable—for example, in solitaire card games, I know the rules but am
still unable to see the cards that have not yet been turned over. Conversely, an unknown
environment can be fully observable—in a new video game, the screen may show the entire
game state but I still don’t know what the buttons do until I try them.

As one might expect, the hardest case is partially observable, multiagent, stochastic,
sequential, dynamic, continuous, and unknown. Taxi driving is hard in all these senses, except
that for the most part the driver’s environment is known. Driving a rented car in a new country
with unfamiliar geography and traffic laws is a lot more exciting.

Figure 2.6 lists the properties of a number of familiar environments. Note that the
answers are not always cut and dried. For example, we describe the part-picking robot as
episodic, because it normally considers each part in isolation. But if one day there is a large

3 The word “sequential” is also used in computer science as the antonym of “parallel.” The two meanings are
largely unrelated.

Section 2.3. The Nature of Environments 45

Task Environment Observable Agents Deterministic Episodic Static Discrete

Crossword puzzle Fully Single Deterministic Sequential Static Discrete
Chess with a clock Fully Multi Deterministic Sequential Semi Discrete

Poker Partially Multi Stochastic Sequential Static Discrete
Backgammon Fully Multi Stochastic Sequential Static Discrete

Taxi driving Partially Multi Stochastic Sequential Dynamic Continuous
Medical diagnosis Partially Single Stochastic Sequential Dynamic Continuous

Image analysis Fully Single Deterministic Episodic Semi Continuous
Part-picking robot Partially Single Stochastic Episodic Dynamic Continuous

Refinery controller Partially Single Stochastic Sequential Dynamic Continuous
Interactive English tutor Partially Multi Stochastic Sequential Dynamic Discrete

Figure 2.6 Examples of task environments and their characteristics.

batch of defective parts, the robot should learn from several observations that the distribution
of defects has changed, and should modify its behavior for subsequent parts. We have not
included a “known/unknown” column because, as explained earlier, this is not strictly a prop-
erty of the environment. For some environments, such as chess and poker, it is quite easy to
supply the agent with full knowledge of the rules, but it is nonetheless interesting to consider
how an agent might learn to play these games without such knowledge.

Several of the answers in the table depend on how the task environment is defined. We
have listed the medical-diagnosis task as single-agent because the disease process in a patient
is not profitably modeled as an agent; but a medical-diagnosis system might also have to
deal with recalcitrant patients and skeptical staff, so the environment could have a multiagent
aspect. Furthermore, medical diagnosis is episodic if one conceives of the task as selecting a
diagnosis given a list of symptoms; the problem is sequential if the task can include proposing
a series of tests, evaluating progress over the course of treatment, and so on. Also, many
environments are episodic at higher levels than the agent’s individual actions. For example,
a chess tournament consists of a sequence of games; each game is an episode because (by
and large) the contribution of the moves in one game to the agent’s overall performance is
not affected by the moves in its previous game. On the other hand, decision making within a
single game is certainly sequential.

The code repository associated with this book (aima.cs.berkeley.edu) includes imple-
mentations of a number of environments, together with a general-purpose environment simu-
lator that places one or more agents in a simulated environment, observes their behavior over
time, and evaluates them according to a given performance measure. Such experiments are
often carried out not for a single environment but for many environments drawn from an en-
vironment class. For example, to evaluate a taxi driver in simulated traffic, we would want toENVIRONMENT

CLASS

run many simulations with different traffic, lighting, and weather conditions. If we designed
the agent for a single scenario, we might be able to take advantage of specific properties
of the particular case but might not identify a good design for driving in general. For this

46 Chapter 2. Intelligent Agents

reason, the code repository also includes an environment generator for each environmentENVIRONMENT

GENERATOR

class that selects particular environments (with certain likelihoods) in which to run the agent.
For example, the vacuum environment generator initializes the dirt pattern and agent location
randomly. We are then interested in the agent’s average performance over the environment
class. A rational agent for a given environment class maximizes this average performance.
Exercises 2.9 to 2.13 take you through the process of developing an environment class and
evaluating various agents therein.

2.4 THE STRUCTURE OF AGENTS

So far we have talked about agents by describing behavior—the action that is performed after
any given sequence of percepts. Now we must bite the bullet and talk about how the insides
work. The job of AI is to design an agent program that implements the agent function—AGENT PROGRAM

the mapping from percepts to actions. We assume this program will run on some sort of
computing device with physical sensors and actuators—we call this the architecture:ARCHITECTURE

agent = architecture + program .

Obviously, the program we choose has to be one that is appropriate for the architecture. If the
program is going to recommend actions like Walk, the architecture had better have legs. The
architecture might be just an ordinary PC, or it might be a robotic car with several onboard
computers, cameras, and other sensors. In general, the architecture makes the percepts from
the sensors available to the program, runs the program, and feeds the program’s action choices
to the actuators as they are generated. Most of this book is about designing agent programs,
although Chapters 24 and 25 deal directly with the sensors and actuators.

2.4.1 Agent programs

The agent programs that we design in this book all have the same skeleton: they take the
current percept as input from the sensors and return an action to the actuators.4 Notice the
difference between the agent program, which takes the current percept as input, and the agent
function, which takes the entire percept history. The agent program takes just the current
percept as input because nothing more is available from the environment; if the agent’s actions
need to depend on the entire percept sequence, the agent will have to remember the percepts.

We describe the agent programs in the simple pseudocode language that is defined in
Appendix B. (The online code repository contains implementations in real programming
languages.) For example, Figure 2.7 shows a rather trivial agent program that keeps track of
the percept sequence and then uses it to index into a table of actions to decide what to do.
The table—an example of which is given for the vacuum world in Figure 2.3—represents
explicitly the agent function that the agent program embodies. To build a rational agent in

4 There are other choices for the agent program skeleton; for example, we could have the agent programs be
coroutines that run asynchronously with the environment. Each such coroutine has an input and output port and
consists of a loop that reads the input port for percepts and writes actions to the output port.

Section 2.4. The Structure of Agents 47

function TABLE-DRIVEN-AGENT(percept) returns an action
persistent: percepts , a sequence, initially empty

table , a table of actions, indexed by percept sequences, initially fully specified

append percept to the end of percepts

action← LOOKUP(percepts , table)
return action

Figure 2.7 The TABLE-DRIVEN-AGENT program is invoked for each new percept and
returns an action each time. It retains the complete percept sequence in memory.

this way, we as designers must construct a table that contains the appropriate action for every
possible percept sequence.

It is instructive to consider why the table-driven approach to agent construction is
doomed to failure. Let P be the set of possible percepts and let T be the lifetime of the
agent (the total number of percepts it will receive). The lookup table will contain

∑T
t =1
|P|t

entries. Consider the automated taxi: the visual input from a single camera comes in at the
rate of roughly 27 megabytes per second (30 frames per second, 640× 480 pixels with 24
bits of color information). This gives a lookup table with over 10250,000,000,000 entries for an
hour’s driving. Even the lookup table for chess—a tiny, well-behaved fragment of the real
world—would have at least 10150 entries. The daunting size of these tables (the number of
atoms in the observable universe is less than 1080) means that (a) no physical agent in this
universe will have the space to store the table, (b) the designer would not have time to create
the table, (c) no agent could ever learn all the right table entries from its experience, and (d)
even if the environment is simple enough to yield a feasible table size, the designer still has
no guidance about how to fill in the table entries.

Despite all this, TABLE-DRIVEN-AGENT does do what we want: it implements the
desired agent function. The key challenge for AI is to find out how to write programs that,
to the extent possible, produce rational behavior from a smallish program rather than from
a vast table. We have many examples showing that this can be done successfully in other
areas: for example, the huge tables of square roots used by engineers and schoolchildren prior
to the 1970s have now been replaced by a five-line program for Newton’s method running
on electronic calculators. The question is, can AI do for general intelligent behavior what
Newton did for square roots? We believe the answer is yes.

In the remainder of this section, we outline four basic kinds of agent programs that
embody the principles underlying almost all intelligent systems:

• Simple reflex agents;
• Model-based reflex agents;
• Goal-based agents; and
• Utility-based agents.

Each kind of agent program combines particular components in particular ways to generate
actions. Section 2.4.6 explains in general terms how to convert all these agents into learning

48 Chapter 2. Intelligent Agents

function REFLEX-VACUUM-AGENT([location ,status]) returns an action

if status = Dirty then return Suck

else if location = A then return Right

else if location = B then return Left

Figure 2.8 The agent program for a simple reflex agent in the two-state vacuum environ-
ment. This program implements the agent function tabulated in Figure 2.3.

agents that can improve the performance of their components so as to generate better actions.
Finally, Section 2.4.7 describes the variety of ways in which the components themselves can
be represented within the agent. This variety provides a major organizing principle for the
field and for the book itself.

2.4.2 Simple reflex agents

The simplest kind of agent is the simple reflex agent. These agents select actions on the basisSIMPLE REFLEX

AGENT

of the current percept, ignoring the rest of the percept history. For example, the vacuum agent
whose agent function is tabulated in Figure 2.3 is a simple reflex agent, because its decision
is based only on the current location and on whether that location contains dirt. An agent
program for this agent is shown in Figure 2.8.

Notice that the vacuum agent program is very small indeed compared to the correspond-
ing table. The most obvious reduction comes from ignoring the percept history, which cuts
down the number of possibilities from 4T to just 4. A further, small reduction comes from
the fact that when the current square is dirty, the action does not depend on the location.

Simple reflex behaviors occur even in more complex environments. Imagine yourself
as the driver of the automated taxi. If the car in front brakes and its brake lights come on, then
you should notice this and initiate braking. In other words, some processing is done on the
visual input to establish the condition we call “The car in front is braking.” Then, this triggers
some established connection in the agent program to the action “initiate braking.” We call
such a connection a condition–action rule,5 written asCONDITION–ACTION

RULE

if car-in-front-is-braking then initiate-braking.

Humans also have many such connections, some of which are learned responses (as for driv-
ing) and some of which are innate reflexes (such as blinking when something approaches the
eye). In the course of the book, we show several different ways in which such connections
can be learned and implemented.

The program in Figure 2.8 is specific to one particular vacuum environment. A more
general and flexible approach is first to build a general-purpose interpreter for condition–
action rules and then to create rule sets for specific task environments. Figure 2.9 gives the
structure of this general program in schematic form, showing how the condition–action rules
allow the agent to make the connection from percept to action. (Do not worry if this seems

5 Also called situation–action rules, productions, or if–then rules.

Section 2.4. The Structure of Agents 49

Agent

E
nvironm

ent

Sensors

What action I
should do nowCondition-action rules

Actuators

What the world
is like now

Figure 2.9 Schematic diagram of a simple reflex agent.

function SIMPLE-REFLEX-AGENT(percept) returns an action
persistent: rules, a set of condition–action rules

state← INTERPRET-INPUT(percept)
rule←RULE-MATCH(state, rules)
action← rule.ACTION

return action

Figure 2.10 A simple reflex agent. It acts according to a rule whose condition matches
the current state, as defined by the percept.

trivial; it gets more interesting shortly.) We use rectangles to denote the current internal state
of the agent’s decision process, and ovals to represent the background information used in
the process. The agent program, which is also very simple, is shown in Figure 2.10. The
INTERPRET-INPUT function generates an abstracted description of the current state from the
percept, and the RULE-MATCH function returns the first rule in the set of rules that matches
the given state description. Note that the description in terms of “rules” and “matching” is
purely conceptual; actual implementations can be as simple as a collection of logic gates
implementing a Boolean circuit.

Simple reflex agents have the admirable property of being simple, but they turn out to be
of limited intelligence. The agent in Figure 2.10 will work only if the correct decision can be
made on the basis of only the current percept—that is, only if the environment is fully observ-
able. Even a little bit of unobservability can cause serious trouble. For example, the braking
rule given earlier assumes that the condition car-in-front-is-braking can be determined from
the current percept—a single frame of video. This works if the car in front has a centrally
mounted brake light. Unfortunately, older models have different configurations of taillights,

50 Chapter 2. Intelligent Agents

brake lights, and turn-signal lights, and it is not always possible to tell from a single image
whether the car is braking. A simple reflex agent driving behind such a car would either brake
continuously and unnecessarily, or, worse, never brake at all.

We can see a similar problem arising in the vacuum world. Suppose that a simple reflex
vacuum agent is deprived of its location sensor and has only a dirt sensor. Such an agent
has just two possible percepts: [Dirty] and [Clean]. It can Suck in response to [Dirty]; what
should it do in response to [Clean]? Moving Left fails (forever) if it happens to start in square
A, and moving Right fails (forever) if it happens to start in square B. Infinite loops are often
unavoidable for simple reflex agents operating in partially observable environments.

Escape from infinite loops is possible if the agent can randomize its actions. For ex-RANDOMIZATION

ample, if the vacuum agent perceives [Clean], it might flip a coin to choose between Left and
Right . It is easy to show that the agent will reach the other square in an average of two steps.
Then, if that square is dirty, the agent will clean it and the task will be complete. Hence, a
randomized simple reflex agent might outperform a deterministic simple reflex agent.

We mentioned in Section 2.3 that randomized behavior of the right kind can be rational
in some multiagent environments. In single-agent environments, randomization is usually not
rational. It is a useful trick that helps a simple reflex agent in some situations, but in most
cases we can do much better with more sophisticated deterministic agents.

2.4.3 Model-based reflex agents

The most effective way to handle partial observability is for the agent to keep track of the
part of the world it can’t see now. That is, the agent should maintain some sort of internal
state that depends on the percept history and thereby reflects at least some of the unobservedINTERNAL STATE

aspects of the current state. For the braking problem, the internal state is not too extensive—
just the previous frame from the camera, allowing the agent to detect when two red lights at
the edge of the vehicle go on or off simultaneously. For other driving tasks such as changing
lanes, the agent needs to keep track of where the other cars are if it can’t see them all at once.
And for any driving to be possible at all, the agent needs to keep track of where its keys are.

Updating this internal state information as time goes by requires two kinds of knowl-
edge to be encoded in the agent program. First, we need some information about how the
world evolves independently of the agent—for example, that an overtaking car generally will
be closer behind than it was a moment ago. Second, we need some information about how
the agent’s own actions affect the world—for example, that when the agent turns the steering
wheel clockwise, the car turns to the right, or that after driving for five minutes northbound
on the freeway, one is usually about five miles north of where one was five minutes ago. This
knowledge about “how the world works”—whether implemented in simple Boolean circuits
or in complete scientific theories—is called a model of the world. An agent that uses such a
model is called a model-based agent.MODELBASED

AGENT

Figure 2.11 gives the structure of the model-based reflex agent with internal state, show-
ing how the current percept is combined with the old internal state to generate the updated
description of the current state, based on the agent’s model of how the world works. The agent
program is shown in Figure 2.12. The interesting part is the function UPDATE-STATE , which

Section 2.4. The Structure of Agents 51

Agent

E
nvironm

ent

Sensors

State

How the world evolves

What my actions do

Condition-action rules

Actuators

What the world
is like now

What action I
should do now

Figure 2.11 A model-based reflex agent.

function MODEL-BASED-REFLEX-AGENT(percept) returns an action
persistent: state, the agent’s current conception of the world state

model , a description of how the next state depends on current state and action
rules, a set of condition–action rules
action , the most recent action, initially none

state←UPDATE-STATE(state,action ,percept ,model)
rule←RULE-MATCH(state, rules)
action← rule.ACTION

return action

Figure 2.12 A model-based reflex agent. It keeps track of the current state of the world,
using an internal model. It then chooses an action in the same way as the reflex agent.

is responsible for creating the new internal state description. The details of how models and
states are represented vary widely depending on the type of environment and the particular
technology used in the agent design. Detailed examples of models and updating algorithms
appear in Chapters 4, 12, 11, 15, 17, and 25.

Regardless of the kind of representation used, it is seldom possible for the agent to
determine the current state of a partially observable environment exactly. Instead, the box
labeled “what the world is like now” (Figure 2.11) represents the agent’s “best guess” (or
sometimes best guesses). For example, an automated taxi may not be able to see around the
large truck that has stopped in front of it and can only guess about what may be causing the
hold-up. Thus, uncertainty about the current state may be unavoidable, but the agent still has
to make a decision.

A perhaps less obvious point about the internal “state” maintained by a model-based
agent is that it does not have to describe “what the world is like now” in a literal sense. For

52 Chapter 2. Intelligent Agents

Agent

E
nvironm

ent

Sensors

What action I
should do now

State

How the world evolves

What my actions do

Actuators

What the world
is like now

What it will be like
if I do action A

Goals

Figure 2.13 A model-based, goal-based agent. It keeps track of the world state as well as
a set of goals it is trying to achieve, and chooses an action that will (eventually) lead to the
achievement of its goals.

example, the taxi may be driving back home, and it may have a rule telling it to fill up with
gas on the way home unless it has at least half a tank. Although “driving back home” may
seem to an aspect of the world state, the fact of the taxi’s destination is actually an aspect of
the agent’s internal state. If you find this puzzling, consider that the taxi could be in exactly
the same place at the same time, but intending to reach a different destination.

2.4.4 Goal-based agents

Knowing something about the current state of the environment is not always enough to decide
what to do. For example, at a road junction, the taxi can turn left, turn right, or go straight
on. The correct decision depends on where the taxi is trying to get to. In other words, as well
as a current state description, the agent needs some sort of goal information that describesGOAL

situations that are desirable—for example, being at the passenger’s destination. The agent
program can combine this with the model (the same information as was used in the model-
based reflex agent) to choose actions that achieve the goal. Figure 2.13 shows the goal-based
agent’s structure.

Sometimes goal-based action selection is straightforward—for example, when goal sat-
isfaction results immediately from a single action. Sometimes it will be more tricky—for
example, when the agent has to consider long sequences of twists and turns in order to find a
way to achieve the goal. Search (Chapters 3 to 5) and planning (Chapters 10 and 11) are the
subfields of AI devoted to finding action sequences that achieve the agent’s goals.

Notice that decision making of this kind is fundamentally different from the condition–
action rules described earlier, in that it involves consideration of the future—both “What will
happen if I do such-and-such?” and “Will that make me happy?” In the reflex agent designs,
this information is not explicitly represented, because the built-in rules map directly from

Section 2.4. The Structure of Agents 53

percepts to actions. The reflex agent brakes when it sees brake lights. A goal-based agent, in
principle, could reason that if the car in front has its brake lights on, it will slow down. Given
the way the world usually evolves, the only action that will achieve the goal of not hitting
other cars is to brake.

Although the goal-based agent appears less efficient, it is more flexible because the
knowledge that supports its decisions is represented explicitly and can be modified. If it starts
to rain, the agent can update its knowledge of how effectively its brakes will operate; this will
automatically cause all of the relevant behaviors to be altered to suit the new conditions.
For the reflex agent, on the other hand, we would have to rewrite many condition–action
rules. The goal-based agent’s behavior can easily be changed to go to a different destination,
simply by specifying that destination as the goal. The reflex agent’s rules for when to turn
and when to go straight will work only for a single destination; they must all be replaced to
go somewhere new.

2.4.5 Utility-based agents

Goals alone are not enough to generate high-quality behavior in most environments. For
example, many action sequences will get the taxi to its destination (thereby achieving the
goal) but some are quicker, safer, more reliable, or cheaper than others. Goals just provide a
crude binary distinction between “happy” and “unhappy” states. A more general performance
measure should allow a comparison of different world states according to exactly how happy
they would make the agent. Because “happy” does not sound very scientific, economists and
computer scientists use the term utility instead.6UTILITY

We have already seen that a performance measure assigns a score to any given sequence
of environment states, so it can easily distinguish between more and less desirable ways of
getting to the taxi’s destination. An agent’s utility function is essentially an internalizationUTILITY FUNCTION

of the performance measure. If the internal utility function and the external performance
measure are in agreement, then an agent that chooses actions to maximize its utility will be
rational according to the external performance measure.

Let us emphasize again that this is not the only way to be rational—we have already
seen a rational agent program for the vacuum world (Figure 2.8) that has no idea what its
utility function is—but, like goal-based agents, a utility-based agent has many advantages in
terms of flexibility and learning. Furthermore, in two kinds of cases, goals are inadequate but
a utility-based agent can still make rational decisions. First, when there are conflicting goals,
only some of which can be achieved (for example, speed and safety), the utility function
specifies the appropriate tradeoff. Second, when there are several goals that the agent can
aim for, none of which can be achieved with certainty, utility provides a way in which the
likelihood of success can be weighed against the importance of the goals.

Partial observability and stochasticity are ubiquitous in the real world, and so, therefore,
is decision making under uncertainty. Technically speaking, a rational utility-based agent
chooses the action that maximizes the expected utility of the action outcomes—that is, theEXPECTED UTILITY

utility the agent expects to derive, on average, given the probabilities and utilities of each

6 The word “utility” here refers to “the quality of being useful,” not to the electric company or waterworks.

54 Chapter 2. Intelligent Agents

Agent

E
nvironm

ent

Sensors

How happy I will be
in such a state

State

How the world evolves

What my actions do

Utility

Actuators

What action I
should do now

What it will be like
if I do action A

What the world
is like now

Figure 2.14 A model-based, utility-based agent. It uses a model of the world, along with
a utility function that measures its preferences among states of the world. Then it chooses the
action that leads to the best expected utility, where expected utility is computed by averaging
over all possible outcome states, weighted by the probability of the outcome.

outcome. (Appendix A defines expectation more precisely.) In Chapter 16, we show that any
rational agent must behave as if it possesses a utility function whose expected value it tries
to maximize. An agent that possesses an explicit utility function can make rational decisions
with a general-purpose algorithm that does not depend on the specific utility function being
maximized. In this way, the “global” definition of rationality—designating as rational those
agent functions that have the highest performance—is turned into a “local” constraint on
rational-agent designs that can be expressed in a simple program.

The utility-based agent structure appears in Figure 2.14. Utility-based agent programs
appear in Part IV, where we design decision-making agents that must handle the uncertainty
inherent in stochastic or partially observable environments.

At this point, the reader may be wondering, “Is it that simple? We just build agents that
maximize expected utility, and we’re done?” It’s true that such agents would be intelligent,
but it’s not simple. A utility-based agent has to model and keep track of its environment,
tasks that have involved a great deal of research on perception, representation, reasoning,
and learning. The results of this research fill many of the chapters of this book. Choosing
the utility-maximizing course of action is also a difficult task, requiring ingenious algorithms
that fill several more chapters. Even with these algorithms, perfect rationality is usually
unachievable in practice because of computational complexity, as we noted in Chapter 1.

2.4.6 Learning agents

We have described agent programs with various methods for selecting actions. We have
not, so far, explained how the agent programs come into being. In his famous early paper,
Turing (1950) considers the idea of actually programming his intelligent machines by hand.

Section 2.4. The Structure of Agents 55

Performance standard

Agent

E
nvironm

ent

Sensors

Performance
element

changes

knowledge
learning
goals

Problem
generator

feedback

Learning
element

Critic

Actuators

Figure 2.15 A general learning agent.

He estimates how much work this might take and concludes “Some more expeditious method
seems desirable.” The method he proposes is to build learning machines and then to teach
them. In many areas of AI, this is now the preferred method for creating state-of-the-art
systems. Learning has another advantage, as we noted earlier: it allows the agent to operate
in initially unknown environments and to become more competent than its initial knowledge
alone might allow. In this section, we briefly introduce the main ideas of learning agents.
Throughout the book, we comment on opportunities and methods for learning in particular
kinds of agents. Part V goes into much more depth on the learning algorithms themselves.

A learning agent can be divided into four conceptual components, as shown in Fig-
ure 2.15. The most important distinction is between the learning element, which is re-LEARNING ELEMENT

sponsible for making improvements, and the performance element, which is responsible forPERFORMANCE

ELEMENT

selecting external actions. The performance element is what we have previously considered
to be the entire agent: it takes in percepts and decides on actions. The learning element uses
feedback from the critic on how the agent is doing and determines how the performanceCRITIC

element should be modified to do better in the future.
The design of the learning element depends very much on the design of the performance

element. When trying to design an agent that learns a certain capability, the first question is
not “How am I going to get it to learn this?” but “What kind of performance element will my
agent need to do this once it has learned how?” Given an agent design, learning mechanisms
can be constructed to improve every part of the agent.

The critic tells the learning element how well the agent is doing with respect to a fixed
performance standard. The critic is necessary because the percepts themselves provide no
indication of the agent’s success. For example, a chess program could receive a percept
indicating that it has checkmated its opponent, but it needs a performance standard to know
that this is a good thing; the percept itself does not say so. It is important that the performance

56 Chapter 2. Intelligent Agents

standard be fixed. Conceptually, one should think of it as being outside the agent altogether
because the agent must not modify it to fit its own behavior.

The last component of the learning agent is the problem generator. It is responsiblePROBLEM

GENERATOR

for suggesting actions that will lead to new and informative experiences. The point is that
if the performance element had its way, it would keep doing the actions that are best, given
what it knows. But if the agent is willing to explore a little and do some perhaps suboptimal
actions in the short run, it might discover much better actions for the long run. The problem
generator’s job is to suggest these exploratory actions. This is what scientists do when they
carry out experiments. Galileo did not think that dropping rocks from the top of a tower in
Pisa was valuable in itself. He was not trying to break the rocks or to modify the brains of
unfortunate passers-by. His aim was to modify his own brain by identifying a better theory
of the motion of objects.

To make the overall design more concrete, let us return to the automated taxi example.
The performance element consists of whatever collection of knowledge and procedures the
taxi has for selecting its driving actions. The taxi goes out on the road and drives, using
this performance element. The critic observes the world and passes information along to the
learning element. For example, after the taxi makes a quick left turn across three lanes of traf-
fic, the critic observes the shocking language used by other drivers. From this experience, the
learning element is able to formulate a rule saying this was a bad action, and the performance
element is modified by installation of the new rule. The problem generator might identify
certain areas of behavior in need of improvement and suggest experiments, such as trying out
the brakes on different road surfaces under different conditions.

The learning element can make changes to any of the “knowledge” components shown
in the agent diagrams (Figures 2.9, 2.11, 2.13, and 2.14). The simplest cases involve learning
directly from the percept sequence. Observation of pairs of successive states of the environ-
ment can allow the agent to learn “How the world evolves,” and observation of the results of
its actions can allow the agent to learn “What my actions do.” For example, if the taxi exerts
a certain braking pressure when driving on a wet road, then it will soon find out how much
deceleration is actually achieved. Clearly, these two learning tasks are more difficult if the
environment is only partially observable.

The forms of learning in the preceding paragraph do not need to access the external
performance standard—in a sense, the standard is the universal one of making predictions
that agree with experiment. The situation is slightly more complex for a utility-based agent
that wishes to learn utility information. For example, suppose the taxi-driving agent receives
no tips from passengers who have been thoroughly shaken up during the trip. The external
performance standard must inform the agent that the loss of tips is a negative contribution to
its overall performance; then the agent might be able to learn that violent maneuvers do not
contribute to its own utility. In a sense, the performance standard distinguishes part of the
incoming percept as a reward (or penalty) that provides direct feedback on the quality of the
agent’s behavior. Hard-wired performance standards such as pain and hunger in animals can
be understood in this way. This issue is discussed further in Chapter 21.

In summary, agents have a variety of components, and those components can be repre-
sented in many ways within the agent program, so there appears to be great variety among

Section 2.4. The Structure of Agents 57

learning methods. There is, however, a single unifying theme. Learning in intelligent agents
can be summarized as a process of modification of each component of the agent to bring the
components into closer agreement with the available feedback information, thereby improv-
ing the overall performance of the agent.

2.4.7 How the components of agent programs work

We have described agent programs (in very high-level terms) as consisting of various compo-
nents, whose function it is to answer questions such as: “What is the world like now?” “What
action should I do now?” “What do my actions do?” The next question for a student of AI
is, “How on earth do these components work?” It takes about a thousand pages to begin to
answer that question properly, but here we want to draw the reader’s attention to some basic
distinctions among the various ways that the components can represent the environment that
the agent inhabits.

Roughly speaking, we can place the representations along an axis of increasing com-
plexity and expressive power—atomic, factored, and structured. To illustrate these ideas,
it helps to consider a particular agent component, such as the one that deals with “What my
actions do.” This component describes the changes that might occur in the environment as
the result of taking an action, and Figure 2.16 provides schematic depictions of how those
transitions might be represented.

B C

(a) Atomic (b) Factored (b) Structured

B C

Figure 2.16 Three ways to represent states and the transitions between them. (a) Atomic
representation: a state (such as B or C) is a black box with no internal structure; (b) Factored
representation: a state consists of a vector of attribute values; values can be Boolean, real-
valued, or one of a fixed set of symbols. (c) Structured representation: a state includes
objects, each of which may have attributes of its own as well as relationships to other objects.

In an atomic representation each state of the world is indivisible—it has no internalATOMIC

REPRESENTATION

structure. Consider the problem of finding a driving route from one end of a country to the
other via some sequence of cities (we address this problem in Figure 3.2 on page 68). For the
purposes of solving this problem, it may suffice to reduce the state of world to just the name
of the city we are in—a single atom of knowledge; a “black box” whose only discernible
property is that of being identical to or different from another black box. The algorithms

58 Chapter 2. Intelligent Agents

underlying search and game-playing (Chapters 3–5), Hidden Markov models (Chapter 15),
and Markov decision processes (Chapter 17) all work with atomic representations—or, at
least, they treat representations as if they were atomic.

Now consider a higher-fidelity description for the same problem, where we need to be
concerned with more than just atomic location in one city or another; we might need to pay
attention to how much gas is in the tank, our current GPS coordinates, whether or not the oil
warning light is working, how much spare change we have for toll crossings, what station is
on the radio, and so on. A factored representation splits up each state into a fixed set ofFACTORED

REPRESENTATION

variables or attributes, each of which can have a value. While two different atomic statesVARIABLE

ATTRIBUTE

VALUE

have nothing in common—they are just different black boxes—two different factored states
can share some attributes (such as being at some particular GPS location) and not others (such
as having lots of gas or having no gas); this makes it much easier to work out how to turn
one state into another. With factored representations, we can also represent uncertainty—for
example, ignorance about the amount of gas in the tank can be represented by leaving that
attribute blank. Many important areas of AI are based on factored representations, including
constraint satisfaction algorithms (Chapter 6), propositional logic (Chapter 7), planning
(Chapters 10 and 11), Bayesian networks (Chapters 13–16), and the machine learning al-
gorithms in Chapters 18, 20, and 21.

For many purposes, we need to understand the world as having things in it that are
related to each other, not just variables with values. For example, we might notice that a
large truck ahead of us is reversing into the driveway of a dairy farm but a cow has got loose
and is blocking the truck’s path. A factored representation is unlikely to be pre-equipped
with the attribute TruckAheadBackingIntoDairyFarmDrivewayBlockedByLooseCow with
value true or false . Instead, we would need a structured representation, in which ob-STRUCTURED

REPRESENTATION

jects such as cows and trucks and their various and varying relationships can be described
explicitly. (See Figure 2.16(c).) Structured representations underlie relational databases
and first-order logic (Chapters 8, 9, and 12), first-order probability models (Chapter 14),
knowledge-based learning (Chapter 19) and much of natural language understanding
(Chapters 22 and 23). In fact, almost everything that humans express in natural language
concerns objects and their relationships.

As we mentioned earlier, the axis along which atomic, factored, and structured repre-
sentations lie is the axis of increasing expressiveness. Roughly speaking, a more expressiveEXPRESSIVENESS

representation can capture, at least as concisely, everything a less expressive one can capture,
plus some more. Often, the more expressive language is much more concise; for example, the
rules of chess can be written in a page or two of a structured-representation language such
as first-order logic but require thousands of pages when written in a factored-representation
language such as propositional logic. On the other hand, reasoning and learning become
more complex as the expressive power of the representation increases. To gain the benefits
of expressive representations while avoiding their drawbacks, intelligent systems for the real
world may need to operate at all points along the axis simultaneously.

	Artificial Intelligence
	1 Introduction
	1.1 What is AI
	1.2 Foundations of AI
	1.3 History of AI
	1.4 State of the Art

	Artificial Intelligence
	2 Intelligent Agents
	2.1 Agents and Environments
	2.2 Good Behavior:The Concept of Rationality
	2.3 The Nature of Environments
	2.4 The Structure of Agents

