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Properties of PL

1. Propositional logic is a declarative language because its semantics is based on 
a truth relation between sentences and possible worlds. 

2. It also has sufficient expressive power to deal with partial information, using 
disjunction and negation. 

3. Propositional logic has a third property that is desirable in representation 
languages, namely, compositionality. In a compositional language, the 
meaning of a sentence is a function of the meaning of its parts. 
For example, the meaning of “S1,4 ∧ S1,2” is related to the meanings of 
“S1,4” and “S1,2.”



Drawbacks of Propositional Logic

• Propositional logic (PL) is declarative and assumes the world contains 
facts, so it guides us on how to represent information in a logical form and 
draw conclusions. 

• We can only represent information as either true or false in propositional 
logic.

• Expressive power of  Propositional logic is very limited and lacks to 
describe an environment with many objects

• If you want to represent complicated sentences or natural language 
statements, PL is not sufficient.

• Examples: PL is not enough to represent the sentences below, so we 
require powerful logic (such as FOL).

1.I love mankind. It’s the people I can’t stand!
2.I like to eat mangos.



What is First Order Logic (FOL)?

1.FOL is also called predicate logic. A much more expressive language 
than the propositional logic. It is a powerful language used to develop 
information about an object and express the relationship between 
objects.

2.FOL not only assumes that does the world contains facts (like PL 
does), but it also assumes the following:

1. Objects: A, B, people, numbers, colors, wars, theories, squares, pit, etc.

2. Relations: It is unary relation such as red, round, sister of, brother of, etc.

3. Function: father of, best friend, third inning of, end of, etc.







Objects Relations and Functions

• Objects: people, houses, numbers, theories, Ronald McDonald, 
colors, baseball games, wars, centuries ... 

• Relations: these can be unary relations or properties such as red, 
round, bogus, prime, multistoried ..., or more general n-ary relations 
such as brother of, bigger than, inside, part of, has color, occurred 
after, owns, comes between, ... 

• Functions: father of, best friend, third inning of, one more than, 
beginning of ..



Examples
• “One plus two equals three.” 

• Objects: one, two, three, one plus two; 
• Relation: equals; 
• Function: plus. (“One plus two” is a name for the object that is obtained by 

applying the function “plus” to the objects “one” and “two.” “Three” is 
another name for this object.) 

• “Squares neighboring the wumpus are smelly.” 
• Objects: wumpus, squares; 
• Property: smelly; Relation: neighboring. 

• “Evil King John ruled England in 1200.” 
• Objects: John, England, 1200; 
• Relation: ruled; 
• Properties: evil, king.



Types of Languages



Constant 1, 2, A, John, Mumbai, cat,....

Variables x, y, z, a, b,....

Predicates Brother, Father, >, <,Sister, Father.......

Function sqrt, LeftLegOf, Sqrt, LessThan, Sin(θ).......

Connectives ∧, ∨, ¬,⇒,⇔

Equality ==

Quantifier ∀, ∃

Basic Elements of FOL



Syntax and Semantics of FOL

1.Models for first-order logic

2.Symbols and interpretations

3.Terms

4.Atomic sentences

5.Complex sentences 

6.Quantifiers: Universal quantification (∀) /Existential quantification (∃)

7.Equality

8.An alternative semantics? : Data base Semantics



Models for FOL

• They have objects in them! 

• The domain of a model is the set of objects or domain elements it 
contains. 

• The domain is required to be nonempty—every possible world must 
contain at least one object

• The objects in the model may be related in various ways.

• Models in first-order logic require total functions, that is, there must 
be a value for every input tuple





Five objects: 
1. Richard the Lionheart, King of England from 1189 to 1199; 
2. His younger brother, the evil King John, who ruled from 1199 

to 1215; 
3. The left legs of Richard and John; and a c
4. Crown

Tuple : The brotherhood relation in this model is the set 
{ <Richard the Lionheart, King John>, <King John, Richard the 
Lionheart> } .

Two binary relations : “brother” and “on head” relations 
are binary relations

Three unary relations/ properties : Person, King and 
Crown

One unary Function: Left Leg



Syntax of FOL 

• The basic syntactic elements of first-order logic are the symbols that stand 
for objects, relations, and functions. The symbols, therefore, come in three 
kinds: 

1. Constant symbols, which stand for objects; 
2. Predicate symbols, which stand for relations; and 
3. Function symbols, which stand for functions. 

• Convention : Symbols will begin with uppercase letters. 
• Example

• Constant symbols Richard and John; 
• Predicate symbols Brother , OnHead, Person, King, and Crown; and 
• the function symbol LeftLeg. 

• Arity : Each predicate and function symbol comes with an arity that fixes 
the number of arguments



Syntax of FOL 

• Interpretation: specifies exactly which objects, relations and 
functions are referred to by the constant, predicate, and function 
symbols.

• Examples :
• Richard refers to Richard the Lionheart 
• John refers to the evil King John.
• Brother refers to the brotherhood relation
• OnHead refers to the “on head” relation that holds between the crown and 

King John;
• Person, King, and Crown refer to the sets of objects that are persons, kings, 

and crowns
• LeftLeg refers to the “left leg” function



The syntax of first-
order logic with 
equality, specified in 
Backus–Naur form



• A model in first-order logic consists of a set of objects 
and an interpretation that maps constant symbols to 
objects, predicate symbols to relations on those 
objects, and function symbols to functions on those 
objects. 

• Just as with propositional logic, entailment, validity, 
and so on are defined in terms of all possible models

In summary



Syntax and Semantics of FOL

1.Models for first-order logic

2.Symbols and interpretations

3.Terms

4.Atomic sentences

5.Complex sentences 

6.Quantifiers: Universal quantification (∀) /Existential quantification (∃)

7.Equality

8.An alternative semantics? : Data base Semantics





3.Terms

• A term is a logical expression that refers to an object. Constant 
symbols are terms.

• It is not always convenient to have a distinct symbol to name every 
object. 
• Example : “King John’s left leg” rather than giving a name to his leg.

• This is what function symbols are for: instead of using a constant symbol, we 
use LeftLeg(John).

• In the general case, a complex term is formed by a function symbol 
followed by a parenthesized list of terms as arguments to the 
function symbol.( It is not a subroutine or function call)



3.Terms

• Formal Semantics : Consider a term f(t1,... ,tn). 

• The function symbol f refers to some function in the model (call it F); the 
argument terms refer to objects in the domain (call them d1,... ,dn); 

• Example : LeftLeg(John): 

• The LeftLeg function symbol refers to the function and John refers to King 
John, then LeftLeg(John) refers to King John’s left leg.



4.Atomic sentences

• An atomic sentence (or atom for short) is formed from a predicate 
symbol optionally followed by a parenthesized list of terms, such a
• Brother (Richard, John) : This states, that Richard the Lionheart is 

the brother of King John.

• Atomic sentences can have complex terms as arguments:
• Married(Father (Richard), Mother (John)) : states that Richard 

the Lionheart’s father is married to King John’s mother



5.Complex Sentences

• We can use logical connectives to construct more complex 
sentences, with the same syntax and semantics as in 
propositional calculus

• Example : Here are four sentences that are true in the model 
1. ¬Brother (LeftLeg(Richard), John) 
2. Brother (Richard, John) ∧ Brother (John, Richard) 
3. King(Richard) ∨ King(John) 
4. ¬King(Richard) ⇒ King(John) 



6. Quantifiers

• In first-order logic, quantifiers are symbols used to express the 
scope of variables in logical statements. 

• Quantifiers are essential for expressing statements about 
collections of objects or individuals in a precise and concise 
manner within first-order logic. They allow for the formulation of 
statements that capture universal truths or existential claims 
about the elements of a domain.

• There are two main quantifiers: 
1. the existential quantifier (∃) and 
2. the universal quantifier (∀).



6. Quantifiers: Universal quantification (∀)

Universal Quantifier (∀): Denoted by the symbol "∀".

• It asserts that a predicate or condition is true for all 
instances of a variable in a given domain.

• For example, the statement "∀x P(x)" asserts that the 
predicate P(x) is true for all x in the domain.

• By convention, variables are lowercase letters. 

• A variable is a term all by itself, and as such can also serve as 
the argument of a function—for example, LeftLeg(x). 

• A term with no variables is called a ground term.



6. Universal Quantifiers: Examples

•∀ x King(x) ⇒ Person(x) .



6. Universal Quantifiers: Examples

• The universally quantified sentence ∀ x King(x) ⇒ Person(x) is true in the 
original model if the sentence King(x) ⇒ Person(x) is true under each of the 
five extended interpretations. 

• That is, the universally quantified sentence is equivalent to asserting the 
following five sentences: 

1. Richard the Lionheart is a king ⇒ Richard the Lionheart is a person. 

2. King John is a king ⇒ King John is a person. 

3. Richard’s left leg is a king ⇒ Richard’s left leg is a person. 

4. John’s left leg is a king ⇒ John’s left leg is a person. 

5. The crown is a king ⇒ the crown is a person



6. Universal Quantifiers: Examples

•A common mistake, made frequently even by diligent 
readers who have read this paragraph several times, is to use 
conjunction instead of implication. 

• The sentence ∀ x King(x) ∧ Person(x) would be equivalent to 
asserting 

1. Richard the Lionheart is a king ∧ Richard the Lionheart is a 
person, 

2. King John is a king ∧ King John is a person, 

3. Richard’s left leg is a king ∧ Richard’s left leg is a person,



6. Quantifiers: Existential quantification (∃)

•Denoted by the symbol "∃".

• It asserts that there exists at least one instance of a 
variable that satisfies a given predicate or condition.

• For example, the statement "∃x P(x)" asserts that 
there exists at least one x such that the predicate P(x) 
is true.



6. Quantifiers: Existential quantification (∃)

• Universal quantification makes statements about every object.

• Similarly, we can make a statement about some object in the 
universe without naming it, by using an existential quantifier. 

• To say, for example, that King John has a crown on his head, we write 
∃ x Crown(x) ∧ OnHead(x, John) . 

• ∃x is pronounced “There exists an x such that ...” or “For some x...”



6. Quantifiers: Existential quantification (∃)

• Intuitively, the sentence ∃ x P says that P is true for at least one 
object x. 

• More precisely, ∃ x P is true in a given model if P is true in at least one 
extended interpretation that assigns x to a domain element. 

• That is, at least one of the following is true: 

1. Richard the Lionheart is a crown ∧ Richard the Lionheart is on 
John’s head; 

2. King John is a crown ∧ King John is on John’s head; 

3. Richard’s left leg is a crown ∧ Richard’s left leg is on John’s head; 

4. John’s left leg is a crown ∧ John’s left leg is on John’s head; 

5. The crown is a crown ∧ the crown is on John’s head



6. Quantifiers: Existential quantification (∃)

• Using ⇒with ∃ usually leads to a very weak statement, indeed.

• Consider the following sentence: ∃ x Crown(x) ⇒ OnHead(x, John) .

• Applying the semantics, we see that the sentence says that at least 
one of the following assertions is true: 

1. Richard the Lionheart is a crown ⇒ Richard the Lionheart is on 
John’s head; 

2. King John is a crown ⇒ King John is on John’s head; 

3. Richard’s left leg is a crown ⇒ Richard’s left leg is on John’s head;



6. 1 : Nested Quantifiers

• Nested quantifiers in First-Order Logic (FOL) refer to situations 
where quantifiers are used within the scope of other quantifiers in a 
logical expression. 

• This nesting allows for the expression of more complex relationships 
and properties involving multiple variables.

• There are two types of quantifiers in FOL: the universal quantifier 
(∀) and the existential quantifier (∃), and both can be used in nested 
configurations.



6. 1 : Nested Quantifiers : Examples and 
Interpretations

1. ∀x ∃y P(x,y):
• This statement means "for every x, there exists a y such that the property 

P(x,y) holds."

• It asserts a universal condition on x and, for each x, an existential condition 
on y.

2. ∃x ∀y P(x,y):
• This statement means "there exists an x such that for every y, the 

property P(x,y) holds."

• It asserts the existence of a particular x for which a universal statement 
about y is true.



6. 1 : Nested Quantifiers : Examples and 
Interpretations

• Importance of Order : The order of nested quantifiers is crucial because it 
can change the meaning of a statement. 

• For instance, the two examples given above have significantly different 
meanings due to the order of quantification. 

• In general, changing the order of quantifiers in a statement with nested 
quantifiers will result in a statement that expresses a different property or 
relationship.



6. 1 : Nested Quantifiers : Examples and 
Interpretations

• Nested quantifiers are widely used in mathematics, computer 
science, and philosophy to express complex statements about 
sets, functions, algorithms, and theoretical constructs. T

• hey are essential for defining concepts like "for every natural 
number, there exists a prime number greater than it" 

• (∀x ∈ ℕ, ∃y (y > x ∧ Prime(y))) 
• or expressing constraints and properties in formal specifications 

and proofs.



6. 1 : Nested Quantifiers : Examples and 
Interpretations

• Siblinghood is a symmetric relationship : 

∀ x,y Sibling(x,y) ⇔ Sibling(y,x) 

• “Everybody loves somebody” : ∀ x ∃ y Loves(x,y) 

• “There is someone who is loved by everyone,”: ∃ y ∀ x Loves(x,y)

• The order of quantification is therefore very important. It becomes 
clearer if we insert parentheses. 
• ∀ x (∃ y Loves(x,y)) says that everyone has a particular property, namely, 

the property that they love someone



6. 1 : Nested Quantifiers : Connections 
between ∀ and ∃

• The two quantifiers are actually intimately connected with 
each other, through negation. 

•Asserting that everyone dislikes Parsnips is the same as 
asserting there does not exist someone who likes them, and 
vice versa:

•∀ x ¬Likes(x,Parsnips ) is equivalent to ¬∃ x Likes(x,Parsnips) 



6. 1 : Nested Quantifiers : Connections 
between ∀ and ∃

• “Everyone likes ice cream” means that there is no one who 
does not like ice cream:

•∀ x Likes(x,IceCream) is equivalent to 

¬∃ x ¬Likes(x,IceCream) .



6. 2 : De Morgans Rules for quantified and unquantified 
sentences

•∀ x ¬P ≡ ¬∃ x P                    ¬(P ∨ Q) ≡ ¬P ∧ ¬Q

• ¬∀ x P ≡ ∃ x ¬P                     ¬(P ∧ Q) ≡ ¬P ∨ ¬Q

•∀ x P ≡ ¬∃ x ¬P                       P ∧ Q ≡ ¬(¬P ∨ ¬Q)

•∃ x P ≡ ¬∀ x ¬P                      P ∨ Q ≡ ¬(¬P ∧ ¬Q) .



7.Equality

• In First-Order Logic (FOL), equality is a fundamental concept that 
allows the expression of the notion that two terms denote the same 
object. 

• Syntax: In the syntax of FOL, an equality statement typically looks like 
a = b where a and b are terms in the logic. Terms can be variables, 
constants, or any expression that refers to objects in the domain of 
discourse.

• Semantics: The semantics of equality states that a = b is true if and 
only if a and b refer to the same object in the domain of discourse.



7.Equality: Examples

• Father (John)= Henry says that the object referred to by 
Father (John) and the object referred to by Henry are the 
same.

• To say that Richard has at least two brothers, we would write 

• ∃ x,y Brother (x, Richard) ∧ Brother (y, Richard) ∧ ¬(x = y) .



8.Any Alternative Semantics : Database 
Semantics
• One proposal that is very popular in database systems works as 

follows. 

• First, we insist that every constant symbol refer to a distinct object—
the so-called unique-names assumption. 

• Second, we assume that atomic sentences not known to be true are 
in fact false—the closed-world assumption. 

• Finally, we invoke domain closure, meaning that each model contains 
no more domain elements than those named by the constant 
symbols.





Using First Order Logic

• In this section, we discuss systematic representations of some simple domains. 
• In knowledge representation, a domain is just some part of the world about 

which we wish to express some knowledge.



Assertions and queries in first-order logic

• Sentences are added to a knowledge base using TELL, exactly as in 
propositional logic. Such sentences are called assertions

• We can ask questions of the knowledge base using ASK. Questions asked 
with ASK are called queries or goals.



Examples

TELL(KB, King(John)) .
TELL(KB, Person(Richard)) .
TELL(KB, ∀ x King(x) ⇒ Person(x)) .

ASK(KB, King(John))
ASK(KB, Person(John)) 
ASK(KB, ∃ x Person(x)) . 



ASKVARS : Substitution or binding List

• ASKVARS(KB, Person(x)) yields a stream of answers. In this case there will 
be two answers: {x/John} and {x/Richard}. Such an answer is called a 
substitution or binding list. It will bind the variables to specific values. 

• Note: if KB has been told King(John) ∨ King(Richard), then there is no 
binding to x for the query ∃ x King(x), even though the query is true.



Example: The domain of family relationships, or 
kinship domain

• This domain includes facts such as 
• “Elizabeth is the mother of Charles” and 
• “Charles is the father of William” and rules such as 
• “One’s grandmother is the mother of one’s parent.”

• Clearly, the objects in our domain are people. We have two unary 
predicates, Male and Female. 

• Kinship relations—parenthood, brotherhood, marriage, and so on—are 
represented by binary predicates: Parent, Sibling, Brother , Sister , Child, 
Daughter , Son, Spouse, Wife, Husband, Grandparent, Grandchild , Cousin, 
Aunt, and Uncle.



• One’s mother is one’s female parent: ∀ m,c Mother (c)= m ⇔ Female(m) ∧ Parent(m,c) .
• One’s husband is one’s male spouse: ∀ w,h Husband(h,w) ⇔ Male(h) ∧ Spouse(h,w) .
• Male and female are disjoint categories: ∀ x Male(x) ⇔ ¬Female(x) .
• Parent and child are inverse relations: ∀ p,c Parent(p,c) ⇔ Child(c,p)
• A grandparent is a parent of one’s parent: 
                             ∀ g,c Grandparent(g,c) ⇔ ∃ p Parent(g,p) ∧ Parent(p,c) .
• A sibling is another child of one’s parents: 
                             ∀ x,y Sibling(x,y) ⇔ x 6= y ∧ ∃ p Parent(p,x) ∧ Parent(p,y) .

Axioms : Each of these sentences can be viewed as an axiom of the kinship domain. They 
provide the basic factual information from which useful conclusions can be derived. Our kinship 
axioms are also definitions; they have the form ∀ x,y P(x,y) ⇔… The axioms define the Mother 
function and the Husband, Male, Parent, Grandparent, and Sibling predicates in terms of 
other predicates.
Some are theorems—that is, they are entailed by the axioms. For example, consider the 
assertion that siblinghood is symmetric: ∀ x,y Sibling(x,y) ⇔ Sibling(y,x) . 



Numbers

NatNUM 
We describe here the theory of natural numbers or non-negative integers.Natural 
numbers are defined recursively
• 0 is a natural number : NatNum(0) . 
• For every object n, if n is a natural number, then S(n) is a natural number : 
      ∀ n NatNum(n) ⇒ NatNum(S(n)) 
So the natural numbers are 0, S(0), S(S(0)), and so on.

Axioms 
∀ n, 0 ≠ S(n) . 
∀m,n m ≠ n ⇒ S(m) ≠ S(n) .
Note : We can also write S(n) as n + 1



Numbers

Definition : Addition is defined in terms of the successor function:
 
• ∀ m NatNum(m) ⇒ + (0,m) = m . 
• ∀ m,n NatNum(m) ∧ NatNum(n) ⇒ + (S(m),n) = S(+(m,n)) 
                                       or
• ∀m,n NatNum(m) ∧ NatNum(n) ⇒ (m + 1) + n = (m + n) + 1

Note : The use of infix notation(like m+1,m+n,etc) is an example of syntactic 
sugar, that is, an extension to or abbreviation of the standard syntax that does not 
change the semantics.



Sets

• The domain of sets is also fundamental to mathematics as well as to 
commonsense reasoning. We will use the normal vocabulary of set 
theory as syntactic sugar. 

• The empty set is a constant written as { }. 
• There is one unary predicate, Set, which is true of sets. 
• The binary predicates are x∈ s (x is a member of set s) and s1 ⊆ s2 (set 

s1 is a subset, not necessarily proper, of set s2). 
• The binary functions are 

• s1 ∩ s2 (the intersection of two sets), 
• s1 ∪ s2 (the union of two sets), and 
• {x|s} (the set resulting from adjoining element x to set s).



One possible set of axioms of Sets is as follows:

1. The only sets are the empty set and those made by adjoining something to a 
set:
•  ∀ s Set(s) ⇔ (s = { }) ∨ (∃ x,s2 Set(s2) ∧ s = {x|s2})

2. The empty set has no elements adjoined into it. In other words, there is no 
way to decompose { } into a smaller set and an element:
•  ¬∃ x,s {x|s} = { } .  

3. Adjoining an element already in the set has no effect: 
• ∀ x,s x∈ s ⇔ s = {x|s} .   

4. The only members of a set are the elements that were adjoined into it. We 
express this recursively, saying that x is a member of s if and only if s is equal 
to some set s2 adjoined with some element y, where either y is the same as x 
or x is a member of s2: 
• ∀ x,s x∈ s ⇔ ∃ y,s2 (s = {y|s2} ∧ (x = y ∨ x∈ s2)) .



One possible set of axioms of Sets is as follows:

5. A set is a subset of another set if and only if all of the first set’s members are 
members of the second set: 
• ∀ s1,s2 s1 ⊆ s2 ⇔ (∀ x x∈ s1 ⇒ x∈ s2) .

6. Two sets are equal if and only if each is a subset of the other: 
• ∀ s1,s2 (s1 = s2) ⇔ (s1 ⊆ s2 ∧ s2 ⊆ s1) . 

7. An object is in the intersection of two sets if and only if it is a member of both 
sets: 

• ∀ x,s1,s2 x∈ (s1 ∩ s2) ⇔ (x∈ s1 ∧ x∈s2) .

8. An object is in the union of two sets if and only if it is a member of either set: 
• ∀ x,s1,s2 x∈ (s1 ∪ s2) ⇔ (x∈ s1 ∨ x∈s2) . 



Lists

• Lists are similar to sets. The differences are that lists are ordered and the same 
element can appear more than once in a list. 

• Nil is the constant list with no elements; 
• Cons, Append, First, and Rest are functions; and 
• Find is the predicate that does for lists what Member does for sets. 
• List? is a predicate that is true only of lists. 
• The empty list is []. 
• The term Cons(x,y), where y is a nonempty list, is written [x|y]. 
• The term Cons(x, Nil) (i.e., the list containing the element x) is written as [x]. 
• A list of several elements, such as [A,B,C], corresponds to the nested term Cons(A, 

Cons(B, Cons(C, Nil))). 



Wumpus World
• The wumpus agent receives a percept vector with five elements. A typical percept 

sentence would be 
• Percept([Stench, Breeze, Glitter , None, None], 5) .

• Here, Percept is a binary predicate, and Stench and so on are constants placed in a 
list

• The actions in the wumpus world can be represented by logical terms: 
• Turn(Right), Turn(Left), Forward, Shoot, Grab, Climb .

• To determine which is best, the agent program executes the query 
• ASKVARS(∃ a BestAction(a, 5)) ,  
• which returns a binding list such as {a/Grab}. The agent program can then return 

Grab as the action to take
• The raw percept data implies certain facts about the current state. For example: 

• ∀ t,s,g,m,c Percept([s, Breeze,g,m,c],t) ⇒ Breeze(t) , 
• ∀ t,s,b,m,c Percept([s,b, Glitter ,m,c],t) ⇒ Glitter (t) ,

and so on. These rules exhibit a trivial form of the reasoning process called perception,



Wumpus World
• Simple “reflex” behavior can also be implemented by quantified implication 

sentences. 
• For example, we have ∀ t Glitter (t) ⇒ BestAction(Grab,t) .

• Adjacency of any two squares can be defined as 
∀ x,y,a,b Adjacent([x,y], [a,b]) ⇔ 
         (x = a ∧ (y = b − 1 ∨ y = b + 1)) ∨ (y = b ∧ (x = a − 1 ∨ x = a + 1))

• We can then say that objects can only be at one location at a time: 
       ∀ x,s1,s2,t At(x,s1,t) ∧ At(x,s2,t) ⇒ s1 = s2

• Given its current location, the agent can infer properties of the square from 
properties of its current percept. For example, if the agent is at a square and 
perceives a breeze, then that square is breezy: 

             ∀ s,t At(Agent,s,t) ∧ Breeze(t) ⇒ Breezy(s) .



Wumpus World

• The agent can deduce where the pits are (and where the wumpus is)
∀ s Breezy(s) ⇔∃ r Adjacent(r,s) ∧ Pit(r) .

• Axiom : 
    ∀ t HaveArrow(t + 1) ⇔ (HaveArrow(t) ∧ ¬Action(Shoot,t)) .



Module 4: Chapter 2

Inference in First Order Logic: 

a.Propositional Versus First Order Inference, 

b.Unification, 

c. Forward Chaining, 

d.Backward Chaining

e.Resolution



Propositional Versus First Order Inference, 

1. Inference rules for quantifiers

2. Reduction to propositional inference



1. Inference rules for quantifiers 

• Consider axiom stating that all greedy kings are evil: 
• ∀ x King(x) ∧ Greedy(x) ⇒ Evil(x) . 

• Then it seems quite permissible to infer any of the following 
sentences: 
• King(John) ∧ Greedy(John) ⇒ Evil(John) 

• King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard) 

• King(Father (John)) ∧ Greedy(Father (John)) ⇒ Evil(Father (John)) .

• ---------------------



a) The rule of Universal Instantiation (UI for short)

• The rule of Universal Instantiation (UI for short) says that we can 
infer any sentence obtained by substituting a ground term (a term 
without variables) for the variable. 

• To write out the inference rule formally, we use SUBST(θ, α) denote 
the result of applying the substitution θ to the sentence α. Then the 
rule is written



b) The rule for Existential Instantiation

• In the rule for Existential Instantiation, the variable is replaced by a 
single new constant symbol. The formal statement is as follows: for 
any sentence α, variable v, and constant symbol k that does not 
appear elsewhere in the knowledge base,



2. Reduction to propositional inference  
( Propositionalization)

• The existentially quantified sentence can be replaced by one 
instantiation, and  universally quantified sentence can be replaced by 
the set of all possible instantiations. 

• For example, suppose our knowledge base contains just the 
sentences 

FOL Inference Propositional logic Inference 



Unification

• Generalized Modus Ponens is a lifted version of Modus Ponens—it raises Modus 
Ponens from ground (variable-free) propositional logic to first-order logic.

• Generalized Modus Ponens: For atomic sentences pi , pi ′ , and q, where there is a 
substitution θ



Unification

Example : Suppose we have a query AskVars(Knows(John, x)): whom does John know? 
Answers to this query can be found by finding all sentences in the knowledge base that 
unify with Knows(John, x). Here are the results of unification with four different sentences 
that might be in the knowledge base: 
UNIFY(Knows(John, x), Knows(John, Jane)) = {x/Jane} 
UNIFY(Knows(John, x), Knows(y, Bill)) = {x/Bill, y/John} 
UNIFY(Knows(John, x), Knows(y, Mother (y))) = {y/John, x/Mother (John)} 
UNIFY(Knows(John, x), Knows(x,Elizabeth)) = fail .



Unification

• In first-order logic, unification is a process used to find a common instantiation for two 
predicates or terms such that they become identical. 
• It's a fundamental operation in logic programming and automated reasoning, 

allowing for the comparison and integration of different logical expressions. 
• Unification is essential for tasks such as theorem proving, pattern matching, and 

resolution in logic-based systems.
• A substitution, on the other hand, is a mapping of variables to terms. 

• It's essentially a set of assignments that replaces variables in logical expressions with 
specific terms, thereby creating a new expression that may be simpler or more 
specific than the original one. 

• Substitutions are used to represent the results of unification and are crucial for 
maintaining consistency and correctness in logical inference.





Unification is the process of finding a substitution that makes two logical expressions identical. The algorithm 
takes two expressions, x and y, and attempts to find a substitution (θ) that makes them identical.
Here's a breakdown of how the algorithm works:

Base case: If the substitution θ is already marked as a failure, then it returns failure 
immediately.
Identity check: If x and y are identical, it means no further unification is needed, and the 
current substitution θ can be returned.
Variable check: If x is a variable, it calls the UNIFY-VAR function with x as the variable and y as 
the expression. If y is a variable, it calls UNIFY-VAR with y as the variable and x as the 
expression.
Compound expression check: If both x and y are compound expressions, it recursively calls 
UNIFY on their arguments and operators.
List check: If both x and y are lists, it recursively calls UNIFY on their first elements and their 
remaining elements.
Failure case: If none of the above conditions are met, it returns failure, indicating that x and y 
cannot be unified.
The UNIFY-VAR function is used when one of the expressions (x or y) is a variable. It attempts 
to create a substitution based on the variable and the expression it's being unified with.



The UNIFY-VAR function is used when one of the expressions (x or y) is a variable. It attempts 
to create a substitution based on the variable and the expression it's being unified with.

Substitution check: If the substitution already contains a mapping for the variable, it 
recursively calls UNIFY with the mapped value and the expression x.

Reverse substitution check: If the expression is already in the substitution, it recursively calls 
UNIFY with the variable and the mapped value.

Occur check: Checks for a possible occurrence of the variable in the expression, preventing 
infinite loops, and returns failure if such an occurrence is detected.

Substitution addition: If none of the above cases apply, it adds a new mapping to the 
substitution, indicating that the variable is unified with the expression.

Overall, the algorithm systematically traverses through the expressions, handling variables, compounds, lists, and checking 
for failures, until it either finds a successful substitution or determines that unification is not possible.



• Overall, the algorithm systematically traverses through the
• expressions, 
• handling variables, 
• Compound statements, 
• lists, and 
• checking for failures, 

• until it either finds a successful substitution or determines that 
unification is not possible.



Example

Suppose we have the following two predicates:
1. Predicate P(x,y)
2. Predicate Q(f(z),a)
Here, 
• P and Q are predicates, 
• x, y, and z are variables, and 
• f and a are constants.
Now, let's say we want to unify P(x,y) with Q(f(z),a). 
We can use the given algorithm for unification to find a substitution that makes these two 
predicates identical.
1. Initially, θ is empty.
2. Start unifying the predicates:     P(x,y) and Q(f(z),a)
    Since P and Q are different, they can't be unified directly.
3. Unify the arguments:   Unify x with f(z) and y with a 



4. Unify x with f(z): 
• x is a variable, f(z) is a compound term.
• Call UNIFY-VAR(x, f(z), θ):

• Add x/f(z) to θ
• θ={x/f(z)}

5. Unify y with a:
• y is a variable, a is a constant.
• Call UNIFY-VAR(y, a, θ):

• Add y/a to θ
• θ={x/f(z),y/a}

6.Finally, return θ:
      θ={x/f(z),y/a}
So, the resulting substitution θ makes P(x,y) and Q(f(z),a) identical:
     P(x,y){x/f(z),y/a}=Q(f(z),a)



Storage and retrieval : 

• Underlying the TELL and ASK functions used to inform and interrogate a 
knowledge base are the more primitive STORE and FETCH functions. 
STORE(s) stores a sentence s into the knowledge base and FETCH(q) 
returns all unifiers such that the query q unifies with some.

• Given a sentence to be stored, it is possible to construct indices for all 
possible queries that unify with it. For the fact Employs(IBM , Richard), 
the queries are 

• Employs(IBM , Richard)       Does IBM employ Richard? 

• Employs(x, Richard)             Who employs Richard? 

• Employs(IBM , y)                  Whom does IBM employ? 

• Employs(x, y)                         Who employs whom?





Forward Chaining:

• Forward chaining is a reasoning method ,  starts with 
the known facts and uses inference rules to derive 
new conclusions until the goal is reached or no 
further inferences can be made. 

• In essence, it proceeds forward from the premises to 
the conclusion.



Example : Consider the following knowledge base representing a simple 
diagnostic system:
1.If a patient has a fever, it might be a cold.

2.If a patient has a sore throat, it might be strep throat.

3.If a patient has a fever and a sore throat, they should see a doctor.

Given the facts:
• The patient has a fever.
• The patient has a sore throat.

• Forward chaining would proceed as follows:
1.Check the first rule: Fever? Yes. Proceed.
2.Check the second rule: Sore throat? Yes. Proceed.
3.Apply the third rule: The patient has a fever and sore throat, thus they should 

see a doctor.
Forward chaining is suitable for situations where there is a large amount of 
known information and the goal is to derive conclusions.



Forward Chaining, 

• Start with the atomic sentences in the knowledge base and apply 
Modus Ponens in the forward direction, adding new atomic 
sentences, until no further inferences can be made. 

• First-order definite clauses : A definite clause either is atomic or is an 
implication whose antecedent is a conjunction of positive literals 
and whose consequent is a single positive literal. The following are 
first-order definite clauses: 
• King(x) ∧ Greedy(x) ⇒ Evil(x) . 

• King(John) . 

• Greedy(y) .



Forward Chaining, 

• Unlike propositional literals, first-order literals can include variables, 
in which case those variables are assumed to be universally 
quantified.

• Consider the following problem: The law says that it is a crime for 
an American to sell weapons to hostile nations. The country Nono, 
an enemy of America, has some missiles, and all of its missiles were 
sold to it by Colonel West, who is American.

• We will prove that West is a criminal.



First, we will represent these facts as first-order definite clauses.
1.  “. . . it is a crime for an American to sell weapons to hostile nations”: 

• American(x) ∧ Weapon(y) ∧ Sells(x, y, z) ∧ Hostile(z) ⇒ Criminal(x) .
2. “Nono . . . has some missiles.” 

• The sentence ∃ x Owns(Nono, x)∧Missile(x) is transformed into two definite 
clauses by Existential Instantiation, introducing a new constant M1: 
• Owns(Nono, M1) 
• Missile (M1) 

3. “All of its missiles were sold to it by Colonel West”: 
• Missile(x) ∧ Owns(Nono, x) ⇒ Sells(West, x, Nono) . 

4. We will also need to know that missiles are weapons: 
• Missile(x) ⇒ Weapon(x)

5. and we must know that an enemy of America counts as “hostile”: 
• Enemy(x, America) ⇒ Hostile(x) . 

6. “West, who is American . . .”: 
• American(West) . 

7. “The country Nono, an enemy of America . . .”: 
• Enemy(Nono, America) . 



From these inferred facts, we can conclude that Colonel West is indeed a criminal since 
he sold missiles to a hostile nation, which is Nono.
“. . . it is a crime for an American to sell weapons to hostile nations”: 

• American(West) ∧ Weapon(Missile) ∧ Sells(West, Missile, Nono) ∧ 
Hostile(Nono) ⇒ Criminal(West) .



DATALOG : 
• This knowledge base contains no function symbols and is therefore an instance of the 

class of Datalog knowledge bases. 
• Datalog is a language that is restricted to first-order definite clauses with no function 

symbols. 
• Datalog gets its name because it can represent the type of statements typically made 

in relational databases.



A simple forward-
chaining 
algorithm



Explanation of Algorithm

• This algorithm is an implementation of Forward Chaining 
with a goal-directed query mechanism, specifically 
designed for First-Order Logic (FOL) knowledge bases. 

• It's called Forward Chaining with Ask (FOL-FC-ASK). Let's 
break down the steps:



Algorithm:
1.  Inputs:

• KB: The knowledge base, which consists of a set of first-order definite clauses.
• α: The query, which is an atomic sentence.

2. Loop until no new sentences are inferred:
• Initialize new as an empty set.

3. Iterate through each rule in the knowledge base:
• Standardize the variables in the rule (ensuring variable names are unique).
• For each substitution θ that makes the antecedent of the rule (`p1 ∧ ... ∧ pn`) match some subset 

of the KB:
1. Apply the substitution to the consequent of the rule (`q`) to generate a new sentence `q'`.
2. Check if `q'` unifies with some sentence already in the KB or `new`. If not, add `q'` to `new`.
3. Attempt to unify `q'` with the query `α`. If unification succeeds (resulting in a substitution φ), return φ. 
4. Update the knowledge base: 

• Add the sentences in `new` to the KB
5. Repeat the loop until no new sentences are inferred or until the query is proven or disproven.

4. Output:
•If the query is proven, return the substitution that makes it true.
•If the query is disproven (i.e., it cannot be proven true), return false.





Backward Chaining

• Backward chaining is a reasoning method that starts with the goal 
and works backward through the inference rules to find out whether 
the goal can be satisfied by the known facts. 

• It's essentially goal-driven reasoning, where the system seeks to 
prove the hypothesis by breaking it down into subgoals and verifying 
if the premises support them.



Example : Consider the following knowledge base representing a simple 
diagnostic system:

1.If a patient has a fever, it might be a cold.

2.If a patient has a sore throat, it might be strep throat.

3.If a patient has a fever and a sore throat, they should see a doctor.

Given the facts:
• The patient has a fever.
• The patient has a sore throat.

• Backward chaining would proceed as follows:
1. Start with the goal: Should the patient see a doctor?
2. Check the third rule: Does the patient have a cold and a sore throat? Yes.
3. Check the first and second rules: Does the patient have a fever and sore throat? Yes.
4. The goal is satisfied: The patient should see a doctor.

• Backward chaining is useful when there is a specific goal to be achieved, and 
the system can efficiently backtrack through the inference rules to determine 
whether the goal can be satisfied.



Backward Chaining : Algorithm

These algorithms work backward from the goal, chaining through rules to find 
known facts that support the proof.



Explanation of Algorithm

This algorithm represents Backward Chaining, a goal-driven reasoning method used in automated theorem proving 
and reasoning systems for First-Order Logic (FOL). Let's break down the steps:

Input:
KB: The knowledge base, consisting of a set of first-order definite clauses.
query: The query for which we want to find solutions..



Algorithm: 
FOL-BC-ASK:
• This function initiates the backward chaining process by calling FOL-BC-OR with an empty 

substitution θ.
FOL-BC-OR:
• This generator function yields substitutions that satisfy the goal by applying rules from the 

knowledge base.
• It iterates over each rule in the knowledge base that matches the goal.
• It standardizes the variables in the rule to avoid variable name conflicts.
• For each possible substitution θ', it calls FOL-BC-AND to handle the antecedent of the rule.
FOL-BC-AND:
• This generator function yields substitutions that satisfy a list of goals.
• If θ is a failure, it returns.
• If there are no goals left, it yields the current substitution θ.
• Otherwise, it recursively processes each goal in the list:

• It retrieves the first goal and the rest of the goals.
• For each possible substitution θ' generated by processing the first goal, it recursively calls FOL-

BC-OR to handle the rest of the goals.
Output: The output is a generator that yields substitutions satisfying the query.



• Backward chaining starts with the goal (the query) and recursively decomposes it 
into subgoals until it reaches atomic sentences or predicates. It then searches the 
knowledge base for rules that can prove these subgoals. If a rule's consequent 
unifies with a subgoal, it recursively tries to satisfy the antecedent of the rule by 
decomposing it into further subgoals. This process continues until either the query is 
satisfied or no further rules can be applied.

• The algorithm uses substitution to maintain the bindings of variables as it traverses 
through the goals and rules. It applies unification to match the goal with the rule's 
consequent, ensuring compatibility.

• Overall, Backward Chaining is an effective method for reasoning backward from the 
goal to the known facts in the knowledge base, thereby determining whether the 
query can be satisfied and generating possible solutions in the form of substitutions.





Resolution

• Resolution is a fundamental inference rule used in automated 
theorem proving and logic programming. It is based on the principle 
of proof by contradiction. 

• Resolution combines logical sentences in the form of clauses to derive 
new sentences. 

• The resolution rule states that if there are two clauses that contain 
complementary literals (one positive, one negative) then these 
literals can be resolved, leading to a new clause that is inferred from 
the original clauses.



Example:

Consider two logical statements:
1. P∨Q
2. ¬P∨R

Applying resolution: Resolve the statements by eliminating P: 
• P∨Q
• ¬P∨R
• Resolving P and ¬P: Q∨R

The resulting statement Q∨R is a new clause inferred from the original two. 
Resolution is a key component of logical reasoning in FOL, especially in tasks 
like automated theorem proving and knowledge representation.



Resolution

• Conjunctive normal form for first-order logic : As in the propositional 
case, first-order resolution requires that sentences be in conjunctive 
normal form (CNF)—that is, a conjunction of clauses, where each 
clause is a disjunction of literals.

• Literals can contain variables, which are assumed to be universally 
quantified. For example, the sentence 

• ∀ x American(x) ∧Weapon(y) ∧ Sells(x, y, z) ∧ Hostile(z) ⇒
Criminal(x) becomes, in CNF, 

• ¬American(x) ∨ ¬Weapon(y) ∨ ¬Sells(x, y, z) ∨ ¬Hostile(z) ∨
Criminal(x) . 



Resolution

• Every sentence of first-order logic can be converted into an 
inferentially equivalent CNF sentence.

• The procedure for conversion to CNF is similar to the propositional 
case, The principal difference arises from the need to eliminate 
existential quantifiers.

• We illustrate the procedure by translating the sentence 

• “Everyone who loves all animals is loved by someone,” or 

• ∀ x [∀ y Animal(y) ⇒ Loves(x, y)] ⇒ [∃ y Loves(y, x)] .



Steps

• Eliminate implications: ∀ x [¬∀ y ¬Animal(y) ∨ Loves(x, y)] ∨ [∃ y Loves(y, x)] .

• Move ¬ inwards: In addition to the usual rules for negated connectives, we 
need rules for negated quantifiers. Thus, we have 
• ¬∀ x p becomes ∃ x ¬p 

• ¬∃ x p becomes ∀ x ¬p . 

• Our sentence goes through the following transformations: 
• ∀ x [∃ y ¬(¬Animal(y) ∨ Loves(x, y))] ∨ [∃ y Loves(y, x)] . 

• ∀ x [∃ y ¬¬Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)] . 

• ∀ x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)] .

• Standardize variables: For sentences like (∃ x P(x))∨(∃ x Q(x)) which use the 
same variable name twice, change the name of one of the variables. This 
avoids confusion later when we drop the quantifiers. Thus, we have 
• ∀ x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ z Loves(z, x)] .



• Skolemize: Skolemization is the process of removing existential 
quantifiers by elimination. Translate ∃ x P(x) into P(A), where A is a 
new constant.
• Example : 

• ∀ x [Animal(A) ∧ ¬Loves(x, A)] ∨ Loves(B, x) , 

• ∀ x [Animal(F(x)) ∧ ¬Loves(x, F(x))] ∨ Loves(G(z), x) . Here F and G are Skolem functions.

• Drop universal quantifiers: At this point, all remaining variables must 
be universally quantified. Moreover, the sentence is equivalent to one 
in which all the universal quantifiers have been moved to the left. We 
can therefore drop the universal quantifiers: 
• [Animal(F(x)) ∧ ¬Loves(x, F(x))] ∨ Loves(G(z), x) . 

• Distribute ∨ over ∧: 

[Animal(F(x)) ∨ Loves(G(z), x)] ∧ [¬Loves(x, F(x)) ∨ Loves(G(z), x)] .



The resolution inference rule
• Two clauses, which are assumed to be standardized apart so that they 

share no variables, can be resolved if they contain complementary 
literals. Propositional literals are complementary if one is the negation 
of the other; first-order literals are complementary if one unifies with 
the negation of the other.

• Thus We have







Suppose Curiosity did not kill Tuna. We know that either Jack or Curiosity did; thus Jack must have. Now, Tuna is a cat and 
cats are animals, so Tuna is an animal. Because anyone who kills an animal is loved by no one, we know that no one loves 
Jack. On the other hand, Jack loves all animals, so someone loves him; so we have a contradiction. Therefore, Curiosity 
killed the cat. 



Summary 

1. Forward chaining starts with known facts and moves forward to 
reach conclusions, 

2. Backward chaining starts with the goal and moves backward to 
verify if the goal can be satisfied, and 

3. Resolution is an inference rule used to derive new clauses by 
combining existing ones. 

These techniques are essential for reasoning and inference in First-
Order Logic systems.
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