
Module 4
First Order Logic and Inferences in FOL

Contents 1. First Order Logic:

a.Representation Revisited,

b.Syntax and Semantics of First Order Logic,

c. Using First Order Logic.

2. Inference in First Order Logic:

a.Propositional Versus First Order

Inference,

b.Unification,

c. Forward Chaining,

d.Backward Chaining

e.Resolution

Properties of PL

1. Propositional logic is a declarative language because its semantics is based on
a truth relation between sentences and possible worlds.

2. It also has sufficient expressive power to deal with partial information, using
disjunction and negation.

3. Propositional logic has a third property that is desirable in representation
languages, namely, compositionality. In a compositional language, the
meaning of a sentence is a function of the meaning of its parts.
For example, the meaning of “S1,4 ∧ S1,2” is related to the meanings of
“S1,4” and “S1,2.”

Drawbacks of Propositional Logic

• Propositional logic (PL) is declarative and assumes the world contains
facts, so it guides us on how to represent information in a logical form and
draw conclusions.

• We can only represent information as either true or false in propositional
logic.

• Expressive power of Propositional logic is very limited and lacks to
describe an environment with many objects

• If you want to represent complicated sentences or natural language
statements, PL is not sufficient.

• Examples: PL is not enough to represent the sentences below, so we
require powerful logic (such as FOL).

1.I love mankind. It’s the people I can’t stand!
2.I like to eat mangos.

What is First Order Logic (FOL)?

1.FOL is also called predicate logic. A much more expressive language
than the propositional logic. It is a powerful language used to develop
information about an object and express the relationship between
objects.

2.FOL not only assumes that does the world contains facts (like PL
does), but it also assumes the following:

1. Objects: A, B, people, numbers, colors, wars, theories, squares, pit, etc.

2. Relations: It is unary relation such as red, round, sister of, brother of, etc.

3. Function: father of, best friend, third inning of, end of, etc.

Objects Relations and Functions

• Objects: people, houses, numbers, theories, Ronald McDonald,
colors, baseball games, wars, centuries ...

• Relations: these can be unary relations or properties such as red,
round, bogus, prime, multistoried ..., or more general n-ary relations
such as brother of, bigger than, inside, part of, has color, occurred
after, owns, comes between, ...

• Functions: father of, best friend, third inning of, one more than,
beginning of ..

Examples
• “One plus two equals three.”

• Objects: one, two, three, one plus two;
• Relation: equals;
• Function: plus. (“One plus two” is a name for the object that is obtained by

applying the function “plus” to the objects “one” and “two.” “Three” is
another name for this object.)

• “Squares neighboring the wumpus are smelly.”
• Objects: wumpus, squares;
• Property: smelly; Relation: neighboring.

• “Evil King John ruled England in 1200.”
• Objects: John, England, 1200;
• Relation: ruled;
• Properties: evil, king.

Types of Languages

Constant 1, 2, A, John, Mumbai, cat,....

Variables x, y, z, a, b,....

Predicates Brother, Father, >, <,Sister, Father.......

Function sqrt, LeftLegOf, Sqrt, LessThan, Sin(θ).......

Connectives ∧, ∨, ¬,⇒,⇔

Equality ==

Quantifier ∀, ∃

Basic Elements of FOL

Syntax and Semantics of FOL

1.Models for first-order logic

2.Symbols and interpretations

3.Terms

4.Atomic sentences

5.Complex sentences

6.Quantifiers: Universal quantification (∀) /Existential quantification (∃)

7.Equality

8.An alternative semantics? : Data base Semantics

Models for FOL

• They have objects in them!

• The domain of a model is the set of objects or domain elements it
contains.

• The domain is required to be nonempty—every possible world must
contain at least one object

• The objects in the model may be related in various ways.

• Models in first-order logic require total functions, that is, there must
be a value for every input tuple

Five objects:
1. Richard the Lionheart, King of England from 1189 to 1199;
2. His younger brother, the evil King John, who ruled from 1199

to 1215;
3. The left legs of Richard and John; and a c
4. Crown

Tuple : The brotherhood relation in this model is the set
{ <Richard the Lionheart, King John>, <King John, Richard the
Lionheart> } .

Two binary relations : “brother” and “on head” relations
are binary relations

Three unary relations/ properties : Person, King and
Crown

One unary Function: Left Leg

Syntax of FOL

• The basic syntactic elements of first-order logic are the symbols that stand
for objects, relations, and functions. The symbols, therefore, come in three
kinds:

1. Constant symbols, which stand for objects;
2. Predicate symbols, which stand for relations; and
3. Function symbols, which stand for functions.

• Convention : Symbols will begin with uppercase letters.
• Example

• Constant symbols Richard and John;
• Predicate symbols Brother , OnHead, Person, King, and Crown; and
• the function symbol LeftLeg.

• Arity : Each predicate and function symbol comes with an arity that fixes
the number of arguments

Syntax of FOL

• Interpretation: specifies exactly which objects, relations and
functions are referred to by the constant, predicate, and function
symbols.

• Examples :
• Richard refers to Richard the Lionheart
• John refers to the evil King John.
• Brother refers to the brotherhood relation
• OnHead refers to the “on head” relation that holds between the crown and

King John;
• Person, King, and Crown refer to the sets of objects that are persons, kings,

and crowns
• LeftLeg refers to the “left leg” function

The syntax of first-
order logic with
equality, specified in
Backus–Naur form

• A model in first-order logic consists of a set of objects
and an interpretation that maps constant symbols to
objects, predicate symbols to relations on those
objects, and function symbols to functions on those
objects.

• Just as with propositional logic, entailment, validity,
and so on are defined in terms of all possible models

In summary

Syntax and Semantics of FOL

1.Models for first-order logic

2.Symbols and interpretations

3.Terms

4.Atomic sentences

5.Complex sentences

6.Quantifiers: Universal quantification (∀) /Existential quantification (∃)

7.Equality

8.An alternative semantics? : Data base Semantics

3.Terms

• A term is a logical expression that refers to an object. Constant
symbols are terms.

• It is not always convenient to have a distinct symbol to name every
object.
• Example : “King John’s left leg” rather than giving a name to his leg.

• This is what function symbols are for: instead of using a constant symbol, we
use LeftLeg(John).

• In the general case, a complex term is formed by a function symbol
followed by a parenthesized list of terms as arguments to the
function symbol.(It is not a subroutine or function call)

3.Terms

• Formal Semantics : Consider a term f(t1,... ,tn).

• The function symbol f refers to some function in the model (call it F); the
argument terms refer to objects in the domain (call them d1,... ,dn);

• Example : LeftLeg(John):

• The LeftLeg function symbol refers to the function and John refers to King
John, then LeftLeg(John) refers to King John’s left leg.

4.Atomic sentences

• An atomic sentence (or atom for short) is formed from a predicate
symbol optionally followed by a parenthesized list of terms, such a
• Brother (Richard, John) : This states, that Richard the Lionheart is

the brother of King John.

• Atomic sentences can have complex terms as arguments:
• Married(Father (Richard), Mother (John)) : states that Richard

the Lionheart’s father is married to King John’s mother

5.Complex Sentences

• We can use logical connectives to construct more complex
sentences, with the same syntax and semantics as in
propositional calculus

• Example : Here are four sentences that are true in the model
1. ¬Brother (LeftLeg(Richard), John)
2. Brother (Richard, John) ∧ Brother (John, Richard)
3. King(Richard) ∨ King(John)
4. ¬King(Richard) ⇒ King(John)

6. Quantifiers

• In first-order logic, quantifiers are symbols used to express the
scope of variables in logical statements.

• Quantifiers are essential for expressing statements about
collections of objects or individuals in a precise and concise
manner within first-order logic. They allow for the formulation of
statements that capture universal truths or existential claims
about the elements of a domain.

• There are two main quantifiers:
1. the existential quantifier (∃) and
2. the universal quantifier (∀).

6. Quantifiers: Universal quantification (∀)

Universal Quantifier (∀): Denoted by the symbol "∀".

• It asserts that a predicate or condition is true for all
instances of a variable in a given domain.

• For example, the statement "∀x P(x)" asserts that the
predicate P(x) is true for all x in the domain.

• By convention, variables are lowercase letters.

• A variable is a term all by itself, and as such can also serve as
the argument of a function—for example, LeftLeg(x).

• A term with no variables is called a ground term.

6. Universal Quantifiers: Examples

•∀ x King(x) ⇒ Person(x) .

6. Universal Quantifiers: Examples

• The universally quantified sentence ∀ x King(x) ⇒ Person(x) is true in the
original model if the sentence King(x) ⇒ Person(x) is true under each of the
five extended interpretations.

• That is, the universally quantified sentence is equivalent to asserting the
following five sentences:

1. Richard the Lionheart is a king ⇒ Richard the Lionheart is a person.

2. King John is a king ⇒ King John is a person.

3. Richard’s left leg is a king ⇒ Richard’s left leg is a person.

4. John’s left leg is a king ⇒ John’s left leg is a person.

5. The crown is a king ⇒ the crown is a person

6. Universal Quantifiers: Examples

•A common mistake, made frequently even by diligent
readers who have read this paragraph several times, is to use
conjunction instead of implication.

• The sentence ∀ x King(x) ∧ Person(x) would be equivalent to
asserting

1. Richard the Lionheart is a king ∧ Richard the Lionheart is a
person,

2. King John is a king ∧ King John is a person,

3. Richard’s left leg is a king ∧ Richard’s left leg is a person,

6. Quantifiers: Existential quantification (∃)

•Denoted by the symbol "∃".

• It asserts that there exists at least one instance of a
variable that satisfies a given predicate or condition.

• For example, the statement "∃x P(x)" asserts that
there exists at least one x such that the predicate P(x)
is true.

6. Quantifiers: Existential quantification (∃)

• Universal quantification makes statements about every object.

• Similarly, we can make a statement about some object in the
universe without naming it, by using an existential quantifier.

• To say, for example, that King John has a crown on his head, we write
∃ x Crown(x) ∧ OnHead(x, John) .

• ∃x is pronounced “There exists an x such that ...” or “For some x...”

6. Quantifiers: Existential quantification (∃)

• Intuitively, the sentence ∃ x P says that P is true for at least one
object x.

• More precisely, ∃ x P is true in a given model if P is true in at least one
extended interpretation that assigns x to a domain element.

• That is, at least one of the following is true:

1. Richard the Lionheart is a crown ∧ Richard the Lionheart is on
John’s head;

2. King John is a crown ∧ King John is on John’s head;

3. Richard’s left leg is a crown ∧ Richard’s left leg is on John’s head;

4. John’s left leg is a crown ∧ John’s left leg is on John’s head;

5. The crown is a crown ∧ the crown is on John’s head

6. Quantifiers: Existential quantification (∃)

• Using ⇒with ∃ usually leads to a very weak statement, indeed.

• Consider the following sentence: ∃ x Crown(x) ⇒ OnHead(x, John) .

• Applying the semantics, we see that the sentence says that at least
one of the following assertions is true:

1. Richard the Lionheart is a crown ⇒ Richard the Lionheart is on
John’s head;

2. King John is a crown ⇒ King John is on John’s head;

3. Richard’s left leg is a crown ⇒ Richard’s left leg is on John’s head;

6. 1 : Nested Quantifiers

• Nested quantifiers in First-Order Logic (FOL) refer to situations
where quantifiers are used within the scope of other quantifiers in a
logical expression.

• This nesting allows for the expression of more complex relationships
and properties involving multiple variables.

• There are two types of quantifiers in FOL: the universal quantifier
(∀) and the existential quantifier (∃), and both can be used in nested
configurations.

6. 1 : Nested Quantifiers : Examples and
Interpretations

1. ∀x ∃y P(x,y):
• This statement means "for every x, there exists a y such that the property

P(x,y) holds."

• It asserts a universal condition on x and, for each x, an existential condition
on y.

2. ∃x ∀y P(x,y):
• This statement means "there exists an x such that for every y, the

property P(x,y) holds."

• It asserts the existence of a particular x for which a universal statement
about y is true.

6. 1 : Nested Quantifiers : Examples and
Interpretations

• Importance of Order : The order of nested quantifiers is crucial because it
can change the meaning of a statement.

• For instance, the two examples given above have significantly different
meanings due to the order of quantification.

• In general, changing the order of quantifiers in a statement with nested
quantifiers will result in a statement that expresses a different property or
relationship.

6. 1 : Nested Quantifiers : Examples and
Interpretations

• Nested quantifiers are widely used in mathematics, computer
science, and philosophy to express complex statements about
sets, functions, algorithms, and theoretical constructs. T

• hey are essential for defining concepts like "for every natural
number, there exists a prime number greater than it"

• (∀x ∈ ℕ, ∃y (y > x ∧ Prime(y)))
• or expressing constraints and properties in formal specifications

and proofs.

6. 1 : Nested Quantifiers : Examples and
Interpretations

• Siblinghood is a symmetric relationship :

∀ x,y Sibling(x,y) ⇔ Sibling(y,x)

• “Everybody loves somebody” : ∀ x ∃ y Loves(x,y)

• “There is someone who is loved by everyone,”: ∃ y ∀ x Loves(x,y)

• The order of quantification is therefore very important. It becomes
clearer if we insert parentheses.
• ∀ x (∃ y Loves(x,y)) says that everyone has a particular property, namely,

the property that they love someone

6. 1 : Nested Quantifiers : Connections
between ∀ and ∃

• The two quantifiers are actually intimately connected with
each other, through negation.

•Asserting that everyone dislikes Parsnips is the same as
asserting there does not exist someone who likes them, and
vice versa:

•∀ x ¬Likes(x,Parsnips) is equivalent to ¬∃ x Likes(x,Parsnips)

6. 1 : Nested Quantifiers : Connections
between ∀ and ∃

• “Everyone likes ice cream” means that there is no one who
does not like ice cream:

•∀ x Likes(x,IceCream) is equivalent to

¬∃ x ¬Likes(x,IceCream) .

6. 2 : De Morgans Rules for quantified and unquantified
sentences

•∀ x ¬P ≡ ¬∃ x P ¬(P ∨ Q) ≡ ¬P ∧ ¬Q

• ¬∀ x P ≡ ∃ x ¬P ¬(P ∧ Q) ≡ ¬P ∨ ¬Q

•∀ x P ≡ ¬∃ x ¬P P ∧ Q ≡ ¬(¬P ∨ ¬Q)

•∃ x P ≡ ¬∀ x ¬P P ∨ Q ≡ ¬(¬P ∧ ¬Q) .

7.Equality

• In First-Order Logic (FOL), equality is a fundamental concept that
allows the expression of the notion that two terms denote the same
object.

• Syntax: In the syntax of FOL, an equality statement typically looks like
a = b where a and b are terms in the logic. Terms can be variables,
constants, or any expression that refers to objects in the domain of
discourse.

• Semantics: The semantics of equality states that a = b is true if and
only if a and b refer to the same object in the domain of discourse.

7.Equality: Examples

• Father (John)= Henry says that the object referred to by
Father (John) and the object referred to by Henry are the
same.

• To say that Richard has at least two brothers, we would write

• ∃ x,y Brother (x, Richard) ∧ Brother (y, Richard) ∧ ¬(x = y) .

8.Any Alternative Semantics : Database
Semantics
• One proposal that is very popular in database systems works as

follows.

• First, we insist that every constant symbol refer to a distinct object—
the so-called unique-names assumption.

• Second, we assume that atomic sentences not known to be true are
in fact false—the closed-world assumption.

• Finally, we invoke domain closure, meaning that each model contains
no more domain elements than those named by the constant
symbols.

Using First Order Logic

• In this section, we discuss systematic representations of some simple domains.
• In knowledge representation, a domain is just some part of the world about

which we wish to express some knowledge.

Assertions and queries in first-order logic

• Sentences are added to a knowledge base using TELL, exactly as in
propositional logic. Such sentences are called assertions

• We can ask questions of the knowledge base using ASK. Questions asked
with ASK are called queries or goals.

Examples

TELL(KB, King(John)) .
TELL(KB, Person(Richard)) .
TELL(KB, ∀ x King(x) ⇒ Person(x)) .

ASK(KB, King(John))
ASK(KB, Person(John))
ASK(KB, ∃ x Person(x)) .

ASKVARS : Substitution or binding List

• ASKVARS(KB, Person(x)) yields a stream of answers. In this case there will
be two answers: {x/John} and {x/Richard}. Such an answer is called a
substitution or binding list. It will bind the variables to specific values.

• Note: if KB has been told King(John) ∨ King(Richard), then there is no
binding to x for the query ∃ x King(x), even though the query is true.

Example: The domain of family relationships, or
kinship domain

• This domain includes facts such as
• “Elizabeth is the mother of Charles” and
• “Charles is the father of William” and rules such as
• “One’s grandmother is the mother of one’s parent.”

• Clearly, the objects in our domain are people. We have two unary
predicates, Male and Female.

• Kinship relations—parenthood, brotherhood, marriage, and so on—are
represented by binary predicates: Parent, Sibling, Brother , Sister , Child,
Daughter , Son, Spouse, Wife, Husband, Grandparent, Grandchild , Cousin,
Aunt, and Uncle.

• One’s mother is one’s female parent: ∀ m,c Mother (c)= m ⇔ Female(m) ∧ Parent(m,c) .
• One’s husband is one’s male spouse: ∀ w,h Husband(h,w) ⇔ Male(h) ∧ Spouse(h,w) .
• Male and female are disjoint categories: ∀ x Male(x) ⇔ ¬Female(x) .
• Parent and child are inverse relations: ∀ p,c Parent(p,c) ⇔ Child(c,p)
• A grandparent is a parent of one’s parent:
 ∀ g,c Grandparent(g,c) ⇔ ∃ p Parent(g,p) ∧ Parent(p,c) .
• A sibling is another child of one’s parents:
 ∀ x,y Sibling(x,y) ⇔ x 6= y ∧ ∃ p Parent(p,x) ∧ Parent(p,y) .

Axioms : Each of these sentences can be viewed as an axiom of the kinship domain. They
provide the basic factual information from which useful conclusions can be derived. Our kinship
axioms are also definitions; they have the form ∀ x,y P(x,y) ⇔… The axioms define the Mother
function and the Husband, Male, Parent, Grandparent, and Sibling predicates in terms of
other predicates.
Some are theorems—that is, they are entailed by the axioms. For example, consider the
assertion that siblinghood is symmetric: ∀ x,y Sibling(x,y) ⇔ Sibling(y,x) .

Numbers

NatNUM
We describe here the theory of natural numbers or non-negative integers.Natural
numbers are defined recursively
• 0 is a natural number : NatNum(0) .
• For every object n, if n is a natural number, then S(n) is a natural number :
 ∀ n NatNum(n) ⇒ NatNum(S(n))
So the natural numbers are 0, S(0), S(S(0)), and so on.

Axioms
∀ n, 0 ≠ S(n) .
∀m,n m ≠ n ⇒ S(m) ≠ S(n) .
Note : We can also write S(n) as n + 1

Numbers

Definition : Addition is defined in terms of the successor function:

• ∀ m NatNum(m) ⇒ + (0,m) = m .
• ∀ m,n NatNum(m) ∧ NatNum(n) ⇒ + (S(m),n) = S(+(m,n))
 or
• ∀m,n NatNum(m) ∧ NatNum(n) ⇒ (m + 1) + n = (m + n) + 1

Note : The use of infix notation(like m+1,m+n,etc) is an example of syntactic
sugar, that is, an extension to or abbreviation of the standard syntax that does not
change the semantics.

Sets

• The domain of sets is also fundamental to mathematics as well as to
commonsense reasoning. We will use the normal vocabulary of set
theory as syntactic sugar.

• The empty set is a constant written as { }.
• There is one unary predicate, Set, which is true of sets.
• The binary predicates are x∈ s (x is a member of set s) and s1 ⊆ s2 (set

s1 is a subset, not necessarily proper, of set s2).
• The binary functions are

• s1 ∩ s2 (the intersection of two sets),
• s1 ∪ s2 (the union of two sets), and
• {x|s} (the set resulting from adjoining element x to set s).

One possible set of axioms of Sets is as follows:

1. The only sets are the empty set and those made by adjoining something to a
set:
• ∀ s Set(s) ⇔ (s = { }) ∨ (∃ x,s2 Set(s2) ∧ s = {x|s2})

2. The empty set has no elements adjoined into it. In other words, there is no
way to decompose { } into a smaller set and an element:
• ¬∃ x,s {x|s} = { } .

3. Adjoining an element already in the set has no effect:
• ∀ x,s x∈ s ⇔ s = {x|s} .

4. The only members of a set are the elements that were adjoined into it. We
express this recursively, saying that x is a member of s if and only if s is equal
to some set s2 adjoined with some element y, where either y is the same as x
or x is a member of s2:
• ∀ x,s x∈ s ⇔ ∃ y,s2 (s = {y|s2} ∧ (x = y ∨ x∈ s2)) .

One possible set of axioms of Sets is as follows:

5. A set is a subset of another set if and only if all of the first set’s members are
members of the second set:
• ∀ s1,s2 s1 ⊆ s2 ⇔ (∀ x x∈ s1 ⇒ x∈ s2) .

6. Two sets are equal if and only if each is a subset of the other:
• ∀ s1,s2 (s1 = s2) ⇔ (s1 ⊆ s2 ∧ s2 ⊆ s1) .

7. An object is in the intersection of two sets if and only if it is a member of both
sets:

• ∀ x,s1,s2 x∈ (s1 ∩ s2) ⇔ (x∈ s1 ∧ x∈s2) .

8. An object is in the union of two sets if and only if it is a member of either set:
• ∀ x,s1,s2 x∈ (s1 ∪ s2) ⇔ (x∈ s1 ∨ x∈s2) .

Lists

• Lists are similar to sets. The differences are that lists are ordered and the same
element can appear more than once in a list.

• Nil is the constant list with no elements;
• Cons, Append, First, and Rest are functions; and
• Find is the predicate that does for lists what Member does for sets.
• List? is a predicate that is true only of lists.
• The empty list is [].
• The term Cons(x,y), where y is a nonempty list, is written [x|y].
• The term Cons(x, Nil) (i.e., the list containing the element x) is written as [x].
• A list of several elements, such as [A,B,C], corresponds to the nested term Cons(A,

Cons(B, Cons(C, Nil))).

Wumpus World
• The wumpus agent receives a percept vector with five elements. A typical percept

sentence would be
• Percept([Stench, Breeze, Glitter , None, None], 5) .

• Here, Percept is a binary predicate, and Stench and so on are constants placed in a
list

• The actions in the wumpus world can be represented by logical terms:
• Turn(Right), Turn(Left), Forward, Shoot, Grab, Climb .

• To determine which is best, the agent program executes the query
• ASKVARS(∃ a BestAction(a, 5)) ,
• which returns a binding list such as {a/Grab}. The agent program can then return

Grab as the action to take
• The raw percept data implies certain facts about the current state. For example:

• ∀ t,s,g,m,c Percept([s, Breeze,g,m,c],t) ⇒ Breeze(t) ,
• ∀ t,s,b,m,c Percept([s,b, Glitter ,m,c],t) ⇒ Glitter (t) ,

and so on. These rules exhibit a trivial form of the reasoning process called perception,

Wumpus World
• Simple “reflex” behavior can also be implemented by quantified implication

sentences.
• For example, we have ∀ t Glitter (t) ⇒ BestAction(Grab,t) .

• Adjacency of any two squares can be defined as
∀ x,y,a,b Adjacent([x,y], [a,b]) ⇔
 (x = a ∧ (y = b − 1 ∨ y = b + 1)) ∨ (y = b ∧ (x = a − 1 ∨ x = a + 1))

• We can then say that objects can only be at one location at a time:
 ∀ x,s1,s2,t At(x,s1,t) ∧ At(x,s2,t) ⇒ s1 = s2

• Given its current location, the agent can infer properties of the square from
properties of its current percept. For example, if the agent is at a square and
perceives a breeze, then that square is breezy:

 ∀ s,t At(Agent,s,t) ∧ Breeze(t) ⇒ Breezy(s) .

Wumpus World

• The agent can deduce where the pits are (and where the wumpus is)
∀ s Breezy(s) ⇔∃ r Adjacent(r,s) ∧ Pit(r) .

• Axiom :
 ∀ t HaveArrow(t + 1) ⇔ (HaveArrow(t) ∧ ¬Action(Shoot,t)) .

Module 4: Chapter 2

Inference in First Order Logic:

a.Propositional Versus First Order Inference,

b.Unification,

c. Forward Chaining,

d.Backward Chaining

e.Resolution

Propositional Versus First Order Inference,

1. Inference rules for quantifiers

2. Reduction to propositional inference

1. Inference rules for quantifiers

• Consider axiom stating that all greedy kings are evil:
• ∀ x King(x) ∧ Greedy(x) ⇒ Evil(x) .

• Then it seems quite permissible to infer any of the following
sentences:
• King(John) ∧ Greedy(John) ⇒ Evil(John)

• King(Richard) ∧ Greedy(Richard) ⇒ Evil(Richard)

• King(Father (John)) ∧ Greedy(Father (John)) ⇒ Evil(Father (John)) .

• ---------------------

a) The rule of Universal Instantiation (UI for short)

• The rule of Universal Instantiation (UI for short) says that we can
infer any sentence obtained by substituting a ground term (a term
without variables) for the variable.

• To write out the inference rule formally, we use SUBST(θ, α) denote
the result of applying the substitution θ to the sentence α. Then the
rule is written

b) The rule for Existential Instantiation

• In the rule for Existential Instantiation, the variable is replaced by a
single new constant symbol. The formal statement is as follows: for
any sentence α, variable v, and constant symbol k that does not
appear elsewhere in the knowledge base,

2. Reduction to propositional inference
(Propositionalization)

• The existentially quantified sentence can be replaced by one
instantiation, and universally quantified sentence can be replaced by
the set of all possible instantiations.

• For example, suppose our knowledge base contains just the
sentences

FOL Inference Propositional logic Inference

Unification

• Generalized Modus Ponens is a lifted version of Modus Ponens—it raises Modus
Ponens from ground (variable-free) propositional logic to first-order logic.

• Generalized Modus Ponens: For atomic sentences pi , pi ′ , and q, where there is a
substitution θ

Unification

Example : Suppose we have a query AskVars(Knows(John, x)): whom does John know?
Answers to this query can be found by finding all sentences in the knowledge base that
unify with Knows(John, x). Here are the results of unification with four different sentences
that might be in the knowledge base:
UNIFY(Knows(John, x), Knows(John, Jane)) = {x/Jane}
UNIFY(Knows(John, x), Knows(y, Bill)) = {x/Bill, y/John}
UNIFY(Knows(John, x), Knows(y, Mother (y))) = {y/John, x/Mother (John)}
UNIFY(Knows(John, x), Knows(x,Elizabeth)) = fail .

Unification

• In first-order logic, unification is a process used to find a common instantiation for two
predicates or terms such that they become identical.
• It's a fundamental operation in logic programming and automated reasoning,

allowing for the comparison and integration of different logical expressions.
• Unification is essential for tasks such as theorem proving, pattern matching, and

resolution in logic-based systems.
• A substitution, on the other hand, is a mapping of variables to terms.

• It's essentially a set of assignments that replaces variables in logical expressions with
specific terms, thereby creating a new expression that may be simpler or more
specific than the original one.

• Substitutions are used to represent the results of unification and are crucial for
maintaining consistency and correctness in logical inference.

Unification is the process of finding a substitution that makes two logical expressions identical. The algorithm
takes two expressions, x and y, and attempts to find a substitution (θ) that makes them identical.
Here's a breakdown of how the algorithm works:

Base case: If the substitution θ is already marked as a failure, then it returns failure
immediately.
Identity check: If x and y are identical, it means no further unification is needed, and the
current substitution θ can be returned.
Variable check: If x is a variable, it calls the UNIFY-VAR function with x as the variable and y as
the expression. If y is a variable, it calls UNIFY-VAR with y as the variable and x as the
expression.
Compound expression check: If both x and y are compound expressions, it recursively calls
UNIFY on their arguments and operators.
List check: If both x and y are lists, it recursively calls UNIFY on their first elements and their
remaining elements.
Failure case: If none of the above conditions are met, it returns failure, indicating that x and y
cannot be unified.
The UNIFY-VAR function is used when one of the expressions (x or y) is a variable. It attempts
to create a substitution based on the variable and the expression it's being unified with.

The UNIFY-VAR function is used when one of the expressions (x or y) is a variable. It attempts
to create a substitution based on the variable and the expression it's being unified with.

Substitution check: If the substitution already contains a mapping for the variable, it
recursively calls UNIFY with the mapped value and the expression x.

Reverse substitution check: If the expression is already in the substitution, it recursively calls
UNIFY with the variable and the mapped value.

Occur check: Checks for a possible occurrence of the variable in the expression, preventing
infinite loops, and returns failure if such an occurrence is detected.

Substitution addition: If none of the above cases apply, it adds a new mapping to the
substitution, indicating that the variable is unified with the expression.

Overall, the algorithm systematically traverses through the expressions, handling variables, compounds, lists, and checking
for failures, until it either finds a successful substitution or determines that unification is not possible.

• Overall, the algorithm systematically traverses through the
• expressions,
• handling variables,
• Compound statements,
• lists, and
• checking for failures,

• until it either finds a successful substitution or determines that
unification is not possible.

Example

Suppose we have the following two predicates:
1. Predicate P(x,y)
2. Predicate Q(f(z),a)
Here,
• P and Q are predicates,
• x, y, and z are variables, and
• f and a are constants.
Now, let's say we want to unify P(x,y) with Q(f(z),a).
We can use the given algorithm for unification to find a substitution that makes these two
predicates identical.
1. Initially, θ is empty.
2. Start unifying the predicates: P(x,y) and Q(f(z),a)
 Since P and Q are different, they can't be unified directly.
3. Unify the arguments: Unify x with f(z) and y with a

4. Unify x with f(z):
• x is a variable, f(z) is a compound term.
• Call UNIFY-VAR(x, f(z), θ):

• Add x/f(z) to θ
• θ={x/f(z)}

5. Unify y with a:
• y is a variable, a is a constant.
• Call UNIFY-VAR(y, a, θ):

• Add y/a to θ
• θ={x/f(z),y/a}

6.Finally, return θ:
 θ={x/f(z),y/a}
So, the resulting substitution θ makes P(x,y) and Q(f(z),a) identical:
 P(x,y){x/f(z),y/a}=Q(f(z),a)

Storage and retrieval :

• Underlying the TELL and ASK functions used to inform and interrogate a
knowledge base are the more primitive STORE and FETCH functions.
STORE(s) stores a sentence s into the knowledge base and FETCH(q)
returns all unifiers such that the query q unifies with some.

• Given a sentence to be stored, it is possible to construct indices for all
possible queries that unify with it. For the fact Employs(IBM , Richard),
the queries are

• Employs(IBM , Richard) Does IBM employ Richard?

• Employs(x, Richard) Who employs Richard?

• Employs(IBM , y) Whom does IBM employ?

• Employs(x, y) Who employs whom?

Forward Chaining:

• Forward chaining is a reasoning method , starts with
the known facts and uses inference rules to derive
new conclusions until the goal is reached or no
further inferences can be made.

• In essence, it proceeds forward from the premises to
the conclusion.

Example : Consider the following knowledge base representing a simple
diagnostic system:
1.If a patient has a fever, it might be a cold.

2.If a patient has a sore throat, it might be strep throat.

3.If a patient has a fever and a sore throat, they should see a doctor.

Given the facts:
• The patient has a fever.
• The patient has a sore throat.

• Forward chaining would proceed as follows:
1.Check the first rule: Fever? Yes. Proceed.
2.Check the second rule: Sore throat? Yes. Proceed.
3.Apply the third rule: The patient has a fever and sore throat, thus they should

see a doctor.
Forward chaining is suitable for situations where there is a large amount of
known information and the goal is to derive conclusions.

Forward Chaining,

• Start with the atomic sentences in the knowledge base and apply
Modus Ponens in the forward direction, adding new atomic
sentences, until no further inferences can be made.

• First-order definite clauses : A definite clause either is atomic or is an
implication whose antecedent is a conjunction of positive literals
and whose consequent is a single positive literal. The following are
first-order definite clauses:
• King(x) ∧ Greedy(x) ⇒ Evil(x) .

• King(John) .

• Greedy(y) .

Forward Chaining,

• Unlike propositional literals, first-order literals can include variables,
in which case those variables are assumed to be universally
quantified.

• Consider the following problem: The law says that it is a crime for
an American to sell weapons to hostile nations. The country Nono,
an enemy of America, has some missiles, and all of its missiles were
sold to it by Colonel West, who is American.

• We will prove that West is a criminal.

First, we will represent these facts as first-order definite clauses.
1. “. . . it is a crime for an American to sell weapons to hostile nations”:

• American(x) ∧ Weapon(y) ∧ Sells(x, y, z) ∧ Hostile(z) ⇒ Criminal(x) .
2. “Nono . . . has some missiles.”

• The sentence ∃ x Owns(Nono, x)∧Missile(x) is transformed into two definite
clauses by Existential Instantiation, introducing a new constant M1:
• Owns(Nono, M1)
• Missile (M1)

3. “All of its missiles were sold to it by Colonel West”:
• Missile(x) ∧ Owns(Nono, x) ⇒ Sells(West, x, Nono) .

4. We will also need to know that missiles are weapons:
• Missile(x) ⇒ Weapon(x)

5. and we must know that an enemy of America counts as “hostile”:
• Enemy(x, America) ⇒ Hostile(x) .

6. “West, who is American . . .”:
• American(West) .

7. “The country Nono, an enemy of America . . .”:
• Enemy(Nono, America) .

From these inferred facts, we can conclude that Colonel West is indeed a criminal since
he sold missiles to a hostile nation, which is Nono.
“. . . it is a crime for an American to sell weapons to hostile nations”:

• American(West) ∧ Weapon(Missile) ∧ Sells(West, Missile, Nono) ∧
Hostile(Nono) ⇒ Criminal(West) .

DATALOG :
• This knowledge base contains no function symbols and is therefore an instance of the

class of Datalog knowledge bases.
• Datalog is a language that is restricted to first-order definite clauses with no function

symbols.
• Datalog gets its name because it can represent the type of statements typically made

in relational databases.

A simple forward-
chaining
algorithm

Explanation of Algorithm

• This algorithm is an implementation of Forward Chaining
with a goal-directed query mechanism, specifically
designed for First-Order Logic (FOL) knowledge bases.

• It's called Forward Chaining with Ask (FOL-FC-ASK). Let's
break down the steps:

Algorithm:
1. Inputs:

• KB: The knowledge base, which consists of a set of first-order definite clauses.
• α: The query, which is an atomic sentence.

2. Loop until no new sentences are inferred:
• Initialize new as an empty set.

3. Iterate through each rule in the knowledge base:
• Standardize the variables in the rule (ensuring variable names are unique).
• For each substitution θ that makes the antecedent of the rule (`p1 ∧ ... ∧ pn`) match some subset

of the KB:
1. Apply the substitution to the consequent of the rule (`q`) to generate a new sentence `q'`.
2. Check if `q'` unifies with some sentence already in the KB or `new`. If not, add `q'` to `new`.
3. Attempt to unify `q'` with the query `α`. If unification succeeds (resulting in a substitution φ), return φ.
4. Update the knowledge base:

• Add the sentences in `new` to the KB
5. Repeat the loop until no new sentences are inferred or until the query is proven or disproven.

4. Output:
•If the query is proven, return the substitution that makes it true.
•If the query is disproven (i.e., it cannot be proven true), return false.

Backward Chaining

• Backward chaining is a reasoning method that starts with the goal
and works backward through the inference rules to find out whether
the goal can be satisfied by the known facts.

• It's essentially goal-driven reasoning, where the system seeks to
prove the hypothesis by breaking it down into subgoals and verifying
if the premises support them.

Example : Consider the following knowledge base representing a simple
diagnostic system:

1.If a patient has a fever, it might be a cold.

2.If a patient has a sore throat, it might be strep throat.

3.If a patient has a fever and a sore throat, they should see a doctor.

Given the facts:
• The patient has a fever.
• The patient has a sore throat.

• Backward chaining would proceed as follows:
1. Start with the goal: Should the patient see a doctor?
2. Check the third rule: Does the patient have a cold and a sore throat? Yes.
3. Check the first and second rules: Does the patient have a fever and sore throat? Yes.
4. The goal is satisfied: The patient should see a doctor.

• Backward chaining is useful when there is a specific goal to be achieved, and
the system can efficiently backtrack through the inference rules to determine
whether the goal can be satisfied.

Backward Chaining : Algorithm

These algorithms work backward from the goal, chaining through rules to find
known facts that support the proof.

Explanation of Algorithm

This algorithm represents Backward Chaining, a goal-driven reasoning method used in automated theorem proving
and reasoning systems for First-Order Logic (FOL). Let's break down the steps:

Input:
KB: The knowledge base, consisting of a set of first-order definite clauses.
query: The query for which we want to find solutions..

Algorithm:
FOL-BC-ASK:
• This function initiates the backward chaining process by calling FOL-BC-OR with an empty

substitution θ.
FOL-BC-OR:
• This generator function yields substitutions that satisfy the goal by applying rules from the

knowledge base.
• It iterates over each rule in the knowledge base that matches the goal.
• It standardizes the variables in the rule to avoid variable name conflicts.
• For each possible substitution θ', it calls FOL-BC-AND to handle the antecedent of the rule.
FOL-BC-AND:
• This generator function yields substitutions that satisfy a list of goals.
• If θ is a failure, it returns.
• If there are no goals left, it yields the current substitution θ.
• Otherwise, it recursively processes each goal in the list:

• It retrieves the first goal and the rest of the goals.
• For each possible substitution θ' generated by processing the first goal, it recursively calls FOL-

BC-OR to handle the rest of the goals.
Output: The output is a generator that yields substitutions satisfying the query.

• Backward chaining starts with the goal (the query) and recursively decomposes it
into subgoals until it reaches atomic sentences or predicates. It then searches the
knowledge base for rules that can prove these subgoals. If a rule's consequent
unifies with a subgoal, it recursively tries to satisfy the antecedent of the rule by
decomposing it into further subgoals. This process continues until either the query is
satisfied or no further rules can be applied.

• The algorithm uses substitution to maintain the bindings of variables as it traverses
through the goals and rules. It applies unification to match the goal with the rule's
consequent, ensuring compatibility.

• Overall, Backward Chaining is an effective method for reasoning backward from the
goal to the known facts in the knowledge base, thereby determining whether the
query can be satisfied and generating possible solutions in the form of substitutions.

Resolution

• Resolution is a fundamental inference rule used in automated
theorem proving and logic programming. It is based on the principle
of proof by contradiction.

• Resolution combines logical sentences in the form of clauses to derive
new sentences.

• The resolution rule states that if there are two clauses that contain
complementary literals (one positive, one negative) then these
literals can be resolved, leading to a new clause that is inferred from
the original clauses.

Example:

Consider two logical statements:
1. P∨Q
2. ¬P∨R

Applying resolution: Resolve the statements by eliminating P:
• P∨Q
• ¬P∨R
• Resolving P and ¬P: Q∨R

The resulting statement Q∨R is a new clause inferred from the original two.
Resolution is a key component of logical reasoning in FOL, especially in tasks
like automated theorem proving and knowledge representation.

Resolution

• Conjunctive normal form for first-order logic : As in the propositional
case, first-order resolution requires that sentences be in conjunctive
normal form (CNF)—that is, a conjunction of clauses, where each
clause is a disjunction of literals.

• Literals can contain variables, which are assumed to be universally
quantified. For example, the sentence

• ∀ x American(x) ∧Weapon(y) ∧ Sells(x, y, z) ∧ Hostile(z) ⇒
Criminal(x) becomes, in CNF,

• ¬American(x) ∨ ¬Weapon(y) ∨ ¬Sells(x, y, z) ∨ ¬Hostile(z) ∨
Criminal(x) .

Resolution

• Every sentence of first-order logic can be converted into an
inferentially equivalent CNF sentence.

• The procedure for conversion to CNF is similar to the propositional
case, The principal difference arises from the need to eliminate
existential quantifiers.

• We illustrate the procedure by translating the sentence

• “Everyone who loves all animals is loved by someone,” or

• ∀ x [∀ y Animal(y) ⇒ Loves(x, y)] ⇒ [∃ y Loves(y, x)] .

Steps

• Eliminate implications: ∀ x [¬∀ y ¬Animal(y) ∨ Loves(x, y)] ∨ [∃ y Loves(y, x)] .

• Move ¬ inwards: In addition to the usual rules for negated connectives, we
need rules for negated quantifiers. Thus, we have
• ¬∀ x p becomes ∃ x ¬p

• ¬∃ x p becomes ∀ x ¬p .

• Our sentence goes through the following transformations:
• ∀ x [∃ y ¬(¬Animal(y) ∨ Loves(x, y))] ∨ [∃ y Loves(y, x)] .

• ∀ x [∃ y ¬¬Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)] .

• ∀ x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)] .

• Standardize variables: For sentences like (∃ x P(x))∨(∃ x Q(x)) which use the
same variable name twice, change the name of one of the variables. This
avoids confusion later when we drop the quantifiers. Thus, we have
• ∀ x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ z Loves(z, x)] .

• Skolemize: Skolemization is the process of removing existential
quantifiers by elimination. Translate ∃ x P(x) into P(A), where A is a
new constant.
• Example :

• ∀ x [Animal(A) ∧ ¬Loves(x, A)] ∨ Loves(B, x) ,

• ∀ x [Animal(F(x)) ∧ ¬Loves(x, F(x))] ∨ Loves(G(z), x) . Here F and G are Skolem functions.

• Drop universal quantifiers: At this point, all remaining variables must
be universally quantified. Moreover, the sentence is equivalent to one
in which all the universal quantifiers have been moved to the left. We
can therefore drop the universal quantifiers:
• [Animal(F(x)) ∧ ¬Loves(x, F(x))] ∨ Loves(G(z), x) .

• Distribute ∨ over ∧:

[Animal(F(x)) ∨ Loves(G(z), x)] ∧ [¬Loves(x, F(x)) ∨ Loves(G(z), x)] .

The resolution inference rule
• Two clauses, which are assumed to be standardized apart so that they

share no variables, can be resolved if they contain complementary
literals. Propositional literals are complementary if one is the negation
of the other; first-order literals are complementary if one unifies with
the negation of the other.

• Thus We have

Suppose Curiosity did not kill Tuna. We know that either Jack or Curiosity did; thus Jack must have. Now, Tuna is a cat and
cats are animals, so Tuna is an animal. Because anyone who kills an animal is loved by no one, we know that no one loves
Jack. On the other hand, Jack loves all animals, so someone loves him; so we have a contradiction. Therefore, Curiosity
killed the cat.

Summary

1. Forward chaining starts with known facts and moves forward to
reach conclusions,

2. Backward chaining starts with the goal and moves backward to
verify if the goal can be satisfied, and

3. Resolution is an inference rule used to derive new clauses by
combining existing ones.

These techniques are essential for reasoning and inference in First-
Order Logic systems.

	Slide 1: Module 4
	Slide 2: Contents
	Slide 3: Properties of PL
	Slide 4: Drawbacks of Propositional Logic
	Slide 5: What is First Order Logic (FOL)?
	Slide 6
	Slide 7
	Slide 8: Objects Relations and Functions
	Slide 9: Examples
	Slide 10: Types of Languages
	Slide 11: Basic Elements of FOL
	Slide 12: Syntax and Semantics of FOL
	Slide 13: Models for FOL
	Slide 14
	Slide 15
	Slide 16: Syntax of FOL
	Slide 17: Syntax of FOL
	Slide 18
	Slide 19: In summary
	Slide 20: Syntax and Semantics of FOL
	Slide 21
	Slide 22: 3.Terms
	Slide 23: 3.Terms
	Slide 24: 4.Atomic sentences
	Slide 25: 5.Complex Sentences
	Slide 26: 6. Quantifiers
	Slide 27: 6. Quantifiers: Universal quantification (∀)
	Slide 28: 6. Universal Quantifiers: Examples
	Slide 29: 6. Universal Quantifiers: Examples
	Slide 30: 6. Universal Quantifiers: Examples
	Slide 31: 6. Quantifiers: Existential quantification (∃)
	Slide 32: 6. Quantifiers: Existential quantification (∃)
	Slide 33: 6. Quantifiers: Existential quantification (∃)
	Slide 34: 6. Quantifiers: Existential quantification (∃)
	Slide 35: 6. 1 : Nested Quantifiers
	Slide 36: 6. 1 : Nested Quantifiers : Examples and Interpretations
	Slide 37: 6. 1 : Nested Quantifiers : Examples and Interpretations
	Slide 38: 6. 1 : Nested Quantifiers : Examples and Interpretations
	Slide 39: 6. 1 : Nested Quantifiers : Examples and Interpretations
	Slide 40: 6. 1 : Nested Quantifiers : Connections between ∀ and ∃
	Slide 41: 6. 1 : Nested Quantifiers : Connections between ∀ and ∃
	Slide 42: 6. 2 : De Morgans Rules for quantified and unquantified sentences
	Slide 43: 7.Equality
	Slide 44: 7.Equality: Examples
	Slide 45: 8.Any Alternative Semantics : Database Semantics
	Slide 46
	Slide 47: Using First Order Logic
	Slide 48: Assertions and queries in first-order logic
	Slide 49: Examples
	Slide 50: ASKVARS : Substitution or binding List
	Slide 51: Example: The domain of family relationships, or kinship domain
	Slide 52
	Slide 53: Numbers
	Slide 54: Numbers
	Slide 55: Sets
	Slide 56: One possible set of axioms of Sets is as follows:
	Slide 57: One possible set of axioms of Sets is as follows:
	Slide 58: Lists
	Slide 59: Wumpus World
	Slide 60: Wumpus World
	Slide 61: Wumpus World
	Slide 62: Module 4: Chapter 2
	Slide 63: Propositional Versus First Order Inference,
	Slide 64: 1. Inference rules for quantifiers
	Slide 65: a) The rule of Universal Instantiation (UI for short)
	Slide 66: b) The rule for Existential Instantiation
	Slide 67: 2. Reduction to propositional inference (Propositionalization)
	Slide 68: Unification
	Slide 69: Unification
	Slide 70: Unification
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75: Example
	Slide 76
	Slide 77
	Slide 78
	Slide 79: Forward Chaining:
	Slide 80
	Slide 81: Forward Chaining,
	Slide 82: Forward Chaining,
	Slide 83
	Slide 84
	Slide 85
	Slide 86: A simple forward-chaining algorithm
	Slide 87: Explanation of Algorithm
	Slide 88
	Slide 89
	Slide 90: Backward Chaining
	Slide 91
	Slide 92: Backward Chaining : Algorithm
	Slide 93: Explanation of Algorithm
	Slide 94
	Slide 95
	Slide 96
	Slide 97: Resolution
	Slide 98: Example:
	Slide 99: Resolution
	Slide 100: Resolution
	Slide 101: Steps
	Slide 102
	Slide 103: The resolution inference rule
	Slide 104
	Slide 105
	Slide 106
	Slide 107: Summary

