
Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

1 | P a g e

PAI_Module3

Topics:

1. Informed Search Strategies:

a. Greedy best-first search,

b. A*search,

c. Heuristic functions.

2. Logical Agents:

a. Knowledge–based agents,

b. The Wumpus world,

c. Logic,

d. Propositional logic, Reasoning patterns in

Propositional Logic

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

2 | P a g e

3. 1 Informed Search Strategies

Informed Search: Informed search is a search strategy that utilizes problem-

specific knowledge, to find solutions more efficiently. Informed search methods

make use of heuristics and evaluation functions to guide the search towards

more promising paths.

Heuristic Function(h(n)): It is a heuristic function that provides an estimate of

the cost from the current node to the goal node. This heuristic is admissible if it

never overestimates the true cost to reach the goal. In other words, h(n) is

always less than or equal to the actual cost.

Actual cost function(g(n)): It is Cost of the path from the start node to node n.

It represents the actual cost incurred to reach the current node from the initial

node. For the initial node (start node), g(n) is usually 0.

Evaluation Function (f(n)): The evaluation function, denoted as f(n), is the total

estimated cost of the cheapest path from the start node to the goal node that

passes through node n. It is the sum of g(n) and h(n): f(n) = g(n) + h(n).

f(n) represents the priority of a node. Nodes with lower f(n) values are explored

first, making the algorithm prioritize paths that are likely to be more efficient.

3.1.a Greedy Best First Search Algorithm

Greedy best first search tries to expand the node that is closest to the goal to

lead to a solution quickly. It evaluates the nodes by using just the heuristic

function i.e. for Greedy best first search, f(n) = h(n).

Let's explore the application of this method to route-finding challenges in

Romania for the map given in figure 3.2.

We will employ the straight-line distance heuristic, denoted as hSLD. Specifically,

for our destination in Bucharest, we require knowledge of the straight-line

distances to Bucharest, as illustrated in Figure 3.22.

As an illustration, consider hSLD(In(Arad)) = 366. It's important to note that the

values of hSLD cannot be derived directly from the problem description.

Furthermore, understanding that hSLD correlates with actual road distances and

serves as a valuable heuristic requires a certain level of experience.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

3 | P a g e

Following Figure shows the progress of a greedy best-first search using hSLD to

find a path from Arad to Bucharest.

The first node to be expanded from Arad will be Sibiu because it is closer to

Bucharest than either Zerind or Timisoara. The next node to be expanded will

be Fagaras because it is closest. Fagaras in turn generates Bucharest, which is

the goal.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

4 | P a g e

Figure: Stages in a greedy best-first tree search for Bucharest with the straight-

line distance heuristic hSLD . Nodes are labelled with their h-values.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

5 | P a g e

Best first search algorithm:

Step 1: Place the starting node into the OPEN list.
Step 2: If the OPEN list is empty, Stop and return failure.
Step 3: Remove the node n, from the OPEN list which has the lowest value of
h(n), and places it in the CLOSED list.
Step 4: Expand the node n, and generate the successors of node n.
Step 5: Check each successor of node n, and find whether any node is a goal
node or not. If any successor node is goal node, then return success and
terminate the search, else proceed to Step 6.
Step 6: For each successor node, algorithm checks for evaluation function f(n),
and then check if the node has been in either OPEN or CLOSED list. If the node
has not been in both list, then add it to the OPEN list.
Step 7: Return to Step 2.

Example: Consider the tree and heuristic values given below:

In this search example, we are using two lists which are OPEN and CLOSED Lists.
Following are the iteration for traversing the above example.

Step OPEN List CLOSED List Details

Initialization [A, B] [S]

Iteration1:

Expand B

[A] [S,B] h(B)<h(A)

Iteration2:

Expand F

[E,F,A]

[E,A]

[S,B]

[S,B,F]

H(F)<H(E),H(A)

Iteration3:

Visit Goal G

[I,G,E,A]

[I,E,A]

[S,B,F]

[S,B,F,G]

H(G)< H(E),H(A),H(I)

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

6 | P a g e

Hence the final solution path will be: S----> B----->F----> G
Time Complexity: The worst case time complexity of Greedy best first search is
O(bm).
Space Complexity: The worst case space complexity of Greedy best first search
is O(bm). Where, m is the maximum depth of the search space.
Complete: Greedy best-first search is also incomplete, even if the given state
space is finite.
Optimal: Greedy best first search algorithm is not optimal.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

7 | P a g e

3.1.b A* Search Algorithm

A* search is the most commonly known form of best-first search. It uses
heuristic function h(n), and cost to reach the node n from the start state g(n).
A* search algorithm finds the shortest path through the search space using the
heuristic function. This search algorithm expands less search tree and provides
optimal result faster.

In A* search algorithm, we use search heuristic as well as the cost to reach the
node. Hence, we can combine both costs as following, and this sum is called as
a fitness number.

Algorithm of A* search:

Step1: Place the starting node in the OPEN list.

Step 2: Check if the OPEN list is empty or not, if the list is empty then return

failure and stops.

Step 3: Select the node from the OPEN list which has the smallest value of

evaluation function (g+h), if node n is goal node then return success and stop,

otherwise

Step 4: Expand node n and generate all of its successors, and put n into the

closed list. For each successor n', check whether n' is already in the OPEN or

CLOSED list, if not then compute evaluation function for n' and place into Open

list.

Step 5: Else if node n' is already in OPEN and CLOSED, then it should be attached

to the back pointer which reflects the lowest g(n') value.

Step 6: Return to Step 2.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

8 | P a g e

Advantages:

• A* search algorithm is the best algorithm than other search algorithms.

• A* search algorithm is optimal and complete.

• This algorithm can solve very complex problems.

Disadvantages:

• It does not always produce the shortest path as it mostly based on
heuristics and approximation.

• A* search algorithm has some complexity issues.

• The main drawback of A* is memory requirement as it keeps all
generated nodes in the memory, so it is not practical for various large-
scale problems.

Example1: Let's explore the application of this method to route-finding

challenges in Romania for the map given in figure 3.2 .

We will employ the straight-line distance heuristic, denoted as hSLD. Specifically,

for our destination in Bucharest, we require knowledge of the straight-line

distances to Bucharest, as illustrated in Figure 3.22.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

9 | P a g e

Figure below illustrates the Stages in an A∗ search for Bucharest. Nodes are
labelled with f = g + h. The h values are the straight-line distances to Bucharest

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

10 | P a g e

Example 2: In this example, we will traverse the given graph using the A*
algorithm. The heuristic value of all states is given in the below table so we will
calculate the f(n) of each state using the formula f(n)= g(n) + h(n), where g(n) is
the cost to reach any node from start state. Here we will use OPEN and CLOSED
list.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

11 | P a g e

Solution:

Initialization: {(S, 5)}
Iteration1: {(S--> A, 4), (S-->G, 10)}
Iteration2: {(S--> A-->C, 4), (S--> A-->B, 7), (S-->G, 10)}
Iteration3: {(S--> A-->C--->G, 6), (S--> A-->C--->D, 11), (S--> A-->B, 7), (S-->G, 10)}
Iteration 4 will give the final result, as S--->A--->C--->G it provides the optimal
path with cost 6.
Note: Use Open and Closed list is as illustrated in the explanation of BFS.

3.1.b.1 Points to remember:

A* Algorithm and First-Occurrence Path: The A* algorithm is designed to return
the first path it finds from the start node to the goal node. Once a valid path is
discovered, A* terminates its search, making it more efficient in scenarios where
finding a single optimal solution is sufficient.

Quality of Heuristic: The effectiveness of the A* algorithm is significantly
influenced by the quality of the heuristic function h(n)). A well-designed
heuristic provides a good estimate of the remaining cost from a given node to
the goal, guiding A* to explore more promising paths and enhancing its
efficiency.

Node Expansion Condition: A* algorithm expands nodes based on the
evaluation function f(n)=g(n)+h(n), where:
g(n) is the cost of the path from the start node to node n,
h(n) is the heuristic estimate of the cost from node n to the goal node.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

12 | P a g e

The algorithm expands nodes that satisfy the condition f(n)≤M, where M is a
specified threshold or maximum cost. This condition ensures that A* explores
nodes within a predefined cost limit, allowing for efficient pathfinding without
exhaustively searching the entire space.

Complete: A* algorithm is complete as long as:

o Branching factor is finite.

o Cost at every action is fixed.

3.1.b.2 Conditions for optimality: Admissibility and consistency:
A* search algorithm is optimal if it follows below two conditions:

Admissible:
The first condition requires for optimality is that h(n) should be an admissible
heuristic for A* tree search. An admissible heuristic is one that never
overestimates the cost to reach the goal. Because g(n) is the actual cost to reach
n along the current path, and f(n) = g(n) + h(n), we have as an immediate
consequence that f(n) never overestimates the true cost of a solution along the
current path through n. If the heuristic function is admissible, then A* tree
search will always find the least cost path.

Consistency (or sometimes monotonicity):
Second required condition is consistency for only A* graph-search. A heuristic
h(n) is consistent if, for every node n and every successor n ′ of n generated by
any action a, the estimated cost of reaching the goal from n is no greater than
the step cost of getting to n ′ plus the estimated cost of reaching the goal from
n ′ : h(n) ≤ c(n, a, n′) + h(n ′) .
This is a form of the general triangle inequality, which stipulates that each side
of a triangle cannot be longer than the sum of the other two sides. Here, the
triangle is formed by n, n ′ , and the goal Gn closest to n.

Time Complexity: The time complexity of A* search algorithm depends on
heuristic function, and the number of nodes expanded is exponential to the
depth of solution d. So the time complexity is O(bd), where b is the branching
factor.

Space Complexity: The space complexity of A* search algorithm is O(bd)

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

13 | P a g e

3.1.c Heuristics Functions

Heuristic Functions h(n) guide search algorithms by estimating the cost or

distance to a goal state from the current state (n).

Consider the 8-puzzle game. The object of the 8 puzzle is to slide the title

horizontally or vertically into the empty space until the configuration matches

the goal configuration.

Figure illustrates the A typical instance of the 8-puzzle. The solution is 26 steps

long.

The average solution cost for a randomly generated 8-puzzle instance is about

22 steps. The branching factor is about 3. (When the empty tile is in the middle,

four moves are possible; when it is in a corner, two; and when it is along an edge,

three.) This means that an exhaustive tree search to depth 22 would look at

about 322 ≈ 3.1 × 1010 states.

The two commonly used candidates for 8 puzzles are as follows:

h1 = the number of misplaced tiles. For Figure, all of the eight tiles are out of

position, so the start state would have h1 = 8. h1 is an admissible heuristic

because it is clear that any tile that is out of place must be moved at least once

h2 = the sum of the distances of the tiles from their goal positions. Because tiles

cannot move along diagonals, the distance we will count is the sum of the

horizontal and vertical distances. This is sometimes called the city block distance

or Manhattan distance. h2 is also admissible because all any move can do is

move one tile one step closer to the goal. Tiles 1 to 8 in the start state give a

Manhattan distance of h2 = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18 .

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

14 | P a g e

As expected, neither of these overestimates the true solution cost, which is 26.

The performance of heuristic search algorithms depends on the quality of the

heuristic function. One can sometimes construct good heuristics by relaxing the

problem definition, by storing precomputed solution costs for subproblems in a

pattern database, or by learning from experience with the problem class.

1. The effect of heuristic accuracy on performance:

Experimentally it is determined that h2 is better than h1. That is for any node n,

h2(n) ≥ h1(n). This implies that h2 dominate h1. Domination translates directly

into efficiency. A∗ using h2 will never expand more nodes than A∗ using h1.

2. Generating admissible heuristics from relaxed problems:

A problem with fewer restrictions on the actions is called a relaxed problem. The

state-space graph of the relaxed problem is a super graph of the original state

space because the removal of restrictions creates added edges in the graph.

Because the relaxed problem adds edges to the state space, any optimal solution

in the original problem is, by definition, also a solution in the relaxed problem;

but the relaxed problem may have better solutions if the added edges provide

short cuts. Hence, the cost of an optimal solution to a relaxed problem is an

admissible heuristic for the original problem.

For example, if the 8-puzzle actions are described as

• A tile can move from square A to square B if

• A is horizontally or vertically adjacent to B and B is blank,

we can generate three relaxed problems by removing one or both of the
conditions:

a) A tile can move from square A to square B if A is adjacent to B.
b) A tile can move from square A to square B if B is blank.
c) A tile can move from square A to square B.

If a collection of admissible heuristics h1 . . . hm is available for a problem and
none of them dominates any of the others, which should we choose? As it turns
out, we need not make a choice. We can have the best of all worlds, by defining
h(n) = max{h1(n), . . . , hm(n)}

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

15 | P a g e

3.Generating admissible heuristics from subproblems: Pattern databases:

Admissible heuristics can also be derived from the solution cost of a subproblem

of a given problem. For example, Figure below shows a subproblem of the 8-

puzzle instance.

Fig: A subproblem of the 8-puzzle instance. The task is to get tiles 1, 2, 3, and 4

into their correct positions, without worrying about what happens to the other

tiles.

The subproblem involves getting tiles 1, 2, 3, 4 into their correct positions.

Clearly, the cost of the optimal solution of this subproblem is a lower bound on

the cost of the complete problem. It turns out to be more accurate than

Manhattan distance in some case.

The idea behind pattern databases is to store these exact solution costs for every

possible subproblem instance—in our example, every possible configuration of

the four tiles and the blank. (The locations of the other four tiles are irrelevant

for the purposes of solving the subproblem, but moves of those tiles do count

toward the cost.) Then we compute an admissible heuristic hDB for each

complete state encountered during a search simply by looking up the

corresponding subproblem configuration in the database.

4 Learning heuristics from experience:

A heuristic function, denoted as h(n), aims to approximate the solution cost

starting from the state represented by node n. One of the strategies is to

learning from practical experiences. In this context, "experience" refers to

solving numerous instances of problems like 8-puzzles.

In each optimal solution to an 8-puzzle, valuable examples emerge, comprising

a state along the solution path and the actual cost of reaching the solution from

that particular point.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

16 | P a g e

Employing these examples, a learning algorithm can be employed to generate a

heuristic function, h(n), with the potential to predict solution costs for other

states encountered during the search process.

Inductive learning methods are most effective when provided with relevant

features of a state for predicting its value, rather than relying solely on the raw

state description.

For instance, a feature like "number of misplaced tiles" (x1(n)) can be useful in

predicting the distance of a state from the goal in an 8-puzzle. By gathering

statistics from randomly generated 8-puzzle configurations and their actual

solution costs, one can use these features to predict h(n).

Multiple features, such as x2(n) representing the "number of pairs of adjacent

tiles that are not adjacent in the goal state," can be combined using a linear

combination approach:

h(n) = c1x1(n) + c2x2(n).

The constants (c1 and c2) are adjusted to achieve the best fit with the actual

data on solution costs. It is expected that both c1 and c2 are positive, as

misplaced tiles and incorrect adjacent pairs make the problem more challenging.

While this heuristic satisfies the condition h(n) = 0 for goal states, it may not

necessarily be both admissible and consistent.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

17 | P a g e

3.2.a Logical Agents

What are Logic Agents?

Stuart Russell and Peter Norvig, in their influential textbook "Artificial

Intelligence: A Modern Approach," describe logical agents as those that operate

based on knowledge representation and logical inference.

According to their framework, an agent perceives its environment through

sensors, maintains an internal state (knowledge base), and acts upon the

environment through effectors. Logical agents specifically use logical reasoning

to make decisions.

What is Knowledge Representation?

Knowledge representation in artificial intelligence (AI) refers to the process of

creating a structured and formalized representation of information in a way

that can be used by a computer system to reason, make decisions, or perform

tasks. The goal is to model knowledge in a manner that facilitates effective

problem-solving, learning, and communication within an AI system.

Example 1 : Semantic Networks

Semantic networks are a graphical representation of knowledge that uses

nodes to represent concepts and arcs (edges) to represent relationships

between these concepts.

Each node in the network represents an entity or concept, and the arcs depict

the relationships between them.

This form of knowledge representation is often used to model hierarchies,

associations, and dependencies.

Knowledge Representation using Semantic Networks

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

18 | P a g e

Example 2: Knowledge Representation using Propositional logic

In propositional logic, knowledge is represented using propositions, which are

statements that can be either true or false. Logical operators such as AND, OR,

and NOT are used to combine propositions.

Consider the following knowledge about a weather prediction system:

P: It is raining.

Q: The sky is cloudy.

R: The weather forecast predicts rain.

Now, we can represent some logical relationships:

• If the sky is cloudy (Q), and the weather forecast predicts rain (R), then we

can infer that it might be raining (P). This relationship can be represented as:

(Q∧R)→P.

• If it is not raining (NOT P), then the weather forecast predicting rain (R) must

be false. This relationship can be represented as: ¬P→¬R.

What is Logical Reasoning?

Logical reasoning is a cognitive process of making inferences or drawing

conclusions based on logical principles, rules, and relationships. It involves

analyzing information and using valid deductive or inductive arguments to

reach a sound or reasonable conclusion. Logical reasoning is an essential aspect

of problem-solving, decision-making, and critical thinking.

Example: Syllogism

A syllogism is a form of deductive reasoning where a conclusion is drawn from

two given or assumed propositions (premises).

• Premise 1: All humans are mortal.

• Premise 2: Socrates is a human.

• Conclusion: Therefore, Socrates is mortal.

Knowledge based Agents

A knowledge-based agent is a type of intelligent agent that makes decisions and

takes actions based on knowledge it possesses. A knowledge-based agent is

characterized by its ability to represent and manipulate knowledge in a

structured way, allowing it to reason, make decisions, and take actions based on

the information stored in its knowledge base.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

19 | P a g e

Key Components of Knowledge base:

1. Knowledge Base (KB) : The central component of a knowledge-based agent

is its knowledge base. The knowledge base is a collection of sentences

expressed in a knowledge representation language. Each sentence

represents an assertion about the world. The knowledge base is where the

agent stores information that it uses to make decisions and take actions.

Sometimes we dignify a sentence with the name axiom, when the sentence

is taken as given without being derived from other sentences.

2. Knowledge Representation Language: The sentences in the knowledge base

are expressed in a language called a knowledge representation language.

This language allows the agent to formally represent information about the

world in a way that the agent can understand and manipulate.

3. Axioms: Some sentences in the knowledge base may be dignified with the

name "axiom," especially when they are taken as given without being derived

from other sentences. Axioms are fundamental statements that serve as

foundational knowledge for the agent.

4. TELL Operation: There is a mechanism for adding new sentences to the

knowledge base. This operation is referred to as TELL. It allows the agent to

incorporate new information into its knowledge base.

5. ASK Operation: The agent needs a way to query the knowledge base to

retrieve information. The standard operation for querying is referred to as

ASK. It allows the agent to ask questions about what is known.

6. Inference : Both TELL and ASK operations may involve inference, which is the

process of deriving new sentences from existing ones. Inference must adhere

to the requirement that answers derived from the knowledge base follow

logically from the information previously TELLed to the knowledge base.

7. Background Knowledge: The knowledge base may initially contain some

background knowledge. This knowledge provides a foundational

understanding of the environment in which the agent operates.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

20 | P a g e

8. Agent Program: The knowledge-based agent program outlines the overall

structure of the agent. It takes a percept (input) and returns an action as

output. The agent program incorporates the knowledge base and other

components to facilitate decision-making and action-taking.

Agent Program: Figure below illustrates a generic knowledge-based agent.

Given a percept, the agent adds the percept to its knowledge base, asks the

knowledge base for the best action, and tells the knowledge base that it has

in fact taken that action

Agents’ knowledge and goals is more important: At the knowledge level, we

only need to specify the

• agent's knowledge and

• goals to determine its behavior.

For instance, consider an automated taxi with the goal of transporting a

passenger from San Francisco to Marin County. If the taxi knows that the

Golden Gate Bridge is the sole link between these locations, we can expect it to

cross the bridge, understanding that it aligns with its goal.

Importantly, this analysis remains independent of the taxi's implementation

details.

Whether its geographical knowledge is represented through linked lists, pixel

maps, or if it reasons using symbolic strings stored in registers or through

neural network signal propagation, the behavior is determined solely by its

knowledge and goals.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

21 | P a g e

3.2.b The Wumpus World

The wumpus world is a cave consisting of rooms connected by passageways.

Lurking somewhere in the cave is the terrible wumpus, a beast that eats anyone

who enters its room. The wumpus can be shot by an agent, but the agent has

only one arrow. Some rooms contain bottomless pits that will trap anyone who

wanders into these rooms (except for the wumpus, which is too big to fall in).

The only mitigating feature of this bleak environment is the possibility of finding

a heap of gold.

A typical wumpus world is illustrated in the figure below. The agent is in the

bottom left corner, facing right.

PEAS description of Wumpus World

• Performance measure: +1000 for climbing out of the cave with the gold,

–1000 for falling into a pit or being eaten by the wumpus, –1 for each

action taken and –10 for using up the arrow. The game ends either when

the agent dies or when the agent climbs out of the cave.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

22 | P a g e

• Environment: A 4 × 4 grid of rooms. The agent always starts in the square

labeled [1,1], facing to the right. The locations of the gold and the wumpus

are chosen randomly, with a uniform distribution, from the squares other

than the start square. In addition, each square other than the start can be

a pit, with probability 0.2.

• Actuators: The agent can move Forward, TurnLeft by 90◦ , or TurnRight

by 90◦ . The agent dies a miserable death if it enters a square containing

a pit or a live wumpus. (It is safe, albeit smelly, to enter a square with a

dead wumpus.) If an agent tries to move forward and bumps into a wall,

then the agent does not move. The action Grab can be used to pick up the

gold if it is in the same square as the agent. The action Shoot can be used

to fire an arrow in a straight line in the direction the agent is facing. The

arrow continues until it either hits (and hence kills) the wumpus or hits a

wall. The agent has only one arrow, so only the first Shoot action has any

effect. Finally, the action Climb can be used to climb out of the cave, but

only from square [1,1]

• Sensors: The agent has five sensors, each of which gives a single bit of

information:

1. In the square containing the wumpus and in the directly (not

diagonally) adjacent squares, the agent will perceive a Stench.

2. In the squares directly adjacent to a pit, the agent will perceive a

Breeze.

3. In the square where the gold is, the agent will perceive a Glitter.

4. When an agent walks into a wall, it will perceive a Bump.

5. When the wumpus is killed, it emits a woeful Scream that can be

perceived anywhere in the cave.

5 Percept Symbols : [Stench, Breeze, Glitter, Bump, Scream].

The percepts will be given to the agent program in the form of a list of five

symbols; for example, if there is a stench and a breeze, but no glitter, bump, or

scream, the agent program will get [Stench, Breeze, None, None, None].

The first step taken by the agent in the wumpus world.

(a) The initial situation, after percept [None, None, None, None, None]. (b)

After one move, with percept [None, Breeze, None, None, None]

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

23 | P a g e

Fig 7.3

Two later stages in the progress of the agent.

(a) After the third move, with percept [Stench, None, None, None, None].

(b) After the fifth move, with percept [Stench, Breeze, Glitter , None, None].

Fig 7.4

• The agent’s initial knowledge base contains the rules of the environment,

as described previously; in particular, it knows that it is in [1,1] and that

[1,1] is a safe square; we denote that with an “A” and “OK,” respectively,

in square [1,1].

• The first percept is [None, None, None, None, None], from which the

agent can conclude that its neighboring squares, [1,2] and [2,1], are free

of dangers—they are OK. Figure 7.3(a) shows the agent’s state of

knowledge at this point.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

24 | P a g e

• A cautious agent will move only into a square that it knows to be OK. Let

us suppose the agent decides to move forward to [2,1]. The agent

perceives a breeze (denoted by “B”) in [2,1], so there must be a pit in a

neighboring square. The pit cannot be in [1,1], by the rules of the game,

so there must be a pit in [2,2] or [3,1] or both. The notation “P?” in Figure

7.3(b) indicates a possible pit in those squares. At this point, there is only

one known square that is OK and that has not yet been visited. So the

prudent agent will turn around, go back to [1,1], and then proceed to

[1,2].

• The agent perceives a stench in [1,2], resulting in the state of knowledge

shown in Figure 7.4(a). The stench in [1,2] means that there must be a

wumpus nearby. But the wumpus cannot be in [1,1], by the rules of the

game, and it cannot be in [2,2] (or the agent would have detected a stench

when it was in [2,1]). Therefore, the agent can infer that the wumpus is in

[1,3]. The notation W! indicates this inference. Moreover, the lack of a

breeze in [1,2] implies that there is no pit in [2,2]. Yet the agent has

already inferred that there must be a pit in either [2,2] or [3,1], so this

means it must be in [3,1]. This is a fairly difficult inference, because it

combines knowledge gained at different times in different places and

relies on the lack of a percept to make one crucial step.

• The agent has now proved to itself that there is neither a pit nor a wumpus

in [2,2], so it is OK to move there. We do not show the agent’s state of

knowledge at [2,2]; we just assume that the agent turns and moves to

[2,3], giving us Figure 7.4(b). In [2,3], the agent detects a glitter, so it

should grab the gold and then return home.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

25 | P a g e

3.2.c Logic:

In AI Logic is a fundamental component of logical representation and

reasoning. It enables machines to understand and represent data and

knowledge in a reasoning way. Logical reasoning is a process of inferring a

conclusion based on observations or data. It is concerned with the principles

of reasoning and how conclusions can be drawn from given premises. Logic

provides the theoretical foundation for reasoning.

Types of Logic:

Logics are formal languages for representing information such that

conclusions can be drawn. Syntax defines the sentences in the language.

Semantics define the meaning of sentences i.e. define truth of a sentence in

a world.

Syntax : Syntax refers to the structure and rules governing the formation of

sentences or expressions in a language or representation system.Syntax is

the set of rules that dictate which sentences are well-formed in the

representation language. For example, "x + y = 4" adheres to the syntax,

while "x4y+ =" does not.

Semantics: Semantics deals with the meaning of sentences or expressions in

a language. It specifies the truth or falsehood of sentences in relation to

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

26 | P a g e

possible worlds or situations. Semantics defines the truth of each sentence

in relation to possible worlds. For instance, the sentence "x + y = 4" is true in

a world where x is 2 and y is 2, but false in a world where x is 1 and y is 1.

Model: A model is a mathematical abstraction that represents a possible

world in the context of logic. It is used to fix the truth or falsehood of

sentences based on specific assignments of values to variables. Models serve

as precise mathematical abstractions of possible worlds. They fix the truth

or falsehood of sentences based on assignments of real numbers to variables.

The term "model" is used interchangeably with "possible world." Informally,

we may think of a possible world as, for example, having x men and y women

sitting at a table playing bridge, and the sentence x + y = 4 is true when there

are four people in total. Formally, the possible models are just all possible

assignments of real numbers to the variables x and y.

Satisfaction: Satisfaction is a relationship between a model and a sentence,

indicating that the model makes the sentence true. If a sentence is true in a

particular model, we say that the model satisfies the sentence.

In the given context, if a sentence α is true in a model m, it is said that m

satisfies α. Alternatively, m is considered a model of α. The notation M(α) is

used to represent the set of all models that satisfy the sentence α.

Model or Possible World in logic

The semantics defines the truth of each sentence with respect to each

possible world. In standard logics, every sentence must be either true or false

in each possible world—there is no “in between.” When we need to be

precise, we use the term model in place of “possible world.” If a sentence α

is true in model m, we say that m satisfies α or sometimes m is a model of α.

We use the notation M(α) to mean the set of all models of α.

Logical entailment between sentences: A sentence follows logically from

another sentence. In mathematical notation, we write α |= β. Entailment in

logic refers to a relationship between propositions where the truth of one

proposition necessarily guarantees the truth of another. If proposition A

entails proposition B, it means that whenever A is true, B must also be true.

In formal logic, this relationship is often represented as A |= B.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

27 | P a g e

Formal Definition: The formal definition of entailment is this:

α |= β if and only if, in every model in which α is true, β is also true.

Using the notation just introduced, we can write

α |= β if and only if M(α) ⊆ M(β) .

Example: The relation of entailment is familiar from arithmetic; the idea that

the sentence x = 0 entails the sentence xy = 0. Obviously, in any model where

x is zero, it is the case that xy is zero (regardless of the value of y)

Wumpus World Example: Consider the situation in Figure below: the agent

has detected nothing in [1,1] and a breeze in [2,1].

These precepts, combined with the agent’s knowledge of the rules of the

wumpus world, constitute the KB. The agent is interested (among other

things) in whether the adjacent squares [1,2], [2,2], and [3,1] contain pits.

Each of the three squares might or might not contain a pit, so (for the

purposes of this example) there are 2^ 3 =8 possible models. These eight

models are shown in Figure 7.5 below:

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

28 | P a g e

Fig7.5 Possible models for the presence of pits in squares [1,2], [2,2], and [3,1]. The KB

corresponding to the observations of nothing in [1,1] and a breeze in [2,1] is shown by the solid

line. (a) Dotted line shows models of α1 (no pit in [1,2]). (b) Dotted line shows models of α2 (no

pit in [2,2]).

The KB can be thought of as a set of sentences or as a single sentence that

asserts all the individual sentences. The KB is false in models that contradict

what the agent knows— for example, the KB is false in any model in which

[1,2] contains a pit, because there is no breeze in [1,1]. There are in fact just

three models in which the KB is true, and these are shown surrounded by a

solid line in Figure 7.5. Now let us consider two possible conclusions:

α1 = “There is no pit in [1,2].”

α2 = “There is no pit in [2,2].”

We have surrounded the models of α1 and α2 with dotted lines in Figures

7.5(a) and 7.5(b), respectively. By inspection, we see the following: in every

model in which KB is true, α1 is also true.

Hence, KB |= α1: there is no pit in [1,2]. We can also see that in some models

in which KB is true, α2 is false. Hence,

 :

the agent cannot conclude that there is no pit in [2,2]. (Nor can it conclude

that there is a pit in [2,2].)

Logical Inference and Model Checking:

Logical inference is the process of deriving new sentences (conclusions) from

existing knowledge or premises. Model checking is an example of a logical

inference algorithm where all possible models are enumerated to check if a

conclusion holds in all models where the premises are true.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

29 | P a g e

Example: In the wumpus-world example, logical inference is used to

determine conclusions about the presence of pits in adjacent squares based

on percepts and knowledge.

Model Checking:

Model checking is an inference algorithm that checks if a conclusion holds in

all models where the premises are true. In the Wumpus-world example,

model checking is applied to determine if certain conclusions (e.g., "There is

no pit in [1,2]") hold in all possible models consistent with the agent's

knowledge (KB). The inference algorithm illustrated in Figure 7.5 is called

model checking, because it enumerates all possible models to check that α is

true in all models in which KB is true, that is, that M(KB) ⊆ M(α).

NOTE: To comprehend the concepts of entailment and inference, consider

envisioning the set of all consequences derived from a knowledge base (KB)

as a haystack, and α as a needle within it. Entailment corresponds to the

presence of the needle in the haystack, while inference is akin to the act of

discovering it. This distinction is formalized through notation: if an inference

algorithm denoted by 'i' can deduce α from KB, we express it as:

KB⊢I α
This notation is read as "α is derived from KB by i" or "i derives α from KB."

Sound or Truth Preserving:

Definition: An inference algorithm is sound or truth preserving if it only

derives sentences that are actually entailed by the premises.

Importance: A sound inference procedure ensures that conclusions derived

from premises are always true in the real world.

Example: Model checking is considered a sound procedure, as it derives

conclusions that hold in all models where the premises are true.

Completeness:

Definition: An inference algorithm is complete if it can derive any sentence

that is entailed by the premises.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

30 | P a g e

Importance: Completeness ensures that the inference procedure covers all

possible entailed sentences.

Consideration: Completeness becomes crucial for knowledge bases with

infinite consequences.

Example: For finite knowledge bases, a systematic examination can decide

whether a sentence is entailed, ensuring completeness. However, in infinite

knowledge bases, completeness is still achievable with suitable inference

procedures.

Correspondence between world and representation

We have outlined a reasoning process whose conclusions are ensured to be

accurate in any conceivable scenario where the initial premises hold true.

Specifically, if the knowledge base (KB) accurately reflects the real-world

state, then any statement α derived from KB through a sound inference

procedure is also valid in the real world. Thus, although the inference process

operates on "syntax" — involving internal physical configurations like bits in

registers or patterns of electrical signals in brains — the process mirrors the

real-world dynamics. It demonstrates how certain aspects of the real world

are affirmed due to the presence of other aspects in the real world. This

relationship between the world and its representation is depicted in Figure

7.6.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

31 | P a g e

Grounding:

Definition: Grounding refers to the connection between logical reasoning

processes and the real environment in which an agent exists.

Explanation: It addresses how we establish that the knowledge base (KB) is

true in the real world.

Example: In the Wumpus-world example, the agent's sensors create a

connection by producing suitable sentences based on perceptual

information. The truth of percept sentences is defined by the sensing and

sentence construction processes. General rules, derived through learning,

contribute to the knowledge base, although learning is fallible.

Overall, the discussion highlights the key concepts of entailment, logical

inference, model checking, soundness, completeness, and grounding within

the context of reasoning and knowledge representation.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

32 | P a g e

3.2.d Propositional Logic

• Propositional logic, also known as sentential logic or propositional

calculus, is a branch of formal logic that deals with the logical

relationships between propositions (statements or sentences) without

considering the internal structure of the propositions.

• In propositional logic, propositions are considered as atomic units, and

logical operations are applied to these propositions to form more complex

statements.

Some key elements and concepts in propositional logic:

1. Propositions: These are statements that can be either true or false.

Propositions are represented by variables, typically denoted by letters (p,

q, r, etc.).

2. Logical Connectives: These are symbols that combine propositions to

form more complex statements. The main logical connectives in

propositional logic include:

1. Conjunction (∧): Represents "and." The compound proposition "p

∧ q" is true only when both p and q are true.

2. Disjunction (∨): Represents "or." The compound proposition "p ∨

q" is true when at least one of p or q is true.

3. Negation (¬): Represents "not." The compound proposition "¬p" is

true when p is false.

4. Implication (→): Represents "if...then." The compound proposition

"p → q" is false only when p is true and q is false.

5. Biconditional (↔): Represents "if and only if." The compound

proposition "p ↔ q" is true when p and q have the same truth

value.

3. Truth Tables: Truth tables are used to systematically list all possible truth

values for a compound proposition based on the truth values of its

constituent propositions. Truth tables help determine the truth

conditions for complex statements.

4. Logical Equivalence: Two propositions are logically equivalent if they have

the same truth values for all possible combinations of truth values of their

component propositions.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

33 | P a g e

Syntax in Propositional Logic

In propositional logic, the syntax dictates the permissible sentences.

Atomic Sentences: Atomic sentences are comprised of a single proposition

symbol, each symbol representing a proposition that can be either true or

false. Symbol names, starting with an uppercase letter and potentially

containing other letters or subscripts (e.g., P, Q, R, W1,3, North), are arbitrary

but often chosen for mnemonic value.

For instance, W1,3 might stand for the proposition that the wumpus is in [1,3].

Notably, symbols like W, 1, and 3 are not meaningful constituents of the

atomic symbol. Two proposition symbols, "True" (always true) and "False"

(always false), have fixed meanings.

Complex Sentences: Construction of complex sentences involves simpler

ones through the use of parentheses and logical connectives. Five common

logical connectives include:

Negation ¬ (not): A sentence like ¬W1,3 is termed the negation of W1,3. A

literal is either a positive literal (atomic sentence) or a negated atomic

sentence (negative literal).

Conjunction ∧ (and): A sentence with ∧ as its main connective, e.g., W1,3 ∧

P3,1, is a conjunction; its parts are the conjuncts.

Disjunction ∨ (or): A sentence using ∨, like (W1,3∧P3,1)∨W2,2, is a disjunction

of the disjuncts (W1,3 ∧ P3,1) and W2,2.

Implication ⇒ (implies): A sentence such as (W1,3∧P3,1) ⇒ ¬W2,2 is termed an

implication (or conditional). Its premise or antecedent is (W1,3 ∧ P3,1), and its

conclusion or consequent is ¬W2,2. Implications are also known as rules or if–

then statements. The implication symbol may also be represented as ⊃ or →

in other texts.

Biconditional ⇔ (if and only if): The sentence W1,3 ⇔ ¬W2,2 is a biconditional.

Some texts represent this as ≡.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

34 | P a g e

This syntax allows the formulation of propositions and their logical

relationships using a set of well-defined connectives.

Figure below gives a formal grammar, BNF (Backus–Naur Form) grammar of

sentences in propositional logic, along with operator precedences, from

highest to lowest.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

35 | P a g e

Semantics in Propositional Logic

Semantics

• The semantics defines the rules for determining the truth of a sentence

with respect to a particular model.

• In propositional logic, a model simply fixes the truth value—true or

false—for every proposition symbol.

• For example, if the sentences in the knowledge base make use of the

proposition symbols P1,2, P2,2, and P3,1, then one possible model is

• m1 = {P1,2 = false, P2,2 = false, P3,1 = true}

Rule for Atomic Sentences

• True is true in every model and False is false in every model.

For complex sentences, we have five rules, which hold for any subsentences

P and Q in any model m (here “iff” means “if and only if”):

• ¬P is true iff P is false in m.

• P ∧ Q is true iff both P and Q are true in m.

• P ∨ Q is true iff either P or Q is true in m.

• P ⇒ Q is true unless P is true and Q is false in m.

• P ⇔ Q is true iff P and Q are both true or both false in m.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

36 | P a g e

A simple knowledge base : Wumpus World

Now that we have defined the semantics for propositional logic, we can

construct a knowledge base for the Wumpus world as follows :

Symbols for each [x, y] location:

• Px,y is true if there is a pit in [x, y].

• Wx,y is true if there is a wumpus in [x, y], dead or alive.

• Bx,y is true if the agent perceives a breeze in [x, y].

• Sx,y is true if the agent perceives a stench in [x, y].

Sentences

• There is no pit in [1,1]:

 R1 : ¬P1,1 .

• A square is breezy if and only if there is a pit in a neighboring square. This

has to be stated for each square; for now, we include just the relevant

squares:

 R2 : B1,1 ⇔ (P1,2 ∨ P2,1) .

 R3 : B2,1 ⇔ (P1,1 ∨ P2,2 ∨ P3,1) .

• The preceding sentences are true in all Wumpus worlds:

 R4 : ¬B1,1

 R5 : B2,1 .

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

37 | P a g e

A simple inference Procedure
Our goal now is to decide whether KB |= α for some sentence α. For example,

is ¬P1,2 entailed by our KB? Our first algorithm for inference is a model-

checking approach that is a direct implementation of the definition of

entailment: enumerate the models, and check that α is true in every model

in which KB is true. Models are assignments of true or false to every

proposition symbol. Returning to our wumpus-world example, the relevant

proposi tion symbols are B1,1, B2,1, P1,1, P1,2, P2,1, P2,2, and P3,1. With seven

symbols, there are 27 = 128 possible models; in three of these, KB is true

(Figure 7.9).

In those three models, ¬P1,2 is true, hence there is no pit in [1,2]. On the other

hand, P2,2 is true in two of the three models and false in one, so we cannot

yet tell whether there is a pit in [2,2]. Figure 7.9 reproduces in a more precise

form the reasoning illustrated in Figure 7.5.

A general algorithm for deciding entailment in propositional logic is shown in

Figure 7.10. The algorithm is sound because it implements directly the

definition of entailment, and complete because it works for any KB and α and

always terminates—there are only finitely many models to examine. If KB

and α contain n symbols in all, then there are 2n models. Thus, the time

complexity of the algorithm is O(2n). (The space complexity is only O(n)

because the enumeration is depth-first). Every known inference algorithm for

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

38 | P a g e

propositional logic has a worst-case complexity that is exponential in the size

of the input.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

39 | P a g e

3.2.e Propositional Theorem Proving

Until now, our approach to establishing entailment has involved model

checking—examining various models to demonstrate that a given sentence

holds universally. However, in this section, we explore an alternative method

known as theorem proving. Here, we apply rules of inference directly to the

sentences within our knowledge base, constructing a proof for the desired

sentence without resorting to the enumeration of models. Notably, if the

number of models is extensive but the proof's length is concise, theorem

proving can offer greater efficiency compared to the process of model

checking.

Logical Equivalence:

Two sentences, α and β, are logically equivalent if they are true in the same

set of models, denoted as α ≡ β.

Example: P∧Q and Q∧P are logically equivalent, as they have the same truth

values in all possible models.

Figure below illustrates the Standard logical equivalences. The symbols α, β,

and γ stand for arbitrary sentences of propositional logic.

All of the logical equivalences in Figure can be used as inference rules. For

example, the equivalence for biconditional elimination yields the two inference

rules :

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

40 | P a g e

Validity:

A sentence is valid if it is true in all models. Valid sentences are also referred to

as tautologies, meaning they are necessarily true.

Example:

P∨¬P is a valid sentence because it is true in every possible model.

Tautology:

A tautology is a valid sentence, meaning it is true in all models.

Example:

P∨¬P is a tautology.

Deduction Theorem:

The deduction theorem states that for any sentences α and β, α⊨β if and only if

the sentence (α⇒β) is valid.

Example: If P⇒Q is valid, then P⊨Q, according to the deduction theorem.

Satisfiability:

A sentence is satisfiable if it is true in at least one model.

Example: The knowledge base (R1∧R2∧R3∧R4∧R5) is satisfiable because there

exist models in which it is true.

SAT Problem:

The SAT problem involves determining the satisfiability of sentences in

propositional logic. It was the first problem proved to be NP-complete.

Example: Given a propositional logic sentence, determining if there exists a

model in which it is true represents an instance of the SAT problem.

Connection between Validity and Satisfiability:

α is valid if and only if ¬α is unsatisfiable; conversely, α is satisfiable if and only

if ¬α is not valid. We also have the following useful result: α |= β if and only if

the sentence (α ∧ ¬β) is unsatisfiable

Example: If (P∨Q) is valid then ¬(P∨Q) is unsatisfiable, and vice versa.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

41 | P a g e

Reduction ad Absurdum (Proof by Contradiction):

It is also called proof by refutation or proof by contradiction. Proving β from α

by checking the unsatisfiability of (α∧¬β) corresponds to the proof technique of

reduction and absurdum. It involves assuming β to be false and demonstrating

that it leads to a contradiction with known axioms α. This

contradiction is exactly what is meant by saying that the sentence (α ∧ ¬β) is

unsatisfiable

Example: To prove P⇒Q, assume ¬(P⇒Q) and show that this assumption leads

to a contradiction with known axioms.

Propositional Theorem Proving will be discussed under the following

headings:

1.Inferences and Proofs

2.Proof by Resolution

3.Horn Clauses and definite Clauses

4.Forward and backward chaining

1. Inferences and Proofs

This section covers inference rules that can be applied to derive a proof-a chain

of conclusions that leads to the desired goal.

1. Modus Ponens : The best-known rule is called Modus Ponens (Latin for

mode that affirms) and is written as :

The notation means that, whenever any sentences of the form α ⇒ β and α are

given, then the sentence β can be inferred.

For example, if (WumpusAhead ∧WumpusAlive) ⇒ Shoot and (WumpusAhead

∧ WumpusAlive) are given, then Shoot can be inferred.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

42 | P a g e

2. And Elimination: Says that, from a conjunction, any of the conjuncts can be

inferred:

For example, from (WumpusAhead ∧ WumpusAlive), WumpusAlive can

be inferred.

3. And Introduction: The concept of "And Introduction" in logic is a rule of

inference that allows you to derive a conjunction (logical AND) from the

individual components. It's also known as the "conjunction introduction" or

"∧-Introduction." The rule is typically expressed as follows:

P , Q

P∧Q
This means that if you have two propositions, P and Q, both of which are true,

then you can infer the conjunction P∧Q as also being true. In a more natural

language explanation, if you know that proposition P is true and proposition

Q is true, you can assert that the conjunction of P and Q (i.e., both P and Q

together) is also true.

Example:

Suppose you know:

Statement 1: It is raining.

Statement 2: It is cloudy.

Using And Introduction, you can assert:

Conclusion: It is raining and it is cloudy.

This rule is fundamental in constructing logical arguments and proofs where

you want to combine multiple true statements into a single conjunction.

4. Or Introduction: The "Or Introduction" rule, also known as the "Disjunction

Introduction" or "∨-Introduction," is a logical inference rule that allows you

to assert a disjunction (logical OR) based on the truth of one of its

components. The rule is expressed as follows:

 P

PVQ

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

43 | P a g e

Example: Suppose you know:

Statement 1: The sun is shining.

Using Or Introduction, you can assert:

Conclusion: The sun is shining or it is raining.

In this example, the truth of the first statement allows you to introduce

the disjunction, stating that either the sun is shining or it is raining.

The Or Introduction rule is essential for building logical arguments and

proofs where you want to introduce alternatives or possibilities based on

the truth of a single proposition.

5. Double Negation elimination: The "Double Negation Elimination" rule is a

logical inference rule that allows you to simplify a statement by removing

double negations. The rule is often expressed as:

 ¬ ¬ P

 P
 This rule asserts that if you have a double negation (¬¬) of a

proposition

P, then you can eliminate the double negation and conclude that P is true.

In simpler terms, if you know that it is not the case that it is not the case

that P is true, then you can assert that P is indeed true.

Example: Suppose you know:

Statement: It is not false that the exam is difficult. Using Double Negation

Elimination, you can simplify to:

Conclusion: The exam is difficult.

In this example, the double negation is eliminated, leading to a simpler

and more direct statement.

Double Negation Elimination is a fundamental rule in logic that helps

streamline expressions and statements by removing unnecessary layers

of negation.

6. Unit Resolution: "Unit Resolution" is a rule of inference in propositional logic,

specifically used in the context of resolution-based theorem proving. It's a

technique employed in automated reasoning and artificial intelligence to

simplify logical formulas.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

44 | P a g e

The rule of Unit Resolution states that if you have a clause in which one

literal is the negation of another (i.e., a literal and its negation), you can

resolve or eliminate both and simplify the clause to the remaining literals.

Formally, if you have a clause C containing literals P and ¬P, then resolving

C results in the empty clause, denoted by □.

Mathematically, the Unit Resolution rule can be expressed as:

Here PVQ and ¬P∨R are clauses, and after applying Unit Resolution, Q∨R

is the simplified clause.

Example:
Suppose you have the clauses:

C1: P∨Q

C2: ¬P∨R

Applying Unit Resolution, you resolve P and ¬P to get:

C3: Q∨R

Unit Resolution is a key step in the resolution-refutation method, a

technique used for proving the unsatisfiability of logical formulas. It is

particularly useful in automated theorem proving systems and is a

foundational component in algorithms for solving propositional

satisfiability problems.

7. Complete Resolution: "Complete Resolution" refers to a resolution-based

inference rule used in automated theorem proving and propositional logic. It

is a more general form of the Unit Resolution and is often employed in

resolution-based proof procedures. In Complete Resolution, you apply the

resolution rule to all possible pairs of literals in a clause, not just restricting it

to complementary literals (as in Unit Resolution). The general form of the

Complete Resolution rule can be expressed as follows:

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

45 | P a g e

 ere, C1 and C2 are clauses, and P1 and ¬P are literals. The resolution

results in a new clause C, which is a combination of the non-resolved

literals from C 1 and C2 .

Complete Resolution is more general than Unit Resolution and can be

applied to a broader set of clauses. However, it is also more

computationally expensive, as it involves considering all pairs of literals in

the input clauses. In practice, strategies such as subsumption and

factoring are often used to enhance the efficiency of resolution-based

theorem proving procedures.

8. Monotonicity: Monotonicity in the context of logical systems refers to a

property where the set of entailed sentences (sentences that can be logically

inferred or deduced) can only increase or remain the same as new

information is added to the knowledge base. The discussion outlines the

monotonicity property with the following expression:

This statement means that if a certain sentence

α is entailed or logically follows from the existing knowledge base (KB),

adding additional information in the form of β to the knowledge base does

not invalidate the inference of α. In other words, the set of sentences

entailed by the knowledge base either remains the same or increases with

the addition of new information.

Example: Suppose the knowledge base (KB) entails the conclusion α,

which states there is no pit in location [1,2]. According to monotonicity, if

you introduce additional information β (e.g., stating there are exactly

eight pits in the world) to the knowledge base, the conclusion α still holds.

The agent can draw additional conclusions based on the new information

(β), but it does not invalidate the existing conclusion α. In essence,

monotonicity ensures that the application of inference rules remains

consistent and reliable, allowing logical deductions to be made whenever

suitable premises are found in the knowledge base, irrespective of the

other information present in the knowledge base.

Illustration of Inference and Proofs: Let us see how these inference rules and

equivalences can be used in the Wumpus world. We start with the knowledge

base containing R1 through R5 and show how to prove ¬P1,2, that is, there is no

pit in [1,2].

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

46 | P a g e

First, we apply biconditional elimination to R2 to obtain

R6 : (B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) ⇒ B1,1) .

Then we apply And-Elimination to R6 to obtain

R7 : ((P1,2 ∨ P2,1) ⇒ B1,1) .

Logical equivalence for contrapositives gives

R8 : (¬B1,1 ⇒ ¬(P1,2 ∨ P2,1)) .

Now we can apply Modus Ponens with R8 and the percept R4 (i.e., ¬B1,1), to

obtain

R9 : ¬(P1,2 ∨ P2,1) .

Finally, we apply De Morgan’s rule, giving the conclusion

R10 : ¬P1,2 ∧ ¬P2,1 .

That is, neither [1,2] nor [2,1] contains a pit.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

47 | P a g e

2.Proof by Resolution

Proof by resolution is a technique used in automated theorem proving,

specifically in propositional logic. The goal is to prove the unsatisfiability of a set

of clauses by applying a resolution-based inference rule. The process involves

repeatedly applying resolution until either the empty clause is derived,

demonstrating unsatisfiability, or no further resolutions are possible, indicating

the set of clauses is satisfiable.

Here's an overview of the proof by resolution process:

Initial Set of Clauses (Knowledge Base): Begin with a set of clauses representing

the knowledge base. These clauses are typically obtained from logical

statements or axioms.

Negate the Conclusion: To prove a statement (conclusion), negate it. This

negation is added to the set of clauses.

Apply Resolution: Apply the resolution rule iteratively to the set of clauses. The

resolution rule involves selecting two clauses that contain complementary

literals (a literal and its negation). By resolving these clauses, a new clause is

generated.

Continue Resolving: Repeat the resolution process until either:

• The empty clause (□) is derived, indicating unsatisfiability.

• No further resolutions are possible, and the set of clauses remains

unchanged, indicating satisfiability.

Conclusion:

• If the empty clause is derived, the original set of clauses is unsatisfiable,

and the negated statement is proven.

• If no further resolutions are possible and the set of clauses remains, then

the original set of clauses is satisfiable, and the negated statement is not

proven.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

48 | P a g e

Termination: The proof by resolution terminates when either the unsatisfiability

is established, or it is determined that no further resolutions can lead to

unsatisfiability.

This method is efficient for proving unsatisfiability but may not always

terminate for satisfiable sets of clauses. It is a key component in automated

reasoning systems, especially in applications such as artificial intelligence and

formal verification.

Example : Let's consider a simplified example of a knowledge base for the

Wumpus World scenario and demonstrate proof by resolution to establish the

unsatisfiability of a certain statement. In Wumpus World, an agent explores a

grid containing a Wumpus (a monster), pits, and gold.

Knowledge Base (KB): Assume our initial knowledge base includes the following

clauses:

1. WumpusIn[1,1] ∨ PitIn[1,2]

 (There is either a Wumpus in [1,1] or a pit in [1,2].)

2. ¬WumpusIn[1,1]∨¬PitIn[1,2]

 (There is neither a Wumpus in [1,1] nor a pit in [1,2].)

3. Breeze[1,2]⇒PitIn[1,2]

 (If there is a breeze in [1,2], then there is a pit in [1,2].)

4. ¬Breeze[1,2]⇒¬PitIn[1,2]

 (If there is no breeze in [1,2], then there is no pit in [1,2].)

Negated Conclusion: Let's say we want to prove the negation of the statement:

¬PitIn[1,2]

Apply Resolution: We'll apply resolution to the negated conclusion and the

clauses in the knowledge base:

1. Breeze[1,2] (Obtained from the negated conclusion.)

2. ¬Breeze[1,2] ⇒ ¬PitIn[1,2] (From KB.)

Applying resolution, we get: ¬PitIn[1,2]

This result indicates that the negated conclusion is satisfied, and we cannot

derive an empty clause. Therefore, the original knowledge base is satisfiable,

and the agent cannot conclude the absence of a pit in [1,2].

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

49 | P a g e

Conclusion:

The proof by resolution did not lead to unsatisfiability, illustrating that there may

be scenarios where the agent cannot definitively establish the absence of a pit

in [1,2]. This aligns with the inherent uncertainty and complexity of reasoning in

the Wumpus World scenario.

Algorithm: PL-RESOLUTION algorithm:

1. Inputs:

• KB: The knowledge base, a sentence in propositional logic.

• α: The query, a sentence in propositional logic.

2. Initialization:

• clauses← The set of clauses in the CNF representation of KB∧¬α.

• {}new←{}.

3. Resolution Loop:

• Enter a loop that continues until termination conditions are met.

• For each pair of clauses Ci,Cj in clauses:

• Apply the PL-RESOLVE subroutine to Ci and Cj to

obtain resolvents.

• If resolvents contains the empty clause, return true

(indicating unsatisfiability).

• Update new by adding resolvents.

• If new is a subset of clauses, return false (indicating

satisfiability).

• Update clauses by adding new.

4. Termination:

• The algorithm terminates when either the empty clause is derived

(unsatisfiability) or no further resolutions are possible

(satisfiability).

5. Output:

• Return true if the empty clause is derived (unsatisfiability).

• Return false if no further resolutions are possible (satisfiability).

This algorithm is a basic representation of the resolution process for automated

theorem proving. Keep in mind that practical implementations may include

optimizations and additional heuristics for efficiency and scalability.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

50 | P a g e

Note: In the PL-RESOLUTION algorithm, "resolvent" and "clauses" have

specific meanings related to the process of resolution in propositional logic.

Resolvent:

A "resolvent" refers to a new clause obtained by applying the resolution rule to

two input clauses. The resolution rule involves selecting complementary literals

(one literal and its negation) from the input clauses and creating a new clause by

removing those complementary literals. The resolvent represents the information

that can be inferred by combining or resolving the input clauses.

Clauses:

"Clauses" refer to a set of logical statements in Conjunctive Normal Form (CNF)

representing the knowledge base. In the context of PL-RESOLUTION, the set of

clauses is derived from the CNF representation of KB∧¬α, where KB is the

knowledge base, and α is the negated query.

During the resolution process, the algorithm iterates over pairs of clauses in the

set, attempting to resolve them to obtain resolvents. The set of clauses is

continuously updated with new resolvents in each iteration.

The termination conditions of the algorithm depend on whether the empty clause

(indicating unsatisfiability) is derived or if no further resolutions are possible

(indicating satisfiability).

In summary, "resolvent" represents the outcome of applying the resolution rule

to two input clauses, and "clauses" refer to the set of logical statements that

undergo resolution to derive new information. The algorithm aims to determine

the satisfiability or unsatisfiability of the knowledge base with respect to the

given query.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

51 | P a g e

Conjunctive Normal Form

CNF is a standard representation of logical formulas in propositional logic. A

formula is in CNF if it is a conjunction (AND) of clauses, where each clause is a

disjunction (OR) of literals. In other words, CNF expresses a logical statement as

a series of clauses, and each clause is a combination of literals connected by

disjunctions, while the entire formula is a combination of these clauses connected

by conjunctions.

Steps to Convert a Formula to CNF:

1. Eliminate Biconditionals (⇔): Replace each biconditional (↔) with an

equivalent expression in terms of conjunction (∧), disjunction (∨), and

negation (¬).

• Example: Replace A ⇔ B with (A⇒B) ∧(B⇒A)

2. Eliminate Implications (⇒): Replace each implication (⇒) with an

equivalent expression using conjunction and negation.

• Example: Replace A⇒B with ¬A V B

3. Move Negations Inward (¬): Apply De Morgan's laws and distribute

negations inward to literals.

• ¬(¬A) ≡ A

• ¬(A V B) ≡(¬A ∧ ¬B)

• ¬(A∧ B) ≡ (¬A V ¬B)

4. Distribute Disjunctions Over Conjunctions: Apply the distributive law

to ensure that disjunctions are only over literals or conjunctions of literals.

Suppose we have the following formula: H=(P∧Q)∨(R∧S∧T) .

Now, let's distribute disjunctions over conjunctions:

H=(P∨(R∧S∧T))∧(Q∨(R∧S∧T))

Here, we've distributed the disjunction (P∧Q) over the conjunction

(R∧S∧T).

The resulting formula is now in CNF (Conjunctive Normal Form), where

each clause is a disjunction of literals. So, the distributed formula is:

H=(P∨(R∧S∧T))∧(Q∨(R∧S∧T))

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

52 | P a g e

Example1: We illustrate the procedure by converting the sentence B1,1 ⇔ (P1,2

∨ P2,1) into CNF. The steps are as follows:

1. Eliminate ⇔, replacing α ⇔ β with (α ⇒ β) ∧ (β ⇒ α).

(B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) ⇒ B1,1) .

2. Eliminate ⇒, replacing α ⇒ β with ¬α ∨ β:

 (¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨ B1,1)

3. CNF requires ¬ to appear only in literals, so we “move ¬ inwards” by repeated

application of the following equivalences:

¬(¬α) ≡ α (double-negation elimination)

¬(α ∧ β) ≡ (¬α ∨ ¬β) (De Morgan)

¬(α ∨ β) ≡ (¬α ∧ ¬β) (De Morgan)

In the example, we require just one application of the last rule:

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨ B1,1) .

4. Now we have a sentence containing nested ∧ and ∨ operators applied to

literals. We apply the distributivity law, distributing ∨ over ∧ wherever possible.

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1) ∧ (¬P2,1 ∨ B1,1) .

The original sentence is now in CNF, as a conjunction of three clauses. It is much

harder to read, but it can be used as input to a resolution procedure.

Example2: A → (B ⇔ C)

Solution:

Step 1: Eliminate implication.

 ¬ A∨(B⇔C)

Step 2: Eliminate bi-directional implication.

¬ A∨ (B→C)∧ (C→B)

¬ A∨ (¬ B∨C) ∧ (¬ C∨B))

Step 3: Apply distribute law.

(¬ A∨ ¬ B∨C) ∧ (¬ A∨ ¬ C∨B)

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

53 | P a g e

Example 3:

3.Horn Clauses and definite Clauses

Definite Clause: A definite clause is a specific form of a Horn clause where there

is exactly one positive literal in the head. The general form of a definite clause is

H←B1, B2 ,…,Bn , where H is the positive literal (head), and B1 ,B2 ,…,Bn are

the negative literals or atoms (body).

In other words, a definite clause is a Horn clause with a single positive literal in

the head. Goal clauses are a specific subset of Horn clauses where there are no

positive literals in the clause.

Horn Clause: A Horn clause is a special type of logical clause that is a disjunction

of literals, with at most one positive (non-negated) literal. In other words, a Horn

clause is of the form H←B1 ,B2 ,…,Bn , where H is the positive literal (head), and

B1 ,B2 ,…,Bn are the negative literals or atoms (body).

Horn clauses are more restricted than general logical clauses and are widely

used in logic programming and knowledge representation. The term "Horn"

comes from the logician Alfred Horn, who extensively studied this type of clause.

Horn clauses are closed under resolution: if you resolve two Horn clauses, you

get back a Horn clause.

In Horn form, the premise is called the body and the conclusion is called the

head.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

54 | P a g e

Knowledge bases containing only definite clauses are interesting for three

reasons:

1. Every definite clause can be written as an implication whose premise is a

conjunction of positive literals and whose conclusion is a single positive literal.

For example, the definite clause (¬L1,1 ∨ ¬Breeze ∨ B1,1) can be written as the

implication (L1,1 ∧ Breeze) ⇒ B1,1

2. Inference with Horn clauses can be done through the forward-chaining and

backward chaining algorithms, which we explain next.

3. Deciding entailment with Horn clauses can be done in time that is linear in

the size of the knowledge base.

Figure illustrates A grammar for conjunctive normal form, Horn clauses, and

definite clauses. A clause such as A ∧ B ⇒ C is still a definite clause when it is

written as ¬A ∨ ¬B ∨ C, but only the former is considered the canonical form for

definite clauses. One more class is the k-CNF sentence, which is a CNF sentence

where each clause has at most k literals.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

55 | P a g e

4. Forward and Backward Chaining

Forward Chaining:

Forward chaining is a reasoning strategy that starts with known facts in the

knowledge base and propagates inferences forward until the desired query or

goal is reached.

Forward Chaining Process: The algorithm begins with known facts (positive

literals) and iteratively applies the Modus Ponens inference rule to derive new

facts. The process continues until the query is added to the set of known facts

or until no further inferences can be made.

Efficiency: Forward chaining runs in linear time, making it computationally

efficient.

Completeness: Forward chaining is both sound and complete, meaning that

every entailed atomic sentence will be derived.

Backward Chaining:

Backward chaining is a reasoning strategy that works backward from the query

or goal. It finds implications in the knowledge base whose conclusion is the

query and then recursively checks if the premises of those implications can be

proved true.

Process: If the query is known, no further work is needed. Otherwise, the

algorithm works backward, finding implications whose conclusion is the query

and attempting to prove the premises true. The process continues until a set of

known facts is reached that forms the basis for a proof.

Efficiency: Backward chaining is goal-directed reasoning and is particularly

useful for answering specific questions. Its efficiency is often less than linear in

the size of the knowledge base because it only touches relevant facts.

Completeness: Backward chaining can be both sound and complete, depending

on the implementation.

Goal-Directed Reasoning:

Goal-directed reasoning is a form of reasoning where the focus is on achieving

specific goals or answering particular questions.

Application: Backward chaining is an example of goal-directed reasoning, as it

works toward proving a specific query or goal true by finding implications in the

knowledge base.

Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT.

56 | P a g e

Use Cases: Goal-directed reasoning is useful for tasks such as decision-making

("What shall I do now?") and problem-solving ("Where are my keys?"). It allows

the system or agent to efficiently navigate toward a desired outcome.

Data-Driven Reasoning:

Data-driven reasoning is a general concept where the focus of attention starts

with known data or facts. In the context of forward chaining, the algorithm

begins with known facts and derives conclusions based on the available

information.

Application: Forward chaining is an example of data-driven reasoning. It can be

used within an agent to derive conclusions from incoming percepts without a

specific query in mind.

Use Cases: Data-driven reasoning is applicable when new information arrives,

and the system needs to make inferences or draw conclusions based on the

available data.

Summary: Forward chaining and backward chaining are complementary

reasoning strategies, with forward chaining starting from known facts and

moving toward the goal, while backward chaining starts from the goal and works

backward to known facts.

Goal-directed reasoning, exemplified by backward chaining, is efficient for

specific questions and goals.

Data-driven reasoning, exemplified by forward chaining, is useful for deriving

conclusions from known data or facts.

End of the Module 3 ##

