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3. 1 Informed Search Strategies 

Informed Search: Informed search is a search strategy that utilizes problem-

specific knowledge, to find solutions more efficiently. Informed search methods 

make use of heuristics and evaluation functions to guide the search towards 

more promising paths. 

Heuristic Function(h(n)): It is a heuristic function that provides an estimate of 

the cost from the current node to the goal node. This heuristic is admissible if it 

never overestimates the true cost to reach the goal. In other words, h(n) is 

always less than or equal to the actual cost. 

Actual cost function(g(n)): It is Cost of the path from the start node to node n. 

It represents the actual cost incurred to reach the current node from the initial 

node. For the initial node (start node), g(n) is usually 0. 

Evaluation Function (f(n)): The evaluation function, denoted as f(n), is the total 

estimated cost of the cheapest path from the start node to the goal node that 

passes through node n. It is the sum of g(n) and h(n): f(n) = g(n) + h(n). 

f(n) represents the priority of a node. Nodes with lower f(n) values are explored 

first, making the algorithm prioritize paths that are likely to be more efficient. 

3.1.a Greedy Best First Search Algorithm 

Greedy best first search tries to expand the node that is closest to the goal to 

lead to a solution quickly. It evaluates the nodes by using just the heuristic 

function i.e. for Greedy best first search, f(n) = h(n). 

Let's explore the application of this method to route-finding challenges in 

Romania for the map given in figure 3.2.  

We will employ the straight-line distance heuristic, denoted as hSLD. Specifically, 

for our destination in Bucharest, we require knowledge of the straight-line 

distances to Bucharest, as illustrated in Figure 3.22.  

As an illustration, consider hSLD(In(Arad)) = 366. It's important to note that the 

values of hSLD cannot be derived directly from the problem description. 

Furthermore, understanding that hSLD correlates with actual road distances and 

serves as a valuable heuristic requires a certain level of experience. 
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Following Figure shows the progress of a greedy best-first search using hSLD to 

find a path from Arad to Bucharest.  

The first node to be expanded from Arad will be Sibiu because it is closer to 

Bucharest than either Zerind or Timisoara. The next node to be expanded will 

be Fagaras because it is closest. Fagaras in turn generates Bucharest, which is 

the goal. 
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Figure: Stages in a greedy best-first tree search for Bucharest with the straight-

line distance heuristic hSLD . Nodes are labelled with their h-values. 
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Best first search algorithm: 

Step 1: Place the starting node into the OPEN list. 
Step 2: If the OPEN list is empty, Stop and return failure. 
Step 3: Remove the node n, from the OPEN list which has the lowest value of 
h(n), and places it in the CLOSED list. 
Step 4: Expand the node n, and generate the successors of node n. 
Step 5: Check each successor of node n, and find whether any node is a goal 
node or not. If any successor node is goal node, then return success and 
terminate the search, else proceed to Step 6. 
Step 6: For each successor node, algorithm checks for evaluation function f(n), 
and then check if the node has been in either OPEN or CLOSED list. If the node 
has not been in both list, then add it to the OPEN list. 
Step 7: Return to Step 2. 

Example: Consider the tree and heuristic values given below:  

 

In this search example, we are using two lists which are OPEN and CLOSED Lists. 
Following are the iteration for traversing the above example. 

Step OPEN List CLOSED List Details 

Initialization [A, B] [S]  

Iteration1: 

Expand B 

[A] [S,B] h(B)<h(A) 

Iteration2: 

Expand F 

[E,F,A] 

[E,A] 

[S,B] 

[S,B,F] 

 

H(F)<H(E),H(A) 

Iteration3:  

Visit Goal G 

[I,G,E,A] 

[I,E,A] 

[S,B,F] 

[S,B,F,G] 

 

H(G)< H(E),H(A),H(I) 
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Hence the final solution path will be: S----> B----->F----> G 
Time Complexity: The worst case time complexity of Greedy best first search is 
O(bm). 
Space Complexity: The worst case space complexity of Greedy best first search 
is O(bm). Where, m is the maximum depth of the search space. 
Complete: Greedy best-first search is also incomplete, even if the given state 
space is finite. 
Optimal: Greedy best first search algorithm is not optimal. 
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3.1.b A* Search Algorithm 

A* search is the most commonly known form of best-first search. It uses 
heuristic function h(n), and cost to reach the node n from the start state g(n). 
A* search algorithm finds the shortest path through the search space using the 
heuristic function. This search algorithm expands less search tree and provides 
optimal result faster.  

In A* search algorithm, we use search heuristic as well as the cost to reach the 
node. Hence, we can combine both costs as following, and this sum is called as 
a fitness number. 

 

 

Algorithm of A* search: 
 

Step1: Place the starting node in the OPEN list. 

Step 2: Check if the OPEN list is empty or not, if the list is empty then return 

failure and stops. 

Step 3: Select the node from the OPEN list which has the smallest value of 

evaluation function (g+h), if node n is goal node then return success and stop, 

otherwise 

Step 4: Expand node n and generate all of its successors, and put n into the 

closed list. For each successor n', check whether n' is already in the OPEN or 

CLOSED list, if not then compute evaluation function for n' and place into Open 

list. 

Step 5: Else if node n' is already in OPEN and CLOSED, then it should be attached 

to the back pointer which reflects the lowest g(n') value. 

Step 6: Return to Step 2. 
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Advantages: 
 

• A* search algorithm is the best algorithm than other search algorithms. 

• A* search algorithm is optimal and complete. 

• This algorithm can solve very complex problems. 
 
Disadvantages: 

• It does not always produce the shortest path as it mostly based on 
heuristics and approximation. 

• A* search algorithm has some complexity issues. 

• The main drawback of A* is memory requirement as it keeps all 
generated nodes in the memory, so it is not practical for various large-
scale problems. 

 
Example1: Let's explore the application of this method to route-finding 

challenges in Romania for the map given in figure 3.2 .  

We will employ the straight-line distance heuristic, denoted as hSLD. Specifically, 

for our destination in Bucharest, we require knowledge of the straight-line 

distances to Bucharest, as illustrated in Figure 3.22.  
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Figure below illustrates the Stages in an A∗ search for Bucharest. Nodes are 
labelled with f = g + h. The h values are the straight-line distances to Bucharest  
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Example 2: In this example, we will traverse the given graph using the A* 
algorithm. The heuristic value of all states is given in the below table so we will 
calculate the f(n) of each state using the formula f(n)= g(n) + h(n), where g(n) is 
the cost to reach any node from start state. Here we will use OPEN and CLOSED 
list.

 



Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT. 

11 | P a g e  
 

Solution: 

 

Initialization: {(S, 5)} 
Iteration1: {(S--> A, 4), (S-->G, 10)} 
Iteration2: {(S--> A-->C, 4), (S--> A-->B, 7), (S-->G, 10)} 
Iteration3: {(S--> A-->C--->G, 6), (S--> A-->C--->D, 11), (S--> A-->B, 7), (S-->G, 10)} 
Iteration 4 will give the final result, as S--->A--->C--->G it provides the optimal 
path with cost 6. 
Note: Use Open and Closed list is as illustrated in the explanation of BFS. 

3.1.b.1 Points to remember: 

A* Algorithm and First-Occurrence Path: The A* algorithm is designed to return 
the first path it finds from the start node to the goal node. Once a valid path is 
discovered, A* terminates its search, making it more efficient in scenarios where 
finding a single optimal solution is sufficient. 

Quality of Heuristic: The effectiveness of the A* algorithm is significantly 
influenced by the quality of the heuristic function h(n)). A well-designed 
heuristic provides a good estimate of the remaining cost from a given node to 
the goal, guiding A* to explore more promising paths and enhancing its 
efficiency.  

Node Expansion Condition: A* algorithm expands nodes based on the 
evaluation function f(n)=g(n)+h(n), where: 
g(n) is the cost of the path from the start node to node n, 
h(n) is the heuristic estimate of the cost from node n to the goal node. 
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The algorithm expands nodes that satisfy the condition f(n)≤M, where M is a 
specified threshold or maximum cost. This condition ensures that A* explores 
nodes within a predefined cost limit, allowing for efficient pathfinding without 
exhaustively searching the entire space. 
 

Complete: A* algorithm is complete as long as: 

o Branching factor is finite. 

o Cost at every action is fixed. 

3.1.b.2 Conditions for optimality: Admissibility and consistency: 
A* search algorithm is optimal if it follows below two conditions: 

 

Admissible:  
The first condition requires for optimality is that h(n) should be an admissible 
heuristic for A* tree search. An admissible heuristic is one that never 
overestimates the cost to reach the goal. Because g(n) is the actual cost to reach 
n along the current path, and f(n) = g(n) + h(n), we have as an immediate 
consequence that f(n) never overestimates the true cost of a solution along the 
current path through n. If the heuristic function is admissible, then A* tree 
search will always find the least cost path. 

 

Consistency (or sometimes monotonicity):  
Second required condition is consistency for only A* graph-search. A heuristic 
h(n) is consistent if, for every node n and every successor n ′ of n generated by 
any action a, the estimated cost of reaching the goal from n is no greater than 
the step cost of getting to n ′ plus the estimated cost of reaching the goal from 
n ′ : h(n) ≤ c(n, a, n′ ) + h(n ′ ) .  
This is a form of the general triangle inequality, which stipulates that each side 
of a triangle cannot be longer than the sum of the other two sides. Here, the 
triangle is formed by n, n ′ , and the goal Gn closest to n. 

Time Complexity: The time complexity of A* search algorithm depends on 
heuristic function, and the number of nodes expanded is exponential to the 
depth of solution d. So the time complexity is O(bd), where b is the branching 
factor. 

Space Complexity: The space complexity of A* search algorithm is O(bd) 

 



Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT. 

13 | P a g e  
 

3.1.c Heuristics Functions 

Heuristic Functions h(n) guide search algorithms by estimating the cost or 

distance to a goal state from the current state (n). 

Consider the 8-puzzle game. The object of the 8 puzzle is to slide the title 

horizontally or vertically into the empty space until the configuration matches 

the goal configuration. 

 

Figure illustrates the A typical instance of the 8-puzzle. The solution is 26 steps 

long. 

The average solution cost for a randomly generated 8-puzzle instance is about 

22 steps. The branching factor is about 3. (When the empty tile is in the middle, 

four moves are possible; when it is in a corner, two; and when it is along an edge, 

three.) This means that an exhaustive tree search to depth 22 would look at 

about 322 ≈ 3.1 × 1010 states. 

 

The two commonly used candidates for 8 puzzles are as follows: 

 

h1 = the number of misplaced tiles. For Figure, all of the eight tiles are out of 

position, so the start state would have h1 = 8. h1 is an admissible heuristic 

because it is clear that any tile that is out of place must be moved at least once 

 

h2 = the sum of the distances of the tiles from their goal positions. Because tiles 

cannot move along diagonals, the distance we will count is the sum of the 

horizontal and vertical distances. This is sometimes called the city block distance 

or Manhattan distance. h2 is also admissible because all any move can do is 

move one tile one step closer to the goal. Tiles 1 to 8 in the start state give a 

Manhattan distance of h2 = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18 .  
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As expected, neither of these overestimates the true solution cost, which is 26. 

The performance of heuristic search algorithms depends on the quality of the 

heuristic function. One can sometimes construct good heuristics by relaxing the 

problem definition, by storing precomputed solution costs for subproblems in a 

pattern database, or by learning from experience with the problem class. 

 

1. The effect of heuristic accuracy on performance:  

 

Experimentally it is determined that h2 is better than h1. That is for any node n, 

h2(n) ≥ h1(n). This implies that h2 dominate h1. Domination translates directly 

into efficiency.  A∗ using h2 will never expand more nodes than A∗ using h1.  

 

2. Generating admissible heuristics from relaxed problems:  

 

A problem with fewer restrictions on the actions is called a relaxed problem. The 

state-space graph of the relaxed problem is a super graph of the original state 

space because the removal of restrictions creates added edges in the graph. 

Because the relaxed problem adds edges to the state space, any optimal solution 

in the original problem is, by definition, also a solution in the relaxed problem; 

but the relaxed problem may have better solutions if the added edges provide 

short cuts. Hence, the cost of an optimal solution to a relaxed problem is an 

admissible heuristic for the original problem. 

For example, if the 8-puzzle actions are described as  

• A tile can move from square A to square B if 

• A is horizontally or vertically adjacent to B and B is blank, 

we can generate three relaxed problems by removing one or both of the 
conditions: 

a) A tile can move from square A to square B if A is adjacent to B. 
b) A tile can move from square A to square B if B is blank. 
c) A tile can move from square A to square B. 

 
If a collection of admissible heuristics h1 . . . hm is available for a problem and 
none of them dominates any of the others, which should we choose? As it turns 
out, we need not make a choice. We can have the best of all worlds, by defining 
h(n) = max{h1(n), . . . , hm(n)} 
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3.Generating admissible heuristics from subproblems: Pattern databases: 

 

Admissible heuristics can also be derived from the solution cost of a subproblem 

of a given problem. For example, Figure below shows a subproblem of the 8-

puzzle instance. 

 
Fig: A subproblem of the 8-puzzle instance. The task is to get tiles 1, 2, 3, and 4 

into their correct positions, without worrying about what happens to the other 

tiles.  

 

The subproblem involves getting tiles 1, 2, 3, 4 into their correct positions. 

Clearly, the cost of the optimal solution of this subproblem is a lower bound on 

the cost of the complete problem. It turns out to be more accurate than 

Manhattan distance in some case. 

The idea behind pattern databases is to store these exact solution costs for every 

possible subproblem instance—in our example, every possible configuration of 

the four tiles and the blank. (The locations of the other four tiles are irrelevant 

for the purposes of solving the subproblem, but moves of those tiles do count 

toward the cost.) Then we compute an admissible heuristic hDB for each 

complete state encountered during a search simply by looking up the 

corresponding subproblem configuration in the database. 

 

4 Learning heuristics from experience:  

 

A heuristic function, denoted as h(n), aims to approximate the solution cost 

starting from the state represented by node n. One of the strategies is to 

learning from practical experiences. In this context, "experience" refers to 

solving numerous instances of problems like 8-puzzles.  

In each optimal solution to an 8-puzzle, valuable examples emerge, comprising 

a state along the solution path and the actual cost of reaching the solution from 

that particular point.  
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Employing these examples, a learning algorithm can be employed to generate a 

heuristic function, h(n), with the potential to predict solution costs for other 

states encountered during the search process. 

Inductive learning methods are most effective when provided with relevant 

features of a state for predicting its value, rather than relying solely on the raw 

state description.  

 

For instance, a feature like "number of misplaced tiles" (x1(n)) can be useful in 

predicting the distance of a state from the goal in an 8-puzzle. By gathering 

statistics from randomly generated 8-puzzle configurations and their actual 

solution costs, one can use these features to predict h(n).  

 

Multiple features, such as x2(n) representing the "number of pairs of adjacent 

tiles that are not adjacent in the goal state," can be combined using a linear 

combination approach:  

 

h(n) = c1x1(n) + c2x2(n).  

 

The constants (c1 and c2) are adjusted to achieve the best fit with the actual 

data on solution costs. It is expected that both c1 and c2 are positive, as 

misplaced tiles and incorrect adjacent pairs make the problem more challenging. 

While this heuristic satisfies the condition h(n) = 0 for goal states, it may not 

necessarily be both admissible and consistent. 
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3.2.a Logical Agents 

What are Logic Agents?  

Stuart Russell and Peter Norvig, in their influential textbook "Artificial 

Intelligence: A Modern Approach," describe logical agents as those that operate 

based on knowledge representation and logical inference.  

According to their framework, an agent perceives its environment through 

sensors, maintains an internal state (knowledge base), and acts upon the 

environment through effectors. Logical agents specifically use logical reasoning 

to make decisions. 

 

What is Knowledge Representation?  

Knowledge representation in artificial intelligence (AI) refers to the process of 

creating a structured and formalized representation of information in a way 

that can be used by a computer system to reason, make decisions, or perform 

tasks. The goal is to model knowledge in a manner that facilitates effective 

problem-solving, learning, and communication within an AI system. 

 

Example 1 : Semantic Networks 

 

Semantic networks are a graphical representation of knowledge that uses 

nodes to represent concepts and arcs (edges) to represent relationships 

between these concepts.  

Each node in the network represents an entity or concept, and the arcs depict 

the relationships between them.  

This form of knowledge representation is often used to model hierarchies, 

associations, and dependencies. 

 

Knowledge Representation using Semantic Networks  
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Example 2: Knowledge Representation using Propositional logic 

 

In propositional logic, knowledge is represented using propositions, which are 

statements that can be either true or false. Logical operators such as AND, OR, 

and NOT are used to combine propositions.  

Consider the following knowledge about a weather prediction system: 

P: It is raining. 

Q: The sky is cloudy. 

R: The weather forecast predicts rain. 

 

Now, we can represent some logical relationships: 

• If the sky is cloudy (Q), and the weather forecast predicts rain (R), then we 

can infer that it might be raining (P). This relationship can be represented as: 

(Q∧R)→P. 

• If it is not raining (NOT P), then the weather forecast predicting rain (R) must 

be false. This relationship can be represented as: ¬P→¬R. 

 

What is Logical Reasoning? 

Logical reasoning is a cognitive process of making inferences or drawing 

conclusions based on logical principles, rules, and relationships. It involves 

analyzing information and using valid deductive or inductive arguments to 

reach a sound or reasonable conclusion. Logical reasoning is an essential aspect 

of problem-solving, decision-making, and critical thinking. 

 

Example: Syllogism  

A syllogism is a form of deductive reasoning where a conclusion is drawn from 

two given or assumed propositions (premises).  

• Premise 1: All humans are mortal.  

• Premise 2: Socrates is a human. 

• Conclusion: Therefore, Socrates is mortal. 

 

Knowledge based Agents 

A knowledge-based agent is a type of intelligent agent that makes decisions and 

takes actions based on knowledge it possesses. A knowledge-based agent is 

characterized by its ability to represent and manipulate knowledge in a 

structured way, allowing it to reason, make decisions, and take actions based on 

the information stored in its knowledge base. 
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Key Components of Knowledge base: 

 

1. Knowledge Base (KB) : The central component of a knowledge-based agent 

is its knowledge base. The knowledge base is a collection of sentences 

expressed in a knowledge representation language. Each sentence 

represents an assertion about the world. The knowledge base is where the 

agent stores information that it uses to make decisions and take actions. 

Sometimes we dignify a sentence with the name axiom, when the sentence 

is taken as given without being derived from other sentences. 

 

2. Knowledge Representation Language: The sentences in the knowledge base 

are expressed in a language called a knowledge representation language. 

This language allows the agent to formally represent information about the 

world in a way that the agent can understand and manipulate. 

 

3. Axioms: Some sentences in the knowledge base may be dignified with the 

name "axiom," especially when they are taken as given without being derived 

from other sentences. Axioms are fundamental statements that serve as 

foundational knowledge for the agent. 

 

4. TELL Operation: There is a mechanism for adding new sentences to the 

knowledge base. This operation is referred to as TELL. It allows the agent to 

incorporate new information into its knowledge base. 

 

5. ASK Operation: The agent needs a way to query the knowledge base to 

retrieve information. The standard operation for querying is referred to as 

ASK. It allows the agent to ask questions about what is known. 

 

6. Inference : Both TELL and ASK operations may involve inference, which is the 

process of deriving new sentences from existing ones. Inference must adhere 

to the requirement that answers derived from the knowledge base follow 

logically from the information previously TELLed to the knowledge base. 

 

7. Background Knowledge: The knowledge base may initially contain some 

background knowledge. This knowledge provides a foundational 

understanding of the environment in which the agent operates. 
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8. Agent Program: The knowledge-based agent program outlines the overall 

structure of the agent. It takes a percept (input) and returns an action as 

output. The agent program incorporates the knowledge base and other 

components to facilitate decision-making and action-taking. 

Agent Program: Figure below illustrates a generic knowledge-based agent. 

Given a percept, the agent adds the percept to its knowledge base, asks the 

knowledge base for the best action, and tells the knowledge base that it has 

in fact taken that action 

 

 

Agents’ knowledge and goals is more important: At the knowledge level, we 

only need to specify the  

• agent's knowledge and  

• goals to determine its behavior.  

 

For instance, consider an automated taxi with the goal of transporting a 

passenger from San Francisco to Marin County. If the taxi knows that the 

Golden Gate Bridge is the sole link between these locations, we can expect it to 

cross the bridge, understanding that it aligns with its goal.  

 

Importantly, this analysis remains independent of the taxi's implementation 

details.  

Whether its geographical knowledge is represented through linked lists, pixel 

maps, or if it reasons using symbolic strings stored in registers or through 

neural network signal propagation, the behavior is determined solely by its 

knowledge and goals. 

 

 

 



Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT. 

21 | P a g e  
 

3.2.b The Wumpus World 
 

The wumpus world is a cave consisting of rooms connected by passageways.  

Lurking somewhere in the cave is the terrible wumpus, a beast that eats anyone 

who enters its room. The wumpus can be shot by an agent, but the agent has 

only one arrow. Some rooms contain bottomless pits that will trap anyone who 

wanders into these rooms (except for the wumpus, which is too big to fall in). 

The only mitigating feature of this bleak environment is the possibility of finding 

a heap of gold. 

A typical wumpus world is illustrated in the figure below. The agent is in the 

bottom left corner, facing right. 

 

 
 

PEAS description of Wumpus World 

• Performance measure: +1000 for climbing out of the cave with the gold, 

–1000 for falling into a pit or being eaten by the wumpus, –1 for each 

action taken and –10 for using up the arrow. The game ends either when 

the agent dies or when the agent climbs out of the cave.  
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•  Environment: A 4 × 4 grid of rooms. The agent always starts in the square 

labeled [1,1], facing to the right. The locations of the gold and the wumpus 

are chosen randomly, with a uniform distribution, from the squares other 

than the start square. In addition, each square other than the start can be 

a pit, with probability 0.2. 

• Actuators: The agent can move Forward, TurnLeft by 90◦ , or TurnRight 

by 90◦ . The agent dies a miserable death if it enters a square containing 

a pit or a live wumpus. (It is safe, albeit smelly, to enter a square with a 

dead wumpus.) If an agent tries to move forward and bumps into a wall, 

then the agent does not move. The action Grab can be used to pick up the 

gold if it is in the same square as the agent. The action Shoot can be used 

to fire an arrow in a straight line in the direction the agent is facing. The 

arrow continues until it either hits (and hence kills) the wumpus or hits a 

wall. The agent has only one arrow, so only the first Shoot action has any 

effect. Finally, the action Climb can be used to climb out of the cave, but 

only from square [1,1] 

• Sensors: The agent has five sensors, each of which gives a single bit of 

information:  

1. In the square containing the wumpus and in the directly (not 

diagonally) adjacent squares, the agent will perceive a Stench. 

2. In the squares directly adjacent to a pit, the agent will perceive a 

Breeze.  

3. In the square where the gold is, the agent will perceive a Glitter.  

4. When an agent walks into a wall, it will perceive a Bump.  

5. When the wumpus is killed, it emits a woeful Scream that can be 

perceived anywhere in the cave.  

 

5 Percept Symbols : [Stench, Breeze, Glitter, Bump, Scream]. 

The percepts will be given to the agent program in the form of a list of five 

symbols; for example, if there is a stench and a breeze, but no glitter, bump, or 

scream, the agent program will get [Stench, Breeze, None, None, None]. 

 

The first step taken by the agent in the wumpus world.  

(a) The initial situation, after percept [None, None, None, None, None]. (b) 

After one move, with percept [None, Breeze, None, None, None] 
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Fig 7.3 

 

Two later stages in the progress of the agent.  

(a) After the third move, with percept [Stench, None, None, None, None].  

(b) After the fifth move, with percept [Stench, Breeze, Glitter , None, None]. 

 
Fig 7.4  

• The agent’s initial knowledge base contains the rules of the environment, 

as described previously; in particular, it knows that it is in [1,1] and that 

[1,1] is a safe square; we denote that with an “A” and “OK,” respectively, 

in square [1,1]. 

• The first percept is [None, None, None, None, None], from which the 

agent can conclude that its neighboring squares, [1,2] and [2,1], are free 

of dangers—they are OK. Figure 7.3(a) shows the agent’s state of 

knowledge at this point. 
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• A cautious agent will move only into a square that it knows to be OK. Let 

us suppose the agent decides to move forward to [2,1]. The agent 

perceives a breeze (denoted by “B”) in [2,1], so there must be a pit in a 

neighboring square. The pit cannot be in [1,1], by the rules of the game, 

so there must be a pit in [2,2] or [3,1] or both. The notation “P?” in Figure 

7.3(b) indicates a possible pit in those squares. At this point, there is only 

one known square that is OK and that has not yet been visited. So the 

prudent agent will turn around, go back to [1,1], and then proceed to 

[1,2]. 

• The agent perceives a stench in [1,2], resulting in the state of knowledge 

shown in Figure 7.4(a). The stench in [1,2] means that there must be a 

wumpus nearby. But the wumpus cannot be in [1,1], by the rules of the 

game, and it cannot be in [2,2] (or the agent would have detected a stench 

when it was in [2,1]). Therefore, the agent can infer that the wumpus is in 

[1,3]. The notation W! indicates this inference. Moreover, the lack of a 

breeze in [1,2] implies that there is no pit in [2,2]. Yet the agent has 

already inferred that there must be a pit in either [2,2] or [3,1], so this 

means it must be in [3,1]. This is a fairly difficult inference, because it 

combines knowledge gained at different times in different places and 

relies on the lack of a percept to make one crucial step.  

• The agent has now proved to itself that there is neither a pit nor a wumpus 

in [2,2], so it is OK to move there. We do not show the agent’s state of 

knowledge at [2,2]; we just assume that the agent turns and moves to 

[2,3], giving us Figure 7.4(b). In [2,3], the agent detects a glitter, so it 

should grab the gold and then return home. 
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3.2.c Logic:  
 

In AI Logic is a fundamental component of logical representation and 

reasoning. It enables machines to understand and represent data and 

knowledge in a reasoning way. Logical reasoning is a process of inferring a 

conclusion based on observations or data. It is concerned with the principles 

of reasoning and how conclusions can be drawn from given premises.  Logic 

provides the theoretical foundation for reasoning. 

 

Types of Logic: 

 
Logics are formal languages for representing information such that 

conclusions can be drawn. Syntax defines the sentences in the language. 

Semantics define the meaning of sentences i.e. define truth of a sentence in 

a world. 

 

 
 

 

Syntax : Syntax refers to the structure and rules governing the formation of 

sentences or expressions in a language or representation system.Syntax is 

the set of rules that dictate which sentences are well-formed in the 

representation language. For example, "x + y = 4" adheres to the syntax, 

while "x4y+ =" does not. 

 

 

Semantics: Semantics deals with the meaning of sentences or expressions in 

a language. It specifies the truth or falsehood of sentences in relation to 
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possible worlds or situations. Semantics defines the truth of each sentence 

in relation to possible worlds. For instance, the sentence "x + y = 4" is true in 

a world where x is 2 and y is 2, but false in a world where x is 1 and y is 1. 

 

Model: A model is a mathematical abstraction that represents a possible 

world in the context of logic. It is used to fix the truth or falsehood of 

sentences based on specific assignments of values to variables. Models serve 

as precise mathematical abstractions of possible worlds. They fix the truth 

or falsehood of sentences based on assignments of real numbers to variables. 

The term "model" is used interchangeably with "possible world." Informally, 

we may think of a possible world as, for example, having x men and y women 

sitting at a table playing bridge, and the sentence x + y = 4 is true when there 

are four people in total. Formally, the possible models are just all possible 

assignments of real numbers to the variables x and y. 

 

Satisfaction: Satisfaction is a relationship between a model and a sentence, 

indicating that the model makes the sentence true. If a sentence is true in a 

particular model, we say that the model satisfies the sentence. 

In the given context, if a sentence α is true in a model m, it is said that m 

satisfies α. Alternatively, m is considered a model of α. The notation M(α) is 

used to represent the set of all models that satisfy the sentence α. 

 

Model or Possible World in logic  

 

The semantics defines the truth of each sentence with respect to each 

possible world. In standard logics, every sentence must be either true or false 

in each possible world—there is no “in between.” When we need to be 

precise, we use the term model in place of “possible world.” If a sentence α 

is true in model m, we say that m satisfies α or sometimes m is a model of α. 

We use the notation M(α) to mean the set of all models of α.   

 

Logical entailment between sentences: A sentence follows logically from 

another sentence. In mathematical notation, we write α |= β. Entailment in 

logic refers to a relationship between propositions where the truth of one 

proposition necessarily guarantees the truth of another. If proposition A 

entails proposition B, it means that whenever A is true, B must also be true. 

In formal logic, this relationship is often represented as A |= B. 
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Formal Definition:  The formal definition of entailment is this:  

 

α |= β if and only if, in every model in which α is true, β is also true.  

Using the notation just introduced, we can write  

α |= β if and only if M(α) ⊆ M(β) . 

 
 

Example: The relation of entailment is familiar from arithmetic; the idea that 

the sentence x = 0 entails the sentence xy = 0. Obviously, in any model where 

x is zero, it is the case that xy is zero (regardless of the value of y) 

 

Wumpus World Example: Consider the situation in Figure below: the agent 

has detected nothing in [1,1] and a breeze in [2,1]. 

 

 
 

These precepts, combined with the agent’s knowledge of the rules of the 

wumpus world, constitute the KB. The agent is interested (among other 

things) in whether the adjacent squares [1,2], [2,2], and [3,1] contain pits. 

Each of the three squares might or might not contain a pit, so (for the 

purposes of this example) there are 2^ 3 =8 possible models. These eight 

models are shown in Figure 7.5 below:  
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Fig7.5 Possible models for the presence of pits in squares [1,2], [2,2], and [3,1]. The KB 

corresponding to the observations of nothing in [1,1] and a breeze in [2,1] is shown by the solid 

line. (a) Dotted line shows models of α1 (no pit in [1,2]). (b) Dotted line shows models of α2 (no 

pit in [2,2]). 

 

The KB can be thought of as a set of sentences or as a single sentence that 

asserts all the individual sentences. The KB is false in models that contradict 

what the agent knows— for example, the KB is false in any model in which 

[1,2] contains a pit, because there is no breeze in [1,1]. There are in fact just 

three models in which the KB is true, and these are shown surrounded by a 

solid line in Figure 7.5. Now let us consider two possible conclusions: 

α1 = “There is no pit in [1,2].” 

α2 = “There is no pit in [2,2].” 

We have surrounded the models of α1 and α2 with dotted lines in Figures 

7.5(a) and 7.5(b), respectively. By inspection, we see the following: in every 

model in which KB is true, α1 is also true. 

Hence, KB |= α1: there is no pit in [1,2]. We can also see that in some models 

in which KB is true, α2 is false. Hence, 

 :  

the agent cannot conclude that there is no pit in [2,2]. (Nor can it conclude 

that there is a pit in [2,2].) 

 

Logical Inference and Model Checking:   

Logical inference is the process of deriving new sentences (conclusions) from 

existing knowledge or premises. Model checking is an example of a logical 

inference algorithm where all possible models are enumerated to check if a 

conclusion holds in all models where the premises are true. 
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Example: In the wumpus-world example, logical inference is used to 

determine conclusions about the presence of pits in adjacent squares based 

on percepts and knowledge. 

 

Model Checking: 

Model checking is an inference algorithm that checks if a conclusion holds in 

all models where the premises are true. In the Wumpus-world example, 

model checking is applied to determine if certain conclusions (e.g., "There is 

no pit in [1,2]") hold in all possible models consistent with the agent's 

knowledge (KB). The inference algorithm illustrated in Figure 7.5 is called 

model checking, because it enumerates all possible models to check that α is 

true in all models in which KB is true, that is, that M(KB) ⊆ M(α). 

 

NOTE: To comprehend the concepts of entailment and inference, consider 

envisioning the set of all consequences derived from a knowledge base (KB) 

as a haystack, and α as a needle within it. Entailment corresponds to the 

presence of the needle in the haystack, while inference is akin to the act of 

discovering it. This distinction is formalized through notation: if an inference 

algorithm denoted by 'i' can deduce α from KB, we express it as: 

KB⊢I  α 
This notation is read as "α is derived from KB by i" or "i derives α from KB." 

 

 

Sound or Truth Preserving: 

 

Definition: An inference algorithm is sound or truth preserving if it only 

derives sentences that are actually entailed by the premises. 

Importance: A sound inference procedure ensures that conclusions derived 

from premises are always true in the real world. 

Example: Model checking is considered a sound procedure, as it derives 

conclusions that hold in all models where the premises are true. 

 

Completeness: 

 

Definition: An inference algorithm is complete if it can derive any sentence 

that is entailed by the premises. 
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Importance: Completeness ensures that the inference procedure covers all 

possible entailed sentences. 

Consideration: Completeness becomes crucial for knowledge bases with 

infinite consequences. 

Example: For finite knowledge bases, a systematic examination can decide 

whether a sentence is entailed, ensuring completeness. However, in infinite 

knowledge bases, completeness is still achievable with suitable inference 

procedures. 

Correspondence between world and representation 

We have outlined a reasoning process whose conclusions are ensured to be 

accurate in any conceivable scenario where the initial premises hold true. 

Specifically, if the knowledge base (KB) accurately reflects the real-world 

state, then any statement α derived from KB through a sound inference 

procedure is also valid in the real world. Thus, although the inference process 

operates on "syntax" — involving internal physical configurations like bits in 

registers or patterns of electrical signals in brains — the process mirrors the 

real-world dynamics. It demonstrates how certain aspects of the real world 

are affirmed due to the presence of other aspects in the real world. This 

relationship between the world and its representation is depicted in Figure 

7.6. 
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Grounding: 

 

Definition: Grounding refers to the connection between logical reasoning 

processes and the real environment in which an agent exists. 

Explanation: It addresses how we establish that the knowledge base (KB) is 

true in the real world. 

Example: In the Wumpus-world example, the agent's sensors create a 

connection by producing suitable sentences based on perceptual 

information. The truth of percept sentences is defined by the sensing and 

sentence construction processes. General rules, derived through learning, 

contribute to the knowledge base, although learning is fallible. 

 

Overall, the discussion highlights the key concepts of entailment, logical 

inference, model checking, soundness, completeness, and grounding within 

the context of reasoning and knowledge representation. 
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3.2.d Propositional Logic 
 

• Propositional logic, also known as sentential logic or propositional 

calculus, is a branch of formal logic that deals with the logical 

relationships between propositions (statements or sentences) without 

considering the internal structure of the propositions.  

• In propositional logic, propositions are considered as atomic units, and 

logical operations are applied to these propositions to form more complex 

statements. 

 

Some key elements and concepts in propositional logic: 

 

1. Propositions: These are statements that can be either true or false. 

Propositions are represented by variables, typically denoted by letters (p, 

q, r, etc.). 

2. Logical Connectives: These are symbols that combine propositions to 

form more complex statements. The main logical connectives in 

propositional logic include: 

1. Conjunction (∧): Represents "and." The compound proposition "p 

∧ q" is true only when both p and q are true. 

2. Disjunction (∨): Represents "or." The compound proposition "p ∨ 

q" is true when at least one of p or q is true. 

3. Negation (¬): Represents "not." The compound proposition "¬p" is 

true when p is false. 

4. Implication (→): Represents "if...then." The compound proposition 

"p → q" is false only when p is true and q is false. 

5. Biconditional (↔): Represents "if and only if." The compound 

proposition "p ↔ q" is true when p and q have the same truth 

value. 

3. Truth Tables: Truth tables are used to systematically list all possible truth 

values for a compound proposition based on the truth values of its 

constituent propositions. Truth tables help determine the truth 

conditions for complex statements. 

4. Logical Equivalence: Two propositions are logically equivalent if they have 

the same truth values for all possible combinations of truth values of their 

component propositions. 
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Syntax in Propositional Logic  
 

In propositional logic, the syntax dictates the permissible sentences. 

 

Atomic Sentences: Atomic sentences are comprised of a single proposition 

symbol, each symbol representing a proposition that can be either true or 

false. Symbol names, starting with an uppercase letter and potentially 

containing other letters or subscripts (e.g., P, Q, R, W1,3, North), are arbitrary 

but often chosen for mnemonic value.  

For instance, W1,3 might stand for the proposition that the wumpus is in [1,3]. 

Notably, symbols like W, 1, and 3 are not meaningful constituents of the 

atomic symbol. Two proposition symbols, "True" (always true) and "False" 

(always false), have fixed meanings. 

 

Complex Sentences: Construction of complex sentences involves simpler 

ones through the use of parentheses and logical connectives. Five common 

logical connectives include: 

 

Negation ¬ (not): A sentence like ¬W1,3 is termed the negation of W1,3. A 

literal is either a positive literal (atomic sentence) or a negated atomic 

sentence (negative literal). 

 

Conjunction ∧ (and): A sentence with ∧ as its main connective, e.g., W1,3 ∧ 

P3,1, is a conjunction; its parts are the conjuncts. 

 

Disjunction ∨ (or): A sentence using ∨, like (W1,3∧P3,1)∨W2,2, is a disjunction 

of the disjuncts (W1,3 ∧ P3,1) and W2,2. 

 

Implication ⇒ (implies): A sentence such as (W1,3∧P3,1) ⇒ ¬W2,2 is termed an 

implication (or conditional). Its premise or antecedent is (W1,3 ∧ P3,1), and its 

conclusion or consequent is ¬W2,2. Implications are also known as rules or if–

then statements. The implication symbol may also be represented as ⊃ or → 

in other texts. 

 

Biconditional ⇔ (if and only if): The sentence W1,3 ⇔ ¬W2,2 is a biconditional. 

Some texts represent this as ≡. 
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This syntax allows the formulation of propositions and their logical 

relationships using a set of well-defined connectives. 

Figure below gives a formal grammar, BNF (Backus–Naur Form) grammar of 

sentences in propositional logic, along with operator precedences, from 

highest to lowest. 
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Semantics in Propositional Logic  
 

Semantics 

• The semantics defines the rules for determining the truth of a sentence 

with respect to a particular model.  

• In propositional logic, a model simply fixes the truth value—true or 

false—for every proposition symbol.  

• For example, if the sentences in the knowledge base make use of the 

proposition symbols P1,2, P2,2, and P3,1, then one possible model is  

• m1 = {P1,2 = false, P2,2 = false, P3,1 = true} 

 

Rule for Atomic Sentences 

 

• True is true in every model and False is false in every model. 

 

For complex sentences, we have five rules, which hold for any subsentences 

P and Q in any model m (here “iff” means “if and only if”): 

 

• ¬P is true iff P is false in m. 

• P ∧ Q is true iff both P and Q are true in m.  

• P ∨ Q is true iff either P or Q is true in m.  

• P ⇒ Q is true unless P is true and Q is false in m.  

• P ⇔ Q is true iff P and Q are both true or both false in m. 
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A simple knowledge base : Wumpus World 

 
Now that we have defined the semantics for propositional logic, we can 

construct a knowledge base for the Wumpus world as follows :  
 

Symbols for each [x, y] location: 

• Px,y is true if there is a pit in [x, y].  

• Wx,y is true if there is a wumpus in [x, y], dead or alive.  

• Bx,y is true if the agent perceives a breeze in [x, y].  

• Sx,y is true if the agent perceives a stench in [x, y]. 

 

Sentences  

• There is no pit in [1,1]:  

     R1 : ¬P1,1 . 

• A square is breezy if and only if there is a pit in a neighboring square. This 

has to be stated for each square; for now, we include just the relevant 

squares: 

 R2 : B1,1 ⇔ (P1,2 ∨ P2,1) .  

 R3 : B2,1 ⇔ (P1,1 ∨ P2,2 ∨ P3,1) . 

• The preceding sentences are true in all Wumpus worlds: 

 R4 : ¬B1,1  

 R5 : B2,1 . 
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A simple inference Procedure  
Our goal now is to decide whether KB |= α for some sentence α. For example, 

is ¬P1,2 entailed by our KB? Our first algorithm for inference is a model-

checking approach that is a direct implementation of the definition of 

entailment: enumerate the models, and check that α is true in every model 

in which KB is true. Models are assignments of true or false to every 

proposition symbol. Returning to our wumpus-world example, the relevant 

proposi tion symbols are B1,1, B2,1, P1,1, P1,2, P2,1, P2,2, and P3,1. With seven 

symbols, there are 27 = 128 possible models; in three of these, KB is true 

(Figure 7.9).  

 
 

In those three models, ¬P1,2 is true, hence there is no pit in [1,2]. On the other 

hand, P2,2 is true in two of the three models and false in one, so we cannot 

yet tell whether there is a pit in [2,2]. Figure 7.9 reproduces in a more precise 

form the reasoning illustrated in Figure 7.5.  

A general algorithm for deciding entailment in propositional logic is shown in 

Figure 7.10. The algorithm is sound because it implements directly the 

definition of entailment, and complete because it works for any KB and α and 

always terminates—there are only finitely many models to examine. If KB 

and α contain n symbols in all, then there are 2n models. Thus, the time 

complexity of the algorithm is O(2n). (The space complexity is only O(n) 

because the enumeration is depth-first). Every known inference algorithm for 
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propositional logic has a worst-case complexity that is exponential in the size 

of the input. 
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3.2.e Propositional Theorem Proving  
 

Until now, our approach to establishing entailment has involved model 

checking—examining various models to demonstrate that a given sentence 

holds universally. However, in this section, we explore an alternative method 

known as theorem proving. Here, we apply rules of inference directly to the 

sentences within our knowledge base, constructing a proof for the desired 

sentence without resorting to the enumeration of models. Notably, if the 

number of models is extensive but the proof's length is concise, theorem 

proving can offer greater efficiency compared to the process of model 

checking. 

 

Logical Equivalence: 
 

Two sentences, α and β, are logically equivalent if they are true in the same 

set of models, denoted as α ≡ β. 

Example:  P∧Q and Q∧P are logically equivalent, as they have the same truth 

values in all possible models. 

Figure below illustrates the Standard logical equivalences. The symbols α, β, 

and γ stand for arbitrary sentences of propositional logic. 

 
 

All of the logical equivalences in Figure can be used as inference rules. For 

example, the equivalence for biconditional elimination yields the two inference 

rules : 
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Validity: 

A sentence is valid if it is true in all models. Valid sentences are also referred to 

as tautologies, meaning they are necessarily true. 

 

Example:  

P∨¬P is a valid sentence because it is true in every possible model. 

 

Tautology: 

A tautology is a valid sentence, meaning it is true in all models. 

 

Example:  

P∨¬P is a tautology. 

 

Deduction Theorem: 

The deduction theorem states that for any sentences α and β, α⊨β if and only if 

the sentence (α⇒β) is valid. 

 

Example: If  P⇒Q is valid, then P⊨Q, according to the deduction theorem. 

 

Satisfiability: 

A sentence is satisfiable if it is true in at least one model.  

Example: The knowledge base (R1∧R2∧R3∧R4∧R5) is satisfiable because there 

exist models in which it is true. 

 

SAT Problem: 

The SAT problem involves determining the satisfiability of sentences in 

propositional logic. It was the first problem proved to be NP-complete. 

 

Example: Given a propositional logic sentence, determining if there exists a 

model in which it is true represents an instance of the SAT problem. 

 

Connection between Validity and Satisfiability: 

α is valid if and only if ¬α is unsatisfiable; conversely, α is satisfiable if and only 

if ¬α is not valid. We also have the following useful result: α |= β if and only if 

the sentence (α ∧ ¬β) is unsatisfiable 

 

Example: If (P∨Q) is valid then ¬(P∨Q) is unsatisfiable, and vice versa. 
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Reduction ad Absurdum (Proof by Contradiction): 

 

It is also called proof by refutation or proof by contradiction. Proving β from α 

by checking the unsatisfiability of (α∧¬β) corresponds to the proof technique of 

reduction and absurdum. It involves assuming β to be false and demonstrating 

that it leads to a contradiction with known axioms α. This 

contradiction is exactly what is meant by saying that the sentence (α ∧ ¬β) is 

unsatisfiable 

Example: To prove P⇒Q, assume ¬(P⇒Q) and show that this assumption leads 

to a contradiction with known axioms. 

 

Propositional Theorem Proving will be discussed under the following 

headings: 
 

1.Inferences and Proofs 

2.Proof by Resolution 

3.Horn Clauses and definite Clauses 

4.Forward and backward chaining 

 

1. Inferences and Proofs  
 

This section covers inference rules that can be applied to derive a proof-a chain 

of conclusions that leads to the desired goal. 

 

1. Modus Ponens : The best-known rule is called Modus Ponens (Latin for 

mode that affirms) and is written as :  

  

         
The notation means that, whenever any sentences of the form α ⇒ β and α are 

given, then the sentence β can be inferred.  

For example, if (WumpusAhead ∧WumpusAlive) ⇒ Shoot and (WumpusAhead 

∧ WumpusAlive) are given, then Shoot can be inferred. 
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2. And Elimination: Says that, from a conjunction, any of the conjuncts can be 

inferred: 

 
For example, from (WumpusAhead ∧ WumpusAlive), WumpusAlive can 

be inferred. 

 

3. And Introduction: The concept of "And Introduction" in logic is a rule of 

inference that allows you to derive a conjunction (logical AND) from the 

individual components. It's also known as the "conjunction introduction" or 

"∧-Introduction."  The rule is typically expressed as follows: 

P , Q 

P∧Q 
This means that if you have two propositions, P and Q, both of which are true, 

then you can infer the conjunction P∧Q as also being true. In a more natural 

language explanation, if you know that proposition P is true and proposition 

Q is true, you can assert that the conjunction of P and Q (i.e., both P and Q 

together) is also true. 

 

Example: 

Suppose you know:  

Statement 1: It is raining.  

Statement 2: It is cloudy. 

Using And Introduction, you can assert:  

Conclusion: It is raining and it is cloudy.  

This rule is fundamental in constructing logical arguments and proofs where 

you want to combine multiple true statements into a single conjunction. 

 

 

4. Or Introduction: The "Or Introduction" rule, also known as the "Disjunction 

Introduction" or "∨-Introduction," is a logical inference rule that allows you 

to assert a disjunction (logical OR) based on the truth of one of its 

components. The rule is expressed as follows: 

 

                                                P 

PVQ 
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Example: Suppose you know: 

Statement 1: The sun is shining. 

Using Or Introduction, you can assert: 

Conclusion: The sun is shining or it is raining. 

In this example, the truth of the first statement allows you to introduce 

the disjunction, stating that either the sun is shining or it is raining. 

 

The Or Introduction rule is essential for building logical arguments and 

proofs where you want to introduce alternatives or possibilities based on 

the truth of a single proposition. 

 

5. Double Negation elimination: The "Double Negation Elimination" rule is a 

logical inference rule that allows you to simplify a statement by removing 

double negations. The rule is often expressed as: 

 

                                              ¬ ¬ P 

         P 
          This rule asserts that if you have a double negation (¬¬) of a 

proposition  

P, then you can eliminate the double negation and conclude that P is true. 

In simpler terms, if you know that it is not the case that it is not the case 

that  P is true, then you can assert that P is indeed true. 

 

Example: Suppose you know:  

Statement: It is not false that the exam is difficult. Using Double Negation 

Elimination, you can simplify to: 

Conclusion: The exam is difficult. 

In this example, the double negation is eliminated, leading to a simpler 

and more direct statement. 

Double Negation Elimination is a fundamental rule in logic that helps 

streamline expressions and statements by removing unnecessary layers 

of negation. 

 

6. Unit Resolution: "Unit Resolution" is a rule of inference in propositional logic, 

specifically used in the context of resolution-based theorem proving. It's a 

technique employed in automated reasoning and artificial intelligence to 

simplify logical formulas.  



Source Book: Artificial Intelligence by Stuart Russel and Peter Norvig. Notes Compiled by: Dr. Thyagaraju G S, Professor, HOD-CSE, SDMIT. 

44 | P a g e  
 

The rule of Unit Resolution states that if you have a clause in which one 

literal is the negation of another (i.e., a literal and its negation), you can 

resolve or eliminate both and simplify the clause to the remaining literals. 

Formally, if you have a clause C containing literals P and ¬P, then resolving 

C results in the empty clause, denoted by □.  

Mathematically, the Unit Resolution rule can be expressed as: 

 
Here PVQ and ¬P∨R are clauses, and after applying Unit Resolution, Q∨R 

is the simplified clause. 

 

Example: 
Suppose you have the clauses: 

C1: P∨Q 

C2: ¬P∨R 

Applying Unit Resolution, you resolve P and ¬P to get: 

C3: Q∨R 

 

Unit Resolution is a key step in the resolution-refutation method, a 

technique used for proving the unsatisfiability of logical formulas. It is 

particularly useful in automated theorem proving systems and is a 

foundational component in algorithms for solving propositional 

satisfiability problems. 

 

 

7. Complete Resolution: "Complete Resolution" refers to a resolution-based 

inference rule used in automated theorem proving and propositional logic. It 

is a more general form of the Unit Resolution and is often employed in 

resolution-based proof procedures. In Complete Resolution, you apply the 

resolution rule to all possible pairs of literals in a clause, not just restricting it 

to complementary literals (as in Unit Resolution). The general form of the 

Complete Resolution rule can be expressed as follows: 
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 ere, C1  and C2   are clauses, and P1   and ¬P  are literals. The resolution 

results in a new clause C, which is a combination of the non-resolved 

literals from C 1   and C2 . 

Complete Resolution is more general than Unit Resolution and can be 

applied to a broader set of clauses. However, it is also more 

computationally expensive, as it involves considering all pairs of literals in 

the input clauses. In practice, strategies such as subsumption and 

factoring are often used to enhance the efficiency of resolution-based 

theorem proving procedures. 

 

8. Monotonicity: Monotonicity in the context of logical systems refers to a 

property where the set of entailed sentences (sentences that can be logically 

inferred or deduced) can only increase or remain the same as new 

information is added to the knowledge base. The discussion outlines the 

monotonicity property with the following expression: 

 
This statement means that if a certain sentence  

α is entailed or logically follows from the existing knowledge base (KB), 

adding additional information in the form of β to the knowledge base does 

not invalidate the inference of  α. In other words, the set of sentences 

entailed by the knowledge base either remains the same or increases with 

the addition of new information.  

Example: Suppose the knowledge base (KB) entails the conclusion α, 

which states there is no pit in location [1,2]. According to monotonicity, if 

you introduce additional information β (e.g., stating there are exactly 

eight pits in the world) to the knowledge base, the conclusion α still holds. 

The agent can draw additional conclusions based on the new information 

(β), but it does not invalidate the existing conclusion α. In essence, 

monotonicity ensures that the application of inference rules remains 

consistent and reliable, allowing logical deductions to be made whenever 

suitable premises are found in the knowledge base, irrespective of the 

other information present in the knowledge base. 

 

Illustration of Inference and Proofs: Let us see how these inference rules and 

equivalences can be used in the Wumpus world. We start with the knowledge 

base containing R1 through R5 and show how to prove ¬P1,2, that is, there is no 

pit in [1,2].  
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First, we apply biconditional elimination to R2 to obtain  

 

R6 : (B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) ⇒ B1,1) .  
 

Then we apply And-Elimination to R6 to obtain  

 

R7 : ((P1,2 ∨ P2,1) ⇒ B1,1) .  
 

Logical equivalence for contrapositives gives  

 

R8 : (¬B1,1 ⇒ ¬(P1,2 ∨ P2,1)) .  
 

Now we can apply Modus Ponens with R8 and the percept R4 (i.e., ¬B1,1), to 

obtain  

 

R9 : ¬(P1,2 ∨ P2,1) .  
 

Finally, we apply De Morgan’s rule, giving the conclusion  

 

R10 : ¬P1,2 ∧ ¬P2,1 .  
 

That is, neither [1,2] nor [2,1] contains a pit. 
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2.Proof by Resolution  
 

Proof by resolution is a technique used in automated theorem proving, 

specifically in propositional logic. The goal is to prove the unsatisfiability of a set 

of clauses by applying a resolution-based inference rule. The process involves 

repeatedly applying resolution until either the empty clause is derived, 

demonstrating unsatisfiability, or no further resolutions are possible, indicating 

the set of clauses is satisfiable. 

 

Here's an overview of the proof by resolution process: 

 

Initial Set of Clauses (Knowledge Base): Begin with a set of clauses representing 

the knowledge base. These clauses are typically obtained from logical 

statements or axioms. 

 

Negate the Conclusion: To prove a statement (conclusion), negate it. This 

negation is added to the set of clauses. 

 

Apply Resolution: Apply the resolution rule iteratively to the set of clauses. The 

resolution rule involves selecting two clauses that contain complementary 

literals (a literal and its negation). By resolving these clauses, a new clause is 

generated. 

 

Continue Resolving: Repeat the resolution process until either: 

• The empty clause (□) is derived, indicating unsatisfiability. 

• No further resolutions are possible, and the set of clauses remains 

unchanged, indicating satisfiability. 

 

Conclusion:  

• If the empty clause is derived, the original set of clauses is unsatisfiable, 

and the negated statement is proven. 

• If no further resolutions are possible and the set of clauses remains, then 

the original set of clauses is satisfiable, and the negated statement is not 

proven. 
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Termination: The proof by resolution terminates when either the unsatisfiability 

is established, or it is determined that no further resolutions can lead to 

unsatisfiability. 

 

This method is efficient for proving unsatisfiability but may not always 

terminate for satisfiable sets of clauses. It is a key component in automated 

reasoning systems, especially in applications such as artificial intelligence and 

formal verification. 

 

Example : Let's consider a simplified example of a knowledge base for the 

Wumpus World scenario and demonstrate proof by resolution to establish the 

unsatisfiability of a certain statement. In Wumpus World, an agent explores a 

grid containing a Wumpus (a monster), pits, and gold. 

 

Knowledge Base (KB): Assume our initial knowledge base includes the following 

clauses: 

1. WumpusIn[1,1] ∨ PitIn[1,2] 

            (There is either a Wumpus in [1,1] or a pit in [1,2].) 

2. ¬WumpusIn[1,1]∨¬PitIn[1,2] 

            (There is neither a Wumpus in [1,1] nor a pit in [1,2].) 

3. Breeze[1,2]⇒PitIn[1,2] 

                (If there is a breeze in [1,2], then there is a pit in [1,2].) 

4. ¬Breeze[1,2]⇒¬PitIn[1,2] 

            (If there is no breeze in [1,2], then there is no pit in [1,2].) 

 

Negated Conclusion:  Let's say we want to prove the negation of the statement: 

¬PitIn[1,2] 

 

Apply Resolution: We'll apply resolution to the negated conclusion and the 

clauses in the knowledge base: 

1. Breeze[1,2] (Obtained from the negated conclusion.) 

2. ¬Breeze[1,2] ⇒ ¬PitIn[1,2] (From KB.) 

 

Applying resolution, we get:  ¬PitIn[1,2] 

This result indicates that the negated conclusion is satisfied, and we cannot 

derive an empty clause. Therefore, the original knowledge base is satisfiable, 

and the agent cannot conclude the absence of a pit in [1,2]. 
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Conclusion: 

The proof by resolution did not lead to unsatisfiability, illustrating that there may 

be scenarios where the agent cannot definitively establish the absence of a pit 

in [1,2]. This aligns with the inherent uncertainty and complexity of reasoning in 

the Wumpus World scenario. 

 

 

Algorithm: PL-RESOLUTION algorithm: 
 

1. Inputs: 

• KB: The knowledge base, a sentence in propositional logic. 

• α: The query, a sentence in propositional logic. 

2. Initialization: 

• clauses← The set of clauses in the CNF representation of KB∧¬α. 

• {}new←{}. 

3. Resolution Loop: 

• Enter a loop that continues until termination conditions are met. 

• For each pair of clauses Ci,Cj in clauses: 

• Apply the PL-RESOLVE subroutine to Ci and Cj to 

obtain resolvents. 

• If resolvents contains the empty clause, return true 

(indicating unsatisfiability). 

• Update new by adding resolvents. 

• If new is a subset of clauses, return false (indicating 

satisfiability). 

• Update clauses by adding new. 

4. Termination: 

• The algorithm terminates when either the empty clause is derived 

(unsatisfiability) or no further resolutions are possible 

(satisfiability). 

5. Output: 

• Return true if the empty clause is derived (unsatisfiability). 

• Return false if no further resolutions are possible (satisfiability). 

 

This algorithm is a basic representation of the resolution process for automated 

theorem proving. Keep in mind that practical implementations may include 

optimizations and additional heuristics for efficiency and scalability. 
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Note: In the PL-RESOLUTION algorithm, "resolvent" and "clauses" have 

specific meanings related to the process of resolution in propositional logic. 

 

Resolvent: 

 

A "resolvent" refers to a new clause obtained by applying the resolution rule to 

two input clauses. The resolution rule involves selecting complementary literals 

(one literal and its negation) from the input clauses and creating a new clause by 

removing those complementary literals. The resolvent represents the information 

that can be inferred by combining or resolving the input clauses. 

 

 

Clauses: 

 

"Clauses" refer to a set of logical statements in Conjunctive Normal Form (CNF) 

representing the knowledge base. In the context of PL-RESOLUTION, the set of 

clauses is derived from the CNF representation of  KB∧¬α, where KB is the 

knowledge base, and α is the negated query. 

 

During the resolution process, the algorithm iterates over pairs of clauses in the 

set, attempting to resolve them to obtain resolvents. The set of clauses is 

continuously updated with new resolvents in each iteration. 

 

The termination conditions of the algorithm depend on whether the empty clause 

(indicating unsatisfiability) is derived or if no further resolutions are possible 

(indicating satisfiability). 

 

In summary, "resolvent" represents the outcome of applying the resolution rule 

to two input clauses, and "clauses" refer to the set of logical statements that 

undergo resolution to derive new information. The algorithm aims to determine 

the satisfiability or unsatisfiability of the knowledge base with respect to the 

given query. 
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Conjunctive Normal Form  
 

CNF is a standard representation of logical formulas in propositional logic. A 

formula is in CNF if it is a conjunction (AND) of clauses, where each clause is a 

disjunction (OR) of literals. In other words, CNF expresses a logical statement as 

a series of clauses, and each clause is a combination of literals connected by 

disjunctions, while the entire formula is a combination of these clauses connected 

by conjunctions. 

 

 

Steps to Convert a Formula to CNF: 
 

1. Eliminate Biconditionals (⇔): Replace each biconditional (↔) with an 

equivalent expression in terms of conjunction (∧), disjunction (∨), and 

negation (¬).  

• Example: Replace A ⇔ B with (A⇒B) ∧(B⇒A) 

 

2. Eliminate Implications (⇒): Replace each implication (⇒) with an 

equivalent expression using conjunction and negation.  

• Example: Replace A⇒B with ¬A V B 

 

3. Move Negations Inward (¬): Apply De Morgan's laws and distribute 

negations inward to literals.  

• ¬(¬A) ≡ A 

• ¬(A V B) ≡( ¬A ∧ ¬B) 

• ¬(A∧ B ) ≡ (¬A V ¬B) 

 

4. Distribute Disjunctions Over Conjunctions: Apply the distributive law 

to ensure that disjunctions are only over literals or conjunctions of literals. 

Suppose we have the following formula: H=(P∧Q)∨(R∧S∧T) . 

Now, let's distribute disjunctions over conjunctions: 

H=(P∨(R∧S∧T))∧(Q∨(R∧S∧T))  

Here, we've distributed the disjunction (P∧Q) over the conjunction 

(R∧S∧T).  

The resulting formula is now in CNF (Conjunctive Normal Form), where 

each clause is a disjunction of literals. So, the distributed formula is: 

H=(P∨(R∧S∧T))∧(Q∨(R∧S∧T)) 
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Example1: We illustrate the procedure by converting the sentence B1,1 ⇔ (P1,2 

∨ P2,1) into CNF. The steps are as follows: 

 

1. Eliminate ⇔, replacing α ⇔ β with (α ⇒ β) ∧ (β ⇒ α). 

(B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) ⇒ B1,1) . 

2. Eliminate ⇒, replacing α ⇒ β with ¬α ∨ β: 

         (¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨ B1,1) 

3. CNF requires ¬ to appear only in literals, so we “move ¬ inwards” by repeated 

application of the following equivalences: 

¬(¬α) ≡ α (double-negation elimination) 

¬(α ∧ β) ≡ (¬α ∨ ¬β) (De Morgan) 

¬(α ∨ β) ≡ (¬α ∧ ¬β) (De Morgan) 

In the example, we require just one application of the last rule: 

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨ B1,1) . 

4. Now we have a sentence containing nested ∧ and ∨ operators applied to 

literals. We apply the distributivity law, distributing ∨ over ∧ wherever possible. 

 

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1) ∧ (¬P2,1 ∨ B1,1) . 

 

The original sentence is now in CNF, as a conjunction of three clauses. It is much 

harder to read, but it can be used as input to a resolution procedure. 

 

 

Example2: A → (B ⇔ C) 

 

Solution: 

 

Step 1: Eliminate implication. 

              ¬ A∨(B⇔C) 

Step 2: Eliminate bi-directional implication. 

¬ A∨ (B→C )∧ (C→B) 

¬ A∨ ( ¬ B∨C) ∧ ( ¬ C∨B)) 

Step 3: Apply distribute law. 

 

(¬ A∨ ¬ B∨C) ∧ (¬ A∨ ¬ C∨B) 
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Example 3:  

 
 

 

3.Horn Clauses and definite Clauses 
 

Definite Clause: A definite clause is a specific form of a Horn clause where there 

is exactly one positive literal in the head. The general form of a definite clause is  

H←B1, B2 ,…,Bn , where H is the positive literal (head), and B1 ,B2 ,…,Bn   are 

the negative literals or atoms (body). 

In other words, a definite clause is a Horn clause with a single positive literal in 

the head. Goal clauses are a specific subset of Horn clauses where there are no 

positive literals in the clause.  

 

Horn Clause: A Horn clause is a special type of logical clause that is a disjunction 

of literals, with at most one positive (non-negated) literal. In other words, a Horn 

clause is of the form H←B1 ,B2 ,…,Bn  , where H is the positive literal (head), and  

B1 ,B2 ,…,Bn   are the negative literals or atoms (body).  

Horn clauses are more restricted than general logical clauses and are widely 

used in logic programming and knowledge representation. The term "Horn" 

comes from the logician Alfred Horn, who extensively studied this type of clause.  

Horn clauses are closed under resolution: if you resolve two Horn clauses, you 

get back a Horn clause. 

In Horn form, the premise is called the body and the conclusion is called the 

head. 
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Knowledge bases containing only definite clauses are interesting for three 

reasons: 

1. Every definite clause can be written as an implication whose premise is a 

conjunction of positive literals and whose conclusion is a single positive literal. 

For example, the definite clause (¬L1,1 ∨ ¬Breeze ∨ B1,1) can be written as the 

implication (L1,1 ∧ Breeze) ⇒ B1,1 

2. Inference with Horn clauses can be done through the forward-chaining and 

backward chaining algorithms, which we explain next. 

3. Deciding entailment with Horn clauses can be done in time that is linear in 

the size of the knowledge base. 

 
Figure illustrates A grammar for conjunctive normal form, Horn clauses, and 

definite clauses. A clause such as A ∧ B ⇒ C is still a definite clause when it is 

written as ¬A ∨ ¬B ∨ C, but only the former is considered the canonical form for 

definite clauses. One more class is the k-CNF sentence, which is a CNF sentence 

where each clause has at most k literals. 
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4. Forward and Backward Chaining  
 

Forward Chaining:  

Forward chaining is a reasoning strategy that starts with known facts in the 

knowledge base and propagates inferences forward until the desired query or 

goal is reached. 

Forward Chaining  Process: The algorithm begins with known facts (positive 

literals) and iteratively applies the Modus Ponens inference rule to derive new 

facts. The process continues until the query is added to the set of known facts 

or until no further inferences can be made. 

Efficiency: Forward chaining runs in linear time, making it computationally 

efficient. 

Completeness: Forward chaining is both sound and complete, meaning that 

every entailed atomic sentence will be derived. 

 

Backward Chaining:  

Backward chaining is a reasoning strategy that works backward from the query 

or goal. It finds implications in the knowledge base whose conclusion is the 

query and then recursively checks if the premises of those implications can be 

proved true. 

Process: If the query is known, no further work is needed. Otherwise, the 

algorithm works backward, finding implications whose conclusion is the query 

and attempting to prove the premises true. The process continues until a set of 

known facts is reached that forms the basis for a proof. 

Efficiency: Backward chaining is goal-directed reasoning and is particularly 

useful for answering specific questions. Its efficiency is often less than linear in 

the size of the knowledge base because it only touches relevant facts. 

Completeness: Backward chaining can be both sound and complete, depending 

on the implementation. 

 

Goal-Directed Reasoning:   

Goal-directed reasoning is a form of reasoning where the focus is on achieving 

specific goals or answering particular questions. 

Application: Backward chaining is an example of goal-directed reasoning, as it 

works toward proving a specific query or goal true by finding implications in the 

knowledge base. 
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Use Cases: Goal-directed reasoning is useful for tasks such as decision-making 

("What shall I do now?") and problem-solving ("Where are my keys?"). It allows 

the system or agent to efficiently navigate toward a desired outcome. 

 

Data-Driven Reasoning:  

Data-driven reasoning is a general concept where the focus of attention starts 

with known data or facts. In the context of forward chaining, the algorithm 

begins with known facts and derives conclusions based on the available 

information. 

Application: Forward chaining is an example of data-driven reasoning. It can be 

used within an agent to derive conclusions from incoming percepts without a 

specific query in mind. 

Use Cases: Data-driven reasoning is applicable when new information arrives, 

and the system needs to make inferences or draw conclusions based on the 

available data. 

 

Summary: Forward chaining and backward chaining are complementary 

reasoning strategies, with forward chaining starting from known facts and 

moving toward the goal, while backward chaining starts from the goal and works 

backward to known facts. 

Goal-directed reasoning, exemplified by backward chaining, is efficient for 

specific questions and goals. 

Data-driven reasoning, exemplified by forward chaining, is useful for deriving 

conclusions from known data or facts. 

 

 

 

## End of the Module 3 ## 


