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What is Al?

« Artificial Intelligence (Al) is a field
of computer science dedicated to

develop systems capable of According to Russell and Norvig, Al can be defined as

performing tasks that would follows:

typically require human + Al (Artificial Intelligence) is the study of

Intelligence. agents that perceive their environment, reason
* These tasks include learning, about it, and take actions to achieve goals."

reasoning, problem-solving,
perception, understanding
natural language, and even
Interacting with the environment.



percepts

actions

actuators

* In Al, an agent Is any entity that can perceive its environment and
take actions to achieve its goals.

 These agents can be physical robots, software programs, or any
system capable of interacting with the world.
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Eight explanations of Al shown In two groups

Thinking Humanly

“The exciting new effort to make comput-
ers think ... machines with minds, in the
full and literal sense.” (Haugeland., 1985)

“IThe automation of] activities that we
associate with human thinking, activities
such as decision-making, problem solwv-
inmg. learmning ...”"7 (Bellman, 1978)

Thinking Rationally

“The study of mental faculties through the
use of computational models.”

(Charniak and McDermott, 1985)

“The study of the computations that make
it possible to perceive, reason, and act.”
(Winston, 1992)

Acting Humanly

“The art of creating machines that per-
form functions that require intelligence
when performed by people.” (Kurzweil,
1990)

“The study of how to make computers do
things at which, at the moment, people are
better.” (Rich and Knight, 1991)

Acting Rationally

“Computational Intelligence is the study

of the design of intelligent agents.”” (Poole
et al., 1998)

“Al ...is concerned with intelligent be-
havior in artifacts.”” (Nilsson, 1998)
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Turing Test
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The Foundations of Artificial Intelligence

1. Philosophy: In the
philosophical exploration of
Al, following questions
arises:

e Can formal rules be used to draw
valid conclusions?

e How does the mind arise from a
physical brain?

e Where does knowledge come
from?

e How does knowledge lead to
action?

2. Mathematics: In the
mathematical exploration
of Al, following questions
arises:

What are the formal rules to
draw valid conclusions?

What can be computed?

How do we reason with
uncertain information?

3.Economics: In  the
Economics of Al, various
attempts have been done
to address the following
guestions:

How should we make decisions
so as to maximize payoff?

How should we do this when
others may not go along?

How should we do this when
the payoff may be far in the
future



The Foundations of Artificial Intelligence

4.Neuroscience (How do brains process

5. Psychology: How do humans and animals think
information? )

and act?

Axonal arborization

6.Computer Engineering (How can we build an
S

efficient computer?)

Axon from another cell

\

Synapse

For artificial intelligence (Al) to succeed, two key
elements are essential: intelligence and an artifact,
with the computer being the chosen artifact.

Dendrite

\/

Synapses .
7. Control Theory and Cybernetics (How can
S artifacts operate under their own control?)

Supercomputer Personal Computer Human Brain
Computational units || 10* CPUs, 10** transistors| 4 CPUs, 10” transistors| 10'* neurons
Storage units 10" bits RAM 10" bits RAM 10"! neurons . . se

= i fhde ?

105 bits disk 1013 bits disk 10M synapses 8. Linguistics (How does language relate to thought?)
Cycle time 107 sec 10~ sec 107 sec
Operations/sec 10% 101 1017
Memory updates/sec|f 10** 10" 10 Dept of CSE,SDMIT,Ujire -574240
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History of Al

1.3.1 The Gestation of Artificial Intelligence (1943-1955)

1943: Warren McCulloch and Walter Pitts develop the first mathematical model of a neural network.

1949: Hebbian learning, formulated by Donald Hebb, becomes a lasting influence on neural network development.
1950: Alan Turing introduces the Turing Test and key Al principles.

1951: UNIVAC I, the first commercially produced computer, is used for statistical analysis, laying the groundwork for
data processing.

1951: McCarthy earns his PhD and later plays a pivotal role in establishing Al at Dartmouth College.

1.3.2 The Birth of Artificial Intelligence (1956)

1956: John McCarthy organizes a landmark Al workshop at Dartmouth College, marking the official birth of artificial
intelligence.

1956: The term "artificial intelligence" is coined at the Dartmouth Conference.



History of Al

1.3.3 Early Enthusiasm, Great Expectations (1952-1969)

Late 1950s: IBM produces early Al programs challenging predefined task limitations.

1958: McCarthy defines the Lisp language and introduces time-sharing.

1963: Marvin Minsky establishes Stanford's Al lab, emphasizing practical functionality.

1965: Joseph Weizenbaum creates ELIZA, an early natural language processing program.

1966—-1973: Setbacks occur as early successes fail to scale, leading to reduced support for Al research.

1969: The Stanford Research Institute develops Shakey, the first mobile robot with reasoning abilities.

1.3.4 A Dose of Reality (1966—-1973)

1969: Despite setbacks, the discovery of back-propagation learning algorithms for neural networks leads to a
resurgence of interest.

1970s: Initial enthusiasm for Al fades, leading to the first "Al winter" as progress stalls



History of Al

1.3.5 Knowledge-Based Systems: The Key to Power? (1969-1979)
1969: DENDRAL exemplifies a shift towards domain-specific knowledge.
Late 1970s: The Heuristic Programming Project explores expert systems, emphasizing domain-specific knowledge.

1979: Marvin Minsky and Seymour Papert publish "Perceptrons," a book critical of certain Al approaches.

1.3.6 Al Becomes an Industry (1980—Present)
Early 1980s: The first successful commercial expert system, R1, is implemented at Digital Equipment Corporation.

1981: Japan's "Fifth Generation" project and the U.S.'s Microelectronics and Computer Technology Corporation respond
to Al's growing influence.

1980s: Rapid growth followed by the "Al Winter," a period of decline in the Al industry.

1985: Expert systems, software that emulates decision-making of a human expert, gain popularity.



History of Al

1.3.7 The Return of Neural Networks (1986—Present)

Mid-1980s: Rediscovery of the back-propagation learning algorithm leads to the emergence of connectionist
models.

Late 1980s: The Al industry experiences a decline known as the Al Winter.
1.3.8 Al Adopts the Scientific Method (1987—-Present)

Late 1980s: Al shifts towards a more scientific and application-focused approach, experiencing a revival in the
late 1990s.

1990-2005: Neural Networks Resurgence and Practical Applications
1997: IBM's Deep Blue defeats chess champion Garry Kasparowv.

1999: Rodney Brooks introduces the concept of "embodied intelligence" with Cog, a humanoid robot.



History of Al

1.3.9 The Emergence of Intelligent Agents (1995—Present)

Late 1980s: The SOAR architecture addresses the "whole agent" problem.

Late 1990s—2000s: Al technologies underlie Internet tools, contributing to search engines,
recommender systems, and website aggregators.

1.3.10 The Availability of Very Large Data Sets (2001-Present)

Late 1990s: A revival in Al with a shift towards a more scientific approach.

2000s: Emphasis on the importance of large datasets in Al research, leading to significant
advancements.



2001: The DARPA Grand Challenge initiates research in autonomous vehicles.
2005: Stanford's Stanley wins the DARPA Grand Challenge, showcasing advances in self-driving technology.

2006: Geoffrey Hinton and colleagues publish a paper on deep learning, reigniting interest in neural
networks.

2011: IBM's Watson wins Jeopardy!, demonstrating the power of natural language processing.

2012: AlexNet, a deep convolutional neural network, achieves a breakthrough in image recognition at the
ImageNet competition.

2012-Present: Al in the Mainstream and Ethical Concerns

2014: Facebook's Al lab introduces DeepFace for facial recognition, reaching human-level accuracy.
2016: AlphaGo, an Al developed by DeepMind, defeats world champion Go player Lee Sedol.

2018: OpenAl releases GPT-2, a large-scale language model.

2020s: Al applications become integral in various industries, raising concerns about ethics, bias, and job
displacement.
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An agent is defined as anything capable of perceiving its environment through
Age nt sensors and acting upon that environment through actuators. This basic concept is
depicted in Figure 2.1.
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Figure 2.1  Apgents interact with environments through sensors and actuators.
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Agent Sensors Actuators

Human Eyes, Ears and other Sensory Organs Hands, Legs, Vocal Tract
Robot Cameras, Infrared Range Finders Various Motors
Software | Keystrokes, File Contents, Network Packets Displaying on the screen, Writing Files,

Sending Network Packets

Word Meaning
Percept The term "percept" refers to an agent's perceptual inputs at any given moment.
Percept Sequence | Percept sequence encompasses the complete history of everything the agent has
perceived
Table A table serves as an external representation of an agent's behaviour, specifically

presented in tabular form that outlines the agent's actions for every possible
percept sequences.

Agent Program An agent program represents the internal implementation of an agent's
behaviour.
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Vacuum Cleaner World
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Table [ Agent function]

The agent function, considers the entire percept history.

Agent Function is represented using Table.

Percept sequence Action
A, Clean] Right
A, Dirty] Suck
B, Clean] Left
B, Dirty] Suck
A, Clean], [A, Clean] Right
A, Clean], |A, Dirty] Suck
[A, Clean], [A, Clean], [A, Clean] Right
Suck

[A, Clean], [A, Clean], [A, Dirty]
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Agent Program

 The agent program, operates based on the current percept,

 The agent programs are presented in a simple pseudocode language

function REFLEX-VACUUM-AGENT([location,status]) returns an action

if status = Dirty then return Suck
else if [ocation = A then return Right
else if [ocation = B then return Left
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Structure of Intelligent Agents

Agent = Architecture + Agent Program
 Architecture = the machinery that an agent executes on.

 Agent Program = an implementation of an agent function.



Types of Agents

Agent Type

Description

Simple Reflex
Agents

Select actions based on the current percept, without
considering the history of past percepts.

Model-Based Reflex
Agents

Maintain an internal model of the world, considering the history
of percepts for decision-making.

Goal-Based Agents

Designed to achieve specific objectives, using internal goals to
determine actions.

Utility-Based Agents

Evaluate actions based on a utility function, quantifying the
desirability of different outcomes.

Learning Agents

Improve performance over time through learning from
experience.




Problem Solving Agents

Problem Solving Agent is a type of goal based intelligent agent in artificial intelligence that is designed to analyse
a situation, identify problems or goals, and then take actions to achieve those goals.

In the city of Arad, Romania, an
agent on a touring holiday has a
performance measure with various
goals, such as improving suntan,
language skills, exploring sights,
and avoiding hangovers.

The decision problem is complex if
no goal is fixed.

[] Oradea

75

Arad L

118

-] Timisoara

Pitesti

LJ Hirsova

[ | Mehadia

Urziceni

75 86

Drobeta [

Bucharest

Craiova - Giurgiu Eforie

Figure 3.2 A simplified road map of part of Romania.
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Steps followed by Problem Solving Agents

Goal Formulation
Problem Formulation
Search Solution
Execution

L_earning (Optional)
Feedback and Iteration



“Formulate, Search, Execute" framework for the agent

function SIMPLE-PROBLEM-SOLVING-AGENT( percept) returns an action
persistent: seqg, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state «—— UPDATE-STATE(state, percept)
if seq is empty then
goal «— FORMULATE-GOAL(state)
problem «— FORMULATE-PROBLEM(state, goal)
seq «— SEARCH( problem)
if seq = failure then return a null action
action «— FIRST(seq)
seq «— REST(seq)
return action

Figure 3.1 A simple problem-solving agent. It first formulates a goal and a problem,
searches for a sequence of actions that would solve the problem, and then executes the actions
one at a time. When this is complete, it formulates another goal and starts over.
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Well Defined Problems and Solutions

A problem can be defined formally by five components:

1.

State Representation: Encompasses the initial state from which the agent begins its problem-solving journey,
represented, for example, as "In(Arad)."

Actions and Applicability: Describes the set of possible actions available to the agent in a given state, denoted
as ACTIONS(s). For instance, in the state In(Arad), applicable actions include {Go(Sibiu), Go(Timisoara),
Go(Zerind)}.

Transition Model: Specifies the consequences of actions through the transition model, represented by the
function RESULT(s,a), which yields the state resulting from performing action a in state s. For example,
RESULT(In(Arad),Go(Zerind))=In(Zerind).

Goal Specification and Test: Defines the goal state or states and includes a test to determine whether a given
state satisfies the goal conditions. In the example, the goal is represented as the singleton set {In(Bucharest)}.
Cost Functions: Encompasses both the path cost function, assigning a numeric cost to each path, and the step
cost, denoted as c(s,a,s " ), which represents the cost of taking action a in state s to reach state s’. The cost
functions play a crucial role in evaluating and optimizing the performance of the agent's solution.



Example Problems: Toy and Real-world problems.

A toy problem is designed to showcase or test various problem-solving techniques, featuring a
precise and concise description. This allows different researchers to use it for comparing
algorithm performances.

On the other hand, a real-world problem is one that holds significance for people, lacking a
single universally agreed-upon description. However, we can provide a general sense of their
formulations.



Toy Problems

1. Vacuum Cleaner World
2. 8 Puzzle

3. 8 Queens

4,

Math's Sequences



Vacuum World

The problem can be formalized as follows:

1.

States: The state is defined by the agent's location and the presence of dirt in specific locations. The agent
can be in one of two locations, each potentially containing dirt. Consequently, there are 8 possible world
states (2 x 2°2). For a larger environment with n locations, there would be n - 2”n states.

Initial state: Any state can serve as the initial state.

Actions: In this uncomplicated environment, each state presents three actions: Left, Right, and Suck. More
extensive environments might also include Up and Down.

Transition model: Actions produce expected effects, except for instances where moving Left in the
leftmost square, moving Right in the rightmost square, and Sucking in a clean square result in no effect.
Goal test: This assesses whether all squares are clean.

Path cost: Each step incurs a cost of 1, making the path cost equivalent to the number of steps taken in the
path.



Figure 3.3  The state space for the vacuum world. Links denote actions:
Right, S = Suck.
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8 Puzzle

3 7

Start State Goal State

Figure 3.4 A typical instance of the 8-puzzle.

1. States: A state description indicates the position of each of the eight tiles and the empty space within the
nine squares.

2. Initial state: Any state can be designated as the initial state.

3. Actions: In its simplest form, actions are defined as movements of the empty space—Left, Right, Up, or
Down. Different subsets of these actions are possible based on the current location of the empty space.

4. Transition model: Given a state and an action, the model returns the resulting state. For instance,
applying Left to the starting state in Figure 3.4 would switch the positions of the 5 and the empty space.

5. Goal test: This checks if the state aligns with the specified goal configuration shown in Figure 3.4. Other
goal configurations are also conceivable.

6. Path cost: Each step incurs a cost of 1, making the path cost equivalent to the number of steps taken in
the path.



The 8-queens problem

The goal of the 8-queens problem is to place eight queens
on a chessboard such that no queen attacks any other.

(A queen attacks any piece in the same row, column or
diagonal.)

Figure 3.5 shows an attempted solution that fails: the queen
in the rightmost column is attacked by the queen at the top
left.

States: Any arrangement of O to 8 queens on the board is a
state.

Initial state: No queens on the board.

Actions: Add a queen to any empty square.

Transition model: Returns the board with a queen added to
the specified square.

Goal test: 8 queens are on the board, none attacked.
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Math's Sequences

L\ \/\/1/\/(4!)!J _5.

The problem definition is very simple:

States: Positive numbers.

Initial state: 4.

Actions: Apply factorial, square root, or floor operation (factorial for integers only).
Transition model: As given by the mathematical definitions of the operations.
Goal test: State is the desired positive integer

neWNRE



Topics

* What is Al?

* Foundations of Al

* History of Al

« Agents, The structure of agents.
* Problem Solving Agents

* Example problems,

* Searching for Solutions,

* Uninformed Search Strategies: Breadth First search, Depth First
Search



Real-world problems

Route Finding Problem
Touring Problem

Traveling Salesperson Problem
VLS| Layout

Robot Navigation

Al S



Consider the airline travel problems that must be
solved by a travel-planning Web site:

States: Each state obviously includes a location (e.g., an airport) ,current time, domestic
or international, “historical” aspects.

Initial state: This is specified by the user’s query.

Actions: Take any flight from the current location, in any seat class, leaving after the
current time, leaving enough time for within-airport transfer if needed.

Transition model: The state resulting from taking a flight will have the flight’s destination
as the current location and the flight’s arrival time as the current time.

Goal test: Are we at the final destination specified by the user?

Path cost: This depends on monetary cost, waiting time, flight time, customs and
immigration procedures, seat quality, time of day, type of airplane, frequent-flyer mileage
awards, and so on.



Parameter Graph Tree
Graph is a non-linear data |Tree is also a non-linear
— structure that can have more | data structure, but it has
Description
than one path between only one path between two
vertices. vertices.
Loobs Graphs can have loops. Loops are not allowed in a
P tree structure.
Graphs do not have a root Trees have exactly one root
Root Node P Y

node.

node.

Traversal Techniques

Graphs have two traversal
technigues namely,
breadth-first search and
depth-first search.

Trees have three traversal
techniques namely,
pre—order, in—order, and
post—order.




Graph Trees

Edge —»

Vertices

Note : The set of all leaf nodes available for expansion at any given point is
called the frontier
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Searching for Solutions

 The SEARCH TREE possible action sequences starting at the initial
state form a search tree with the initial state NODE at the root; the
branches are actions and the nodes correspond to states in the state
space of the problem

* Expanding the current state applying each legal action to the current
state, thereby generating a new set of state.



Oradea

71
Neamt
Zerind
75 151
A
el 140
Sibiu 99 Fagaras
- Vashi
80
Timi Rimnicu Vilcea
imisoara
111 . v 211
Lugoj 97 Pitesti
70 08 :
. 146 85 Hirsova
Mehadia 101 Urziceni
86
5 138 Bucharest
Drobeta 120
90
Craiova Giurgiu Eforie
Figure 3.2 A simplified road map of part of Romania.

Iieigerice, 51U cuUiLivil, redisull,Zuld|



Partial search trees for finding a route from Arad to Bucharest

(a) The initial state




Partial search trees for finding a route from Arad to Bucharest

(b) After expanding Arad




Partial search trees for finding a route from Arad to Bucharest

(c) After expanding Sibiu
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Tree Based Searching

function TREE-SEARCH( problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do

if the frontier 1s empty then return failure

choose a leaf node and remove it from the frontier

if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier




Graph based Searching

function GRAPH-SEARCH( problem) returns a solution, or failure
initialize the frontier using the initial state of problem
initialize the explored set to be empty
loop do
if the frontier is empty then return failure

choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
add the node to the explored set
expand the chosen node, adding the resulting nodes to the frontier
only if not in the frontier or explored set




Sequence of Search Trees

Figure 3.8 A sequence of search trees generated by a graph search on the Romania prob-
lem of Figure 3.2. At each stage, we have extended each path by one step. Notice that at the
third stage, the northernmost city (Oradea) has become a dead end: both of its successors are

already explored via other paths.




Graph Search

Figure 3.9  The separation property of GRAPH-SEARCH, illustrated on a rectangular-grid
problem. The frontier (white nodes) always separates the explored region of the state space
(black nodes) from the unexplored region (gray nodes). In (a), just the root has been ex-
panded. In (b), one leaf node has been expanded. In (c¢), the remaining successors of the root
have been expanded in clockwise order.




Infrastructure for search algorithms

Search algorithms require a data structure to keep track of the search tree

that is being constructed. For each node n of the tree, we have a structure

that contains four components:

* n.STATE: the state in the state space to which the node corresponds;

* n.PARENT: the node in the search tree that generated this node;

* n.ACTION: the action that was applied to the parent to generate the
node;

* n.PATH-COST: the cost, traditionally denoted by g(n), of the path from
the initial state to the node, as indicated by the parent pointers.



NODE

PARENT

ACTION = Right
PATH-COST =6

Figure 3.10  Nodes are the data structures from which the search tree is constructed. Each
has a parent, a state, and various bookkeeping fields. Arrows point from child to parent.
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Function: “CHILD NODE”

function CHILD-NODE( problem, parent, action) returns a node
return a node with

STATE = problem .RESULT(parent.STATE, action),
PARENT = parent, ACTION = action,
PATH-COST = parent. PATH-COST + problem.STEP-COST(parent.STATE, action)




Measuring problem-solving performance

We can evaluate an algorithm’s performance in four ways:

1. COMPLETENESS : Is the algorithm guaranteed to find a solution
when there is one?

2. OPTIMALITY : Does the strategy find the optimal solution?

TIME COMPLEXITY : How long does it take to find a solution?

4. SPACE COMPLEXITY : How much memory is needed to perform
the search?

w



Searching Strategies/Algorithms

Uninformed (Blind)Search Strategies Informed (Heuristic) Search Strategies

Breadth-first search 1. Greedy best-first search
2 Uniform-cost search 2. A* search: Minimizing the

, total estimated solution cost

3. Depth-first search 3. Memory-bounded heuristic
4. Depth-limited search search
5. lterative deepening depth-first 4. AO* Search

search 5. Problem Reduction
6. Bidirectional search 6. Hill Climbing
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Difference between Uninformed and Informed Search Techniques

Uninformed Search Informed Search

No additional knowledge Additional knowledge (heuristics)

Utilization

Based solely on structure of Uses heuristics to intelligently guide the
the search space search

Completeness depends on the Completeness depends on the specific
specific algorithm algorithm and heuristic

May not guarantee the most A* is optimal under certain conditions
optimal solution

Efficiency May be less efficient for certain Generally more efficient due to heuristic
problems due to exhaustive guidance
exploration

“BFS, DFS, Uniform Cost Search, A*, Greedy Best-First Search,etc.
etc.
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Comparing uninformed search strategies

Criterion Breadth- Uniform- Depth-  Depth- [terative Bidirectional
First Cost First Limited  Deepening  (if applicable)
Complete? Yes“ Yes™" No No Yes“ Yes®4
Time Om?)  optle/dy o™ oY O(b?) O(b?/2)
Space O(b%) O/l O(m)  O(bl) O(bd) O(b/?)
Optimal? Yes® Yes No No Yes® Yes®4

Figure 3.21  Evaluation of tree-search strategies. b 1s the branching factor; d is the depth
of the shallowest solution; m 1s the maximum depth of the search tree; [ 1s the depth limit.
Superscript caveats are as follows: ¢ complete if b is finite; * complete if step costs > ¢ for
positive ¢; ¢ optimal if step costs are all identical; ¢ if both directions use breadth-first search.
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Enqueue and Dequeue Operations

Enqueue operation Dequeue operation

Enqueue operation: To insert data
Dequeue operation: To remove data

Enqueue Operation: Adding an element to the
end of the queue.

Example: If the queue is [A, B, C] and you
enqueue the node D, the queue becomes [A,
B, C, D].

Dequeue Operation: Removing an element
from the front of the queue.

Example: If the queue is [A, B, C, D] and you
dequeue, the result is A, and the queue
becomes [B, C, D].

Dr.Thyagaraju G S, Professor,Dept of CSE,SDMIT,Ujire -574240
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Breadth First Search

1. Initialize a queue with the initial state (usually the root node).
2. While the queue Is not empty:
a. Dequeue a node from the front of the queue.
b. If the node contains the goal state, return the solution.
c. Otherwise, engqueue all the neighbouring nodes that have not been
visited.
3. If the queue becomes empty and the goal state is not found, then there is
no solution.

Note : The set of all leaf nodes available for expansion at any given point is called
the frontier



function BFS(initial_state, goal_state):

PSEUdO COd S Initialize an empty queue

enqueue initial_state to the queue

while queue iIs not empty:
current_node = dequeue from the front of the queue

If current_node Is the goal state:
return solution
for each neighbor of current_node:
If neighbor has not been visited:
mark neighbor as visited
engueue neighbor to the queue

return no solution



Note:

e The queue is a First-In-First-Out (FIFO) data structure, meaning that
the first element enqueued will be the first to be dequeued.

e The algorithm ensures that all nodes at a particular depth level are
explored before moving on to the nodes at the next level.

e BFS iIs complete and optimal for searching in a state space with a
uniform cost per step.

e |t may require a lot of memory for large state spaces due to the need to
store all generated nodes.



Example

Step Details Visited Nodes QUEUE
1
Initialization: Start with V=1 a
the root node A.
2 Node a, Visited,
Dequeue node a and
enqueue neighbour V = {a} b
nodes b and ¢ to queue
c|b
3 Node b wvisited, deque
node b and enqueue C
neighbour nodes d and e V = {a,b}
to queue. dlc
el|d]|c
4 Node ¢ visited, deque
node ¢ and enqueue el d
neighbour nodes fand g V= {ab.c} ‘
to queue fleld
g|f|e

Dr.Thyagaraju G S, Professor,Dept of CSE,SDMIT,Ujire -574240
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Example

5
Node d wvisited, deque V= {a,b,c.d}
node d

6
Node e visited, deque V = {ab.c.d.e}
node e

7
Node f visited, deque| V= {a,b,c.d.e.f}
node f

8
Node g wvisited, deque | V= {a,b.c.d.e.f.g}
node g

Dr.Thyagaraju G S, Professor,Dept of CSE,SDMIT,Ujire -574240
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Pseudo Code BFS

function BREADTH-FIRST-SEARCH( problem) returns a solution, or failure

node «— a node with STATE = problem . INITIAL-STATE, PATH-COST =0
if problem GOAL-TEST(node.STATE) then return SOLUTION(node)
Jrontier «— a FIFO queue with node as the only element

explored «— an empty set

loop do
if EMPTY ?( frontier) then return failure
node «+— POP( frontier) /* chooses the shallowest node in frontier */

add node.STATE to explored
for each action in problem . ACTIONS(node.STATE) do
child «+— CHILD-INODE( problem, node, action)
if child.STATE is not in explored or frontier then
if problem . GOAL-TEST(child .STATE) then return SOLUTION( chzld)
frontier «— INSERT(child, frontier)

Figure 3.11 Breadth-first search on a graph.

Dr.Thyagaraju G S, Professor,Dept of CSE,SDMIT,Ujire -574240
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Example: BFS on Simple Graph

Step Description Visited Nodes

Queue

1 | Initialize the queue. | V= {}

Node S Visited,
Dequeue node S and
2 V= {S}

i B
A B = enqueue neighbour
i nodes A, B and C to s
\ / queue.
Node A Visited, DIC

Dequeue node A and

enqueue neighbour node
D

<
Il

{S.A}
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Example: BFS on Simple Graph

Node B Visited, _
4 Dequeue node B V= {5AB;
Node C Visited, _
> Dequeue node C V= {5AB,C}
6 Node D Visited, V=
Dequeue node D {S,A,B,C,D}

Breadth First Search: SABCD

Dr.Thyagaraju G S, Professor,Dept of CSE,SDMIT,Ujire -574240
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Time and Space Complexity of BFS

Time Complexity:
 The time complexity of BFS in a uniform tree is expressed as O(b"d), where 'b' is the
branching factor and 'd’ is the depth of the solution.

* Applying the goal test upon node expansion instead of generation would result in a
higher time complexity of O(b”(d+1)).

Space Complexity:

* For breadth-first graph search, where every generated node is kept in memory, the
space complexity is O(b~d).

 The space complexity is dominated by the size of the frontier, which holds nodes
yet to be explored.



A A A
S sma,

 The branching factor is the number of children at each node, the outdegree.
If this value is not uniform, an average branching factor can be calculated.

 The average branching factor can be quickly calculated as the number of non-root
nodes (the size of the tree, minus one; or the number of edges) divided by the
number of non-leaf nodes (the number of nodes with children)

Dr.Thyagaraju G S, Professor,Dept of CSE,SDMIT,Ujire -574240
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Breadth First Search

—® lLevelo

/\

> Level 1

>  Level 2

>  Level 8

——» Level &

Time Complexity: Time Complexity of BFS algorithm can be obtained by the number of nodes traversed in

BFS until the shallowest Node. Where the d= depth of shallowest solution and b is a node at every state.

T(b) = 1+b2+b3+....... + b9= O (b9)

T=1+2+4+8+16=31
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Exercise: Apply BFS on Following
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Depth First Search

 Depth-First Search (DFS) is a tree traversal algorithm that explores as far as
possible along each branch before backtracking.

* In the context of a binary tree, DFS can be implemented using recursion or a
Stack (LIFO QUEUE). Let's go through the DFS algorithm on a binary tree with
an example.



DFS Algorithm on Binary Tree:

Recursive Approach:

e Start at the root node.

e Visit the current node.
o Recursively apply DFS to the left subtree.
o Recursively apply DFS to the right subtree.

Stack-Based Approach:
e Push the root node onto the stack.
e While the stack is not empty:
o Pop a node from the stack.
o Visit the popped node.
o Push the right child onto the stack (if exists).
o Push the left child onto the stack (if exists).



DFS Algorithm with LIFO Queue:

Initialization:

Push the root node onto the LIFO queue.
Traversal:

While the LIFO queue is not empty:

e Pop a node from the LIFO queue.

e Visit the popped node.

e Push the right child onto the LIFO queue (if exists).
e Push the left child onto the LIFO queue (if exists).



Example

A
/N
B C

/N SN

Step | Description Visited Nodes | LIFO QUEUE

1 Push 'A' onto the LIFO queue {} [A]

2 Pop 'A', visit it, and push its children | {A} [C, B]
'‘B' and 'C' onto the LIFO queue

3 Pop 'B', visit it, and push its children | {A, B} [C, E, D]
'E' and 'D' onto the LIFO gqueue.

4 Pop 'D', visit it (no children to push) | {A,B,D} [C, E]

5 Pop 'E', visit it (no children to push) | {A,B,D,E} [C]

6 Pop 'C', visit it, and push its children | {A,B,D,E,C} [G,F]
'F'and 'G’

7 Pop 'F', visit it (no children to push) | {A,B,D,E,C,F} [G]

8 Pop 'G', visit it (no children to push) | {A,B,D,E,C,F,G} | []

Resulting DFS Traversal Order: A,B,D,E,C,F,G

Dr.Thyagaraju G S, Professor,Dept of CSE,SDMIT,Ujire -574240
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Exercise: Apply DFS for the Following

Discuss the Time and Space Complexity of DFS

Dr.Thyagaraju G S, Professor,Dept of CSE,SDMIT,Ujire -574240
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DFS and BFS Time and Space Complexity

Graph Binary Tree
Strategy Time Space Time Space
Complexity |Complexity |Complexity |Complexity
BFS O(V +E) o(V) O(b"d ) O(bd )
DFS O(V +E) o(V) O(b"d ) O(bd)

Dr.Thyagaraju G S, Professor,Dept of CSE,SDMIT,Ujire -574240
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Topics

* What is Al?

 Foundations of Al

* History of Al

« Agents, The structure of agents.
* Problem Solving Agents

* Example problems,

* Searching for Solutions,

* Uninformed Search Strategies: Breadth First search, Depth First
Search

End of Modulel
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Depth First Search—Backtracking

Problem
Discover a path from start
to goal

Solution
Go deep

If there is an unvisited
neighbor, go there

Backtrack
Retreat along the path to
find an unvisited neighbor
Qutcome

If there is a path from start
to goal, DFS finds one such
path

start
1
2 3 4
6 7 8
9 10 11 12
goal




Depth-First Search

* Idea:

Starting at a node, follow a path all the way until you
cannot move any further

Then backtrack and try another branch

Do this until all nodes have been visited

Similar to finding a route in a maze

Dr.Thyagaraju G S, Professor,Dept of CSE,SDMIT,Ujire -574240
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For BFS algorithm, visiting a node’s siblings before its
children, while in DFS algorithm, visiting a node’s
children before its siblings

Before countering goal node
=

BFS algorithm encounters
nodes: ABCDE

DFS algorithm encounters
nodes: ABDHLIEIMC

Dr.Thyagaraju G S, Professor,Dept of CSE,SDMIT,Ujire -574240
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DFS algorithm encounters
nodes: ABD

/. Before countering goal node
R G:
q BFS algorithm encounters
nodes: ABCDEF
® 0
0 &
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