

Dr.Thyagraju G S and Palguni GT

INTRODUCTION TO PYTHON

PROGRAMMING- MODULE 2

98 | P a g e
 https://tocxten.com/

Contents

No Syllabus Page

1

1.1 Python Basics: Entering Expressions into the Interactive Shell, The Integer,

Floating-Point, and String Data Types, String Concatenation and Replication,

Storing Values in Variables, Your First Program, Dissecting Your Program,

2- 31

1.2 Flow control: Boolean Values, Comparison Operators, Boolean Operators,

Mixing Boolean and Comparison Operators, Elements of Flow Control,

Program Execution, Flow Control Statements, Importing Modules, Ending a

Program Early with sys.exit(),

31-67

1.3 Functions: def Statements with Parameters, Return Values and return

Statements,The None Value, Keyword Arguments and print(), Local and

Global Scope, The global Statement, Exception Handling, A Short Program:

Guess the Number

68-97

2

2.1 Lists: The List Data Type, Working with Lists, Augmented Assignment

Operators, Methods, Example Program: Magic 8 Ball with a List, List-like

Types: Strings and Tuples, References,

98 -

132

2.2 Dictionaries and Structuring Data: The Dictionary Data Type, Pretty

Printing, Using Data Structures to Model Real-World Things,

3

3.1 Manipulating Strings: Working with Strings, Useful String Methods,

Project: Password Locker, Project: Adding Bullets to Wiki Markup

3.2 Reading and Writing Files: Files and File Paths, The os.path Module, The

File Reading/Writing Process, Saving Variables with the shelve Module,Saving

Variables with the print.format() Function, Project: Generating Random Quiz

Files, Project: Multiclipboard

4

4.1 Organizing Files: The shutil Module, Walking a Directory Tree,

Compressing Files with the zipfile Module, Project: Renaming Files with

American-Style Dates to European-Style Dates,Project: Backing Up a Folder

into a ZIP File,

4.2 Debugging: Raising Exceptions, Getting the Traceback as a String,

Assertions, Logging, IDLE‟s Debugger.

5

5.1 Classes and objects: Programmer-defined types, Attributes, Rectangles,

Instances as return values, Objects are mutable, Copying,

5.2 Classes and functions: Time, Pure functions, Modifiers, Prototyping versus

planning,

5.3 Classes and methods: Object-oriented features, Printing objects, Another

example, A more complicated example, Theinit method, The __str__ method,

Operator overloading, Type-based dispatch, Polymorphism, Interface and

implementation,

99 | P a g e
 https://tocxten.com/

List

In Python, a sequence is an ordered collection of elements, where each element is

identified by an index. Each element of a sequence is assigned a number – its

position or index. The first index is zero, the second index is one, and so forth.

There are three types of sequences in Python: lists, tuples, and strings.

2.1 List Data type

In Python, a list is a collection of ordered and mutable elements. A list can contain

elements of different data types, such as integers, floats, strings, and even other

lists. Lists are created by enclosing a comma-separated sequence of values within

square brackets [].

Example:

my_list = [1, 2, 3, "four", 5.0, [6, 7, 8]]

2.1.1 Different ways to create List.

In Python, there are different ways to create a list. Here are some examples:

1. Using square brackets: You can create a list by enclosing a sequence of elements within

square brackets. The elements can be of any data type, and can include integers, floats,

strings, and even other lists.

 Example: my_list = [1, 2, 3, "four", 5.0, [6, 7, 8]]

2. Using the list() function: You can create a list by passing a sequence of elements to

the list() function. The sequence can be any iterable object, such as a tuple or a string.

 Example:
my_tuple = (1, 2, 3, "four", 5.0)

my_list = list(my_tuple)

3. Using append() method : The append() method adds a single element to the end of the list.

 Example :

my_list = []

my_list.append(1)

my_list.append(2)

my_list.append(3)

 print(my_list) # Output: [1, 2, 3]

100 | P a g e
 https://tocxten.com/

4. Using extend() method : The extend() method adds multiple elements to the end of the list

by appending each element from the iterable that is passed as an argument.

Example :

my_list = []

my_list.extend([1, 2, 3])

print(my_list) # Output: [1, 2, 3]

In this example, the extend() method is used to add multiple elements to the end of the list at

once. The elements are passed as a list argument to the extend() method.

Note that the extend() method can also add elements from other iterable objects, such as

tuples or other lists.
my_list = []

my_list.extend((1, 2, 3))

print(my_list) # Output: [1, 2, 3]

other_list = [4, 5, 6]

my_list.extend(other_list)

print(my_list) # Output: [1, 2, 3, 4, 5, 6]

5. Using list comprehension: You can create a list using a list comprehension, which is a

concise way to create a list based on an existing sequence.

Example: my_list = [x for x in range(10)] . This creates a list of integers from 0 to 9.

6. Using the range() function: You can create a list of integers using the range() function,

which generates a sequence of integers based on the given arguments.

Example : my_list = list(range(1, 10, 2)). This creates a list of odd numbers from 1 to 9.

7. Using the split() method:

You can create a list of strings by splitting a string based on a delimiter. The split() method splits

a string into a list of substrings based on a specified separator.

Example:
my_string = "apple,banana,orange"

my_list = my_string.split(",")

This creates a list of strings containing the fruits “apple”, “banana”, and “orange”.

101 | P a g e
 https://tocxten.com/

These are some of the ways to create a list in Python. Depending on the situation, one method

may be more appropriate than the others.

Creation of Empty list:

In Python empty list can be created using inbuilt function and square brackets as illustrated

below :

Method1: using inbuilt function.

empty_list = list()

print(empty_list) # Output: []

Method 2: using square brackets.

empty_list = []

print(empty_list) # Output: []

Creation of List with values

To create a list with values in Python, you can define the list and assign the desired values to it.

Following examples illustrates how to create a list with values:

my_list1 = [1, 2, 3, 4, 5]

In the above example, a list named my_list is created with five values: 1, 2, 3, 4, and 5. You can

modify the values or add more elements to the list as needed.

You can also create a list with different types of values, such as strings, integers, or even a

combination of different types:

my_list2 = [1, "hello", 3.14, True, "world"]

2.1.1.2 Lists are Mutable

In Python, a list is a collection of items that are ordered and changeable. One key feature of

lists is that they are mutable, meaning that their elements can be modified after they are

created.

Here’s an example of how a list can be modified in Python:

102 | P a g e
 https://tocxten.com/

create a list of fruits

fruits = ['apple', 'banana', 'orange']

add a new fruit to the list

fruits.append('strawberry')

print(fruits) # Output: ['apple', 'banana', 'orange', 'strawberry']

remove an item from the list

fruits.remove('banana')

print(fruits) # Output: ['apple', 'orange', 'strawberry']

change an item in the list

fruits[0] = 'kiwi'

print(fruits) # Output: ['kiwi', 'orange', 'strawberry']

In this example, we create a list called fruits containing three elements: 'apple', 'banana',

and 'orange'. We then use the append() method to add a new element, 'strawberry', to the end of

the list. Next, we use the remove() method to remove the 'banana' element from the list. Finally,

we use indexing to change the first element of the list from 'apple' to 'kiwi'.

This example demonstrates that lists are mutable because we are able to add, remove, and

modify elements within the list after it has been created. This can be very useful in

programming, as it allows us to dynamically update our data structures as needed.

2.1.1.3 Accessing List values (Getting individual values in lists with

indexes.)

One can think List as a relationship between indices and elements. This relationship is called

mapping. Each index ‘maps to’, one of the elements.

Python Supports both positive and negative indexing of list elements as illustrated below.

Fig: Positive Indexing [source : Link]

https://railsware.com/blog/python-for-machine-learning-indexing-and-slicing-for-lists-tuples-strings-and-other-sequential-types/

103 | P a g e
 https://tocxten.com/

Positive indexing starts from 0 and goes up to n-1, where n is the length of the list. For example:

my_list = [10, 20, 30, 40]

print(my_list[0]) # Output: 10

print(my_list[1]) # Output: 20

print(my_list[2]) # Output: 30

print(my_list[3]) # Output: 40

Fig: Negative Indexing [Source :Link]

Negative indexing starts from -1 and goes down to -n, where n is the length of the list. For

example:

my_list = [10, 20, 30, 40]

print(my_list[-1]) # Output: 40

print(my_list[-2]) # Output: 30

print(my_list[-3]) # Output: 20

print(my_list[-4]) # Output: 10

Here are some examples that demonstrate the use of positive and negative indexing in Python

lists of integers:

my_list = [10, 20, 30, 40, 50]

Accessing elements using positive indexing

print(my_list[0]) # Output: 10

print(my_list[2]) # Output: 30

Accessing elements using negative indexing

print(my_list[-1]) # Output: 50

print(my_list[-3]) # Output: 30

Modifying elements using positive indexing

my_list[1] = 25

print(my_list) # Output: [10, 25, 30, 40, 50]

https://railsware.com/blog/python-for-machine-learning-indexing-and-slicing-for-lists-tuples-strings-and-other-sequential-types/

104 | P a g e
 https://tocxten.com/

Modifying elements using negative indexing

my_list[-2] = 45

print(my_list) # Output: [10, 25, 30, 45, 50]

Slicing using positive indexing

print(my_list[1:3]) # Output: [25, 30]

Slicing using negative indexing

print(my_list[-3:-1]) # Output: [30, 45]

In summary, positive indexing starts from 0 and goes up to n-1, while negative indexing starts

from -1 and goes down to -n. Positive indexing is used to access or modify elements, while

negative indexing is used to access elements from the end of the list. Slicing can be done using

both positive and negative indexing.

2.1.1.4 Index Error

An Index Error occurs when you try to access an element in a list using an invalid index,

which means the index is either negative, greater than or equal to the length of the list.

Here is an example:

my_list = ['apple', 'banana', 'orange']

print(my_list[3])

In this example, the list my_list has three elements, with indices 0, 1, and 2. The above code

tries to access the element at index 3, which is out of range and will result in an Index

Error.

The correct way to access the last element of this list would be to use index 2, like this:

print(my_list[2])

This will print the last element of the list, which is ‘orange’.

Following example illustrates the Index error:

105 | P a g e
 https://tocxten.com/

2.1.1.5 List Slicing /Getting Sublists with Slices

In Python, list slicing is a way to extract a subset of elements from a list. Slicing allows you to

extract a contiguous portion of a list, specified by its starting and ending indices. The syntax for

slicing a list is as follows:

my_list[start:end:step]

Here, start is the index of the first element to include in the slice, end is the index of the first

element to exclude from the slice, and step is the number of elements to skip between each

element in the slice. Note that the end index is exclusive, which means that the element at

the end index is not included in the slice.

Here are some examples of list slicing:

my_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Extract a slice of the first 5 elements

slice1 = my_list[0:5]

print(slice1) # Output: [1, 2, 3, 4, 5]

Extract a slice of the elements at odd indices

slice2 = my_list[1::2]

print(slice2) # Output: [2, 4, 6, 8, 10]

Extract a slice of the elements in reverse order

slice3 = my_list[::-1]

print(slice3) # Output: [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

In the first example, we extract a slice of the first 5 elements of my_list. In the second example,

we extract a slice of the elements at odd indices, starting from the second element. In the third

example, we extract a slice of all the elements in reverse order.

Note that you can also use negative indices for start and end. In this case, the index is counted

from the end of the list, with -1 being the index of the last element.

For example:

Extract a slice of the last 3 elements

slice4 = my_list[-3:]

print(slice4) # Output: [8, 9, 10]

This example extracts a slice of the last 3 elements of my_list.

106 | P a g e
 https://tocxten.com/

Example:

Example:

2.1.1.6 Getting lists length with len()

In Python, the len() function is used to determine the length or the number of elements in a

list. It returns the count of items present in the list. The len() function is a built-in function in

Python that can be used with various data types, including lists, strings, tuples, and

107 | P a g e
 https://tocxten.com/

dictionaries. It provides a convenient way to determine the size or length of a collection,

allowing you to perform further operations or make decisions based on the size of the list.

Example:

fruits = ['apple', 'banana', 'cherry', 'durian', 'elderberry']

length = len(fruits)

print(length)

2.1.1.7 Changing Values in a List with Indexes

In Python, you can change the values of a list by accessing specific elements using their

indexes. The index represents the position of an element in the list, starting from 0 for the

first element.

fruits = ['apple', 'banana', 'cherry', 'durian', 'elderberry']

print(fruits)

fruits[2] = 'grape'

print(fruits)

Output :

['apple', 'banana', 'cherry', 'durian', 'elderberry']

['apple', 'banana', 'grape', 'durian', 'elderberry']

In the example above, we have a list called fruits containing five elements. Initially, we print

the original list. Next, we change the value at index 2 by assigning the string 'grape' to fruits[2].

Finally, we print the updated list, which reflects the change made to the value at index 2.

108 | P a g e
 https://tocxten.com/

2.1.1.8 List Concatenation

List concatenation is the process of combining two or more lists into a single list. In Python,

there are multiple ways to concatenate lists. Here are some examples:

1. Using the ‘+’ operator:

list1 = [1, 2, 3]

list2 = [4, 5, 6]

concatenated_list = list1 + list2

print(concatenated_list) # Output: [1, 2, 3, 4, 5, 6]

In the above example, we have two lists, list1 and list2. To concatenate them, we use the

‘+’ operator, which creates a new list that contains all the elements of both list1 and list2.

2. Using the extend() method:

list1 = [1, 2, 3]

list2 = [4, 5, 6]

list1.extend(list2)

print(list1) # Output: [1, 2, 3, 4, 5, 6]

3. Using the append() method in a loop:

list1 = [1, 2, 3]

list2 = [4, 5, 6]

for item in list2:

 list1.append(item)

print(list1) # Output: [1, 2, 3, 4, 5, 6]

In the above example, we have two lists, list1 and list2. To concatenate them, we use a loop

that iterates over each element of list2 and appends it to list1 using the append() method.

Example:
list1 = [1, 2, 3]

list2 = [4, 5, 6]

list3 = list1+list2

print(list3) #output : [1,2,3,4,5,6]

Another Example:

spam = [1,2,3] + [‘A’,’B’,’C’]

print(spam) #output : [1,2,3, ‘A’,’B’,’C’]

109 | P a g e
 https://tocxten.com/

2.1.1.9 List Replication

List replication is a process of creating a new list by replicating the elements of an existing

list multiple times. In Python, list replication can be achieved using the ‘*’ operator. Here are

some examples:

1. Replicating a list multiple times:

original_list = [1, 2, 3]

replicated_list = original_list * 3

print(replicated_list) # Output: [1, 2, 3, 1, 2, 3, 1, 2, 3]

In the above example, we have an original list original_list with three elements. We replicate this

list three times using the ‘*’ operator, which creates a new list replicated_list that contains the

elements of original_list repeated three times.

2. Creating a list of a specific length with a single element repeated:

single_element_list = [0] * 5

print(single_element_list) # Output: [0, 0, 0, 0, 0]

In the above example, we create a new list single_element_list that contains the element 0

repeated five times using the ‘*’ operator. This is a useful technique when you need to create

a list of a specific length with a single element repeated.

3. Replicating a list using a variable:
original_list = [1, 2, 3]

n = 4

replicated_list = original_list * n

print(replicated_list) # Output: [1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3]

In the above example, we use a variable n to specify the number of times we want to

replicate the original_list. The replicated_list is created by multiplying original_list by n using

the ‘*’ operator.

110 | P a g e
 https://tocxten.com/

2.1.1.10 Removing values from lists with del statement

In Python, you can remove elements from a list using the del statement. The del statement is a

powerful Python keyword that allows you to delete an object, such as a variable or an element

in a list. Here are some examples of removing values from lists using the del statement:

1. Removing an element by index:

my_list = [1, 2, 3, 4, 5]

del my_list[1:4]

print(my_list) # Output: [1, 5]

In the above example, we have a list my_list with five elements. We use the del statement to

remove the elements at indices 1, 2, and 3, which have the values 2, 3, and 4. We do this by

using slicing notation [1:4], which selects the elements at indices 1, 2, and 3. After deleting

the elements, the list contains the remaining elements [1, 5].

2. Removing multiple elements by slicing:

my_list = [1, 2, 3, 4, 5]

del my_list[1:4]

print(my_list) # Output: [1, 5]

In the above example, we have a list my_list with five elements. We use the del statement to

remove the elements at indices 1, 2, and 3, which have the values 2, 3, and 4. We do this by

using slicing notation [1:4], which selects the elements at indices 1, 2, and 3. After deleting

the elements, the list contains the remaining elements [1, 5].

3. Removing all elements:

my_list = [1, 2, 3, 4, 5]

del my_list[:]

print(my_list) # Output: []

In the above example, we have a list my_list with five elements. We use the del statement to

remove all elements of the list by slicing the entire list with [:]. After deleting all elements,

the list is empty, [].

Note that the del statement permanently deletes the elements from the list, so you should be

careful when using it. Make sure you have a copy of the original list or are sure that you no

longer need the deleted elements.

The del statement can also be used on a simple variable to delete it, as if it were an “unassignment”

statement. If you try to use the variable after deleting it, you will get a NameError error because

the variable no longer exists.

111 | P a g e
 https://tocxten.com/

In practice, you almost never need to delete simple variables. The del statement is mostly
used to delete values from lists.

Example:

2nd element gets deleted

Elements from index number 0 to 1 gets deleted.

If you try to print ham after deleting it completely, you will get a NameError error because the list

no longer exists.

112 | P a g e
 https://tocxten.com/

2.1.2 Working with Lists

Using for loops with Lists:

Using for loops with lists is a common technique in programming to iterate over the elements

of a list and perform certain operations on each element. It allows you to easily process each

item in a list without manually accessing them one by one.

The basic syntax for a for loop with a list is as follows:

for item in my_list:

 # Code block to execute for each item

 # ...

Code outside the loop

...

Here's a simple example to illustrate how to use a for loop with a list:

fruits = ["apple", "banana", "orange"]

for fruit in fruits:

 print(fruit)

print("Loop finished.")

The output of the above code would be:

apple

banana

orange

Loop finished.

The in and not in operator

The in and not in operators in Python are used to check whether a certain element exists or

does not exist in a list. These operators return a Boolean value (True or False) based on the

evaluation of the condition.

Here's the syntax for using the in and not in operators with lists:

element in my_list # Returns True if 'element' is found in 'my_list'

element not in my_list # Returns True if 'element' is not found in 'my_list'

Let's look at some examples to illustrate their usage:

113 | P a g e
 https://tocxten.com/

fruits = ["apple", "banana", "orange"]

print("apple" in fruits) # True

print("grape" in fruits) # False

print("banana" not in fruits) # False

print("kiwi" not in fruits) # True

The Multiple Assignment Trick

The "multiple assignment trick" in Python allows you to assign multiple values from a list to

multiple variables in a single line of code. It is particularly useful when working with lists of

known length or when you want to access individual elements of a list directly.

To use the multiple assignment trick, you need to have the same number of variables on the

left side of the assignment operator (=) as the number of elements in the list on the right side.

The variables will be assigned values in the order they appear in the list.

Here's an example to illustrate the multiple assignment trick:

fruits = ["apple", "banana", "orange"]

fruit1, fruit2, fruit3 = fruits

print(fruit1) # "apple"

print(fruit2) # "banana"

print(fruit3) # "orange"

It's important to note that the number of variables on the left side must match the number of

elements in the list; otherwise, a ValueError will occur. Also, if the list contains more

elements than the number of variables, the excess elements will not be assigned to any

variables. Conversely, if there are fewer elements in the list, a ValueError will be raised.

Example with more elements in the list than variables

fruits = ["apple", "banana", "orange", "kiwi"]

fruit1, fruit2 = fruits # ValueError: too many values to unpack

Example with fewer elements in the list than variables

fruits = ["apple", "banana"]

fruit1, fruit2, fruit3 = fruits # ValueError: not enough values to unpack

114 | P a g e
 https://tocxten.com/

2.1.3 Augmented Assignment Operators

When assigning a value to a variable, you will frequently use the variable itself. For

example, after assigning 42 to the variable spam, you would increase the value in

spam by 1 with the following code:

As a shortcut, you can use the augmented assignment operator += to do the same

thing:

There are augmented assignment operators for the +, -, *, /, and % operators,

described in table below:

Augmented assignment statement Equivalent Assignment
s +=1 s = s+1

s -=1 s = s-1
s *=1 s = s*1

s /=1 s = s/1

s %=1 s =s%1

The += operator can also do string and list concatenation, and the *= operator can

do string and list replication. Enter the following into the interactive shell:

s = ‘Hello’
s += ‘Python’
print(s) # ‘HelloPython’

115 | P a g e
 https://tocxten.com/

p =[‘Sudhanvitha’]
p *= 3
print(p) # [‘Sudhanvitha’, ‘Sudhanvitha’, ‘Sudhanvitha’]

2.1.4 List Methods

A method is the same thing as a function, except it is “called on” a value. For

example, if a list value were stored in name, you would call the index() list method

on that list like so: name.index('Pal'). The method part comes after the value,

separated by a period. Each data type has its own set of methods. The list data type,

for example, has several useful methods for finding, adding, removing, and

otherwise manipulating values in a list. Some of the most useful list methods are

described below:

append()

append() is a built-in method in Python’s list class that adds a new element to the end of the

list. The syntax for using append() is straightforward:

list_name.append(element)

Here, list_name refers to the name of the list you want to modify, and element is the value

you want to append to the list.

Here’s an example that demonstrates the use of append():

my_list = [1, 2, 3]

my_list.append(4)

print(my_list) # Output: [1, 2, 3, 4]

extend()

The extend() method is used to append multiple elements from an iterable (such as a list, tuple,

or string) to the end of a list.

fruits = ['apple', 'banana', 'cherry']

additional_fruits = ['orange', 'mango']

116 | P a g e
 https://tocxten.com/

fruits.extend(additional_fruits)

print(fruits) # Output: ['apple', 'banana', 'cherry', 'orange', 'mango']

insert()

The insert() method is used to insert an element at a specific index in a list.

fruits = ['apple', 'banana', 'cherry']

fruits.insert(1, 'orange')

print(fruits) # Output: ['apple', 'orange', 'banana', 'cherry']

remove()

The remove() method is used to remove the first occurrence of a specified element from a list.

fruits = ['apple', 'banana', 'cherry']

fruits.remove('banana')

print(fruits) # Output: ['apple', 'cherry']

pop()

The pop() method is used to remove and return an element from a specific index in a list. If no

index is specified, it removes and returns the last element.

fruits = ['apple', 'banana', 'cherry']

removed_fruit = fruits.pop(1)

print(removed_fruit) # Output: 'banana'

print(fruits) # Output: ['apple', 'cherry']

index()

The index() method is used to find the index of the first occurrence of a specified element in a

list.

fruits = ['apple', 'banana', 'cherry']

index = fruits.index('banana')

print(index) # Output: 1

117 | P a g e
 https://tocxten.com/

count()

The count() method is used to count the number of occurrences of a specified element in a list.

fruits = ['apple', 'banana', 'cherry', 'banana']

count = fruits.count('banana')

print(count) # Output: 2

sort()

The sort() method is used to sort the elements of a list in ascending order. It modifies the original

list.

numbers = [3, 1, 4, 1, 5, 9, 2]

numbers.sort()

print(numbers) # Output: [1, 1, 2, 3, 4, 5, 9]

reverse()

The reverse() method is used to reverse the order of elements in a list. It modifies the original

list.

fruits = ['apple', 'banana', 'cherry']

fruits.reverse()

print(fruits) # Output: ['cherry', 'banana', 'apple']

copy()

The copy() method is used to create a shallow copy of a list, which means it creates a new list

with the same elements. Modifying the original or copied list does not affect the other.

fruits = ['apple', 'banana', 'cherry']

copied_fruits = fruits.copy()

fruits.append('orange')

print(fruits) # Output: ['apple', 'banana', 'cherry', 'orange']

print(copied_fruits) # Output: ['apple', 'banana', 'cherry']

clear()

The clear() method is used to remove all the elements from a list, making it empty.

118 | P a g e
 https://tocxten.com/

fruits = ['apple', 'banana', 'cherry']

fruits.clear()

print(fruits) # Output: []

2.1.5 Example Program: Magic 8 Ball with a List .

The Magic 8 Ball problem refers to a hypothetical situation in computer science

where a program needs to make a decision based on incomplete or ambiguous

information. It is named after the Magic 8 Ball toy, which is a popular fortune-

telling device that provides random answers to yes-or-no questions. Following

program illustrates the Magic 8 Ball for yes or no questions.

import random

messages = ['It is certain',

 'It is decidedly so',

 'Yes definitely',

 'Reply hazy try again',

 'Ask again later',

 'Concentrate and ask again',

 'My reply is no',

 'Outlook not so good',

 'Very doubtful']

print(messages[random.randint(0, len(messages) - 1)])

119 | P a g e
 https://tocxten.com/

2.2 Strings

In Python, a string is a sequence of characters enclosed within either single quotes (‘ ‘) or double

quotes (” “). Strings are one of the basic data types in Python, and they are used to store and

manipulate text-based data.

Example : ‘Hello World!’ , “Python Programming“ , ”’apple”’

Creating String:

In Python, you can create a string by enclosing a sequence of characters within either single

quotes (‘ ‘) or double quotes (” “).

Here are some examples:

my_string_1 = 'This is a string created with single quotes'

my_string_2 = "This is a string created with double quotes"

In these examples, my_string_1 and my_string_2 are both strings that contain the text “This is a

string created with single quotes” and “This is a string created with double quotes”, respectively.

You can also create strings that contain special characters such as newlines (\n) and tabs (\t):

my_string_3 = "This string\n has a newline"

my_string_4 = "This string\t has a tab"

In these examples, my_string_3 contains a newline character, which causes the text “has a

newline” to appear on a new line, and my_string_4 contains a tab character, which causes a tab

space before the text “has a tab”.

Example :

120 | P a g e
 https://tocxten.com/

Triple quotes can extend multiple lines as illustrated below:

Length of a string

In Python, you can use the built-in len() function to get the length of a string, which returns the

number of characters in the string. Here’s an example:

my_string = "Hello, World!"

print(len(my_string)) # Output: 13

In this example, the len() function is called on the my_string string, which returns the number of

characters in the string (which is 13 in this case).

Note that the len() function counts all characters in the string, including spaces and special

characters. For example:

my_string = "This string\n has a newline"

print(len(my_string)) # Output: 22

In this example, the my_string string contains a newline character (\n), which is counted as a

single character by the len() function.

You can use the length of a string in various ways in your code, such as checking if a string is

empty, looping through the characters in a string, or performing string slicing operations.

You can find the length of a string in Python without using the built-in len() function by iterating

through the characters in the string using a loop and counting them. Here’s an example:

my_string = "Hello, World!"

count = 0

for char in my_string:

 count += 1

print(count) # Output: 13

In this example, a variable count is initialized to 0, and then a for loop is used to iterate through

each character in the my_string string. For each character, the count variable is incremented by 1.

121 | P a g e
 https://tocxten.com/

After the loop has finished, the count variable contains the length of the string (which is 13 in

this case).

Note that this method is not as efficient as using the built-in len() function, especially for longer

strings, because it involves iterating through each character in the string. However, it can be a

useful exercise in understanding how strings are represented and manipulated in Python.

One can get last letter of string using len() function as illustrated below :

To get the last letter of a string in Python, you can use string indexing with a negative index of -

1, which refers to the last character in the string. Here’s an example:

my_string = "Hello, World!"

last_letter = my_string[-1]

print(last_letter) # Output: !

In this example, the my_string string is indexed using a negative index of -1, which refers to the

last character in the string (which is the exclamation mark in this case). The last_letter variable

is then assigned this character using string indexing.

Note that this method assumes that the string is not empty. If the string is empty, attempting to

index it with -1 will result in an IndexError. To avoid this, you should first check if the string is

non-empty before indexing it.

String Indexing

In Python, you can use indexing to access individual characters in a string. String indexing is

done by specifying the position of the character within square brackets ([]) immediately

following the string. There are two types of indexing in Python: positive indexing and negative

indexing.

my_string = "Hello, World!"

print(my_string[0]) # Output: H

print(my_string[1]) # Output: e

print(my_string[6]) # Output: ,

In this example, the my_string string is indexed using positive indices. The first print statement

outputs the first character of the string (which is “H”), the second print statement outputs the

second character of the string (which is “e”), and the third print statement outputs the seventh

character of the string (which is “,”).

122 | P a g e
 https://tocxten.com/

Negative indexing, on the other hand, starts from the rightmost character of the string, with the

index of the last character being -1, the second-to-last character being -2, and so on. For

example:

my_string = "Hello, World!"

print(my_string[-1]) # Output: !

print(my_string[-2]) # Output: d

print(my_string[-7]) # Output:

In this example, the my_string string is indexed using negative indices. The first print statement

outputs the last character of the string (which is “!”), the second print statement outputs the

second-to-last character of the string (which is “d”), and the third print statement outputs the

seventh-to-last character of the string (which is a space).

In Python string can be indexed in forward(start to end) and backward(end to start) direction as

illustrated in the figure below :

Consider a string name = ” Sophia“. Here string Sophia is made up of 6 characters. Each

character of the string can be accessed by using either forward indexing or backward indexing as

illustrated below:

String Traversal

String traversal in Python involves iterating over each character of a string. This can be done in

both forward and reverse order using loops. Forward traversal using a while loop:
my_string = "hello world"
i = 0
while i < len(my_string):
 print(my_string[i])
 i += 1
Output:
h
e
l
l
o

w
o
r
l
d

123 | P a g e
 https://tocxten.com/

In this example, we initialize the index i to 0 and use a while loop to iterate through each character

of the string. The loop continues as long as i is less than the length of the string. At each iteration,

we print the character at the current index i and then increment i by 1 to move to the next character.

Forward traversal using a for loop:

my_string = "hello world"

for char in my_string:

 print(char)

output

h

e

l

l

o

w

o

r

l

d

In this example, we use a for loop to iterate through each character of the string. The loop

variable char takes on the value of each character in the string in turn, allowing us to access and

print each character. Reverse traversal using a while loop:

my_string = "hello world"
i = len(my_string) - 1
while i >= 0:
 print(my_string[i])
 i -= 1
#Output:
d
l
r
o
w

o
l
l
e
h

In this example, we initialize the index i to the last index of the string (which is the length of the

string minus one) and use a while loop to iterate through each character of the string in reverse

order. The loop continues as long as i is greater than or equal to 0. At each iteration, we print the

character at the current index i and then decrement i by 1 to move to the previous character.

124 | P a g e
 https://tocxten.com/

Reverse traversal using a for loop:

my_string = "hello world"

for char in reversed(my_string):

 print(char)

#output

d

l

r

o

w

o

l

l

e

h

In this example, we use the built-in reversed() function to reverse the order of the characters in the

string, and then use a for loop to iterate through each character in the reversed order. The loop

variable char takes on the value of each character in the string in turn, allowing us to access and

print each character.

Lists aren’t the only data types that represent ordered sequences of values.For example, strings

and lists are actually similar, if you consider a string to be a “list” of single text characters. Many

of the things you can do with lists can also be done with strings: indexing; slicing; and using

them with for loops, with len(), and with the in and not in operators.

String Slicing

String slicing is a technique in Python that allows you to extract a portion of a string by specifying

its start and end positions. This is done using the slice operator :. The basic syntax for string slicing

is as follows:

string[start:end:step]

start is the index of the first character to include in the slice (inclusive)

end is the index of the last character to include in the slice (exclusive)

step is the number of characters to skip between each included character (optional)

Here are some examples of string slicing:

my_string = "Hello, World!"

Extract the first 5 characters

print(my_string[0:5]) # Output: "Hello"

In the above example, the slice operator 0:5 is used to extract the first 5 characters of the string

“Hello, World!”. This includes the characters at indices 0 through 4 (inclusive).

125 | P a g e
 https://tocxten.com/

Extract the characters from index 7 to the end

print(my_string[7:]) # Output: "World!"

In the above example, the slice operator 7: is used to extract the characters from index 7 (the ‘W’

in “World!”) to the end of the string. This includes all characters starting at index 7 and continuing

to the end of the string.

Extract the last 6 characters

print(my_string[-6:]) # Output: "World!"

In the above example, negative indexing and the slice operator -6: is used to extract the last 6

characters of the string “Hello, World!”. This includes all characters starting 6 positions from the

end of the string and continuing to the end of the string.

Extract every other character

print(my_string[::2]) # Output: "Hlo ol!"

In the above example, the slice operator ::2 is used to extract every other character of the string

“Hello, World!”. This includes the first character, then skips the next character, then includes the

third character, and so on.

Reverse the string

print(my_string[::-1]) # Output: "!dlroW ,olleH

In the above example, negative step and the slice operator [::-1] is used to reverse the string

“Hello, World!”. This includes all characters in the string, but they are extracted in reverse order

because the step is -1.

Example :

126 | P a g e
 https://tocxten.com/

Strings are immutable

In Python, strings are immutable objects, which means that once a string is created, it cannot be

modified. Immutable objects are objects whose state cannot be changed once they are created.

When we modify a string in Python, what actually happens is that a new string is created with the

desired modifications, while the original string remains unchanged. This is different from mutable

objects like lists, where you can modify their elements in place.

Here is an example to demonstrate string immutability:

my_string = "hello"

my_string[0] = "H" # This will cause an error

In this example, we try to modify the first character of the string “hello” to be uppercase. However,

this will result in a TypeError, because strings are immutable and cannot be modified in place.

Instead, we need to create a new string with the desired modifications. Here is an example:

my_string = "hello"

new_string = "H" + my_string[1:]

print(new_string) # Output: "Hello"

In this example, we create a new string by concatenating the uppercase letter “H” with a slice of

the original string that starts at index 1 and goes to the end. This creates a new string “Hello” that

has the desired modification.

Example : The proper way to ‘mutate‘ a string is to slice and concatenate to build a new string

by copying from parts of the old string as illustrated below :

127 | P a g e
 https://tocxten.com/

Strings Looping and Counting

Looping over a string: To loop over a string in Python, you can use a for loop. In each iteration of

the loop, the loop variable will take on the value of the next character in the string. Here is an

example:

my_string = "hello"

for char in my_string:

 print(char)

Output:

h

e

l

l

o

Counting occurrences of a character in a string: To count the number of occurrences of a

specific character in a string, you can use the count() method of the string. This method takes a

single argument, which is the character to count. Here is an example:

my_string = "hello"

count = my_string.count('l')

print(count) # Output: 2

Counting occurrences of a substring in a string: To count the number of occurrences of a

substring in a string, you can use a loop and the count() method. Here is an example:

my_string = "hello world"

substring = "l"

count = 0

for char in my_string:

 if char == substring:

 count += 1

print(count) # Output: 3

In this example, we loop over each character in the string and increment a counter if the

character matches the substring we are searching for.

Example :

128 | P a g e
 https://tocxten.com/

Example : usage of in operator for strings

The in operator is a built-in operator in Python that is used to check whether a given value is

present in a sequence (such as a string, list, or tuple). When used with a string, the in operator

checks whether a substring is present in the string. Here are some examples:

Check if a substring is present in a string

my_string = "hello world"

substring = "world"

if substring in my_string:

 print("Substring found")

else:

 print("Substring not found")

Check if a character is present in a string

my_string = "hello"

char = "l"

if char in my_string:

 print("Character found")

else:

 print("Character not found")

#Output

Substring found

Character found

In the first example, we use the in operator to check whether the substring “world” is present in

the string “hello world”. Since it is present, the output is “Substring found”.

In the second example, we use the in operator to check whether the character “l” is present in the

string “hello”. Since it is present twice, the output is “Character found”.

Note that the in operator is case-sensitive. For example, if you search for the substring “World” in

the string “hello world”, it will not be found because the capitalization does not match.

Example :

129 | P a g e
 https://tocxten.com/

String Comparison using ==, < and > operators

In Python, you can compare strings using the ==, <, and > operators, just like you can with other

data types such as numbers.

Here’s how each operator works for string comparison:

= = (equal to) operator:

The == operator checks whether two strings have the same content. It returns True if the strings

are equal and False otherwise. Here’s an example:

string1 = "hello"

string2 = "hello"

if string1 == string2:

 print("The strings are equal")

else:

 print("The strings are not equal")

#Output: The strings are equal

< (less than) and > (greater than) operators:

The < and > operators compare two strings lexicographically (i.e., in dictionary order). They

return True if the first string is less than or greater than the second string, respectively,

and False otherwise. Here’s an example:

string1 = "apple"

string2 = "banana"

if string1 < string2:

 print("string1 comes before string2 in dictionary order")

else:

 print("string2 comes before string1 in dictionary order")

#Output: string1 comes before string2 in dictionary order

Note that the comparison of strings is case-sensitive, meaning that uppercase letters
come before lowercase letters in the ASCII table. Also, the <= and >= operators can also

be used for string comparison, which check whether the first string is less than or equal
to, or greater than or equal to the second string, respectively.

Useful String methods

Strings are an example of Python objects. An object contains both data (the actual string itself)

and methods which are effectively functions that are built into the object and are available to any

instance of the object. Using the command dir(str) one can list all the methods supported by

python as illustrated below:

130 | P a g e
 https://tocxten.com/

Table : String Methods and Description

Method Description

capitalize() Converts the first character to upper case

casefold() Converts string into lower case

center() Returns a centered string

count() Returns the number of times a specified value occurs in a string

encode() Returns an encoded version of the string

endswith() Returns true if the string ends with the specified value

find()
Searches the string for a specified value and returns the position of where it was
found

index()
Searches the string for a specified value and returns the position of where it was
found

isalnum() Returns True if all characters in the string are alphanumeric

isalpha() Returns True if all characters in the string are in the alphabet

isdigit() Returns True if all characters in the string are digits

isidentifier() Returns True if the string is an identifier

islower() Returns True if all characters in the string are lower case

isnumeric() Returns True if all characters in the string are numeric

isspace() Returns True if all characters in the string are whitespaces

istitle() Returns True if the string follows the rules of a title

131 | P a g e
 https://tocxten.com/

isupper() Returns True if all characters in the string are upper case

ljust() Returns a left justified version of the string

lower() Converts a string into lower case

lstrip() Returns a left trim version of the string

replace() Returns a string where a specified value is replaced with a specified value

rjust() Returns a right justified version of the string

rsplit() Splits the string at the specified separator, and returns a list

rstrip() Returns a right trim version of the string

split() Splits the string at the specified separator, and returns a list

startswith() Returns true if the string starts with the specified value

strip() Returns a trimmed version of the string

swapcase() Swaps cases, lower case becomes upper case and vice versa

title() Converts the first character of each word to upper case

upper() Converts a string into upper case

[Source : https://www.w3schools.com/python/python_ref_string.asp]

Some of the most useful string methods are described below with coding examples

1. capitalize ():

The capitalize() method is a built-in method in Python that converts the first character of a string

to uppercase and leaves the rest of the string unchanged. If the first character of the string is

already in uppercase, then the method has no effect on that character.

Here’s an example:

my_string = "hello world"

capitalized = my_string.capitalize()

print(capitalized) # Output: "Hello world"

my_string = "hello world"

capitalized = my_string.capitalize()

print(capitalized) # Output: "Hello world"

https://www.w3schools.com/python/python_ref_string.asp

132 | P a g e
 https://tocxten.com/

In this example, the capitalize() method is used to convert the first character of the string "hello

world" to uppercase, resulting in the string "Hello world".

Note that capitalize() does not modify the original string, but returns a new string with the first

character capitalized. Also, if the original string is empty, the capitalize() method will return an

empty string.

2. lower()

The lower() method is a built-in string method in Python that returns a new string with all the

alphabetic characters in the original string converted to lowercase.

Here’s an example:

my_string = "Hello, World!"

lowercase_string = my_string.lower()

print(lowercase_string)

Output: hello, world!

In this example, the lower() method is called on the my_string variable and the returned value is

assigned to the lowercase_string variable. The original string my_string is not modified, instead a

new string is created with all alphabetic characters in lowercase.

Note that lower() method only works with alphabetic characters, and any non-alphabetic

characters (such as punctuation, numbers, and spaces) are not affected by the method.

Example :

3. upper()

The upper() method is a built-in string method in Python that is used to convert all the lowercase

characters in a string to uppercase characters. The method takes no arguments and returns a new

string with all the characters in uppercase.

Here’s an example:

133 | P a g e
 https://tocxten.com/

text = "hello, world!"

uppercase_text = text.upper()

print(uppercase_text)

Output : HELLO, WORLD!

In the above example, the upper() method is used to convert all the lowercase characters in the

string text to uppercase characters. The resulting string is then stored in the

variable uppercase_text and printed to the console.

It’s important to note that the upper() method does not modify the original string, but instead

returns a new string with all the characters in uppercase. If you want to modify the original string,

you can assign the result of the upper() method back to the original variable:

text = "hello, world!"

text = text.upper()

print(text)

Output : HELLO, WORLD!

Example :

4. casefold():

Actually, the casefold() method in Python is used to convert a string into a lowercase string, just

like the lower() method. However, the casefold() method is more aggressive in its conversion and

is often preferred over the lower() method when dealing with case-insensitive string comparisons.

The casefold() method removes all case distinctions from a string and converts it into a form that

is suitable for case-insensitive comparisons. This method also handles some special cases, such as

the German “sharp s” character (ß), which is converted to “ss” when casefolded.

Here’s an example:

text = "Hello, World!"

lowercase_text = text.casefold()

print(lowercase_text)

#output : hello, world!

134 | P a g e
 https://tocxten.com/

In the above example, the casefold() method is used to convert the string text to lowercase. The

resulting string is then stored in the variable lowercase_text and printed to the console.

Just like the lower() method, the casefold() method does not modify the original string, but instead

returns a new string with all the characters in lowercase. If you want to modify the original string,

you can assign the result of the casefold() method back to the original variable:

text = "Hello, World!"

text = text.casefold()

print(text)

Output: hello, world!

Example:

4. center() :

The center() method is a built-in string method in Python that returns a centered string. It takes

two arguments: width, which specifies the total width of the resulting string, and an

optional fillchar argument that specifies the character to be used for padding.

Here’s the syntax for center() method:

string.center(width, fillchar)

The width argument is required, and must be a positive integer. The fillchar argument is optional,

and must be a string of length 1. If fillchar is not specified, a space character is used for padding.

Here’s an example of how to use the center() method:

string = "Hello"

width = 10

fillchar = "*"

centered_string = string.center(width, fillchar)

print(centered_string)

Output: **Hello***

In this example, the original string "Hello" is centered in a string of width 10 with the fill

character *, resulting in the string **Hello***.

135 | P a g e
 https://tocxten.com/

5. swapcase()

swapcase() is a built-in string method in Python that returns a new string where the case of each

character in the original string is swapped. In other words, all uppercase characters are converted

to lowercase, and all lowercase characters are converted to uppercase.

Here’s the syntax for swapcase() method:

string.swapcase()

Here’s an example of how to use the swapcase() method:

string = "Hello World"

swapped_string = string.swapcase()

print(swapped_string)

#Output: hELLO wORLD

In this example, the original string "Hello World" is swapped using the swapcase() method,

resulting in the string "hELLO wORLD".

6. find()

find() is a built-in string method in Python that returns the lowest index of the first occurrence of

a specified substring within a string. If the substring is not found, it returns -1. Here’s the syntax

for find() method:

string.find(substring, start, end)

The substring argument is required, and specifies the substring to be searched within the string.

The start and end arguments are optional, and specify the starting and ending index positions for

136 | P a g e
 https://tocxten.com/

the search. If start is not specified, the search starts from the beginning of the string. If end is not

specified, the search goes until the end of the string.

Here’s an example of how to use the find() method:

string = "Hello World"

substring = "World"

index = string.find(substring)

print(index)

output : 6

In this example, the find() method is used to search for the substring "World" within the

string "Hello World". The method returns the lowest index of the substring, which is 6. If the

substring is not found within the string, the find() method returns -1:

string = "Hello World"

substring = "Universe"

index = string.find(substring)

print(index)

Output: -1

Example:

Example :

137 | P a g e
 https://tocxten.com/

7. count()

count() is a built-in string method in Python that returns the number of occurrences of a specified

substring within a string. Here’s the syntax for count() method:

string.count(substring, start, end)

The substring argument is required, and specifies the substring to be counted within the string.

The start and end arguments are optional, and specify the starting and ending index positions for

the count. If start is not specified, the count starts from the beginning of the string. If end is not

specified, the count goes until the end of the string. Here’s an example of how to use

the count() method:

string = "Hello World"

substring = "l"

count = string.count(substring)

print(count)

output : 3

In this example, the count() method is used to count the number of occurrences of the

substring "l" within the string "Hello World". The method returns the number of occurrences,

which is 3.

You can also use the count() method to count the occurrences of a substring within a specific range

of the string:

string = "Hello World"

substring = "l"

start = 3

end = 8

count = string.count(substring, start, end)

print(count)

#Output : 1

In this example, the count() method is used to count the number of occurrences of the

substring "l" within the range of the string "lo Wo", which starts from index 3 and ends at index 8.

The method returns the number of occurrences within the range, which is 1.

Example :

138 | P a g e
 https://tocxten.com/

8. strip(), lstrip() and rstrip()

strip(), lstrip(), and rstrip() are built-in string methods in Python that remove leading and/or

trailing characters from a string. strip() removes leading and trailing whitespace characters

(spaces, tabs, newlines) from a string. Here’s the syntax for strip() strip(), lstrip() ,

and rstrip() methods:

string.strip([characters])

string.lstrip([characters])

string.rstrip([characters])

The characters argument is optional, and specifies the characters to be removed from both ends

of the string. If characters is not specified, it removes whitespace characters by default.

9. startswith() and endswith()

startswith() and endswith() are built-in string methods in Python that are used to check whether a

string starts with or ends with a specific substring, respectively.

• startswith() returns True if the string starts with the specified substring,

and False otherwise.

• endswith() returns True if the string ends with the specified substring,

and False otherwise.

Here’s the syntax for startswith() and endswith() method:

string.startswith(substring, start, end)

string.endswith(substring, start, end)

Example:

139 | P a g e
 https://tocxten.com/

10. split()

split() is a built-in string method in Python that is used to split a string into a list of substrings

based on a specified separator.

Here’s the syntax for split() method:

string.split(sep=None, maxsplit=-1)

The sep argument is optional, and specifies the separator to use for splitting the string. If sep is

not specified, the default separator is whitespace.

The maxsplit argument is optional, and specifies the maximum number of splits to be performed.

If maxsplit is not specified or set to -1, all possible splits are performed.

Here’s an example of how to use the split() method:

string = "Hello World"

words = string.split()

print(words)

#output : ['Hello', 'World']

Example:

string = "apple,banana,orange"

fruits = string.split(",")

print(fruits)

#output: ['apple', 'banana', 'orange']

Example:

140 | P a g e
 https://tocxten.com/

Example:

11. join()

join() is a built-in method in Python that can be used to concatenate a sequence of

strings into a single string. The method takes an iterable, such as a list or tuple, and
concatenates each element in the iterable into a single string with a separator between
them. Here’s an example of how to use join()

words = ["hello", "world", "!"]

separator = " "

sentence = separator.join(words)

print(sentence)

#output: hello world !

In this example, we create a list of words and a separator string. We then use the join() method to

concatenate the words in the list into a single string, with the separator between each word. The

resulting string is assigned to the sentence variable and printed to the console. Note that

the join() method can be used with any iterable that contains strings, not just lists. Additionally,

the separator string can be any string value, including an empty string.

141 | P a g e
 https://tocxten.com/

Python String Operators

Python provides several operators that can be used with strings. Here are some of the most

commonly used string operators in Python:

1. + (concatenation operator): This operator is used to concatenate two or more strings. For

example:

string1 = "Hello"

string2 = "world"

result = string1 + " " + string2

print(result)

#Output: Hello world

2. * (repetition operator): This operator is used to repeat a string a certain number of times. For

example:

string = "spam"

result = string * 3

print(result)

output: spamspamspam

3. in and not in (membership operators): These operators are used to check if a string is

present in another string. For example:

string = "hello world"

print("hello" in string) # True

print("goodbye" not in string) # True

4. % (string formatting operator): This operator is used to format a string with variables. For

example:

name = "Alice"

age = 30

result = "My name is %s and I'm %d years old." % (name, age)

print(result)

output: My name is Alice and I'm 30 years old.

5. [] (indexing operator): This operator is used to access individual characters in a string. For

example:

string = "hello"

print(string[0]) # 'h'

print(string[-1]) # 'o'

6. Range slicing, denoted by [:] is a way to extract a substring from a string in Python. It works

by specifying the start and end indices of the substring that you want to extract. For example,

consider the following string:

s = "hello world"

142 | P a g e
 https://tocxten.com/

To extract the substring "hello", you can use the range slicing syntax s[0:5]:

substring = s[0:5]

print(substring)

Output:

hello

In this example, s[0:5] specifies the range from index 0 (inclusive) to index 5 (exclusive), which

corresponds to the substring "hello".

You can also omit the starting or ending index to specify a range that starts from the beginning or

ends at the end of the string, respectively.

For example, s[:5] extracts the substring "hello", and s[6:] extracts the substring "world".

substring1 = s[:5]

substring2 = s[6:]

print(substring1)

print(substring2)

output :

hello

world

Range slicing can also be used with negative indices, which count from the end of the string. For

example, s[-5:-1] extracts the substring "worl".

substring = s[-5:-1]

print(substring)

output:

worl

Range slicing is a powerful feature in Python strings that allows you to extract substrings quickly

and easily.

143 | P a g e
 https://tocxten.com/

Format Operators

Format operators are used in print statement. There are two format operators:

1. %

2. format()

Both % and format() are string formatting operators in Python that allow you to insert values

into a string.

1. % operator:

Syntax :
print("%s1 %s2 %s3 ------"%(arg1,arg2,arg3,------argn))

Here,

s1,s2 ,..........sn are conversion specifiers like d(for int),f(for float),s(for string) ,etc.

and

arg1,arg2....argn are variables or values.

The % operator is an older way to format strings and is based on C-style string formatting. It uses

placeholders in the string, such as %s and %d, to indicate where variables should be inserted. Here's

an example:

name = "Alice"

age = 30

result = "My name is %s and I'm %d years old." % (name, age)

print(result)

Output:

My name is Alice and I'm 30 years old.

In this example, %s is a placeholder for a string value and %d is a placeholder for an integer value.

The variables name and age are inserted into the string using the % operator.

Example :

144 | P a g e
 https://tocxten.com/

2. format() function

Syntax :

print('{0} {1}{n}'.format(agr1,agr2,agr3....argn)

Here,

 0,1,2,------are position specifiers

and

 arg1,arg2,-----argn are variables/values

The format() method is a newer way to format strings and is more versatile than the % operator.

It uses curly braces {} to indicate where variables should be inserted. Here’s an example:

name = "Alice"

age = 30

result = "My name is {} and I'm {} years old.".format(name, age)

print(result)

Output: My name is Alice and I'm 30 years old.

Example :

145 | P a g e
 https://tocxten.com/

Sample Programs:

1.Write a Python Program to Check if the String is Symmetrical or Palindrome:

A string is said to be symmetrical if both halves of the string are the same, and a string is said to

be a palindrome if one half of the string is the opposite of the other half or if the string appears the

same whether read forward or backward.

Output 1 :

Output 2

146 | P a g e
 https://tocxten.com/

2. Write a Python Program to find the length of string

Output :

3. Write a Python Program to Count the Number of Digits, Alphabets, and Other

Characters in a String

Output :

147 | P a g e
 https://tocxten.com/

4. Write a Python Program to Count the Number of Vowels in a String

5. Write a Python Program to Split and Join a String

6. Write a Python program to display a largest word from a string

148 | P a g e
 https://tocxten.com/

7. Write a Python program to display unique words from a string

8.Write a Program to accept a word and display a ASCII value of each character of words

149 | P a g e
 https://tocxten.com/

2.3Tuples

In Python, a tuple is an ordered, immutable collection of elements, typically used to group related

data together. Tuples are very similar to lists, with the main difference being that tuples are

immutable, meaning that once they are created, their elements cannot be modified. Because of this,

tuples can be used in situations where data should not be modified after creation, or where it is

desirable to protect the data from being accidentally changed. The index value of tuple starts from

0.

Tuples use parentheses (), whereas lists use square brackets [].

Examples:

2.3.1. Creation of Tuples

Creating Empty Tuples:
To create an empty tuple in Python, you can simply use a pair of parentheses with nothing inside:

empty_tuple = ()

This creates an empty tuple named empty_tuple. Alternatively, you can use

the tuple() constructor function to create an empty tuple:

empty_tuple = tuple()

This has the same effect as using empty parentheses. Empty tuples can be useful as placeholders

for values that will be filled in later, or in cases where you need to pass a tuple to a function but

don’t have any data to include in it. Note that once a tuple is created, you cannot add or remove

elements from it, so an empty tuple will remain empty unless you assign values to it.

Creating tuple with single element

To create a tuple with a single element in Python, you need to be careful because using just

parentheses to enclose the element will create a different type of object, a string, integer or float.

For example, if you write:

my_tuple = (4)

The my_tuple variable will not be a tuple but an integer value of 4. To create a tuple with a

single element, you can add a trailing comma after the element within parentheses:

my_tuple = (4,)

https://tocxten.com/index.php/tuples/

150 | P a g e
 https://tocxten.com/

This creates a tuple with a single element of value 4. It is important to add the comma to

distinguish the tuple from an integer value. Here is another example:

my_tuple = ("apple",)

This creates a tuple with a single element of value “apple”.

Without the trailing comma, Python will interpret it as a string, like this:

my_string = ("apple")

In this case, my_string will be a string variable, not a tuple.

Creation of Tuples with Multiple Values

To create a tuple with multiple values in Python, you can separate each element with a comma

and enclose them all in parentheses:

my_tuple = (1, 2, "three", 4.0)

This creates a tuple named my_tuple with four elements: the integers 1 and 2, the string “three”,

and the floating-point number 4.0. You can create a tuple with any number of elements, and each

element can be of a different type. It is also possible to create a tuple without explicitly using

parentheses, as long as there are commas between the values:

my_tuple = 1, 2, "three", 4.0

This has the same effect as the previous example. You can also use variables to create a tuple:

x = 1

y = 2

my_tuple = (x, y)

In this case, my_tuple will be a tuple containing the values of x and y, which are both integers.

Tuples are flexible data structures that can hold any combination of values, and are often used to

group related data together in a way that is easy to work with.

151 | P a g e
 https://tocxten.com/

Example :

Example :

Example :

2.3.2. Adding new elements to Tuple

In Python, tuples are immutable data structures, which means that once a tuple is created, you

cannot add, remove, or modify its elements. If you need to add a new element to a tuple, you will

need to create a new tuple that includes the original tuple’s elements as well as the new element.

Here’s an example of how to create a new tuple by adding a new element to an existing tuple:

original_tuple = (1, 2, 3)

new_tuple = original_tuple + (4,)

In this example, we start with an original tuple (1, 2, 3). We create a new tuple new_tuple by

concatenating the original tuple with a new tuple containing the single element 4 using

the + operator. Note that we also include a comma after the 4 to ensure that it is interpreted as a

tuple with a single element, rather than just a number.

152 | P a g e
 https://tocxten.com/

After running this code, new_tuple will contain (1, 2, 3, 4).

It’s important to note that creating a new tuple in this way can be inefficient if you are working

with very large tuples, since it involves creating a new copy of the entire tuple. If you need to

add or remove elements frequently, you might want to consider using a different data structure,

such as a list, which allows you to modify its contents.

Example :

2.3.3.Accessing Values in Tuples

The values in tuples can be accessed using squared brackets , index number and slicing . You can

access individual values within a tuple in Python using indexing. Indexing starts at 0 for the first

element of the tuple, 1 for the second element, and so on. For example, given the tuple:

my_tuple = ('apple', 'banana', 'cherry', 'date')

You can access the first element using:

my_tuple[0] # returns 'apple'

The second element can be accessed using:

my_tuple[1] # returns 'banana'

And so on.

You can also use negative indexing to access elements from the end of the tuple. The last

element can be accessed using:

153 | P a g e
 https://tocxten.com/

my_tuple[-1] # returns 'date'

The second-last element can be accessed using:

my_tuple[-2] # returns 'cherry'

And so on.

If you try to access an index that is out of range, you will get an IndexError. For example, if

you try to access my_tuple[4] in the example above, you will get an IndexError because the

tuple only has four elements.

In addition to indexing, you can also use slicing to access a subset of the elements in a tuple.

Slicing allows you to extract a range of elements from the tuple, and returns a new tuple

containing those elements.

For example, to get the second and third elements of the my_tuple tuple, you can use slicing:

my_slice = my_tuple[1:3] # returns ('banana', 'cherry')

In this example, the slice notation [1:3] indicates that we want to extract elements starting at

index 1 (the second element) up to, but not including, index 3 (the fourth element). The result

is a new tuple containing the elements ‘banana’ and ‘cherry’.

Example :

154 | P a g e
 https://tocxten.com/

2.3.4. Updating Tuples

In Python, tuples are immutable, which means that once a tuple is created, its contents cannot be

modified. This means that you cannot add, remove or update elements in a tuple once it has been

created.

However, you can create a new tuple with updated values based on the existing tuple. To do this,

you can use slicing and concatenation to extract the parts of the tuple you want to keep, and add

or replace the elements you want to update. Here’s an example:

my_tuple = (1, 2, 3, 4)

new_tuple = my_tuple[:2] + (5,) + my_tuple[3:]

In this example, we start with a tuple my_tuple that contains the values (1, 2, 3, 4). We create a

new tuple new_tuple by extracting the first two elements of my_tuple using slicing (my_tuple[:2]),

adding the value 5 as a new element in a tuple ((5,)), and then concatenating the remaining

elements of my_tuple after the fourth element using slicing (my_tuple[3:]).

After running this code, new_tuple will contain the values (1, 2, 5, 4). Note that we are not actually

modifying the original tuple, but creating a new tuple with the desired values.

Although tuples are immutable, they are useful data structures because they allow you to group

related data together in a way that is easy to work with, and can be passed around in your code

without fear of the contents being modified.

Example :

Tuples are immutable and hence cannot change the value of tuple elements . Consider the

following example :

In the above example attempt is made to create tuple of the form (100, 34.56, ‘abc’, ‘xyz’) by

item assignment. Type error is generated because python does not support item assignment

155 | P a g e
 https://tocxten.com/

for tuple objects. However a new tuple can be generated using concatenation as illustrated

below :

2.3.5. Deleting Tuple Elements

In Python, tuples are immutable, which means that once a tuple is created, its contents cannot

be modified. This means that you cannot delete elements from a tuple. However, you can

create a new tuple that contains all the elements of the original tuple except for the one you

want to remove.

To remove an element from a tuple, you can use slicing and concatenation to create a new

tuple that contains all the elements before the one you want to remove, as well as all the

elements after the one you want to remove. Here’s an example:

my_tuple = (1, 2, 3, 4)

new_tuple = my_tuple[:2] + my_tuple[3:]

In this example, we start with a tuple my_tuple that contains the values (1, 2, 3, 4). We create a

new tuple new_tuple by extracting the first two elements of my_tuple using slicing

(my_tuple[:2]), and concatenating the remaining elements of my_tuple after the third element

using slicing (my_tuple[3:]).

After running this code, new_tuple will contain the values (1, 2, 4), which is the original tuple

with the third element (3) removed. Note that we are not actually modifying the original

tuple, but creating a new tuple with the desired values.

Although tuples are immutable and you cannot delete elements from them, they are still

useful data structures because they allow you to group related data together in a way that is

easy to work with, and can be passed around in your code without fear of the contents being

modified.

156 | P a g e
 https://tocxten.com/

Example :

Tuple object does not support item or range of items deletion:

However, the entire tuple can be deleted as illustrated below:

157 | P a g e
 https://tocxten.com/

2.3.6. Basic Tuple Operations

Here are some basic tuple operations in Python:

1. Concatenation: You can concatenate two tuples using the + operator. The result is a new

tuple that contains all the elements from both tuples.

tup1 = (1, 2, 3)

tup2 = (4, 5, 6)

tup3 = tup1 + tup2

print(tup3) # Output: (1, 2, 3, 4, 5, 6)

2. Repetition: You can repeat a tuple multiple times using the * operator. The result is a new

tuple that contains the original tuple repeated the specified number of times.

tup1 = (1, 2, 3)

tup2 = tup1 * 3

print(tup2) # Output: (1, 2, 3, 1, 2, 3, 1, 2, 3)

3. Membership Test: You can check if an element is present in a tuple using the in operator.

The result is a Boolean value indicating whether the element is present in the tuple.

tup1 = (1, 2, 3)

print(2 in tup1) # Output: True

print(4 in tup1) # Output: False

4. Length: You can find the length of a tuple using the len() function. The result is an integer

representing the number of elements in the tuple.
tup1 = (1, 2, 3)

print(len(tup1)) # Output: 3

5. Index: You can find the index of an element in a tuple using the index() method. The result

is an integer representing the position of the element in the tuple.

tup1 = (1, 2, 3)

print(tup1.index(2)) # Output: 1

6. Count: You can count the number of occurrences of an element in a tuple using

the count() method. The result is an integer representing the number of times the element

appears in the tuple.

tup1 = (1, 2, 3, 2)

print(tup1.count(2)) # Output: 2

7. Iteration : To iterate over a tuple, you can use a for loop, which will iterate over each

element of the tuple in order. Here is an example:

158 | P a g e
 https://tocxten.com/

my_tuple = (1, 2, 3, 4, 5)

for item in my_tuple:

 print(item)

Output :

1

2

3

4

5

In the above example, we first create a tuple called my_tuple with five elements. We then use

a for loop to iterate over each element of the tuple and print it to the console.

You can also use the enumerate() function to iterate over a tuple and get the index of each

element. Here is an example:

my_tuple = ('apple', 'banana', 'orange')

for index, item in enumerate(my_tuple):

 print(index, item)

output :

0 apple

1 banana

2 orange

In the above example, we use the enumerate() function to iterate over the my_tuple tuple and

get the index and value of each element. The enumerate() function returns a tuple with two

values: the index of the current item and the item itself. We then use two

variables, index and item, to capture these values and print them to the console.

Example : iterating tuple t1

Example : iterating tuple

159 | P a g e
 https://tocxten.com/

2.3.7. Tuple Assignment

Tuple assignment is a feature in Python that allows you to assign multiple variables at once using

a single tuple. The syntax for tuple assignment involves putting the values you want to assign in

a tuple on the right-hand side of the equals sign (=), and the variables you want to assign them to

on the left-hand side of the equals sign. Here is an example:

x, y = 3, 4

In this example, we are assigning the value 3 to the variable x and the value 4 to the variable y.

This is equivalent to writing:

x = 3

y = 4

Another example:

a, b, c = "apple", "banana", "cherry"

Here, we are assigning the string “apple” to the variable a, the string “banana” to the variable

b, and the string “cherry” to the variable c.

You can also use tuple unpacking to swap the values of two variables, like this:

a, b = b, a

This code will swap the values of the variables a and b.

Tuple assignment can also be used to assign values from a function that returns a tuple. For

example:

def rectangle_info(width, height):

 area = width * height

 perimeter = 2 * (width + height)

 return area, perimeter

width = 5

height = 10

area, perimeter = rectangle_info(width, height)

print("Width:", width)

print("Height:", height)

print("Area:", area)

print("Perimeter:", perimeter)

In this example, we define a function rectangle_info that takes in the width and height of a

rectangle and returns a tuple containing the area and perimeter of the rectangle. We then call

the function and use tuple assignment to assign the area and perimeter values to the

variables area and perimeter.

160 | P a g e
 https://tocxten.com/

Examples on Swapping two numbers / tuples:

Example 1:

Example 2:

Example 3:

The left side is a tuple of variables, while the right side is a tuple of expressions. Each value is

assigned to its respective variable. All the expressions on the right side are evaluated before any

of the assignments. The number of variables on the left and the number of values on the right must

be the same:

161 | P a g e
 https://tocxten.com/

2.3.8. Tuple Slicing

Slice operator works on Tuple also. This is used to display more than one selected value on

the output screen. Slices are treated as boundaries and the result will contain all the elements

between boundaries. Tuple slicing is a way to extract a subset of elements from a tuple. Tuple

slicing is done using the slicing operator:

The syntax for tuple slicing is as follows:

tuple[start:stop:step]

where start is the index of the first element to be included in the slice, stop is the index of the

first element to be excluded from the slice, and step is the stride between elements. Where start,

stop & step all three are optional. If we omit first index, slice starts from ‘0’. On omitting stop,

slice will take it to end. Default value of step is 1.

Here are some examples of tuple slicing in Python:

create a tuple

my_tuple = (1, 2, 3, 4, 5)

get a slice of the first three elements

first_three = my_tuple[0:3]

print(first_three) # Output: (1, 2, 3)

get a slice of the last three elements

last_three = my_tuple[-3:]

print(last_three) # Output: (3, 4, 5)

get a slice of every other element

every_other = my_tuple[::2]

print(every_other) # Output: (1, 3, 5)

reverse the tuple

reverse_tuple = my_tuple[::-1]

print(reverse_tuple) # Output: (5, 4, 3, 2, 1)

In the first example, we get a slice of the first three elements of the tuple my_tuple using the

start index 0 and the stop index 3. In the second example, we get a slice of the last three

elements of the tuple my_tuple using the negative start index -3. In the third example, we get a

slice of every other element of the tuple my_tuple using a step size of 2. In the fourth example,

we reverse the order of the tuple my_tuple using a negative step size.

162 | P a g e
 https://tocxten.com/

Example :Tuple slicing

163 | P a g e
 https://tocxten.com/

2.3.9. Comparing Tuples

In Python, tuples are compared element-wise, starting from the first element. The comparison

stops as soon as a mismatch is found between two elements or one of the tuples has been fully

compared. If all the elements in the tuples are equal, then the tuples are considered equal.

The comparison of tuples is done based on the following rules:

1. If both tuples have the same length, then the comparison is done element-wise until

a mismatch is found or all elements have been compared.

2. If the first mismatched element in the tuples is a numeric type (integer, float,

complex), then the comparison is done based on the numeric value.

3. If the first mismatched element in the tuples is a string, then the comparison is done

based on the ASCII value of the characters.

4. If the first mismatched element in the tuples is a tuple, then the comparison is done

recursively.

5. If all elements in the tuples have been compared and are equal, then the tuples are

considered equal.

Here are some examples of comparing tuples in Python(Tuples can be compared using

comparison operators like <, >, and == as illustrated below) :

comparing tuples with numeric values

tuple1 = (1, 2, 3)

tuple2 = (1, 2, 4)

print(tuple1 < tuple2) # Output: True

comparing tuples with string values

tuple3 = ('apple', 'banana')

tuple4 = ('apple', 'cherry')

print(tuple3 < tuple4) # Output: True

comparing tuples with nested tuples

tuple5 = (1, 2, (3, 4))

tuple6 = (1, 2, (3, 5))

print(tuple5 < tuple6) # Output: True

In the first example, the tuples tuple1 and tuple2 are compared element-wise, and since the third

element in tuple1 is less than the third element in tuple2, the result is True.

In the second example, the tuples tuple3 and tuple4 are compared element-wise, and since the

second element in tuple3 is less than the second element in tuple4 based on the ASCII value,

the result is True.

In the third example, the tuples tuple5 and tuple6 are compared element-wise, and since the

third element in tuple5 is less than the third element in tuple6, the result is True.

164 | P a g e
 https://tocxten.com/

Example :Comparing Tuples

165 | P a g e
 https://tocxten.com/

2.3.10. max() and min() functions

In Python, the max() and min() functions can be used to find the maximum and minimum

values in a tuple. The max() function returns the largest element in a tuple, while

the min() function returns the smallest element in a tuple. Both functions can be used with

tuples containing numeric values or with tuples containing strings. However, if a tuple contains

a mix of numeric and string values, the max() and min() functions will raise

a TypeError exception. Here are some examples of using the max() and min() functions with

tuples:

using max() and min() with tuples containing numeric values

tuple1 = (1, 5, 3, 7, 2, 8, 4)

print(max(tuple1)) # Output: 8

print(min(tuple1)) # Output: 1

using max() and min() with tuples containing strings

tuple2 = ('apple', 'banana', 'cherry', 'date')

print(max(tuple2)) # Output: 'date'

print(min(tuple2)) # Output: 'apple'

In the first example, the max() function returns the largest element in tuple1, which is 8.

The min() function returns the smallest element in tuple1, which is 1.

In the second example, the max() function returns the element with the largest ASCII value

in tuple2, which is 'date'. The min() function returns the element with the smallest ASCII value

in tuple2, which is 'apple'.

Note that the max() and min() functions work with any iterable object in Python, not just

tuples.

166 | P a g e
 https://tocxten.com/

2.4 Dictionaries

A dictionary is a collection of items that are unordered, changeable, and indexed. Dictionary items

are made up of Key – value pair and each key is separated from its value by a colon (:) and whole

thing is enclosed in curly braces as illustrated in the following syntax:

Syntax: my_dict = {'key1': 'value1','key2': 'value2','key3': 'value3'…'keyn': 'valuen'}

Example:

Keys are unique within a dictionary while values may not be. The values of a dictionary can be of

any type, but the keys must be of an immutable data type such as strings, numbers, or tuples. A

dictionary is an extremely useful data storage construct for storing and retrieving all key value

pairs, where each element is accessed (or indexed) by a unique key. However, dictionary keys are

not in sequences and hence maintain no left-to right order.

Dictionary is a mapping between a set of indices (called keys) and a set of values. Each key

maps a value. The association of a key and a value is called a key-value pair.

2.4.1 Creating Dictionaries:

2.4.1.1 Creating Empty Dictionary: Empty dictionaries can be created using curly braces and

dict() function as illustrated below:

167 | P a g e
 https://tocxten.com/

2.4.1.2 Creating Dictionary with Multiple Elements: Dictionaries with multiple elements can

be created using curly braces. Each element containing key value pair are separated by comma

operator as illustrated below:

Example 1:

Example 2 :

2.4.2 Accessing Values in Dictionary

To access dictionary elements, you can use the familiar square brackets along with the key to

obtain its value. Following is a simple example:

If we attempt to access a data item with a key, which is not part of the dictionary, we get an error

as follows –

168 | P a g e
 https://tocxten.com/

2.4.3 Updating Dictionary

Dictionary can be updated by adding a new entry or a key-value pair, modifying an existing entry,

or deleting an existing entry as shown below in the simple example:

2.4.4 Delete Dictionary Elements

You can either remove individual dictionary elements or clear the entire contents of a dictionary.

Consider a dictionary dictx as illustrated below:

Following example illustrates the deletion of single element with key ‘Name’:

The clear() method can be used to delete all the elements of dictionary as illustrated below:

169 | P a g e
 https://tocxten.com/

One can also delete the entire dictionary in a single operation. To explicitly remove an entire

dictionary, just use the del statement. Following is a simple example −

2.4.5 Properties of Dictionary Keys

Dictionary Values have no restrictions and that they can be of any arbitrary object. Keys are

immutable type with following properties:

1. More than one entry per key is not allowed. When duplicate key is allowed the last

assignment wins:

2. Since Keys are immutable, one can use strings , numbers or tuples as dictionary

keys.

2.4.6 Python Dictionary items() method

It returns the content of dictionary as a list of key and value. The key and value pair

will be in the form of a tuple, which is not in any particular order.

Syntax: dictionary. items()

Example:

170 | P a g e
 https://tocxten.com/

2.4.7 Python Dictionary keys() method

It returns a list of the key values in a dictionary, which is not in any particular order.

Syntax : dictionary.keys()

Example :

2.4.8 Python Dictionary Values Method

It returns a list of values from key-value pairs in a dictionary, which is not in any particular order.

However, if we call both the items () and values() method without changing the dictionary’s

contents between these two (items() and values()), Python guarantees that the order of the two

results will be the same.

2.4.9 Traversing Dictionary elements using for loop

In Python, you can traverse the elements of a dictionary using various methods. Here are a few

common ways to iterate over dictionary elements.

Example 1: Traversing Dictionary using keys

171 | P a g e
 https://tocxten.com/

Example 2 : Traversing Dictionary using values

Example 3 : Traversing Dictionary using values

2.4.10 Membership Operators with Dictionary

Membership operators (in and not in) can be used to check for the presence or absence of keys in

a dictionary. Here's how you can use membership operators with dictionaries in Python:

Example 1: Checking whether a key or value exists in a dictionary

172 | P a g e
 https://tocxten.com/

Example 2: Check if a key does not exist in the dictionary

if "key4" not in my_dict:

 print("Key 'key4' does not exist in the dictionary.")

2.4.11 Comparing Dictionaries

To compare dictionaries in Python, you can use the equality operator (==) or the cmp() function.

Here's how you can compare dictionaries using these methods:

1. Using the equality operator (==):

dict1 = {"key1": "value1", "key2": "value2"}

dict2 = {"key1": "value1", "key2": "value2"}

if dict1 == dict2:

 print("The dictionaries are equal.")

else:

 print("The dictionaries are not equal.")

2. Using the cmp() function (available in Python 2):

dict1 = {"key1": "value1", "key2": "value2"}

dict2 = {"key1": "value1", "key2": "value2"}

if cmp(dict1, dict2) == 0:

 print("The dictionaries are equal.")

else:

 print("The dictionaries are not equal.")

2.4.12 Merging dictionaries: An update ()

Syntax: Dic_name1.update (dic_name2)

In Python, you can merge dictionaries using the update() method. The update() method modifies

the dictionary in place by adding key-value pairs from another dictionary. Here's how you can use

the update() method to merge dictionaries:

dict1 = {"key1": "value1", "key2": "value2"}

dict2 = {"key3": "value3", "key4": "value4"}

dict1.update(dict2)

print(dict1)

output: {"key1": "value1", "key2": "value2", "key3": "value3", "key4": "value4"}

173 | P a g e
 https://tocxten.com/

In the example above, dict1.update(dict2) merges dict2 into dict1. The update() method adds all

the key-value pairs from dict2 to dict1. If there are common keys between the dictionaries, the

values from dict2 will overwrite the values in dict1 for those keys.

2.4.13 len ()

This method returns the number of key-value pairs in the given dictionary.

2.4.14 get() and setdefault() methods with dictionary

1. get() method: The get() method retrieves the value associated with a given key in the

dictionary. It takes the key as the first argument and an optional second argument

specifying a default value to return if the key is not found in the dictionary. Consider the

following example:

my_dict = {"key1": "value1", "key2": "value2"}

value1 = my_dict.get("key1")

print(value1) # Output: "value1"

value3 = my_dict.get("key3", "default")

print(value3) # Output: "default" (since "key3" doesn't exist)

In the example above, my_dict.get("key1") returns the value associated with "key1",

which is "value1". If the key "key3" doesn't exist in the dictionary, my_dict.get("key3",

"default") returns the default value "default".

Another Example:

picnic_items = {'apples':5,'cups':2}

'I am bringing ' + str(picnic_items.get('cups',0)) + ' cups'

#output: 'I am bringing 2 cups'

'I am bringing ' + str(picnic_items.get('oranges',2)) + ' oranges'

#Output:'I am bringing 2 oranges'

174 | P a g e
 https://tocxten.com/

2. setdefault() method : The setdefault() method returns the value associated with a given

key in the dictionary. If the key doesn't exist, it adds the key with a default value to the

dictionary.

my_dict = {"key1": "value1", "key2": "value2"}

value1 = my_dict.setdefault("key1", "default")

print(value1) # Output: "value1"

value3 = my_dict.setdefault("key3", "default")

print(value3) # Output: "default"

print(my_dict) # Output: {"key1": "value1", "key2": "value2", "key3": "default"}

Example : Get the value of the “color” item, if the “color” item does not exist, insert “color”

with the value “silksilver”:

175 | P a g e
 https://tocxten.com/

2.4.15 Converting a dictionary to a list of tuples

Dictionary have a method called items() that returns a list of tuples where each tuple is a key

value pair.

2.4.16 Pretty Printing

In Python, the pprint module provides two functions for pretty-printing data structures: pprint()

and pformat(). These functions are useful when you want to display complex data structures, such

as dictionaries or lists, in a more readable and structured format. Here's an explanation of

pprint.pprint() and pprint.pformat() with examples:

1. pprint() function:

The pprint() function in the pprint module prints a data structure in a formatted and more

readable manner. It accepts a single argument, which can be any data structure, such as a

dictionary, list, or tuple.

printing dictionary elements using print
student_dict = {'Name':'Tyson',

 'class':'XII',

 'Address': {'Flat':1308,'Block':'A','Lane':2,'City':"Hyderbad"}}

print(student_dict)

#output:{'Name': 'Tyson', 'class': 'XII', 'Address': {'Flat': 1308, 'Block': 'A', 'Lane': 2, 'City': 'Hyderbad'}}

printing dictionary elements using pprint.pprint()
import pprint

pprint.pprint(student_dict)

{'Address': {'Block': 'A', 'City': 'Hyderbad', 'Flat': 1308, 'Lane': 2},

 'Name': 'Tyson',

 'class': 'XII'}

printing dictionary elements using pprint.pprint() with width and indent
pprint.pprint(student_dict,width = 2, indent =2)

{ 'Address': { 'Block': 'A',

176 | P a g e
 https://tocxten.com/

 'City': 'Hyderbad',

 'Flat': 1308,

 'Lane': 2},

 'Name': 'Tyson',

 'class': 'XII'}

2. pformat() function: The pformat() function in the pprint module returns a string

representation of the data structure instead of printing it directly. This can be useful if you

want to store or manipulate the formatted output.

x = pprint.pformat(student_dict,indent =5)

print(x)

#output

{ 'Address': {'Block': 'A', 'City': 'Hyderbad', 'Flat': 1308, 'Lane': 2},

 'Name': 'Tyson',

 'class': 'XII'}

2.4.17: Using Data Structures to Model Real-World Things

1. Using Data Structures to Model Chess: In algebraic chess notation, the spaces on the

chessboard are identified by a number and letter coordinate, as in Figure below:

The chess pieces are identified by letters: K for king, Q for queen, R for rook, B for bishop, and
N for knight. Describing a move uses the letter of the piece and the coordinates of its
destination. A pair of these moves describes what happens in a single turn (with white going
first); for instance, the notation 2. Nf3 Nc6 indicates that white moved a knight to f3 and
black moved a knight to c6 on the second turn of the game.

177 | P a g e
 https://tocxten.com/

Algebraic chess notation is a standard notation system used to record chess moves. It allows

players to describe moves using a combination of letters and numbers that represent the squares

on the chessboard. Here are the key elements of algebraic chess notation:

Piece Abbreviations:

K: King

Q: Queen

R: Rook

B: Bishop

N: Knight

No abbreviation for pawns

Square Designation:

Each square on the chessboard is designated by a combination of a letter (column) and a number

(row). The letters a-h represent the columns from left to right, and the numbers 1-8 represent the

rows from bottom to top.

Move Representation:

A move in algebraic notation typically consists of the piece abbreviation (if applicable), the

destination square, and additional symbols to indicate the move type:

Pawn moves: Only the destination square is mentioned. If it's a capture, the source file is

indicated as well.

Example: e4, exd5 (e4 pawn moves to e5, capturing d5 pawn)

Other pieces: The piece abbreviation is followed by the destination square. If multiple

pieces of the same type can move to the same square, the source file or rank is mentioned

to disambiguate.

Example: Nf3 (Knight moves to f3), R1e5 (Rook on the first rank moves to e5)

Special Moves:

Castling: O-O for kingside castling and O-O-O for queenside castling.

En Passant: If a pawn captures en passant, the destination square is indicated and "e.p." is

added.

Example: exd6 e.p. (e5 pawn captures d6 pawn en passant)

Check and Checkmate:

"+" is added after a move to indicate a check.

"#" is added after a move to indicate a checkmate.

Example: Qh5+ (Queen moves to h5, giving a check), Qh5# (Queen moves to h5, giving

a checkmate)

178 | P a g e
 https://tocxten.com/

Other Symbols:

“=” is used to indicate pawn promotion. It is followed by the piece abbreviation to which

the pawn promotes.

Example: e8=Q (Pawn on e8 promotes to a Queen)

By using algebraic chess notation, players can easily record and communicate their moves. It is

also commonly used in chess literature, annotations, and online platforms for game analysis.

2. Using Data Structures to Model Tic-Tac-Toe: A tic-tac-toe board looks like a large hash

symbol (#) with nine slots that can each contain an X, an O, or a blank. To represent the board with

a dictionary, you can assign each slot a string-value key, as shown in Figure :

Fig: slots of a tic-tactoe board with their corresponding keys

You can use string values to represent what’s in each slot on the board: 'X', 'O', or ' ' (a space

character). Thus, you’ll need to store nine strings. You can use a dictionary of values for this. The

string value with the key 'top-R' can represent the top-right corner, the string value with the key

'low-L' can represent the bottom-left corner, the string value with the key 'mid-M' can represent

the middle, and so on. This dictionary is a data structure that represents a tic-tac-toe board. Store

this board-as-a-dictionary in a variable named theBoard.

theBoard = {

 'top-L': ' ', 'top-M': ' ', 'top-R': ' ',

 'mid-L': ' ', 'mid-M': ' ', 'mid-R': ' ',

 'low-L': ' ', 'low-M': ' ', 'low-R': ' '

 }

The data structure stored in the theBoard variable represents the tic-tac-toe board in Figure

below:

Fig : Empty Tic Tac Toe Board

179 | P a g e
 https://tocxten.com/

Since the value for every key in theBoard is a single-space string, this dictionary represents a

completely clear board. If player X went first and chose the middle space, you could represent that

board with this dictionary:

theBoard = {'top-L': ' ', 'top-M': ' ', 'top-R': ' ',

 'mid-L': ' ', 'mid-M': 'X', 'mid-R': ' ',

 'low-L': ' ', 'low-M': ' ', 'low-R': ' '}

The data structure in theBoard now represents the tic-tac-toe board in Figure below:

Fig: The First Move

A board where player O has won by placing Os across the top might look like this:

theBoard = {'top-L': 'O', 'top-M': 'O', 'top-R': 'O',
 'mid-L': 'X', 'mid-M': 'X', 'mid-R': ' ',
 'low-L': ' ', 'low-M': ' ', 'low-R': 'X'}

The data structure in theBoard now represents the tic-tac-toe board in Figure below:

Fig: Player O wins

180 | P a g e
 https://tocxten.com/

Python Program to simulate the working of Tic-Tac-Toe:

theBoard = {'top-L': ' ', 'top-M': ' ', 'top-R': ' ',

 'mid-L': ' ', 'mid-M': ' ', 'mid-R': ' ',

 'low-L': ' ', 'low-M': ' ', 'low-R': ' '}

def printBoard(board):

 print(board['top-L'] + '|' + board['top-M'] + '|' + board['top-R'])

 print('-+-+-')

 print(board['mid-L'] + '|' + board['mid-M'] + '|' + board['mid-R'])

 print('-+-+-')

 print(board['low-L'] + '|' + board['low-M'] + '|' + board['low-R'])

turn = 'X'

for i in range(9):

 printBoard(theBoard)

 print('Turn for ' + turn + '. Move on which space?')

 move = input()

 theBoard[move] = turn

 if turn == 'X':

 turn = 'O'

 else:

 turn = 'X'

printBoard(theBoard)

OutPut :

| |

-+-+-

| |

-+-+-

| |

Turn for X. Move on which space?

mid-M

| |

-+-+-

|X|

-+-+-

| |

Turn for O. Move on which space?

low-L

| |

-+-+-

|X|

-+-+-

181 | P a g e
 https://tocxten.com/

O| |

--snip--

O|O|X

-+-+-

X|X|O

-+-+-

O| |X

Turn for X. Move on which space?

low-M

O|O|X

-+-+-

X|X|O

-+-+-

O|X|X

This isn’t a complete tic-tac-toe game—for instance, it doesn’t ever check whether

a player has won—but it’s enough to see how data structures can be used in

programs.

2.4.18: Nested Dictionaries and Lists

1. Nested Dictionaries: A nested dictionary is a dictionary that contains other dictionaries as its

values. It allows you to create a hierarchical structure to organize and store data. Each inner

dictionary can have its own set of key-value pairs. Here's an example:

student = {

 'name': 'John',

 'age': 20,

 'grades': {

 'math': 90,

 'science': 85,

 'history': 95

 }

}

In the example above, the student dictionary has three key-value pairs. The 'grades' key has a value

of another dictionary, which contains subject-grade pairs.

You can access the nested values by chaining the keys together. For example, to access the math

grade, you can use student['grades']['math'], which will return 90.

182 | P a g e
 https://tocxten.com/

2. Nested Lists: A nested list is a list that contains other lists as its elements. It allows you to create

a multidimensional structure to store data. Each inner list can have its own set of elements. Here's

an example:

matrix = [

 [1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]

]

In the example above, the matrix list contains three inner lists, forming a 3x3 matrix. You can

access the elements of the nested list using indexing. For example, to access the element 5, you

can use matrix[1][1], which corresponds to the second row and second column. Nested lists can

be useful for representing grids, matrices, or any other data structures that require multiple

dimensions.

Nested dictionaries and lists can be combined to create more complex data structures. For example,

you can have a list of dictionaries, where each dictionary represents an entity with multiple

properties, or you can have a dictionary that contains lists as its values, allowing you to group

related items together.

Remember that when working with nested data structures, you need to carefully consider the

structure and access patterns to ensure efficient and correct data manipulation.

183 | P a g e
 https://tocxten.com/

Sample Question Bank
1. What is list ? Explain the concepts of list slicing with example.

2. Explain references with example

3. Explain why lists are called Mutable.

4. Discuss the following List operations and functions with examples :

1. Accessing ,Traversing and Slicing the List Elements

2. + (concatenation) and * (Repetition)

3. append , extend , sort , remove and delete

4. split and join

5. What is Dictionary ? List merits of Dictionaries over List.

6. Write a python program to accept USN and marks obtained, find maximum ,minimum

and students USN who have scored in the range 100 -85, 85-75, 75-60 and 60 marks

separately.

7. Define String? Explain at least 5 String functions with examples.

8. Write a python program to display presence of given substring in main string.

9. Define Tuple , List , Strings and Dictionary in Python.

10. Compare tuples with Lists. Explain how tuple can be converted into list and list into

tuples.

11. Predict the out put and justify your answer: (i) -11%9 (ii) 7.7//7 (iii) (200 – 70)*10/5 (iv)

not “False” (v) 5*|**2

12. What is dictionary ? How it is different from list ? Write a program to count the number

of occurrences of character in a string.

13. List any six methods associated with string and explain each of them with example.

14. Write a Python program to swap cases of a given string .

Input : Java

Output : jAVA
15. What is Dictionary in Python ? How is it different from List Data type ? Explain how a for

loop can be used to traverse the keys of the Dictionary with an example.
16. Discuss the following Dictionary methods in Python with example.

a. get()
b. items()
c. keys()
d. values()

17. Explain the various string methods for the following operations with examples.
a. Removing white space characters from the beginning end or both sides of a

string
b. To right -justify , left justify and center a string

18. Explain the methods of list data type in Python for the following operations with suitable
 code snippets for each.

o Adding values to a list
o Removing values from a list
o Finding a value in a list
o Sorting the values in a list

19. Write a Python program that accepts a sentence and find the number of words , digits ,
uppercase letters and lowercase letters

20. Explain the various string methods for the following operations with examples.
1. Removing white space characters from the beginning, end or both sides of a string
2. To right -justify, left justify and center a string.

184 | P a g e
 https://tocxten.com/

21. What is list ? Explain the concept of slicing and indexing with proper examples.
22. What are the different methods supports in python List . Illustrate all the methods with an

example.
23. What is dictionary ? Illustrate with an example python program the usage of nested

dictionary.
24. List out all the useful string methods which supports in python . Explain with an example

for each method.
25. What are the different steps in project adding Bullets to Wiki Markup.

26. Explain negative indexing, slicing, index (), append(), remove, pop(), insert() and sort()
with suitable example in lists.

27. Explain the use of in and not in operators in list with suitable examples.
28. Illustrate with examples, why List are mutable, and strings are immutable.
29. Develop a program to read the student details like Name, USN, and Marks in three subjects.

Display the student details, total marks and percentage with suitable messages
30. Develop a program to read the name and year of birth of a person. Display whether the person is a

senior citizen or not.
31. Develop a program to generate Fibonacci sequence of length (N). Read N from the console.
32. Write a function to calculate factorial of a number. Develop a program to compute binomial

coefficient (Given N and R).
33. Read N numbers from the console and create a list. Develop a program to print mean, variance

and standard deviation with suitable messages.
34. Read a multi-digit number (as chars) from the console. Develop a program to print the frequency

of each digit with suitable message.

35. Develop a program to calculate the area of rectangle and triangle print the result.
36. Write a function that computes and returns addition, subtraction, multiplication, division of

two integers. Take input from user.

