

Dr.Thyagraju G S and Palguni GT

INTRODUCTION TO PYTHON

PROGRAMMING- MODULE1

1 | P a g e
 https://tocxten.com/

Contents

No Syllabus Page

1

1.1 Python Basics: Entering Expressions into the Interactive Shell, The Integer,

Floating-Point, and String Data Types, String Concatenation and Replication,

Storing Values in Variables, Your First Program, Dissecting Your Program,

2- 31

1.2 Flow control: Boolean Values, Comparison Operators, Boolean Operators,

Mixing Boolean and Comparison Operators, Elements of Flow Control,

Program Execution, Flow Control Statements, Importing Modules, Ending a

Program Early with sys.exit(),

31-67

1.3 Functions: def Statements with Parameters, Return Values and return

Statements,The None Value, Keyword Arguments and print(), Local and

Global Scope, The global Statement, Exception Handling, A Short Program:

Guess the Number

68-97

2

2.1 Lists: The List Data Type, Working with Lists, Augmented Assignment

Operators, Methods, Example Program: Magic 8 Ball with a List, List-like

Types: Strings and Tuples, References,

2.2 Dictionaries and Structuring Data: The Dictionary Data Type, Pretty

Printing, Using Data Structures to Model Real-World Things,

3

3.1 Manipulating Strings: Working with Strings, Useful String Methods,

Project: Password Locker, Project: Adding Bullets to Wiki Markup

3.2 Reading and Writing Files: Files and File Paths, The os.path Module, The

File Reading/Writing Process, Saving Variables with the shelve Module,Saving

Variables with the print.format() Function, Project: Generating Random Quiz

Files, Project: Multiclipboard

4

4.1 Organizing Files: The shutil Module, Walking a Directory Tree,

Compressing Files with the zipfile Module, Project: Renaming Files with

American-Style Dates to European-Style Dates,Project: Backing Up a Folder

into a ZIP File,

4.2 Debugging: Raising Exceptions, Getting the Traceback as a String,

Assertions, Logging, IDLE‟s Debugger.

5

5.1 Classes and objects: Programmer-defined types, Attributes, Rectangles,

Instances as return values, Objects are mutable, Copying,

5.2 Classes and functions: Time, Pure functions, Modifiers, Prototyping versus

planning,

5.3 Classes and methods: Object-oriented features, Printing objects, Another

example, A more complicated example, Theinit method, The __str__ method,

Operator overloading, Type-based dispatch, Polymorphism, Interface and

implementation,

2 | P a g e
 https://tocxten.com/

1.1 Python Basics

1.1.1 Introduction: Python is a general-purpose interpreted, interactive, object-

oriented, and high-level programming language. It was created by Guido van

Rossum during 1985- 1990. Python is named after a TV Show called ‘Monty Python’s

Flying Circus’ and not after Python-the snake. Some of the Features that Makes

Python more popular are:

• Python is Simple and Easy to learn and code.

• Python is Free and Open Source. It is freely available at the

https://www.python.org/. Python source code is also available to the public,

one can download it, use it, and share it.

• Python is High Level Language and supports both Procedure oriented and

Object-Oriented Language concepts along with dynamic memory

management.

• Python is portable. Python code can be run on any platforms like Linux, Unix,

Mac and Windows.

• Python is extensible and integrated. Python code can be extended and

integrated with among other languages like C, C++, Java, etc.

• Python is an interpreted language. Python code is executed line by line at a

time and there is no need to compile, which makes debugging easier. The

• Python has rich set of libraries for data analytics, machine learning, artificial

intelligence, deep learning, mathematical computation, web app

development, mobile app development, testing, etc.

• Python is a dynamically typed language. Here the data type for variable is

decided at run time. As a result, there is no need to specify the type of

variable.

1.1.2 Why One Should Learn Python Program?

Python Programming is a fun, creative and rewarding activity. Python is one of the

most widely used programming language across the world for developing software

applications. It is named as one of top picked programming languages of most of

the universities and industries. Python developer is one of the “10 Most in Demand

Tech Jobs of 2019”[Source : https://www.techrepublic.com/] As of February 23,

https://www.techrepublic.com/

3 | P a g e
 https://tocxten.com/

2019, the average salary for a Python developer is $123,201 per year in the

United States, making it one of the most popular and lucrative careers today

[source: https://www.codingdojo.com/].

Python can be used on the following:

1. Multiple Programming Paradigms

2. Web Testing

3. Data Extraction

4. Artificial Intelligence

5. Machine Learning

6. Data Science

7. Web Application and Internet Development

8. Cybersecurity

Entering Expressions into the interactive Shell

In Python, expressions are combinations of values, variables, operators, and function

calls that can be evaluated to produce a result. They represent computations and

return a value when executed. Here are some examples of expressions in Python:

Examples: 17, x, x+17 , 1+2*2 , X**2, x**2 + y**2

Entering expressions into the Python interactive shell allows you to evaluate and

execute code in real-time. You can use the shell as a convenient way to test and

experiment with Python code. Here are some examples of entering expressions into

the Python interactive shell:

Arithmetic Operations:

You can perform basic arithmetic operations, such as addition, subtraction,

multiplication, and division, directly in the shell. For example:

>>> 2 + 3

5

>>> 4 * 5

20

>>> 10 / 3

3.3333333333333335

https://www.indeed.com/salaries/Python-Developer-Salaries
https://www.codingdojo.com/

4 | P a g e
 https://tocxten.com/

Variable Assignment:

You can assign values to variables and use those variables in expressions. For

example:

>>> x = 5

>>> y = 2

>>> x + y

7

>>> x * y

10

Function Calls:

You can call built-in functions or user-defined functions within the shell. For

example:

>>> abs(-10)

10

>>> len("Hello, World!")

13

>>> def add(a, b):

... return a + b

...

>>> add(3, 4)

7

Boolean Expressions:

You can use boolean operators like and, or, and not to evaluate logical expressions.

For example:

>>> True and False

False

>>> True or False

True

>>> not True

False

Conditional Statements:

You can use conditional statements like if, elif, and else to perform different actions

based on conditions. For example:

>>> x = 10

5 | P a g e
 https://tocxten.com/

>>> if x > 0:

... print("Positive")

... elif x < 0:

... print("Negative")

... else:

... print("Zero")

...

Positive

Value: A value is a letter or a number. In Python, a value is a fundamental piece of

data that can be assigned to variables, used in expressions, and manipulated by

operations. Values can be of different types, such as numbers, strings, booleans,

lists, tuples, dictionaries, and more. Each type of value has its own characteristics

and behaviors.

Examples :

x = 10 # integer

y = 3.14 # floating-point number

z = 2 + 3j # complex number

name = "John" # string

message = 'Hello, World!' # string

is_true = True # Boolean Value

is_false = False

numbers = [1, 2, 3, 4, 5]

fruits = ["apple", "banana", "orange"]

coordinates = (10, 20)

person = ("John", 30, "USA")

student = {"name": "John", "age": 20, "grade": "A"}

6 | P a g e
 https://tocxten.com/

type() function :

In Python, the type() function is used to determine the type of a given object or

value. It returns the data type of the object as a result. The type() function is

particularly useful when you need to programmatically determine the type of a

variable or check if a value belongs to a specific data type. Here's an example:

Example: 1,2 and “Hello, World!”. Types are the data types to which the Values

belong.

type(arg) function returns the data type of the argument as illustrated below :

x = 5

y = 3.14

name = "John"

is_true = True

fruits = ["apple", "banana", "orange"]

student = {"name": "John", "age": 20}

print(type(x)) # <class 'int'>

print(type(y)) # <class 'float'>

print(type(name)) # <class 'str'>

print(type(is_true)) # <class 'bool'>

print(type(fruits)) # <class 'list'>

print(type(student)) # <class 'dict'>

7 | P a g e
 https://tocxten.com/

Data types

In Python, data types represent the classification or categorization of values. Each
data type defines the operations that can be performed on the values, the storage
format, and the behavior of the values. Python supports several built-in data types.
Here are the commonly used data types supported in Python, along with examples:

Numeric Data Types:

int: Integers represent whole numbers, positive or negative, without decimal

points.

Example: x = 5

float: Floating-point numbers represent decimal or floating-point values.

Example: y = 3.14

complex: Complex numbers consist of a real and an imaginary part.

Example: z = 2 + 3j

String Data Type:

str: Strings represent sequences of characters enclosed in single quotes (' ') or

double quotes (" ").

Example: name = "John"

Boolean Data Type:

bool: Booleans represent either True or False, denoting logical values.

Example: is_true = True

Sequence Data Types:

list: Lists are ordered collections of items enclosed in square brackets ([]). They can
contain values of any type and are mutable.
Example: fruits = ["apple", "banana", "orange"]
tuple: Tuples are similar to lists but are enclosed in parentheses (()). They are
immutable, meaning their values cannot be changed once defined.
Example: coordinates = (10, 20)

8 | P a g e
 https://tocxten.com/

Mapping Data Type:

dict: Dictionaries are unordered collections of key-value pairs enclosed in curly

braces ({}). They provide a way to associate values with unique keys.

Example: student = {"name": "John", "age": 20}

Set Data Type:

set: Sets represent unordered collections of unique elements enclosed in curly

braces ({}). They do not allow duplicate values.

Example: numbers = {1, 2, 3, 4, 5}

None Type:

None: The None type represents the absence of a value or a null value. It is often

used to indicate the absence of a meaningful result.

Example: result = None

String Concatenation and Replication

String concatenation and replication are operations that allow you to combine and

repeat strings in Python. Here's an explanation of each operation with examples:

String Concatenation:

String concatenation is the process of combining two or more strings together to

create a single string. In Python, you can concatenate strings using the + operator.

Here's an example:

greeting = "Hello"

name = "John"

message = greeting + " " + name

print(message) # Output: Hello John

9 | P a g e
 https://tocxten.com/

In this example, the + operator is used to concatenate the strings greeting, a space

(" "), and name, resulting in the string "Hello John". The concatenated string is then

stored in the message variable and printed.

String Replication:

String replication allows you to repeat a string multiple times. In Python, you can

replicate a string by using the * operator. Here's an example:

fruit = "apple"

repeated_fruit = fruit * 3

print(repeated_fruit) # Output: appleappleapple

In this example, the * operator is used to replicate the string "apple" three times,

resulting in the string "appleappleapple". The replicated string is stored in the

repeated fruit variable and printed.

String concatenation and replication can be combined to achieve more complex

string operations. Here's an example that demonstrates both concatenation and

replication:

word = "Hi"

punctuation = "!"

greeting = word * 3 + punctuation

print(greeting) # Output: HiHiHi!

10 | P a g e
 https://tocxten.com/

Variables:

A variable is a name that refers to a value. In Python, a variable is a named storage
location that holds a value. It allows you to assign values to identifiers and refer to
those values by using the identifiers later in the program. An assignment statement
creates new variables as illustrated in the example below:

x = 10

In this example, the value 10 is assigned to the variable x. Now, x holds the value
10, and you can refer to it later in the program.

Examples:

Message = ‘Python Programming ‘,

p =1000, t= 2, r=3.142,

Si = p*t*r/100,

pi = 3.1415926535897931,

area_of _circle = pi*r*r.

To know the type of the variable one can use type () function. Ex: type(p)

To display the value of a variable, you can use a print statement:
Ex: print (Si) ; print(pi)

Rules for writing Variable names

1. Variable names can be a combination of letters in lowercase (a to z) or

uppercase (A to Z) or digits (0 to 9) or an underscore (_).
2. Variable names cannot start with a number/digit.
3. Keywords cannot be used as Variable names.
4. Special symbols like !, @, #, $, % etc. cannot be used in Variable names.
5. Variable names can be of any length.
6. Variable name must be of single word.

11 | P a g e
 https://tocxten.com/

Table: Valid Variable Names and Invalid Variable Names

Valid Variable Names Invalid Variable Names

python12 current- account(hyphens are not allowed)

Simple savings account (spaces are not allowed)

interest_year 4freinds (can’t begin with a number)

_rate_of_interest 1975 (can’t begin with a number)

spam 10April$ (cannot begin with a number and special

characters like $ are not allowed)

HAM Principle#@(special characters like # and @ are not

allowed)

account1234 ‘bear’ (special characters like ‘ is not allowed)

Note:

Variable names are case-sensitive, meaning that velocity, VELOCITY, Velocity, and

velocity are four different variables. It is a Python convention to start your variables

with a lowercase letter.

Storing Values in a Variables:

Values can be stored in a variable using an Assignment statement. An assignment

statement consists of a variable name, an equal (=) sign and the value to be stored.

Example 1:

x = 40

In this example, the value 10 is assigned to the variable x. The variable x now holds

the value 10, and you can use x to refer to that value throughout the program.

Example 2:

a, b, c = 1, 2, 3

In this example, the values 1, 2, and 3 are assigned to variables a, b, and c respectively.

Each value is assigned to its corresponding variable based on the order of appearance.

12 | P a g e
 https://tocxten.com/

Example 3:

x = 5

y = 3

result = x + y

In this example, the variables x and y hold the values 5 and 3 respectively. The

expression x + y is evaluated, and the result 8 is assigned to the variable result.

Example 4:

x = 10

x = x + 5 # x is updated to 15

In this example, the variable x initially holds the value 10. The expression x + 5

evaluates to 15, and that value is assigned back to the variable x.

13 | P a g e
 https://tocxten.com/

My First Program :

This program demonstrates the usage of common built-in functions in Python

Using the print() function to display a message

print("Welcome to the Python function demo!")

Using the len() function to determine the length of a string

text = input("Enter a word or phrase: ")

length = len(text)

print("The length of the entered text is:", length)

Using the input() function to get user input

name = input("Enter your name: ")

age = input("Enter your age: ")

Using the int() function to convert a string to an integer

age = int(age)

age_in_future = age + 10

print("In 10 years, you will be", age_in_future, "years old.")

Using the str() function to convert an integer to a string

message = "Hello, " + name + "! You are " + str(age) + " years old."

print(message)

Dissecting the Sample Program

Sample program comprises executable statements containing comments and built in

functions like print () , input () , len() , int() and str().

Explanation of the program:

The program starts with a comment explaining the purpose of the program.

The print() function is used to display the welcome message.

The input() function is used to prompt the user to enter a word or phrase. The value

entered by the user is stored in the text variable.

14 | P a g e
 https://tocxten.com/

The len() function is used to determine the length of the text string, and the result is

stored in the length variable.

The program displays a message with the length of the entered text using the print()

function.

The input() function is used again to get the user's name and age. The values entered

by the user are stored in the name and age variables, respectively.

The int() function is used to convert the age value from a string to an integer.

The program calculates the user's age in 10 years by adding 10 to the age variable,

and the result is stored in the age_in_future variable.

The program displays a message with the user's name, age, and the calculated age in

10 years using the print() function.

The str() function is used to convert the age integer back to a string so that it can be

concatenated with other strings in the message variable.

The final message is displayed using the print() function.

The program demonstrates the usage of these functions: print() for displaying

messages, len() for determining the length of a string, input() for obtaining user

input, int() for converting a string to an integer, and str() for converting an integer to

a string.

Comments:

Comments are readable explanation or descriptions that help programmers better

understand the intent and functionality of the source code. Comments are completely

ignored by interpreter.

Advantages of Using Comments:

1. Makes code more readable and understandable.

2. Helps to remember why certain blocks of code were written.

3. Can also be used to ignore some code while testing other blocks of code.

Single Line Comments in Python:

The hash symbol #is used to write a single line comment.

15 | P a g e
 https://tocxten.com/

Example:

Printing a message

print(“ Enter your Name “)

myName = input (“ Enter Your Name”) # Read your name to myName

Multiline Comments in Python:

1. Using # at the beginning of each line of comment on multiple lines

Example:

It is a

multiline

comment

2. Using String Literals ''' at the beginning and end of multiple lines

Example:

'''

I am a

Multiline comment!

'''

The print() Function :

The print function is used to display the string value written within pair of double

quotes inside the parentheses on the screen .

print('It is Good to meet you, ' + myName)

print('The length of your name is:')

print(len(myName))

print('You Will be ' + str(int(myAge)+1) + ' in a year.')

The line print('The length of your name is:') means “Print out the text in the string ‘'The

length of your name is:’ . When Python executes the print statement, python interpreter

calls the print()function and the string value is being passed to the function. The value

within print() is called argument . Quotes within parentheses marks where the string

begins and ends ; they are not part of the string value.

16 | P a g e
 https://tocxten.com/

The input() function

This function is used to take the input from the user . Whatever the user enter as input,

input() function convert it into a string . if you enter an integer value still input()

function convert it into a string . The programmer is needed to convert it into an integer

in your code using typecasting.

Myname = input(“Enter your name”)

Reading multiple values using input()

Programmer often want as user to enter multiple values in one line . In Python user

can take multiple values or inputs in one line by using split() method . It breaks the

given input by the specified separator. If separator is not provided then any white

space is a separator. Generally, user use a split() method to split a Python string but

one can used it in taking multiple input.

Example:

>>> x, y,z = input ("Enter three values").split()

Enter three values 2 3 4

>>> x

'2'

>>> y

'3'

>>> z

'4'

The len() Function

In Python, the len() function is used to determine the length of an object, such as a

string, list, tuple, or any other iterable. It returns the number of elements or characters

present in the object. Here's an explanation of the len() function with an example:

text = "Hello, World!"

length = len(text)

print(length) # Output: 13

17 | P a g e
 https://tocxten.com/

The str() , int() and float Functions :

The str(), int(), and float() functions in Python are used to convert values between

different data types. Here's an explanation of each function with examples:

str() Function:

The str() function is used to convert a value to a string data type. It takes any valid

Python object as an argument and returns a string representation of that object. Here's

an example:

number = 10

number_str = str(number)

print(number_str) # Output: "10"

str() function can be used convert integer or floating numbers into string data type.

int() Function:

The int() function is used to convert a value to an integer data type. It can convert a

string or a float to an integer by truncating any decimal places. Here are some

examples:

number_str = "20"

number_int = int(number_str)

print(number_int) # Output: 20

float_num = 3.14

float_int = int(float_num)

print(float_int) # Output: 3

In the first example, the int() function converts the string "20" to an integer value 20.

In the second example, the int() function converts the float value 3.14 to an integer by

truncating the decimal places, resulting in the value 3.

float() Function:

The float() function is used to convert a value to a floating-point data type. It can

convert a string or an integer to a float. Here's an example:

number_str = "3.14"

number_float = float(number_str)

print(number_float) # Output: 3.14

18 | P a g e
 https://tocxten.com/

integer_num = 10

integer_float = float(integer_num)

print(integer_float) # Output: 10.0

In the first example, the float() function converts the string "3.14" to a floating-point

value 3.14. In the second example, the float() function converts the integer value 10 to

a float value 10.0.

These functions are useful when you need to convert values between different data

types in Python. They allow you to perform operations and manipulate values in the

desired format.

Operators and operands

• Operators are special symbols that represent computations like addition and

multiplication. The values the operator is applied to are called operands.

• The operators +, -, *, /, and ** perform addition, subtraction, multiplication,

division, and exponentiation, as in the following examples:

 Table: Operators and Examples

Operator Operation Example Evaluates to
** Exponent 5**3 125

% Modulus/Remainder 33%7 5
// Integer Division/Floored quotient 33//5 6

/ Division 23/7 3.2857142857142856
* Multiplication 7*8 56

- Subtraction 8 – 5 3

+ Addition 7+ 3 10

19 | P a g e
 https://tocxten.com/

Order of operations

• When more than one operator appears in an expression, the order of

evaluation depends on the rules of precedence.

PEMDAS order of operation is followed in Python:

• Parentheses have the highest precedence and can be used to force an

expression to evaluate in the order you want.

• Exponentiation has the next highest precedence,

• Multiplication and Division have the same precedence, which is higher than

• Addition and Subtraction, which also have the same precedence.

• Operators with the same precedence are evaluated from left to right.

Following examples illustrates the evaluation of expressions by Python interpreter.

In each case the programmer must enter the expression, python interpreter

evaluates the expression to a single value .

>>> 5+4*3
17
>>> (4+5)*3
27
>>> 12345678*45678
563925879684
>>> 3**5
243
>>> 22//7
3
>>> 22/7
3.142857142857143
>>> 27%5
2
>>>3 + 3
6
>>> (5-2)*((8+4)/(5-2))
12.0

20 | P a g e
 https://tocxten.com/

Python interpreter evaluates parts of the expression as per the PEMDAS rule until

it becomes a single value as illustrated below:

(5-2)*((8+4)/(5-2))

 3 * ((8+4)/(5-2))

 3*(12/(5-2))

 3*(12/3)

 3*4.0

 12.0

Note: If you type invalid expressions, python interpreter will not be able to

understand it and will display a SyntaxError message as illustrated below:

Python Character Set :

The set of valid characters recognized by Python like letter, digit or any other

symbol. The latest version of Python recognizes Unicode character set. Python

supports the following character set:

• Letters : A-Z ,a-z

• Digits :0-9

• Special Symbols : space +-/***()[]{}//=!= == <> ,”””,;:%!#?$&^=@_

• White Spaces : Blank Space, tabs(->), Carriage return , new line , form feed

• Other Characters : All other 256 ACII and Unicode characters

21 | P a g e
 https://tocxten.com/

Python Tokens:

A token (lexical unit) is the smallest element of Python script that is meaningful to

the interpreter. Python has following categories of tokens: Identifiers, Keywords,

Literals , operators and delimiters.

Identifiers: Identifiers are names that you give to a variable, class or Function.

There are certain rules for naming identifiers similar to the variable declaration

rules, such as : No Special character except_ , Keywords are not used as identifiers

, the first character of an identifier should be _ underscore or a character , but a

number is not valid for identifiers and identifiers are case sensitive .

In the above example, we have used identifiers like my_variable, counter,

calculate_area, MyClass, and math.

22 | P a g e
 https://tocxten.com/

Literals: A fixed numeric or non-numeric value is called a literal. Literals may be

string, numbers (int, long, float and complex), Boolean (True or False), NONE and

Operators.

1. Numeric literals: Numeric literals represent numeric values such as

integers, floating-point numbers, and complex numbers.

 Examples: x = 10, y = 3.14, z = 2 + 3j

2. String literals: String literals represent sequences of characters enclosed

in either single quotes (') or double quotes (").

Examples: name = 'John', sage = "Hello, world!“

3. Boolean literals: Boolean literals represent the truth values True and False.

Examples: is_valid = True

4. None literal: The None literal represents the absence of a value or a null

value. It is often used to indicate the absence of a meaningful result or as an

initial value for variables.

Example: result = None

4. Operator Literals : Operator literals include arithmetic operators,

comparison operators, assignment operators, logical operators, and more.

Examples: +,-,/,//,%,*,**, <,>,!=,==,and,or,not,etc.

Operators : A Symbol or a word that performs some kind of operation on given

values and returns the result. There are 7 types of operators available for Python:

Arithmetic Operator ,Assignment Operator, Comparison Operator, Logical Operator

, Bitwise Operator , Identity Operator and Membership Operator .

1. Arithmetic operators: +, -, *, /, %, **, //

2. Assignment operators: =, +=, -=, *=, /=, %=, **=, //=

3. Comparison operators: ==, !=, >, <, >=, <=

4. Logical operators: and, or, not

5. Bitwise operators: &, |, ^, ~, <<, >>

6. Membership operators: in, not in

7. Identity operators: is, is not

23 | P a g e
 https://tocxten.com/

Delimiters: Delimiters are the symbols which can be used as separators of values or

to enclose some values.

Examples : Comma (,),Colon (:),Parentheses ((and)),Square brackets ([and

]),Curly braces ({ and }),Quotation marks (' and ") and Backslash (\)

Note : Comments and # symbol used to insert a comment is not a token.

Keywords: The reserved words of Python which have a special fixed meaning for

the interpreter are called keywords. No keyword can be used as an identifier or

variable names. There are 35 keywords in python as listed below:

Keyword Description
and Logical and operator

as Alias

assert Used for debugging

async Used to make a function asynchronous by adding the async keyword before the
function’s regular definition

await Used in asynchronous functions to specify a point in the function where control is
given back to the event loop for other functions to run. You can use it by placing
the await keyword in front of a call to any async function

break To break out of a loop

class To define a class

continue For skipping the statements and conitinuing the next iteration

def For defining user defined functions

del To delete an object

elif Conditional statement, same as else if

else Conditional statement

except Used in exception handling

False Boolean Value

finally Used in exception handling , to execute a block of code no matter whether
exception is there or not

for Used to create for loop – iterative statement

from Used to import specific parts of a module

global Used to declare global variable

if Conditional /decision making statement

import Used to import a module or library

in Used to check if a value if present in list, tuple, dictionaries , sets ,etc.

is To check if two variables are equal

lambda Used for defining an anonymous function

None Used to represent a null value

nonlocal To declare a non-local variable

24 | P a g e
 https://tocxten.com/

not A logical operator

or A logical operator

pass A null statement , a statement that will do nothing

raise To raise an exception

return To exit a function and return a value

True Boolean Value

try Used in exception handling

while For creating a while iterative loop

with Used to simplify exception handling

yield To end a function , returns a generator

Following code segment can be used to obtain the list of python keywords :
import keyword

Get the list of keywords

print(keyword.kwlist)

print("\n Total Number of Keywords: ",len(keyword.kwlist))

Output :

['False', 'None', 'True', '__peg_parser__', 'and', 'as', 'assert', 'async', 'await', 'break', 'class',

'continue', 'def', 'del', 'elif', 'else', 'except', 'finally', 'for', 'from', 'global', 'if', 'import', 'in', 'is',

'lambda', 'nonlocal', 'not', 'or', 'pass', 'raise', 'return', 'try', 'while', 'with', 'yield']

 Total Number of Keywords: 36

25 | P a g e
 https://tocxten.com/

Simple Python Programs

1. To perform basic calculations

Sample numbers
num1 = int(input("Enter first number"))
num2 = int(input("Enter second number"))

Calculate the sum of two numbers
sum_result = num1 + num2
print("Sum:", sum_result)

Calculate the product of two numbers
product_result = num1 * num2
print("Product:", product_result)

Calculate the difference of two numbers
difference_result = num1 - num2
print("Difference:", difference_result)

Calculate the division of two numbers
division_result = num1 / num2
print("Division:", division_result)

Calculate the integer division of two numbers
integer_division_result = num1 // num2
print("Integer Division:", integer_division_result)

Calculate the modulo division of two numbers
modulo_division_result = num1 % num2
print("Modulo Division:", modulo_division_result)

output

Enter first number 3
Enter second number 2
Sum: 5
Product: 6

26 | P a g e
 https://tocxten.com/

Difference: 1
Division: 1.5
Integer Division: 1
Modulo Division: 1

2. To find the area of a circle

import math

Take input for the radius of the circle

radius = float(input("Enter the radius of the circle: "))

Calculate the area of the circle

area = math.pi * radius**2

Display the result

print("The area of the circle is:", area)

output

Enter the radius of the circle: 2.5

The area of the circle is: 19.634954084936208

3. To find the simple interest

Take input for principal amount, rate, and time
principal = float(input("Enter the principal amount: "))
rate = float(input("Enter the interest rate: "))
time = float(input("Enter the time period (in years): "))

Calculate the simple interest
simple_interest = (principal * rate * time) / 100

Display the result
print("The simple interest is:", simple_interest)

Output
Enter the principal amount: 10000
Enter the interest rate: 2.5
Enter the time period (in years): 3
The simple interest is: 750.0

27 | P a g e
 https://tocxten.com/

Questions for Practice:

1. What is Python ? Who created Python?

2. What are the features of Python which makes it more popular?

3. List out the different jobs available for Python programmer.

4. What is the role of programmer? Lis two skills required to become good

programmer.

5. Discuss, Why Should you learn to write Programs?

6. What is Zen of Python?

7. Discuss, with snapshots how to install latest version of IDLE Python and Jupyter

Python.

8. Illustrate with examples how to interact with IDLE Python.

9. Explain how mathematical expressions can be executed in interactive shell.

10. Illustrate with example how write and execute programs in Jupyter Editor.

11. Explain the different components of Jupyter Editor.

12. Define Program. Differentiate between Compiler and Interpreter. Give

Examples.

13. What are Python words and sentences? Explain with an example for each.

14. Classify the following list of items into variables, values, operators, strings, and

keywords:
List of items: *, + , - , **, < ,> , 'hello' , ‘ I am ok . How are you’, -88.8, /, 5, and, is

, not , while , for, async, x, si, p , time , rate , velocity , speed, acc , % ,&, ! , ||

15. What are expressions? Illustrate the different types of expressions with

examples.

16. What are data types? Classify the different data types in python with

examples.

17. What are Python Variables? What rules one should follow to name the

variables.

18. Give 5 examples for valid and invalid variables.

19. Discuss how to store values in a variable.

20. Write a sample program and dissect the program with explanation.

21. What are comments? What are the advantages of Comments? Explain the

different ways of writing comments.

22. Give examples for single and multiline comments.

23. Explain the working and usage of print() function with examples.

28 | P a g e
 https://tocxten.com/

24. Explain the working and usage of input() function with examples.

25. Give example to read multiple values using input().

26. Define operands and operators. Discuss PEMDAS rules with examples.

27. What are keywords? How many keywords are there in current version of

Python?

28. Write a program to display all keywords in the current version of Python.

29. What are Python comments? Explain their importance with programming

examples.

30. Explain print () , input() and split() functions with example.

31. Write a program for the following:

1. To read and print a single value in a single line

2. To read and print multiple values in a single line

32. Explain the following different types of errors: Syntax errors, Semantic errors

and Logic Errors.

33. Explain the following functions with example: len() , str() , int() , float()

34. Predict the out put and justify your answer: (i) -11%9 (ii) 7.7//7 (iii) (200 –

70)*10/5 (iv) not “False” (v) 5*|**2

35. List the rules to describe a variable in Python. Demonstrate at least three

different types of variables uses with an example program.

36. Explain the following :

1. Skills necessary for a programmer

2. Interactive Mode

3. Short circuit evaluation of expression

4. Modulus operator.

37. Mention three types of errors encountered in python program.

38. Define the following with example : Values and Types , Variables , Expressions ,

Keywords , Statements , Operators and Operands, Order of Operations ,

Modulus Operators , String operations and Comments.

39. What three functions can be used to get the integer, floating-point number, or

string version of a value?

29 | P a g e
 https://tocxten.com/

Programs for Practice:

Write and execute python programs for the following :

1. To prompt a user for their name and then welcomes them.

2. To prompt a user for days and rate per day to compute gross salary.

3. To read the following input and display :

a. Name :

b. USN:

c. Roll No:

d. Mobile No:

e. E-Mail Id:

f. Percentage of Marks:

4. To find the simple interest for a given value of P, T and R. Program should

take input from the user.

5. To find the compound interest.

6. To read two integers and find the sum, diff, mult and div.

7. To Convert given Celsius to Fahrenheit temperature.

8. To print ascii value of a character.

9. To display all the keywords.

10. To print the following string in a specific format :”"Twinkle, twinkle, little

star, How I wonder what you are! Up above the world so high, Like a

diamond in the sky. Twinkle, twinkle, little star, How I wonder what you

are" .

Output :

Twinkle, twinkle, little star,

 How I wonder what you are!

 Up above the world so high,

 Like a diamond in the sky.

Twinkle, twinkle, little star,

 How I wonder what you are

11. To get a python version.

12. To display the current date and time

13. To accept the radius of a circle from the user and compute the area.

14. To print the calendar of a given month and year.

15. To check whether a file exists .

30 | P a g e
 https://tocxten.com/

16. To determine if a Python shell is executing in 32 bit or 64 bit mode on OS.

17. To get OS name , platform and release information .

18. To locate Python site packages.

19. To call an external command in python.

20. To get path and name of the file that is currently executing.

21. To parse a string to float or integer.

22. To list all files in a directory in Python.

23. To print without newline or space.

24. To determine profiling of Python programs.

25. To print to stderr.

26. To access environment variables.

27. To get the current username.

28. To find the local IP addresses using Pythons stdlib.

29. To get execution time for a python method.

30. To convert height in meters to centimeters.

31. To Convert all units of time to seconds

32. To convert the distance in feet to inches , yards and miles.

33. To calculate body mass index.

34. Given variables x = 15 and y = 30 , write a Python program to print

“15+30=45”.

35. To get the identity of the object

36. To check whether a string is numeric.

37. To get the system time .

38. To clear the screen or terminal

39. To calculate the time runs (difference between start and current time) of a

program.

40. To input integer if not generate error.

31 | P a g e
 https://tocxten.com/

1.2 Flow Control

Syllabus: Boolean Values, Comparison Operators, Boolean Operators, Mixing Boolean and

Comparison Operators, Elements of Flow Control, Program Execution, Flow Control Statements,

Importing Modules, Ending a Program Early with sys.exit().

Boolean Values: A Boolean value is either true or false. It is named after the British

mathematician, George Boole, who first formulated Boolean algebra. In Python the

two Boolean Values are True and False and the Python type is bool. Enter the

following into the Python shell and observe the output.

type(True) # output : bool

type(False) # output : bool

type(true) # output: Name Error : name “ true” is not defined

type(false) # output: Name Error : name “ false” is not defined

context = True

print(context) #output : True

A Boolean expression is an expression that evaluated to produce a result which is

a Boolean value. For example, the operator ‘==’ tests if two values are equal. It

produces (or yields) a Boolean value:

5 == (1+4) # output : True

5 == 6 # output: False

In the first statement the two operands evaluate to equal values, so the expression

evaluates to True; in the second statement, 5 is not equal to 6 we get False.

P = “hel”

P + “lo” == “hello” # output: True

In the above example since the concatenated value P + “lo” is “hello” the

expression evaluates to True .

32 | P a g e
 https://tocxten.com/

Comparison Operators

Comparison operators compare two values and evaluate down to a single Boolean

value. The == operator is one of six common comparison operators which all

produce a bool result. Table lists all the comparison operators:

Operator Meaning

== Equal to
!= Not Equal to

< Less than

> Greater than
<= Les than or equal to

>= Greater than or equal to

Comparison operators evaluate to True or False depending on the values we

provide to them. Consider following expressions:

55 == 55 # output: True

55 == 79 # output: False

7!=10 # output : True

7!=7 #output : False

True == True # output: True

True != False # output: True

Based on the above observations it is clear that == (equal) evaluates to True when

the value on both sides are the same , and != (not equal to) evaluates to True when

the two values are different . T Equal to and Not equal to operators can work with

values of any data type.

The other comparison operators like <, >, <= and >= work properly only with

integer and floating-point values.

12< 13 # output: True

55.55 > 66.75 # output : False

“tag”< = 2 # output : Type error : ‘<’ is not supported between instances of ‘str’

and ‘int’.

33 | P a g e
 https://tocxten.com/

Difference between == and = Operator

= ==
It is an assignment operator It is a comparison operator

It is used for assigning the value to
a variable

It is used for comparing two values.
 It returns 1 if both the value is equal
otherwise returns 0

Constant term cannot be place on
left hand side
Example:
1= x; is invalid

Constant term can be placed in the left-
hand side.
Example: 1 ==1 is valid and return 1

Boolean Operators:

Boolean operators evaluate the expression to Boolean Values True/False. Python

supports three Boolean operators and, or & not. Based on the number of operands

required they can be classified into Binary Boolean operators and Unary Boolean

Operators.

Binary Boolean operators : and & or

Since both and & or operators takes two operands, they are considered as binary

operators. The and operator returns true value if both operands are true and return

false otherwise. While or operator returns false when both operands are false and

returns true otherwise.

True and True # output : True

True and False # output : False

False and True # output : False

False and False # output :False

True or True # output : True

True or False # output : True

False or True # output : True

False or False # output :False

34 | P a g e
 https://tocxten.com/

Following truth tables illustrates all possible logical combinations and values for OR

and AND Boolean binary operators.

Op1 Op2 Op1 and Op2
True False False

False True False
False False False

True True True

Not operator: It is a unary operator and evaluates the expression to opposite value

true or false as illustrated below :

not True # output : False

not False # output : True

not not not not True # output : True

Truth Table for not operator:

op not op

True False
False True

Examples for Mixing Boolean and Comparison Operators: Boolean operators and

comparison operators can be used in combination as illustrated below :

x = 10

y = 20

x<y and x>y # output : False

(x<y) and (x!=y) or (x*2) and (x<20 or y<20) # output : True

2+2 == 4 and not 2+2 == 5 and 2*2 == 2+2 #output : True

5*7 +8 == 7 or not 5+7 ==10 and 5*4 ==20 #output : True

Op1 Op2 Op1 or Op2
True False True

False True True
False False False

True True True

35 | P a g e
 https://tocxten.com/

Elements of Flow Control:

Flow control statements often starts with condition followed by a block of code

called clause. The two elements of Flow Control are discussed below:

a) Conditions:

Conditions are Boolean expressions with the boolean values True or False. Flow

control statements decides what to do based on the condition whether it is true or

false.

b) Blocks of Code /Clause:

The set of more than one statements grouped with same indentation so that they are

syntactically equivalent to a single statement is known as Block or Compound

Statement. One can tell when a block begins, and ends based on indentation of the

statements. Following are three rules for blocks:

1. Blocks begin when the indentation increases

2. Blocks can have nested blocks

3. Blocks end when the indentation decreases to zero

Example 1:

x = int(input(“Enter a number: “)) # Block

if x>=10: # Condition

 x = x + 25 # Block belonging to if

 y = x

 print(x,y)

print(“Next statement”) # Next Block

Example 2: Nested Blocks

N = int(input(“Enter a number of your choice”))

if n > 0:

 print(“Positive”) # Block of outer if

 if n%2==0:

 print(“Multiple of Two”) # Block of Inner if

print("End”)

36 | P a g e
 https://tocxten.com/

Flow Control statements

Flow control statements in Python are used to control the order of execution and

make decisions based on certain conditions. The main flow control statements in

Python include:

Conditional Control Statements:

• if statement: Executes a block of code if a specified condition is true.

• elif statement: Allows you to check additional conditions if the previous if or

elif conditions are false.

• else statement: Executes a block of code if none of the previous conditions

are true.

Looping Statements:

• for loop: Iterates over a sequence (such as a list, tuple, string, or range) and

executes a block of code for each item in the sequence.

• while loop: Repeats a block of code as long as a specified condition is true.

Loop Control Statements:

• break statement: Terminates the innermost loop and continues with the next

statement after the loop.

• continue statement: Skips the rest of the current iteration and moves to the

next iteration of the loop.

• pass statement: Acts as a placeholder, allowing you to create empty code

blocks without causing syntax errors.

Exception Handling Statements:

• try, except, finally statements: Used to catch and handle exceptions that

occur during program execution.

• try statement: Defines a block of code where exceptions might occur.

• except statement: Specifies the code to execute if a specific exception occurs

within the try block.

• finally statement: Defines a block of code that will be executed regardless of

whether an exception occurred or not.

37 | P a g e
 https://tocxten.com/

Types of Condition Control Statements

The different two-way selection statements supported by Python language are:

1. if statement

2. if- else statement

3. Nested if else statement

4. if – elif ladder

1. if statement:

It is basically a two-way decision statement and it is used in conjunction

with an expression. It is used to execute a set of statements if the condition

is true. If the condition is false it skips executing those set of statements.

The syntax and flow chart of if statement is as illustrated below:

 Fig: Syntax and flow diagram for if statement

True

False
Is Condition?

 S1
 S2
 S3

 Sn

 Sn+1

Entry

38 | P a g e
 https://tocxten.com/

Example1: Python program to find the largest number using if statement.

Example2: Python Program to determine whether a person is eligible to vote

using if.

2. If else statement:

It is an extension of if statement. It is used to execute any one set of two set of

statements at a time. If condition is true it executes one set of statements

otherwise it executes another set of statements. The syntax and flow diagram of

if else is as shown in the figure below. As illustrated in the figure if the condition

is true the set of statements {S11,S12,------S1n} gets executed else if the

condition is false the set of statements {S21,S22,S23------S2n} gets executed.

39 | P a g e
 https://tocxten.com/

Fig: Syntax and flow diagram for if else statement

Example: Program to check whether a given number is even or odd using if else.

3. Nested if else:

When a series of decisions are involved, we may have to use more than one if else

statement in nested form. The nested if else statements are multi decision statements

which consist of if else control statement within another if or else section. The syntax

and flow diagram for nested if else is as shown below:

Is

Condition?

True Block
Statements
:S11,S12,S13,S14--
---------S1n

 Statement x

False Block

Statements: S21,

S22, S23,S24--------

---S2n

True False

40 | P a g e
 https://tocxten.com/

Fig : Syntax and flow diagram for nested if else statement

Example:

False
False True

True

True

False

S3 S1 S4 S2

Cond1

Cond3 Cond2

Statement x

41 | P a g e
 https://tocxten.com/

4. if – elif ladder:

Cascaded if elif else is a multipath decision statements which consist of chain of

if elseif where in the nesting take place only in else block. As soon as one of the

conditions controlling the ‘if’ is true , then statement /statements associated with

that ‘if’ are executed and the rest of the ladder is bypassed. If condition is false

then it checks the first elif condition , if it is found true then first elif is executed.

However, if none of the elif ladder is correct then the final else statement will be

executed and control flows from top to down.

The syntax and flow diagram for cascaded if else is as shown in figure.

T

F

T

F

T

F

T

Syntax

if C1:
 S1
elif C2:
 S2
elif C3:
 S3
elif C4:
 S4

elif Cn:
 Sn
else:
 default stmnt

Statement x;

Statement x

F
C1

C2

C3

Cn

S1
S2

S3

Sn
default
statement

42 | P a g e
 https://tocxten.com/

Example:

3. Iteration or looping:

The statement which are used to repeat a set of statements repeatedly for a given

number of times or until a given condition is satisfied is called as looping

constructs or looping statements. The set or block of statements used for looping

is called loop.

Types of Looping statements:

Depending on the position of the control statement in the loop the looping

statements are classified into the following two types:

1. Entry controlled Loop

2. Exit Controlled Loop

43 | P a g e
 https://tocxten.com/

1. Entry Controlled Loop: In the entry-controlled loop the control conditions

are tested before the start of the loop execution. If the conditions are not satisfied,

then the body of the loop will not be executed. It is also known as pretest loop or

top test loop. The flow chart for the entry controlled loop is as illustrated in fig .

Fig: Flow diagram for Entry Controlled Loop

2.Exit Controlled Loop: In the exit controlled loop the test is performed at the

end of the body of the loop and therefore the body is executed unconditionally

for the first time. It is also known as posttest loop. Here the body of the loop will

get executed at least once before testing.The flow chart for the exit controlled

loop is as illustrated in fig .

Is

Condition?

Body of the
Loop

FALSE

TRUE

44 | P a g e
 https://tocxten.com/

Fig: Flow diagram for Exit Controlled Loop

The looping includes the following four steps:

1. Initialization of a condition variable

2. Testing for a specified value of the condition variable for execution of

the loop.

3. Execution of the statements in the loop

4. Updating (Incrementing or Decrementing) the condition variable

Types of Loops Supported in Python: The Python Language supports

the following two looping operations:

1. The while statement

2. The for statement

TRUE
Is

Condition?

Body of the
Loop

FALSE

45 | P a g e
 https://tocxten.com/

The while statement: It is an entry controlled loop statement. In case of while

loop the initialization, testing the condition and incrementation or updation is

done in separate statements. First initialization of the loop counter is

performed.Next the condition is checked. If the condition evaluates to be true

then the control enters the body of the loop and executes the statements in the

body.

1. The syntax or basic format of the while statement is as shown in figure

below:

Fig: Flow diagram for Exit Controlled Loop

FALSE

TRUE

Is
Condition?

S1
S2
S3

Sn

Incrementation

initialization

Next Statement

Syntax of While Loop
Initialization

while Condition:

 S1
 S2
 S3

 Sn
 *Incrementation

else : # optional
 Body of else
 Next Statement;

*Incrementation or decrementation or

updation

46 | P a g e
 https://tocxten.com/

While statement in Python executes a block of code repeatedly as long as the

test/control condition of the loop is true. The control condition of the while loop is

executed before any statement in the body of the loop is executed . If the condition

is true, the body of the loop is executed. Again, the control condition of the loop is

tested, and the loo continue as long as the condition remains true. When the test

outcome of this condition remains true. When the test outcome of this condition

becomes false, the loop is not entered again and the control is transferred to the

statement immediately following the body of the loop as shown in the flow

diagram.

Example: Program to find the sum of n natural numbers using while loop.

For loop:

The for loop is another entry-controlled loop. It is used to execute the set of

statements repeatedly over a range of values or a sequence. With every iteration of

the loop, the control variable checks whether each of the values in the range has been

traversed or not. When all the items in the range are traversed the control is then

transferred to the statement immediately following for loop.

47 | P a g e
 https://tocxten.com/

Syntax of for loop :

Flow Chart:

Example: Python Program to find the sum of natural numbers upto n.

48 | P a g e
 https://tocxten.com/

range () function: The range() function returns a sequence of numbers, starting

from 0 to a specified number ,incrementing each time by 1.

Syntax :

 range(start,step,stop)

Example:

Table: range() examples

Command Output

range(10) [0,1,2,3,4,5,6,7,8,9]

range(1,11) [1,2,3,4,5,6,7,8,9,10]

range(0,30,5) [0,5,10,15,20,25]

range(0,-9,-1) [0,-1,-2,-3,-4,-5,-6,-7,-8

49 | P a g e
 https://tocxten.com/

The argument of range() function must be integers. The step parameter can be any

positive or negative integer other than zero.

Infinite Loop: A loop becomes infinite loop if a condition never becomes FALSE.
You must use caution when using while loops because of the possibility that this
condition never resolves to a FALSE value. This results in a loop that never ends.
Such a loop is called an infinite loop.
An infinite loop might be useful in client/server programming where the server
needs to run continuously so that client programs can communicate with it as and
when required.

Nested Loops:

Python programming language allows to use one loop inside another loop.

Syntax for nested for loop:

for iterating_var in sequence:

 for iterating_var in sequence:

 statements(s)

 statements(s)

50 | P a g e
 https://tocxten.com/

Example:

Syntax for nested while loop:

The syntax for a nested while loop statement in Python programming language is as follows –

while expression:

 while expression:

 statement(s)

 statement(s)
A final note on loop nesting is that you can put any type of loop inside of any other type of loop.

For example a for loop can be inside a while loop or vice versa. The following program uses a

nested for loop to find the prime numbers from 2 to 20−

51 | P a g e
 https://tocxten.com/

Jump statements:

You might face a situation in which you need to exit a loop completely when an
external condition is triggered or there may also be a situation when you want to
skip a part of the loop and start next execution.
Python provides break and continue statements to handle such situations and to
have good control on your loop.
The break statement in Python terminates the current loop and resumes
execution at the next statement, just like the traditional break found in C.
The most common use for break is when some external condition is triggered
requiring a hasty exit from a loop. The break statement can be used in
both while and for loops.

The continue statement in Python returns the control to the beginning of the while
loop. The continue statement rejects all the remaining statements in the current
iteration of the loop and moves the control back to the top of the loop.

52 | P a g e
 https://tocxten.com/

The continue statement can be used in both while and for loops.

Example:

else statement used with loops :

Python supports to have an else statement associated with a loop statements.

• If the else statement is used with a for loop, the else statement is executed when
the loop has exhausted iterating the list.

• If the else statement is used with a while loop, the else statement is executed
when the condition becomes false.

53 | P a g e
 https://tocxten.com/

Example :

The following example illustrates the combination of an else statement with a for
statement that searches for prime numbers from 10 through 20.

Similar way you can use else statement with while loop.

The Pass Statement :
The pass statement in Python is used when a statement is required syntactically but

you do not want any command or code to execute.The pass statement is

a null operation; nothing happens when it executes. The pass is also useful in places

where your code will eventually go, but has not been written yet (e.g., in stubs for

example):

54 | P a g e
 https://tocxten.com/

55 | P a g e
 https://tocxten.com/

Importing Modules

Python function definition can, usefully, be stored in one or more separate files for
easier maintenance and to allow them to beused in several programs without
copying the definitions into each one. Each file storing function definitions is called
a “module” and the module name is the file name with “.py” extension.

Example:
Functions stored in the module are made available to a program using the Python
import keyword followed by the module name. Although not essential, it is
customary to put any import statements at the beginning of the program.
Imported functions can be called using their name dot -suffixed after the module
name. For example, a “f1()” function from an imported module named
“userdefined” can be called with userdefined.f1() .
Design a new Python module called userdefined by defining all functions as
illustrated below. Save the file as userdefined.py and run the file.

userdefined.py

Start a new script with name importexample.py (/ipynb). Next call each function
with and without arguments as per the requirements. Run the program and get the
output as illustrated below:

56 | P a g e
 https://tocxten.com/

Importing Modules:

Importing the sys and keyword modules :

Python includes “sys” and “keyword” modules that are useful for interrogating the
Python system itself. The keyword module contains a list of all Python keywords in
its kwlist attribute and provides as iskeyword () method if you want to rest a word.

57 | P a g e
 https://tocxten.com/

58 | P a g e
 https://tocxten.com/

Performing Mathematics

Random

59 | P a g e
 https://tocxten.com/

Ending a Program Early with sys.exit ()

60 | P a g e
 https://tocxten.com/

Questions for Practice:
1.What is Flow Chart ? Give the meaning of different flow chart

symbols.

2.Write a Flow chart and Python program for the following:

a. To find the average of two numbers.

b. To find the simple interest given the value of P,T and R

c. To find the maximum of two numbers

d. To find the sum of first 50 natural numbers

e. To find the factorial of a given number N.

3.Compare == and = operator.

4.What are operators? Explain the following Operators with

example:

a. Binary Boolean Operators: and, or & not

5.What is Flow Control? Explain the different Elements of Flow

Control?

6.Define Block and explain what nested blocks with example are.

7.Define condition control statement. Explain the different types of

Condition Control Statement.

8.Explain with flow chart and programming example , the following

condition control statements :

a. if

b. if – else

c. nested if else

d. if – elif ladder

9.What is iteration or looping ? Describe the different types of

looping statements.

10.Explain with syntax , flow chart and programming example the

following looping operations.

a. While loop

b. For loop

61 | P a g e
 https://tocxten.com/

11.Discuss the working of range() function with programming

example.

12.Give the output of the following :

a. range(10)

b. range(1,11)

c. range(0,30,5)

d. range(0,-9,-1)

13.What is infinite loop ? Explain with example.

14.What are nested Loops ? Explain with examples.

15.Discuss the following with examples :

a. break

b. continue

c. else statement with loop

d. pass

16.What are Python Modules ? Explain with examples how to import

Python Modules .

17.What is the difference between break and continue statements.

18.What is the purpose of else in loop?

19.Write logical expressions for the following :

a. Either A is greater than B or A is less than C

b. Name is Snehith and age is between 18 and 35.

c. Place is either Mysore or Bengaluru but not “Dharwad”.

20.Convert the following while loop into for loop :

 x =10

 while (x<20):

 print(x+10)

 x+=2

21.Explain while and for loop . Write a program to generate

Fibonacci series upto the given limit by defining FIBONACCI(n)

function.

62 | P a g e
 https://tocxten.com/

22.Mention the advantage of continue statement. Write a program

to compute only even numbers sum within the given natural

number using continue statement.

23.Demonstrate the use of break and continue keywords in looping

structures using a snippet code.

24.With syntax explain the finite and infinite looping constructs in

python. What is the break and continue statements .[VTU June

/July 2019]

Programming Questions for Practice:

1.Construct a logical expressions to represent each of the following

conditions :

a. Mark is greater than or equal to 100 but less than 70

b. Num is between 0 and 5 but not equal to 2

c. Answer is either ‘N’ or ‘n’

d. Age is greater than or equal to 18 and gender is male

e. City is either ‘Kolkata’ or ‘Mumbai’

2.Write a program to check if the number of positive or negative and

display an appropriate message.

3.Write a program to convert temperature in Fahrenheit to Celsius.

4.Write a program to display even numbers between 10 and 20.

5.Write a program to perform all the mathematical operations of

calculator.

6.Write a program to accept a number and display the factorial of

that number.

7.Write a program to convert binary number to decimal number.

8.Write a program to find the sum of the digits of a number.

9.Write a program to display prime number between 30.

63 | P a g e
 https://tocxten.com/

10.Write a program to find the best of two test average marks out of

three tests marks accepted from the user.

11.Write a program to find the largest of three numbers . [VTU June

/July 2019]

12.Write a program to check whether the given year is leap or not. [

VTU June /July 2019]

13.Write a program to generate and print prime number between 2

to 50.

14.Write a program to find those numbers which are divisible by 7

and multiple of 5 , between 1000 and 3000.

15.Write a program to guess a number between 1 to 10.

16.Write a program that accepts a word from the user and reverse it.

17.Write a program to count the number of even and odd numbers

from a series of numbers.

18.Write a program that prints all the numbers from 0 to 10 except

3, 7 and 10.

19.Write a program to generate Fibonacci series between 0 and 50.

20.Write a program which iterates the integers from 1 to 50. For

multiple of three print “Fizz” instead of the numbers and fro the

multiples of five print “Buzz” . For numbers which are multiples of

both three and five print “FizzBuzz”.

21.Write a program that accepts a string and calculate the number

of digits and letters.

22.Write a program to check the validity of password input by users.

23.Write a program to find the numbers between 100 and 400

where each digit of a number is an even number . The numbers

obtained should be printed in a comma-separated sequence.

24.Write a program to print alphabet patterns ‘A’ ,D, ‘E’, ‘G’,’L’, ‘T’

and ‘S’ with * symbol.

64 | P a g e
 https://tocxten.com/

25.Write a python program to create the multiplication table (from 1

to 20) of a number.

26.Write a program to print the following patterns :
*

* *

* * *

* * * *

* * * * *

* * * *

* * *

* *

*

1

22

333

4444

55555

666666

7777777

88888888

999999999

*

* *

* * *

* * * *

* * * * *

1

1 2

1 2 3

1 2 3 4

1 2 3 4 5

65 | P a g e
 https://tocxten.com/

A

B B

C CC

D DDD

E EEEE

* * * * *

* * * *

* * *

* *

*

1 2 3 4 5

1 2 3 4

1 2 3

1 2

1

 *

 * * *

 * * * * *

 * * * * * * *

* * * * * * * * *

 1

 2 3 2

 3 4 5 4 3

 4 5 6 7 6 5 4

5 6 7 8 9 8 7 6 5

66 | P a g e
 https://tocxten.com/

* * * * * * * * *

 * * * * * * *

 * * * * *

 * * *

 *

 1

 1 1

 1 2 1

 1 3 3 1

 1 4 6 4 1

 1 5 10 10 5 1

1

2 3

4 5 6

7 8 9 10

67 | P a g e
 https://tocxten.com/

1.3 Functions

1.3.1 Introduction

A function is a group (or block) of statements that perform a specific task .

Functions run only when it is called. One can pass data into the function in the form

of parameters. Function can also return data as a result. Instead of writing a large

program as one long sequence of instructions , it can be written as several small

function , each performing a specific part of the task . They constitute line of code(s)

that are executed sequentially from top to bottom by Python interpreter. A python

function is written once and is used / called as many time as required . Functions

are the most important building blocks for any application in Python and work on

the divide and conquer approach. Functions can be conquered into the following

three types :

(i) User Defined

(ii) Built in

(iii) Modules

i.User Defined Functions:

In Python, user-defined functions are functions that are created by the programmer

to perform specific tasks. These functions are defined using the def keyword

followed by the function name, parentheses for optional parameters, and a colon

to start the function block. The syntax for defining and calling a function is as

illustrated below :

Syntax for Defining a function:

Function is defined using def keyword in Python.

def fun_name(comma_seprated_parameter_ list):

 stmt_1

 stmt_n

 return stmt

68 | P a g e
 https://tocxten.com/

Statements below def begin with four spaces. This is called indentation. It is a

requirement of Python that the code following a colon must be indented. A

function definition consists of the following components;

1. Keyword def marks the start of function header

2. A function name to uniquely identify it. Function naming follows the same

rules as rules of writing identifiers in Python.

3. Parameters (arguments) through which we pass values to a function . They

are optional.

4. A colon (:) to mark the end of function header.

5. Optional documentation string (docstring) to describe what the function

does.

6. One or more valid Python statements that make up the function body.

Statements must have same indentation level (usually) 4 spaces)

7. An optional return statement to return a value from the function .

Example :

def cube(n):

 ncube = n**3

 return ncube

Syntax for calling a function:

fun_name(parameter list)

Example: cube(3)

69 | P a g e
 https://tocxten.com/

Parameters and arguments

Parameters are temporary variable names within functions. The argument can be

thought of as the value that is assigned to that temporary variable.

• 'n' here is the parameter for the function 'cube'. This means that

anywhere we see 'n' within the function will act as a placeholder until

number is passed an argument.

• Here 3 is the argument.

• Parameters are used in function definition and arguments are used in

function call.

Working of function

Example 1: Function without parameters

70 | P a g e
 https://tocxten.com/

Example 2 : Function with parameters but without returning values.

Example 3: Function with parameters and return values

71 | P a g e
 https://tocxten.com/

Example 4: Function which return multiple values

The None-Value

In Python there is a value called None, which represents the absence of a value. None is the only

value of the None Type data type. (Other programming languages might call this value null, nil,

or undefined.) Just like the Boolean True and False values, None must be typed with a capital N.

72 | P a g e
 https://tocxten.com/

Keyword Arguments and print()

Keyword arguments are identified by the keyword put before them in the function

call. Keyword arguments are often used for optional parameters. For example, the

print() function has the optional parameters end and sep to specify what should be

printed at the end of its arguments and between its arguments (separating them),

respectively. Following examples illustrates the behavior of print with end , without

end and with sep.

73 | P a g e
 https://tocxten.com/

1.3.6 Local and Global Scope

Parameters and variables that are assigned in a called function are said to exist in

that function’s local scope. Variables that are assigned outside all functions are said

to exist in the global scope. A variable that exists in a local scope is called a local

variable, while a variable that exists in the global scope is called a global variable. A

variable must be one or the other; it cannot be both local and global. Following

example illustrates the difference between local and global variable .

Local variable cannot be used in the global scope

Consider this program which will cause an error when you run it:

If you run this program the output will look like this

74 | P a g e
 https://tocxten.com/

The error happens because the x variable exists only in the local scope created

when fun1() is called. Once the program execution returns from fun1(), that local

scope is destroyed, and there is no longer a variable named x. So when your

program tries to run print(x), Python gives you an error saying that x is not defined.

This makes sense if you think about it; when the program execution is in the global

scope, no local scopes exist, so there can’t be any local variables. This is why only

global variables can be used in the global scope.

Local Scopes Cannot Use Variables in Other Local Scopes

A new local scope is created whenever a function is called, including when a

function is called from another function. Consider this program:

When the program starts the func1() is called and a local scope is created . The local

variable x is set to 10. Then fun2() is called and a second local scope is created .

Multiple local scopes can exist at the same time . In this new local scope , the local

variable y is set to 21 and a local variable x which is different from the one in fun1()’s

local scope is also created and set to 0. When fun2() returns the local scope for the

call to fun1() still exists here the x variable is set to 10. This is what the programs

prints.

The local variables in one function are completely separate the local variable in

another function.

Global Variable Can be read from a local scope :

Consider the following program :

75 | P a g e
 https://tocxten.com/

Since there is no parameter named x or any code that assigns x a value in the fun1()

function , when x is used in fun1(), Python considers it a reference to the global

variable x. This is why 42 is printed when the previous program is run.

Local and Global Variables with the same Name :

One should avoid using local variables that have the same name as a global variable

or another local variable. Consider the following program :

When you run the program , it outputs the following :

76 | P a g e
 https://tocxten.com/

There are actually three different variables in this program, but confusingly they are

all named x.

A variable named x that exists in a local scope when fun1() is called.

A variable named x that exists in a local scope when fun2() is called

A variable named x that exists in the global scope

Since these three separate variables all have the same name, it can be confusing

to keep of which one is being used at any given time . This is why you should

avoid using the same variable name in different scopes.

 Global Statement

If you need to modify a global variable from within a function , used the global

statement . If you have a line such as global x at the top of a function , it tells

Python, In this function, x refers to the global variable, so don’t create a local

variable with this name.” For example, type the following code and run

When you run this program the final print() call will output this :

Because x is declared global at the top of spam() , when x is set to 'spam' , this

assignment is done to the globally scoped x. No local x variable is created.

There are four rules to tell whether a variable is in a local scope or global scope:

1. If a variable is being used in the global scope (that is, outside of all functions),

then it is always a global variable.

 2. If there is a global statement for that variable in a function, it is a global

variable.

77 | P a g e
 https://tocxten.com/

3. Otherwise, if the variable is used in an assignment statement in the function, it

is a local variable.

4. But if the variable is not used in an assignment statement, it is a global variable.

Exceptional Handling

Right now, getting an error, or exception, in your Python program means the entire

program will crash. You don’t want this to happen in real-world programs. Instead,

you want the program to detect errors, handle them, and then continue to run. For

example, consider the following program, which has a “divide-byzero” error. Open

a new file editor window and enter the following code, saving it as zeroDivide.py:

We’ve defined a function called spam, given it a parameter, and then printed the value of that function

with various parameters to see what happens. This is the output you get when you run the previous

code:

A ZeroDivisionError happens whenever you try to divide a number by zero. From the line number given

in the error message, you know that the return statement in spam() is causing an error.

Try and Except :

78 | P a g e
 https://tocxten.com/

Errors can be handled with try and except statements. The code that could potentially have an error is

put in a try clause. The program execution moves to the start of a following except clause if an error

happens. You can put the previous divide-by-zero code in a try clause and have an except clause contain

code to handle what happens when this error occurs.

When code in a try clause causes an error, the program execution immediately moves to the code in the

except clause. After running that code, the execution continues as normal. The output of the previous

program is as follows:

Note that any errors that occur in function calls in a try block will also be caught. Consider the following

program, which instead has the spam() calls in the try block:

79 | P a g e
 https://tocxten.com/

When this program is run, the output looks like this:

The reason print(spam(1)) is never executed is because once the execution jumps to the code in the

except clause, it does not return to the try clause. Instead, it just continues moving down as normal.

ii. Built in functions

Built in functions are the predefined functions that are already available

in python. Functions provide efficiency and structure to a programming

language .python has many useful built in functions to make

programming easier , faster and more powerful.

Some of the important builtin functions are listed below:

abs() Returns the absolute value of a number

ascii() Returns a readable version of an object. Replaces none-ascii characters with escape character

bin() Returns the binary version of a number

bool() Returns the boolean value of the specified object

bytearray() Returns an array of bytes

bytes() Returns a bytes object

chr() Returns a character from the specified Unicode code.

classmethod() Converts a method into a class method

complex() Returns a complex number

delattr() Deletes the specified attribute (property or method) from the specified object

dict() Returns a dictionary (Array)

dir() Returns a list of the specified object's properties and methods

divmod() Returns the quotient and the remainder when argument1 is divided by argument2

enumerate() Takes a collection (e.g. a tuple) and returns it as an enumerate object

eval() Evaluates and executes an expression

filter() Use a filter function to exclude items in an iterable object

80 | P a g e
 https://tocxten.com/

float() Returns a floating point number

format() Formats a specified value

getattr() Returns the value of the specified attribute (property or method)

globals() Returns the current global symbol table as a dictionary

hex() Converts a number into a hexadecimal value

id() Returns the id of an object

input() Allowing user input

int() Returns an integer number

isinstance() Returns True if a specified object is an instance of a specified object

issubclass() Returns True if a specified class is a subclass of a specified object

iter() Returns an iterator object

len() Returns the length of an object

list() Returns a list

locals() Returns an updated dictionary of the current local symbol table

map() Returns the specified iterator with the specified function applied to each item

max() Returns the largest item in an iterable

min() Returns the smallest item in an iterable

next() Returns the next item in an iterable

object() Returns a new object

oct() Converts a number into an octal

open() Opens a file and returns a file object

ord() Convert an integer representing the Unicode of the specified character

pow() Returns the value of x to the power of y

print() Prints to the standard output device

property() Gets, sets, deletes a property

range() Returns a sequence of numbers, starting from 0 and increments by 1 (by default)

round() Rounds a numbers

set() Returns a new set object

setattr() Sets an attribute (property/method) of an object

81 | P a g e
 https://tocxten.com/

slice() Returns a slice object

sorted() Returns a sorted list

str() Returns a string object

sum() Sums the items of an iterator

tuple() Returns a tuple

type() Returns the type of an object

vars() Returns the __dict__ property of an object

zip() Returns an iterator, from two or more iterators

iii. Modules :

As the programs become more lengthy and complex, there arises a need for the

tasks to be split into smaller segments called modules.

A module is a file containing functions and variable defined in separate files. A

module is simply a file that contains Python code or a series of instructions . When

we break a program into modules , each module should contain functions that

performs related tasks . There are some commonly used modules in Python that

are used for certain predefined tasks and they are called libraries.

Modules also make it easier to reuse the same code in more than one program. If

we have written a ste of functions that is needed in several different programs , we

can place those functions that is needed in several different programs, we can place

those functions in a module. Then we can import the module in each program that

needs to call one of the functions . Once we import a module we can refer to any

of its functions or variable in our program.

A module in Python is a file that contains a collection of related functions.

82 | P a g e
 https://tocxten.com/

Importing Modules in a python Program

Python language provides two important methods to import modules in a

program which are as follows :

(i) Import statement : To import entire module

(ii) From :To import all functions or selected ones

(iii) Import : To use modeule in a program , we import them using the

import statement.

Syntax : import modulename1 [modulname2,------]

It is the simplest and the most common way to use modules in our code.\

Example:

import math

On executing

Output

83 | P a g e
 https://tocxten.com/

84 | P a g e
 https://tocxten.com/

Random module (Generating random numbers)

The various functions associated with the module are explained as follows:

randrange () : This method generates an integer between its lower and upper

argument. By default, the lower argument is 0 and upper argument is 1. The

following line of code generates random numbers from 0 to 29. In this instance

it is 15.

Random() : This function generates a random number from 0 to 1 such as

0.564388 . This function can be used to generate random floating point values.

It takes no parameters and returns values uniformly distributed between 0 and

1 (including 0 , but excluding 1).

85 | P a g e
 https://tocxten.com/

-Example :

Example :

Example:

Example:

86 | P a g e
 https://tocxten.com/

Example:

Example :

Example :

87 | P a g e
 https://tocxten.com/

Example :

Example :

Example :

Example :

88 | P a g e
 https://tocxten.com/

 Sample Programs

Example1: A Short Program , Guess the Number

89 | P a g e
 https://tocxten.com/

Simple Project:

90 | P a g e
 https://tocxten.com/

Questions for Practice:

1. What are the advantages of using functions in a program?

2. When the code in the function does executes during definition or calling.

3. Discuss How to create a function with example.

4. Explain the following with example

a. Functions

b. Function Call

c. Built in Function

d. Type Conversion Functions

e. Random Numbers

f. Math Functions

g. Adding new Functions

h. Defining and using the new functions

i. Flow of execution

j. Parameter and Arguments

k. Fruitful and void Functions

l. Advantages of Functions

5. Differentiate between argument and parameter.

6. What is the difference between a function and a function call?

7. How many global scopes and local scopes are there in Python program?

8. What happens to variables in a local scope when the function call returns?

9. What is a return value? Can a return value be part of an expression?

10. What is the return value of the function which does not have return

statement?

11. How can you force a variable in a function to refer to the global variable?

12. What is the data type of None?

13. What does the import allname statement do?

14. If you had a function named radio() in a module named car who would you

call it after importing car.

15. How can you prevent a program from crashing when it gets an error?

16. What goes in the try clause? What goes in the except clause?

17. Illustrate the flow of execution of a python function with an example

program to convert given Celsius to Fahrenheit temperature.

91 | P a g e
 https://tocxten.com/

18. Explain the function arguments in python.

19. Explain call by value and call by reference in python

20. Briefly explain about function prototypes

21. Define the scope and lifetime of a variable in python

22. Point out the uses of default arguments in python

23. Generalize the uses of python module.

24. Demonstrate how a function calls another function. Justify your Apply

answer

25. List the syntax for function call with and without arguments.

26. Define recursive function

27. Define the syntax for passing arguments.

28. What are the two parts of function definition give the syntax

29. Briefly discuss in detail about function prototyping in python. With suitable

example program

30. Analyze the difference between local and global variables.

31. Explain with an example program to circulate the values of n variables

32. Describe in detail about lambda functions or anonymous function.

33. Describe in detail about the rules to be followed while using Lambda

function.

34. Explain with an example program to return the average of its argument

35. Explain the various features of functions in python.

36. Describe the syntax and rules involved in the return statement in python.

37. Write a program to demonstrate the flow of control after the return

statement in python.

38. Formulate with an example program to pass the list arguments to a

function.

39. Write a program to perform selection sort from a list of numbers using

python.

40. Give the use of return () statement with a suitable example.

41. What are the advantages and disadvantages of recursion function? A

42. Explain the types of function arguments in python

43. Explain recursive function. How do recursive function works? Explain with a

help of a program

44. Illustrate the concept of local and global variables.

92 | P a g e
 https://tocxten.com/

45. A polygon can be represented by a list of (x, y) pairs where each pair is a

tuple: [(x1, y1), (x2, y2), (x3, y3) , … (xn, yn)]. Write a Recursive function to

compute the area of a polygon. This can be accomplished by “cutting off” a

triangle, using the fact that a triangle with corners (x1, y1), (x2, y2), (x3, y3)

has area (x1y1 + x2y2 + x3y2 – y1x2 –y2x3 – y3x1) / 2.

46. What is a lambda function?

47. How Do We Write A Function In Python?

48. What Is “Call By Value” In Python?

49. What Is “Call By Reference” In Python?

50. Is It Mandatory For A Python Function To Return A Value? Comment?

51. What Does The *Args Do In Python?

52. What Does The **Kwargs Do In Python?

53. Does Python Have A Main() Method?

54. What Is The Purpose Of “End” In Python?

55. What Does The Ord() Function Do In Python?

56. What are split(), sub(), and subn() methods in Python?

57. Describe the syntax for the following functions and explain with an

example: a) abs() b) max() c) divmod() d) pow() e) len()

Programs for Practice:

1. Write a program to generate Fibonacci series upto the given limit

FIBONACCI(n) function.

2. Write a single user defined function named ‘Solve’ that returns the

Remainder and Quotient separately on the Console.

3. Write a program to find i) The largest of three numbers and ii) check whether

the given year is leap year or not with functions.

4. Find the area and perimeter of a circle using functions. Prompt the user for

input

5. Write a Python program using functions to find the value of nPr and nCr

without using inbuilt factorial() function.

6. Write a program to find the product of two matrices.
7. A prime number is an integer greater than 1 that is evenly divisible by only

1 and itself. For example, the number 5 is prime because it can only be

93 | P a g e
 https://tocxten.com/

evenly divided by 1 and 5. The number 6, however, is not prime because it
can be divided by 1, 2, 3, and 6.

8. Write a function named isPrime, which takes an integer as an argument and
returns True if the argument is a prime number, and False otherwise.
Define a function main() and call isPrime() function in main() to display a list
of the prime numbers from 100 to 500.

9. Write a program that lets the user perform arithmetic operations on two
numbers. Your program must be menu driven, allowing the user to select
the operation (+, -, *, or /) and input the numbers. Furthermore, your
program must consist of following functions:

1. Function showChoice: This function shows the options to the user and explains how
to enter data.

2. Function add: This function accepts two number as arguments and returns sum.
3. Function subtract: This function accepts two number as arguments and returns their

difference.
4. Function mulitiply: This function accepts two number as arguments and returns

product.
5. Function divide: This function accepts two number as arguments and returns

quotient.
Define a function main() and call functions in main().

10. Write a Python function for the following :
a. To find the Max of three numbers.
b. To sum all the numbers in a list
c. To multiply all the numbers in a list.
d. To reverse a string
e. To calculate the factorial of a number (a non-negative integer). The

function accepts the number as an argument
f. To check whether a number is in a given range
g. That accepts a string and calculate the number of upper case letters

and lower case letters.
h. That takes a list and returns a new list with unique elements of the

first list.
i. That takes a number as a parameter and check the number is prime

or not.
j. To print the even numbers from a given list
k. To check whether a number is perfect or not.
l. That checks whether a passed string is palindrome or not.

94 | P a g e
 https://tocxten.com/

m. That prints out the first n rows of Pascal's triangle.
n. To check whether a string is a pangram or not.

11. Write a Python program that accepts a hyphen-separated sequence of
words as input and prints the words in a hyphen-separated sequence after
sorting them alphabetically.

12. Write a Python function to create and print a list where the values are
square of numbers between 1 and 30 (both included).

13. Write a Python program to make a chain of function decorators (bold, italic,
underline etc.) in Python.

14. Write a Python program to execute a string containing Python code
15. Write a Python program to access a function inside a function
16. Write a Python program to detect the number of local variables declared in

a function.
17. Write a function calculation() such that it can accept two variables and

calculate the addition and subtraction of it. And also it must return both
addition and subtraction in a single return call

18. Create a function showEmployee() in such a way that it should accept
employee name, and it’s salary and display both, and if the salary is missing
in function call it should show it as 9000

19. Create an inner function to calculate the addition in the following way
a. Create an outer function that will accept two parameters a and b
b. Create an inner function inside an outer function that will calculate

the addition of a and b
c. At last, an outer function will add 5 into addition and return it

20. Write a recursive function to calculate the sum of numbers from 0 to 10
21. Write a function to calculate area and perimeter of a rectangle.
22. Write a function to calculate area and circumference of a circle.
23. Write a function to calculate power of a number raised to other. E.g.- ab.
24. Write a function to tell user if he/she is able to vote or not.(Consider

minimum age of voting to be 18.)
25. Print multiplication table of 12 using recursion.
26. Write a function to calculate power of a number raised to other (ab) using

recursion.
27. Write a function “perfect()” that determines if parameter number is a

perfect number. Use this function in a program that determines and prints
all the perfect numbers between 1 and 1000.[An integer number is said to

95 | P a g e
 https://tocxten.com/

be “perfect number” if its factors, including 1(but not the number itself),
sum to the number. E.g., 6 is a perfect number because 6=1+2+3].

28. Write a function to check if a number is even or not.
29. Write a function to check if a number is prime or not.
30. Write a function to find factorial of a number but also store the factorials

calculated in a dictionary as done in the Fibonacci series example.
31. Write a function to calculate area and perimeter of a rectangle.
32. What is the output of the following Code ?

def foo(u, v, w=3):
 return u * v * w

def bar(x):
 y = 4
 return foo(x, y)

print(foo(4,5,6))
print(bar(10))

33. What is the output of the following Code ?

def change(t1,t2):
 t1 = [100,200,300]
 t2[0]= 8

list1 = [10,20,30]
list2 = [1,2,3]
change(list1, list2)
print(list1)
print(list2)

34. What is the output of the following Code ?

def dot(a, b):
 total = 0
 for i in range(len(a)):
 total += a[i] * b[i]
 print(total)

x = [10,20,30]
y = [1,2,3,4]
dot(x,y)

35. What is the output of the following Code ?

96 | P a g e
 https://tocxten.com/

def buz(arr, n):
 for i in range(n-1):
 if arr[i]>arr[i+1]:
 arr[i], arr[i+1] = arr[i+1], arr[i]
 print(arr)

def bar(arr,n):
 for i in range(n-1):
 buz(arr,n-i)

t = [19,7,4,1]
bar(t,len(t))

36. What is the output of the following Code ?

def change(num1 ,num2=50):
 num1 = num1 + num2
 num2 = num1 - num2
 print(num1, '#', num2)

n1 = 150
n2 = 100
change(n1,n2)
change(n2)
change(num2=n1,num1=n2)

