
Introduction to Python Programming
(BPLCK205B)

Dr. Thyagaraju G S

Dr.Thyagaraju GS

Modules

•Module1: Python Basics, Flow control, Functions

•Module2 : Lists, Tuples and Dictionaries

•Module3: Strings, Reading and Writing Files

•Module 4: Organizing Files and Debugging

•Module 5: Classes and Objects, Classes and Methods,
Classes and Functions

Dr.Thyagaraju GS

Module 1:

• Python Basics: Entering Expressions into the Interactive Shell, The Integer,
Floating-Point, and String Data Types, String Concatenation and Replication,
Storing Values in Variables, Your First Program, Dissecting Your Program,

• Flow control: Boolean Values, Comparison Operators, Boolean Operators,
Mixing Boolean and Comparison Operators, Elements of Flow Control, Program
Execution, Flow Control Statements, Importing Modules, Ending a Program Early
with sys.exit(),

• Functions: def Statements with Parameters, Return Values and return
Statements,The None Value, Keyword Arguments and print(), Local and Global
Scope, The global Statement, Exception Handling, A Short Program: Guess the
Number

Dr.Thyagaraju GS

1.1 Python Basics

•Entering Expressions into the Interactive Shell,

•The Integer, Floating-Point, and String Data
Types,

•String Concatenation and Replication,

•Storing Values in Variables,

•Your First Program, Dissecting Your Program,

Dr.Thyagaraju GS

Entering Expressions into the Interactive
Shell

• In Python, expressions are combinations of values,

variables, operators, and function calls that can be evaluated

to produce a result. They represent computations and return

a value when executed. Here are some examples of

expressions in Python:

• Examples: 17, x, x+17 , 1+2*2 , X**2, x**2 + y**2

Dr.Thyagaraju GS

Dr.Thyagaraju GS

Dr.Thyagaraju GS

Dr.Thyagaraju GS

Dr.Thyagaraju GS

Dr.Thyagaraju GS

Value

•A value is a letter or a number.

• In Python, a value is a fundamental piece of data that
can be assigned to variables, used in expressions, and
manipulated by operations.

•Values can be of different types, such as numbers,
strings, booleans, lists, tuples, dictionaries, and more.
Each type of value has its own characteristics and
behaviors.

Dr.Thyagaraju GS

Examples

•x = 10 # integer

•y = 3.14 # floating-point number

•z = 2 + 3j # complex number

•name = "John" # string

•message = 'Hello, World!' # string

• is_true = True # Boolean Value

Dr.Thyagaraju GS

type() function

• In Python, the type() function is used to determine
the type of a given object or value.

• It returns the data type of the object as a result.

Dr.Thyagaraju GS

Dr.Thyagaraju GS

Dr.Thyagaraju GS

Dr.Thyagaraju GS

Dr.Thyagaraju GS

String Concatenation

• String concatenation is the process of combining two or more

strings together to create a single string. In Python, you can

concatenate strings using the + operator.

• Here's an example:

Dr.Thyagaraju GS

String Replication

• String replication allows you to repeat a string multiple times. In Python,
you can replicate a string by using the * operator.

• Here's an example:

Dr.Thyagaraju GS

Dr.Thyagaraju GS

Variable

• A variable is a name that refers to a
value. In Python, a variable is a
named storage location that holds a
value.

• An assignment statement creates

new variables as illustrated in the

example below:

x = 10

Examples
Message = ‘Python Programming ‘,

p =1000, t= 2, r=3.142,

Si = p*t*r/100,

pi = 3.1415926535897931,

area_of _circle = pi*r*r.

To know the type of the variable one can use

type () function.

Ex: type(p)

To display the value of a variable, you can use

a print statement:

Ex: print (Si) ; print(pi)Dr.Thyagaraju GS

Rules for writing Variable names

1.Variable names can be a combination of letters in lowercase
(a to z) or uppercase (A to Z) or digits (0 to 9) or an
underscore (_).

2.Variable names cannot start with a number/digit.
3.Keywords cannot be used as Variable names.
4.Special symbols like !, @, #, $, % etc. cannot be used in

Variable names.
5.Variable names can be of any length.
6.Variable name must be of single word.

Dr.Thyagaraju GS

Valid Variable Names and Invalid Variable
Names

Valid Variable Names Invalid Variable Names

python12 current- account(hyphens are not allowed)

Simple savings account (spaces are not allowed)

interest_year 4freinds (can’t begin with a number)

_rate_of_interest 1975 (can’t begin with a number)

spam 10April$ (cannot begin with a number and special

characters like $ are not allowed)

HAM Principle#@(special characters like # and @ are not

allowed)

account1234 ‘bear’ (special characters like ‘ is not allowed)

Dr.Thyagaraju GS

Storing Values in a Variables

• Values can be stored in a variable using an Assignment statement.

• An assignment statement consists of a variable name, an equal (=) sign
and the value to be stored.

Example 1:

x = 40

Example 2:

a, b, c = 1, 2, 3

Example 3:

x = 5

y = 3

result = x + y
Example 4:

x = 10

x = x + 5 # x is updated to 15
Dr.Thyagaraju GS

Dissecting the Simple Program

Dr.Thyagaraju GS

Dr.Thyagaraju GS

Comments

• Comments are readable explanation or descriptions that help
programmers better understand the intent and functionality
of the source code.

• Comments are completely ignored by interpreter.

Dr.Thyagaraju GS

Advantages of Using Comments:

1.Makes code more readable and understandable.

2.Helps to remember why certain blocks of code were

written.

3.Can also be used to ignore some code while testing other

blocks of code.

Dr.Thyagaraju GS

Single Line Comments in Python:

Dr.Thyagaraju GS

Multiline Comments

1. Using # at the beginning of each line of comment on multiple lines

Example:

It is a

multiline

comment

2. Using String Literals ''' at the beginning and end of multiple lines

Example:

'''

I am a

Multiline comment!

'''
Dr.Thyagaraju GS

Dr.Thyagaraju GS

The len() Function

• In Python, the len() function is used to determine the length of an
object, such as a string, list, tuple, or any other iterable.

Dr.Thyagaraju GS

Operators and
operands

• Operators are special symbols that

represent computations like

addition and multiplication. The

values the operator is applied to are

called operands.

• The operators +, -, *, /, and **

perform addition, subtraction,

multiplication, division, and

exponentiation, as in the following

examples:

Op

era

tor

Operation Example Evaluates to

** Exponent 5**3 125

% Modulus/Rema

inder

33%7 5

// Integer

Division/Floore

d quotient

33//5 6

/ Division 23/7 3.28571428571

42856

* Multiplication 7*8 56

- Subtraction 8 – 5 3

+ Addition 7+ 3 10
Dr.Thyagaraju GS

Order of operations

• When more than one operator appears in an expression, the order of

evaluation depends on the rules of precedence.

• PEMDAS order of operation is followed in Python:

• Parentheses have the highest precedence and can be used to force an

expression to evaluate in the order you want.

• Exponentiation has the next highest precedence,

• Multiplication and Division have the same precedence, which is higher than

• Addition and Subtraction, which also have the same precedence.

• Operators with the same precedence are evaluated from left to right.
•

Dr.Thyagaraju GS

Example1

Dr.Thyagaraju GS

Example2

(5-2)*((8+4)/(5-2))

3 * ((8+4)/(5-2))

3*(12/(5-2))

3*(12/3)

3*4.0

12.0

Dr.Thyagaraju GS

Example3 : Invalid Expressions

Dr.Thyagaraju GS

Python Character Set :

• The set of valid characters recognized by Python like letter, digit or any other

symbol. The latest version of Python recognizes Unicode character set. Python

supports the following character set:

• Letters : A-Z ,a-z

• Digits :0-9

• Special Symbols : space +-/***()[]{}//=!= == <>,”””,;: %!#?$& ^=@_

• White Spaces : Blank Space, tabs(->), Carriage return , new line , form feed

• Other Characters : All other 256 ACII and Unicode characters

Dr.Thyagaraju GS

Python Tokens:

A token (lexical unit) is the smallest element of Python script that is
meaningful to the interpreter. Python has following categories of
tokens:

1. Identifiers

2. Literals

3. Operators

4. Delimiters

5. Keywords

Dr.Thyagaraju GS

1.Identifiers

• Identifiers are names that you give to
a variable , class or Function.

• There are certain rules for naming
identifiers similar to the variable
declaration rules , such as :
• No Special character except_ ,

• Keywords are not used as identifiers ,

• the first character of an identifier should
be _ underscore or a character ,

• but a number is not valid for identifiers
and

• identifiers are case sensitive In the above example, we have used identifiers like
my_variable, counter, calculate_area, MyClass, and math.

Dr.Thyagaraju GS

2. Literals in Python

• In Python, literals are the raw,
literal values that are used to
represent data in the code.
They are fixed values that are
directly assigned to variables
or used as constants.

• Python supports various types
of literals, including numeric
literals, string literals, Boolean
literals, and more.

1. Numeric literals: Numeric literals represent numeric values such
as integers, floating-point numbers, and complex numbers.
Examples: x = 10, y = 3.14, z = 2 + 3j

2. String literals: String literals represent sequences of characters
enclosed in either single quotes (') or double quotes (").
Examples: name = 'John', sage = "Hello, world!“

3. Boolean literals: Boolean literals represent the truth values True
and False.
Examples: is_valid = True

4. None literal: The None literal represents the absence of a value or
a null value. It is often used to indicate the absence of a meaningful
result or as an initial value for variables.
Example: result = None

4. Operator Literals : Operator literals include arithmetic operators,
comparison operators, assignment operators, logical operators, and
more.
Examples: +,-,/,//,%,*,**, <,>,!=,==,and,or,not,etc.

Dr.Thyagaraju GS

3.Operators

• A Symbol or a word that
performs some kind of
operation on given values
and returns the result.

• There are 7 types of
operators available for
Python: Arithmetic Operator,
Assignment Operator,
Comparison Operator, Logical
Operator, Bitwise Operator,
Identity Operator and
Membership Operator.

1. Arithmetic operators: +, -, *, /, %, **, //

2. Assignment operators: =, +=, -=, *=, /=,

%=, **=, //=

3. Comparison operators: ==, !=, >, <, >=, <=

4. Logical operators: and, or, not

5. Bitwise operators: &, |, ^, ~, <<, >>

6. Membership operators: in, not in

7. Identity operators: is, is not

Dr.Thyagaraju GS

4. Delimiters

• Delimiters are the symbols which can be used as separators of values
or to enclose some values.

• Examples : Comma (,),Colon (:),Parentheses ((and)),Square brackets
([and]),Curly braces ({ and }),Quotation marks (' and ") and Backslash
(\)

Dr.Thyagaraju GS

5. Keywords

• The reserved words of Python which have a special fixed meaning for the
interpreter are called keywords.

• No keyword can be used as an identifier or variable names. There are 36 keywords
in python as listed below:

Dr.Thyagaraju GS

1.2 Flow Control

Syllabus:

•Boolean Values, Comparison Operators, Boolean
Operators, Mixing Boolean and Comparison Operators,

• Elements of Flow Control, Program Execution, Flow
Control Statements,

• Importing Modules, Ending a Program Early with
sys.exit().

Dr.Thyagaraju GS

Boolean Values:

• A Boolean value is
either true or false.

• In Python the two
Boolean Values are
True and False and
the Python type is
bool.

type(True)

output : bool

type(False)

output : bool

type(true)

output: Name Error : name “ true” is not defined

type(false) # output: Name Error : name “ false” is

not defined

context = True

print(context) #output : True
Dr.Thyagaraju GS

Boolean Expressions
• A Boolean expression is an

expression that evaluated to
produce a result which is a
Boolean value.

5 == (1+4) # output : True

5 == 6 # output: False

P = “hel”

P + “lo” == “hello” # output: True

Dr.Thyagaraju GS

Comparison Operators

Operator Meaning

== Equal to

!= Not Equal to

< Less than

> Greater than

<= Les than or

equal to
>= Greater than or

equal to

55 == 55 # output: True

55 == 79 # output: False

7!=10 # output : True

7!=7 #output : False

True == True # output: True

True != False # output: True

12< 13 # output: True

55.55 > 66.75 # output : False

“tag”< = 2

output :

Type error : ‘<’ is not supported between instances of ‘str’ and ‘int’.
Dr.Thyagaraju GS

Difference between == and = Operator

= ==

It is an assignment

operator

It is a comparison operator

It is used for assigning the

value to a variable

It is used for comparing two values.

It returns 1 if both the value is equal

otherwise returns 0
Constant term cannot be

place on left hand side

Example:

1= x; is invalid

Constant term can be placed in the left-

hand side.

Example: 1 ==1 is valid and return 1

Dr.Thyagaraju GS

Boolean Operators:

True and True # output : True

True and False # output : False

False and True # output : False

False and False # output :False

True or True # output : True

True or False # output : True

False or True # output : True

False or False # output :False

Op1 Op2 Op1 and Op2
True False False
False True False
False False False
True True True

Op1 Op2 Op1 or Op2
True False True
False True True
False False False
True True True

Dr.Thyagaraju GS

Not operator:

• It is a unary operator and evaluates the expression to
opposite value true or false as illustrated below :

not True # output : False

not False # output : True

not not not not True # output : True

op not op
True False
False True

Dr.Thyagaraju GS

Mixing Boolean and Comparison Operators

x = 10

y = 20

x<y and x>y # output : False

(x<y) and (x!=y) or (x*2) and (x<20 or y<20) # output : True

2+2 == 4 and not 2+2 == 5 and 2*2 == 2+2 #output : True

5*7 +8 == 7 or not 5+7 ==10 and 5*4 ==20 #output : True

Dr.Thyagaraju GS

Elements of Flow Control

Flow control statements often starts with condition followed by a block of
code called clause. The two elements of Flow Control are discussed below:

a) Conditions:

Conditions are Boolean expressions

with the boolean values True or

False. Flow control statements

decides what to do based on the

condition whether it is true or false.

b) Blocks of Code /Clause:

The set of more than one statements grouped with same

indentation so that they are syntactically equivalent to a

single statement is known as Block or Compound

Statement. One can tell when a block begins, and ends

based on indentation of the statements. Following are

three rules for blocks:

1. Blocks begin when the indentation increases

2. Blocks can have nested blocks

3. Blocks end when the indentation decreases to zero

Dr.Thyagaraju GS

Dr.Thyagaraju GS

Dr.Thyagaraju GS

Flow Control
statements

Flow control statements in Python are used to control
the order of execution and make decisions based on
certain conditions. The main flow control statements
in Python include

Conditional Control Statements:

• if statement: Executes a block of code

if a specified condition is true.

• elif statement: Allows you to check

additional conditions if the previous if

or elif conditions are false.

• else statement: Executes a block of

code if none of the previous

conditions are true.

Looping Statements:

• for loop: Iterates over a sequence (such as a

list, tuple, string, or range) and executes a

block of code for each item in the sequence.

• while loop: Repeats a block of code as long

as a specified condition is true.

Loop Control Statements:

• break statement: Terminates the innermost loop and

continues with the next statement after the loop.

• continue statement: Skips the rest of the current iteration

and moves to the next iteration of the loop.

• pass statement: Acts as a placeholder, allowing you to create

empty code blocks without causing syntax errors

Exception Handling Statements:

• try statement: Defines a block of code where exceptions

might occur.

• except statement: Specifies the code to execute if a specific

exception occurs within the try block.

• finally statement: Defines a block of code that will be

executed regardless of whether an exception occurred or not.

Dr.Thyagaraju GS

if
statement

Dr.Thyagaraju GS

Dr.Thyagaraju GS

Dr.Thyagaraju GS

2. If else
statement:

Dr.Thyagaraju GS

Dr.Thyagaraju GS

3. Nested if
else:

Dr.Thyagaraju GS

Dr.Thyagaraju GS

4. if – elif
ladder:

Dr.Thyagaraju GS

Example

Dr.Thyagaraju GS

Types of Loops Supported in Python

• The Python Language supports the following two looping

operations:

1.The while statement

2.The for statement

Dr.Thyagaraju GS

while
Statement

Dr.Thyagaraju GS

Dr.Thyagaraju GS

for Loop

Dr.Thyagaraju GS

Dr.Thyagaraju GS

range () function:

The range() function returns a sequence of numbers,

starting from 0 to a specified number ,incrementing each

time by 1.

Syntax :

range(start,step,stop)

Dr.Thyagaraju GS

Dr.Thyagaraju GS

Infinite Loop

A loop becomes infinite loop

if a condition never becomes

FALSE. You must use caution

when using while loops

because of the possibility

that this condition never

resolves to a FALSE value.

This results in a loop that

never ends. Such a loop is

called an infinite loop.

Dr.Thyagaraju GS

break
and
continue

Dr.Thyagaraju GS

The Pass
Statement :

• The pass statement in Python is used
when a statement is required
syntactically but you do not want any
command or code to execute.

• The pass statement is
a null operation; nothing happens
when it executes. The pass is also
useful in places where your code will
eventually go, but has not been
written yet (e.g., in stubs for example):

Dr.Thyagaraju GS

Importing Modules

• Each module is a Python program that contains a related group of functions that
can be embedded in your programs. For example, the math module has
mathematics related functions, the random module has random number–related
functions, and so on.

In code, an import statement consists of the following:
• The import keyword

• The name of the module

• Optionally, more module names, as long as they are separated by commas

Dr.Thyagaraju GS

Importing math

Dr.Thyagaraju GS

Importing
random

Dr.Thyagaraju GS

Importing random

Dr.Thyagaraju GS

Ending a Program

Early with sys.exit ()

Dr.Thyagaraju GS

1.3 Functions

• Syllabus : def Statements with Parameters, Return Values and return
Statements, The None Value, Keyword Arguments and print(), Local
and Global Scope, The global Statement, Exception Handling, A Short
Program: Guess the Number

Dr.Thyagaraju GS

What is Function?

• A function is a group (or block) of statements that perform a
specific task .

• Functions run only when it is called.

• One can pass data into the function in the form of
parameters.

• Function can also return data as a result.

Dr.Thyagaraju GS

Types of Functions

1.User Defined

2.Built in

Dr.Thyagaraju GS

User defined
Functions

• In Python, user-defined
functions are functions that
are created by the
programmer to perform
specific tasks. These
functions are defined using
the def keyword followed by
the function name,
parentheses for optional
parameters, and a colon to
start the function block.

Dr.Thyagaraju GS

Example

Dr.Thyagaraju GS

Parameters and arguments

• Parameters are temporary variable

names within functions.

• The argument can be thought of as the

value that is assigned to that temporary

variable.

• 'n' here is the parameter for the

function 'cube'. This means that

anywhere we see 'n' within the

function will act as a placeholder until

number is passed an argument.

• Here 10 is the argument.

• Parameters are used in function

definition and arguments are used in

function call.

Dr.Thyagaraju GS

Function
without
parameters

Dr.Thyagaraju GS

Function with
parameters
but without
returning
values

Dr.Thyagaraju GS

Function with
parameters
and return
values

Dr.Thyagaraju GS

Function with
parameters
and return
values

Dr.Thyagaraju GS

Function which
return multiple
values

Dr.Thyagaraju GS

The None-
Value

• In Python there is a value
called None, which
represents the absence of a
value. None is the only value
of the None Type data type.

• (Other programming
languages might call this
value null, nil, or undefined.)

• Just like the Boolean True and
False values, None must be
typed with a capital N.

Dr.Thyagaraju GS

Keyword

Arguments and

print()

Keyword arguments
are identified by the
keyword put before
them in the function
call. Keyword
arguments are often
used for optional
parameters.

Examples : end and
sep. Dr.Thyagaraju GS

Keyword

Arguments and

print()

Keyword arguments
are identified by the
keyword put before
them in the function
call. Keyword
arguments are often
used for optional
parameters.

Examples : end and
sep. Dr.Thyagaraju GS

Local and

Global Scope

Dr.Thyagaraju GS

Local variable

cannot be

used in the

global scope

Dr.Thyagaraju GS

Local Scopes Cannot Use

Variables in Other Local

Scopes

Dr.Thyagaraju GS

Global Variable

Can be read

from a local

scope :

Dr.Thyagaraju GS

Local and Global

Variables with

the same Name

:

Dr.Thyagaraju GS

Global

Statement:

Dr.Thyagaraju GS

Exceptional

Handling

Dr.Thyagaraju GS

Try and

Except :

Dr.Thyagaraju GS

Try and

Except :

Dr.Thyagaraju GS

A Sample Program: Guess The number

Dr.Thyagaraju GS

Dr.Thyagaraju GS

Dr.Thyagaraju GS

Simple Project

Dr.Thyagaraju GS

	Slide 1: Introduction to Python Programming (BPLCK205B)
	Slide 2: Modules
	Slide 3: Module 1:
	Slide 4: 1.1 Python Basics
	Slide 5: Entering Expressions into the Interactive Shell
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Value
	Slide 12: Examples
	Slide 13: type() function
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: String Concatenation
	Slide 19: String Replication
	Slide 20
	Slide 21: Variable
	Slide 22: Rules for writing Variable names
	Slide 23: Valid Variable Names and Invalid Variable Names
	Slide 24: Storing Values in a Variables
	Slide 25: Dissecting the Simple Program
	Slide 26
	Slide 27: Comments
	Slide 28: Advantages of Using Comments:
	Slide 29: Single Line Comments in Python:
	Slide 30: Multiline Comments
	Slide 31
	Slide 32: The len() Function
	Slide 33: Operators and operands
	Slide 34: Order of operations
	Slide 35: Example1
	Slide 36: Example2
	Slide 37: Example3 : Invalid Expressions
	Slide 38: Python Character Set :
	Slide 39: Python Tokens:
	Slide 40: 1.Identifiers
	Slide 41: 2. Literals in Python
	Slide 42: 3.Operators
	Slide 43: 4. Delimiters
	Slide 44: 5. Keywords
	Slide 45: 1.2 Flow Control
	Slide 46: Boolean Values:
	Slide 47: Boolean Expressions
	Slide 48: Comparison Operators
	Slide 49: Difference between == and = Operator
	Slide 50: Boolean Operators:
	Slide 51: Not operator:
	Slide 52: Mixing Boolean and Comparison Operators
	Slide 53: Elements of Flow Control
	Slide 54
	Slide 55
	Slide 56: Flow Control statements
	Slide 57: if statement
	Slide 58
	Slide 59
	Slide 60: 2. If else statement:
	Slide 61
	Slide 62: 3. Nested if else:
	Slide 63
	Slide 64: 4. if – elif ladder:
	Slide 65: Example
	Slide 66: Types of Loops Supported in Python
	Slide 67: while Statement
	Slide 68
	Slide 69: for Loop
	Slide 70
	Slide 71: range () function:
	Slide 72
	Slide 73: Infinite Loop
	Slide 74: break and continue
	Slide 75: The Pass Statement :
	Slide 76: Importing Modules
	Slide 77: Importing math
	Slide 78: Importing random
	Slide 79: Importing random
	Slide 80: Ending a Program Early with sys.exit ()
	Slide 81: 1.3 Functions
	Slide 82: What is Function?
	Slide 83: Types of Functions
	Slide 84: User defined Functions
	Slide 85: Example
	Slide 86: Parameters and arguments
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92: The None-Value
	Slide 93: Keyword Arguments and print()
	Slide 94: Keyword Arguments and print()
	Slide 95: Local and Global Scope
	Slide 96: Local variable cannot be used in the global scope
	Slide 97: Local Scopes Cannot Use Variables in Other Local Scopes
	Slide 98: Global Variable Can be read from a local scope :
	Slide 99: Local and Global Variables with the same Name :
	Slide 100: Global Statement:
	Slide 101: Exceptional Handling
	Slide 102: Try and Except :
	Slide 103: Try and Except :
	Slide 104: A Sample Program: Guess The number
	Slide 105
	Slide 106
	Slide 107: Simple Project

