

Introduction to Python

Programming

First Edition

Author
Dr. Thyagaraju G. S

ii

Title of the Book: Introduction to Python Programming

Edition First: 2023

Copyright 2023 © Dr. Thyagaraju G. S, Professor, Computer Science
Engineering SDM Institute of Technology

No part of this book may be reproduced or transmitted in any form by any
means, electronic or mechanical, including photocopy, recording, or any
information storage and retrieval system, without permission in writing from the
copyright owners.

Disclaimer

The author is solely responsible for the contents published in this book. The
publishers or editors do not take any responsibility for the same in any manner.
Errors, if any, are purely unintentional and readers are requested to
communicate such errors to the editors or publishers to avoid discrepancies in
future.

ISBN: 978-93-5747-477-1

MRP Rs. 590/-

Publisher, Printed at & Distribution by:
Selfypage Developers Pvt Ltd.,
Pushpagiri Complex,
Beside SBI Housing Board,
K.M. Road Chikkamagaluru, Karnataka.
Tel.: +91-8861518868
E-mail:publish@iiponline.org
IMPRINT: I I P Iterative International Publishers

For Sales Enquiries
Contact: 91- 8861511583
E-mail: sales@iiponline.org

iii

Dedicated to Context

iv

Preface

Welcome to the world of Python programming! This book, titled "Introduction
to Python Programming," is designed to be your comprehensive guide to
learning the fundamentals of Python, one of the most popular and versatile
programming languages in the world.

Python is known for its simplicity, readability, and ease of use, making it an
excellent choice for beginners and experienced programmers alike. Whether
you are a complete novice or have some programming experience in other
languages, this book will take you on a journey to master the basics of Python
and explore its powerful features.

Chapter 1.1: Python Basics

In this chapter, you'll start to learn the absolute basics. You'll learn how to enter
expressions into the interactive shell, work with different data types such as
integers, floating-point numbers, and strings. We'll also explore string
concatenation, storing values in variables, and writing your first Python
program. By dissecting your program, you'll gain a deeper understanding of
how Python code is executed.

Chapter 1.2: Flow Control

Flow control is essential for making decisions in your code. Here, you'll delve
into Boolean values, comparison operators, and Boolean operators. These
concepts is mixed to create conditional statements, loops, and other flow control
structures. Additionally, you'll discover how to import modules and end a
program early when necessary.

Chapter 1.3: Functions

Functions allow you to organize and reuse code effectively. You'll learn how to
define functions with parameters and return values. We'll also explore the
special value "None," keyword arguments, and working with local and global
scope. Exception handling will be introduced to handle errors gracefully.
Finally, we'll apply these concepts to create two exciting projects: "Guess the
Number" and "Password Locker."

v

Chapter 2: Lists, Strings, Tuples and Dictionaries

Lists and dictionaries are fundamental data structures in Python. You'll explore
lists and their various methods, including working with strings and tuples, as
well as references. Next, we'll delve into dictionaries and how they allow us to
structure data efficiently. You'll apply these concepts to build a fun project
called the "Magic 8 Ball."

Chapter 3: Manipulating Strings and Reading/Writing Files

Understanding strings is vital, as they play a significant role in many programs.
You'll explore useful string methods and work with files, including reading and
writing data to files. You'll gain valuable insights through projects like
"Password Locker" and "Adding Bullets to Wiki Markup."

Chapter 4: Organizing Files and Debugging

Learn how to organize files with the "shutil" module and manipulate directories
with the "os.path" module. We'll explore debugging techniques using
exceptions, assertions, and the IDLE debugger.

Chapter 5.1: Classes and Objects

Object-oriented programming is a powerful paradigm in Python. In this chapter
you’ll discover how to create your own classes and work with attributes and
instances. You'll explore the concept of objects as mutable entities and learn
about copying objects.

Chapter 5.2: Classes and Methods

In this chapter, you'll explore classes and methods. Understand the concept of
pure functions and modifiers and learn about prototyping versus planning.

Chapter 5.2: Classes and Functions

In this chapter, you'll explore object-oriented features such as operator
overloading, type-based dispatch, and polymorphism. The concept of interface
and implementation will be discussed to design maintainable and flexible code.
I hope this book will serve as your comprehensive resource for learning Python
programming. Each chapter is designed to build upon the knowledge from the
previous ones, ensuring a smooth and rewarding learning experience. Whether
you aspire to develop web applications, data analysis tools, or explore machine
learning, Python will be your reliable companion.

vi

To access supplementary learning materials related to "GUI Programming
using Python" and to procure Python source code and a comprehensive
collection of e-materials associated with the book, I encourage you to visit my
website: https://tocxten.com/ .

Happy Learning!
Dr. Thyagaraju G. S

vii

Acknowledgements

I express my gratitude to my daughter, Palguni GT, who is currently pursuing
B.E. in Computer Science and Business Systems at Malnad College of
Engineering (MCE), Hassan. Her invaluable assistance in composing the book
is deeply appreciated. Her contributions included coding and testing the
necessary Python programs and compiling the question bank.

……..Dr. Thyagaraju G. S

viii

Contents

Chapter 1 Python Basics, Flow Control and Functions 1-67
1.1 Python Basics

Entering Expressions into the Interactive Shell,
Data Types, String Concatenation and Replication,
Variables, Your First Program

1

1.2 Flow Control

Boolean Values, Comparison Operators, Boolean
Operators, Mixing Boolean and Comparison
Operators, Elements of Flow Control, Program
Execution, Flow Control Statements, Importing
Modules, Ending a Program Early with sys. exit(),

21

1.3 Functions
Def Statements with Parameters, Return Values
and return Statements, The Non-Value, Keyword
Arguments and print(), Local and Global Scope,
The global Statement, Exception Handling, A
Short Program: Guess the Number [pg: 343]

48

Chapter 2 Lists, Strings, Tuples and Dictionaries 68-149

2.1 Lists, Strings, Tuples and References
The List Data Type, Working with Lists,
Augmented Assignment Operators, Methods,
Example Program: Magic 8 Ball with a List
[pg:87], List-like Types: Strings and Tuples,
References

68

2.2 Dictionaries
The Dictionary Data Type, Pretty Printing, Using
Data Structures to Model Real-World Things

132

Chapter 3 Manipulating Strings and Reading/Writing

Files
150-186

3.1 Manipulating Strings
Working with Strings, Useful String Methods,
Project: Password Locker, [pg.164] Project:
Adding Bullets to Wiki Markup [pg:168]

150

3.2 Reading and Writing Files
Files and File Paths, The os.path Module, The File
Reading/Writing Process, Saving Variables with
the shelve Module, Saving Variables with the
print. format() Function, Project: Generating

171

ix

Random Quiz Files [pg:344], Project:
Multiclipboard [pg:346]

Chapter 4 Organizing Files and Debugging Programs 187-212

4.1 Organizing Files
The shutil Module, Walking a Directory Tree,
Compressing Files with the zipfile Module,
Project: Renaming Files with American-Style
Dates to European-Style Dates [pg:348], Project:
Backing Up a Folder into a ZIP File. [pg:195]

187

4.2 Debugging
Raising Exceptions, Getting the Traceback as a
String, Assertions, Logging, IDLE‟s Debugger

197

Chapter 5 Object Oriented Programming with Python 213-258

5.1 Classes and Objects
Programmer-defined types, Attributes, Rectangles,
Instances as return values, Objects are mutable,
Copying

213

5.2 Classes and Functions
Time, Pure functions, Modifiers, Prototyping
versus planning

228

5.3 Classes and Methods
Object-oriented features, Printing objects, Another
example, A more complicated example, The init
method, The __str__ method, Operator
overloading, Type-based dispatch, Polymorphism,
Interface and implementation

238

Chapter 6 Sample Python Programs 259-326

Chapter 7 Sample Lab Programs 327-349

Chapter 8 Sample Viva Questions 350-353

Chapter 9 Model Question Bank 354-365

Chapter 10 Appendix 366-374

1

Python Basics, Flow Control and
Functions

1.1 Python Basics

Topics Covered: Entering Expressions into the Interactive Shell, The Integer,

Floating-Point, and String Data Types, String Concatenation and Replication,

Storing Values in Variables, Your First Program, Dissecting Your Program.

1.1.1 Introduction

Python is a general-purpose interpreted, interactive, object-oriented, and high-

level programming language. It was created by Guido van Rossum during 1985

- 1990. Python is named after a TV Show called ‗Monty Python‘s Flying Circus‘

and not after Python-the snake. Some of the Features that Makes Python more

popular are:

 Python is Simple and Easy to learn and code.

 Python is Free and Open Source. It is freely available at the

https://www.python.org/. Python source code is also available to the

public, one can download it, use it, and share it.

 Python is High Level Language and supports both Procedure oriented and

Object-Oriented Language concepts along with dynamic memory

management.

 Python is portable. Python code can be run on any platforms like Linux,

Unix, Mac and Windows.

 Python is extensible and integrated. Python code can be extended and

integrated with other languages like C, C++, Java, etc.

 Python is an interpreted language. Python code is executed line by line at

a time and there is no need to compile, which makes debugging easier.

 Python has rich set of libraries for data analytics, machine learning,

artificial intelligence, deep learning, mathematical computation, web app

development, mobile app development, testing, etc.

1

Chapter

Chapter 1: Python Basics, Flow Control and Functions

2

 Python is a dynamically typed language. Here the data type for variable is

decided at run time. As a result, there is no need to specify the type of

variable.

1.1.2 Entering Expressions into the interactive Shell

Entering Python expressions into the interactive shell on a Windows system is

quite straightforward. The process involves opening the Command Prompt

(CMD) and invoking the Python interpreter in interactive mode. Here's a step-

by-step explanation with examples:

Open Command Prompt: Press the Windows key to open the start menu, then

type "cmd" and press Enter. This will open the Command Prompt.

Start the Interactive Python Shell: In the Command Prompt, type python and

press Enter. This will launch the Python interpreter in interactive mode.

Input Python Expressions: Once you're in the interactive shell (the >>>

prompt), you can start entering Python expressions.

For example, you can do basic arithmetic calculations

>>> 5 + 3
8
>>> 10 * 2
20
>>> 15 / 3
5.0

You can also use variables

>>> x = 10
>>> y = 5
>>> x + y
15

And perform more complex operations:

>>> import math
>>> radius = 5
>>> area = math.pi * radius**2
>>> area
78.53981633974483

Chapter 1: Python Basics, Flow Control and Functions

3

Multi-line Statements: Similar to the examples provided in the previous

response, you can enter multi-line statements or loops in the interactive shell.

Just remember to use proper indentation for code blocks.

Exiting the Interactive Shell: To exit the interactive shell and return to the

Command Prompt, you can type exit(), quit(), or press Ctrl + Z followed by

Enter. Here‟s how it looks in practice:

C:\Users\YourUsername>python
Python 3.9.0 (tags/v3.9.0:9cf6752, Oct 5 2020, 15:34:40) [MSC v.1927 32 bit
(Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> 5 + 3
8
>>> x = 10
>>> y = 5
>>> x + y
15
>>> import math
>>> radius = 5
>>> area = math.pi * radius**2
>>> area
78.53981633974483
>>> for i in range(5):
... print(i)
...
0
1
2
3
4
>>> exit()

Note: All the remaining programs used in the book are executed and tested in

Jupyter Notebook.

1.1.3 Expressions

In Python, expressions are combinations of values, variables, operators, and

function calls that can be evaluated to produce a result. They represent

Chapter 1: Python Basics, Flow Control and Functions

4

computations and return a value when executed. Here are some examples of

expressions in Python:

Examples: 17, x, x+17, 1+2*2, X**2, x**2 + y**2

Entering expressions into the Python interactive shell/Jupyter notebook cell

allows you to evaluate and execute code in real-time. Here are some more

examples of expressions:

 Arithmetic Operations: You can perform basic arithmetic operations,

such as addition, subtraction, multiplication, and division, directly in the

shell. For example:

2 + 3 #Output: 5

4 * 5 #Output: 20

10 / 3 #Output: 3.3333333333333335

 Variable Assignment: You can assign values to variables and use those

variables in expressions. For example:

x = 5

y = 2

x + y #Output: 7

x * y #Output: 10

 Function Calls: You can call built-in functions or user-defined functions

within the shell. For example:

abs(-10) #Output: 10

len("Hello, World!") #Output: 13

def add(a, b):
 return a + b
add(3, 4) #Output: 7

 Boolean Expressions: You can use Boolean operators like and, or, and

not to evaluate logical expressions. For example:

True and False #Output: False

True or False #Output: True

not True # Output: False

Chapter 1: Python Basics, Flow Control and Functions

5

 Conditional Statement: You can use conditional statements like if, elif,

and else to perform different actions based on conditions. For example:

x = 10
if x > 0:
 print("Positive")
elif x < 0:
 print("Negative")
else:
 print("Zero")

#output: Positive

1.1.4 Value

A value is a letter or a number. In Python, a value is a fundamental piece of data

that can be assigned to variables, used in expressions, and manipulated by

operations. Values can be of different types, such as numbers, strings, Booleans,

lists, tuples, dictionaries, and more. Each type of value has its own

characteristics and behaviors.

Examples

x = 10 # integer
y = 3.14 # floating-point number
z = 2 + 3j # complex number
name = "John" # string
message = 'Hello, World!' # string
is_true = True # Boolean Value
is_false = False
numbers = [1, 2, 3, 4, 5]
fruits = ["apple", "banana", "orange"]
coordinates = (10, 20)
person = ("John", 30, "USA")
student = {"name": "John", "age": 20, "grade": "A"}

1.1.5 type() function

Types are the data types to which the values belong. In Python, the type()
function is used to determine the type of a given object or value. It returns the

data type of the object as a result. The type() function is particularly useful

when you need to programmatically determine the type of a variable or check if

a value belongs to a specific data type.

Chapter 10: Appendix

369

This line assigns a new list ['bat', 'rat', 'cow'] to the variable l1. Since a new

list object is assigned to l1, its identifier changes, and the output of id(l1)

will be a new memory address (e.g., 2626115265152).

In summary, these code snippets illustrate the concepts of unique object

identifiers (memory addresses), string immutability, and list mutability in

Python.

3. Pass by Reference: In Python, all arguments (parameters) are passed by

assignment. This concept is often referred to as "pass by assignment" or

"pass by object reference." It's important to note that Python doesn't use the

terms "pass by value" or "pass by reference" in the same way as some other

programming languages do. Instead, it operates on the idea of binding names

(variables) to objects.

Here's how "pass by reference" works in Python, along with an example:

When you pass an argument to a function, what you're actually passing is a

reference to an object. This reference is essentially a pointer that allows the

function to access the original object. If the object is mutable, like a list,

changes made to the object within the function will be reflected outside the

function as well. However, if the object is immutable, like a string or integer,

any changes made to it within the function will not affect the original object.

Let's illustrate this with an example:

def modify_list(lst):
 lst.append(4)
 lst[0] = 100

my_list = [1, 2, 3]
modify_list(my_list)
print(my_list) # Output: [100, 2, 3, 4]

In this example, my_list is a list that gets passed to the modify_list function.

Within the function, the list's elements are modified. Since lists are mutable,

the changes made inside the function persist outside as well. As a result,

when we print my_list after calling the function, it reflects the modifications

made within the function.

It's important to understand that even though we say "pass by reference" in

Python, it's not the same as true "pass by reference" as seen in some other

languages. In Python, the reference itself is passed by value, which means

Chapter 10: Appendix

370

you can't change the reference to point to a different object within the

function and have it affect the original reference outside the function.

In summary, while Python uses the idea of passing references to objects, it

doesn't fit precisely into the "pass by value" or "pass by reference"

categorizations of other languages. Instead, it's more accurately described as

"pass by assignment" or "pass by object reference."

4. Slicing of nested Lists: Consider a nested list, my_list = [10,

[25,30],[["Hello",True,False,[-2,-3,4]]]]

Some of the possible slices and their values are as listed below:

 Slice Value

1. my_list[:] [10, [25, 30], [['Hello', True, False, [-2, -3, 4]]]]

2. my_list[0:] [10, [25, 30], [['Hello', True, False, [-2, -3, 4]]]]

3. my_list[1:] [[25, 30], [['Hello', True, False, [-2, -3, 4]]]]

4. my_list[2:] [[['Hello', True, False, [-2, -3, 4]]]]

5. my_list[:1] [10]

6. my_list[:2] [10, [25, 30]]

7. my_list[:3] [10, [25, 30], [['Hello', True, False, [-2, -3, 4]]]]

8. my_list[0:1] [10]

9. my_list[0:2] [10, [25, 30]]

10. my_list[0:3] [10, [25, 30], [['Hello', True, False, [-2, -3, 4]]]]

11. my_list[1:2] [[25, 30]]

12. my_list[1:3] [[25, 30], [['Hello', True, False, [-2, -3, 4]]]]

13. my_list[2:3] [[['Hello', True, False, [-2, -3, 4]]]]

14. my_list[0][0:] 10

15. my_list[0][:1] 10

16. my_list[0][0:1] 10

17. my_list[1][0:] [25, 30]

18. my_list[1][:1] [25, 30]

19. my_list[1][0:1] [25, 30]

20. my_list[2][0:] [['Hello', True, False, [-2, -3, 4]]]

21. my_list[2][:1] [['Hello', True, False, [-2, -3, 4]]]

22. my_list[2][0:1] [['Hello', True, False, [-2, -3, 4]]]

23. my_list[2][0][0:] ['Hello', True, False, [-2, -3, 4]]

24. my_list[2][0][:1] ['Hello']

25. my_list[2][0][0:1] ['Hello']

26. my_list[2][0][1:] [True, False, [-2, -3, 4]]

27. my_list[2][0][1:3] [True, False]

28. my_list[2][0][2:] [False, [-2, -3, 4]]

29. my_list[2][0][2:4] [False, [-2, -3, 4]]

Chapter 10: Appendix

371

30. my_list[2][0][3:] [[-2, -3, 4]]

31. my_list[2][0][3:4] [[-2, -3, 4]]

32. my_list[2][0][3][0:] -2

33. my_list[2][0][3][1:] -3

34. my_list[2][0][3][1:2] -3

35. my_list[2][0][3][2:] 4

5. Python Keywords

Sl.No Keyword Meaning

1 False Boolean value representing false.

2 None Represents the absence of a value or null.

3 True Boolean value representing true.

4 and Logical operator representing 'and'.

5 as Used for creating aliases while importing modules.

6 assert Used for debugging purposes to check conditions.

7 async Declares a function to be asynchronous.

8 await Used within an asynchronous function to pause.

9 break Breaks out of the current loop.

10 class Defines a class.

11 continue Skips the rest of the current loop iteration.

12 def Defines a function.

13 del Deletes a reference or element.

14 elif Used in conditional statements, like 'else if'.

15 else Used in conditional statements for fallback.

16 except Catches exceptions in try/except blocks.

17 finally Executes code after a try/except block.

18 for Used for looping over iterable objects.

19 from Used to import specific attributes or modules.

20 global Declares a variable to have global scope.

21 if Conditional statement for decision-making.

22 import Imports modules or attributes into the script.

23 in Used to check membership in an iterable.

24 is Checks if two variables refer to the same object.

25 lambda Creates an anonymous (inline) function.

26 nonlocal Declares a variable to be non-local in scope.

27 not Logical operator representing 'not'.

28 or Logical operator representing 'or'.

29 pass Placeholder statement with no action.

30 raise Raises an exception in code.

31 return Exits a function and returns a value.

32 try Starts a block of code to be tested for exceptions.

Chapter 10: Appendix

372

33 while Creates a loop that continues while a condition is

true.

34 with Creates a context manager for resource

management.

35 yield Used in generator functions to yield a value.

6. Shallow Copy and Deep Copy: In Python, when you work with objects like

lists, you often need to make copies of them for various purposes. There are

two main ways to create copies of lists: shallow copy and deep copy. Let's

explore these concepts using nested lists as examples and the id() function to

demonstrate the differences.

a. Shallow Copy: A shallow copy creates a new object that is a copy of the

original list. However, if the list contains nested objects (like other lists),

it only copies the references to those objects, not the objects themselves.

In other words, the copy references the same nested objects as the

original list.

Here's an example:

import copy

original_list = [[1, 2], [3, 4]]
shallow_copied_list = copy.copy(original_list)

Check if the outer lists are the same

print(original_list == shallow_copied_list) # True

Check if the outer lists have different memory addresses

print(id(original_list) == id(shallow_copied_list)) # False

Check if the nested lists are the same

print(original_list[0] == shallow_copied_list[0]) # True
print(original_list[0] == shallow_copied_list[0]) # True

Check if the nested lists have different memory addresses

print(id(original_list[0]) == id(shallow_copied_list[0])) # True
print(id(original_list[1]) == id(shallow_copied_list[1])) # True

As you can see, the shallow copy creates a new list with a different

memory address for the outer list, but it references the same nested lists.

b. Deep Copy: A deep copy, on the other hand, creates a new object that is

a complete and independent copy of the original list, including all nested

Chapter 10: Appendix

373

objects. This ensures that changes made to the deep copy do not affect the

original list or its nested objects.

Here's an example:

import copy

original_list = [[1, 2], [3, 4]]
deep_copied_list = copy.deepcopy(original_list)

Check if the outer lists are the same
print(original_list == deep_copied_list) # True

Check if the outer lists have different memory addresses
print(id(original_list) == id(deep_copied_list)) # False

Check if the nested lists are the same
print(original_list[0] == deep_copied_list[0]) # True
print(original_list[1] == deep_copied_list[1]) # True
Check if the nested lists have different memory addresses
print(id(original_list[0]) == id(deep_copied_list[0])) # False
print(id(original_list[1]) == id(deep_copied_list[1])) # False

7. Sources of information

[1] Al Sweigart, ―Automate the Boring Stuff with Python‖,1stEdition, No

Starch Press, 2015. (Available under CC-BY-NC-SA license at

https://automatetheboringstuff.com/)

[2] https://www.learnbyexample.org/python-lambda-function/

[3] Allen B. Downey, ―Think Python: How to Think Like a Computer

Scientist‖, 2nd Edition, Green Tea Press, 2015. (Available under CC-BY-

NC license at http://greenteapress.com/thinkpython2/thinkpython2.pdf

[4] https://www.learnbyexample.org/python/

[5] https://www.learnpython.org/

[6] https://pythontutor.com/visualize.html#mode=edit

[7] https://www.learnbyexample.org/python/

[8] https://www.learnpython.org/

[9] https://pythontutor.com/visualize.html#mode=edit

[10] https://github.com/sushantkhara/Data-Structures-And-Algorithms-with-

Python/raw/main/Python%203%20_%20400%20exercises%20and%20solu

tions%20for%20beginners.pdf

[11] https://www.python.org/

[12] https://www.anaconda.com/

[13] https://chat.openai.com/

https://automatetheboringstuff.com/
https://www.learnbyexample.org/python-lambda-function/
http://greenteapress.com/thinkpython2/thinkpython2.pdf
https://www.learnbyexample.org/python/
https://www.learnpython.org/
https://pythontutor.com/visualize.html#mode=edit
https://www.learnbyexample.org/python/
https://www.learnpython.org/
https://pythontutor.com/visualize.html#mode=edit
https://github.com/sushantkhara/Data-Structures-And-Algorithms-with-Python/raw/main/Python%203%20_%20400%20exercises%20and%20solutions%20for%20beginners.pdf
https://github.com/sushantkhara/Data-Structures-And-Algorithms-with-Python/raw/main/Python%203%20_%20400%20exercises%20and%20solutions%20for%20beginners.pdf
https://github.com/sushantkhara/Data-Structures-And-Algorithms-with-Python/raw/main/Python%203%20_%20400%20exercises%20and%20solutions%20for%20beginners.pdf
https://www.python.org/
https://www.anaconda.com/
https://chat.openai.com/

Chapter 10: Appendix

374

[14] Datatypes: https://www.youtube.com/watch?v=gCCVsvgR2KU

[15] Operators: https://www.youtube.com/watch?v=v5MR5JnKcZI

[16] Flow Control: https://www.youtube.com/watch?v=PqFKRqpHrjw

[17] For loop: https://www.youtube.com/watch?v=0ZvaDa8eT5s

[18] While loop: https://www.youtube.com/watch?v=HZARImviDxg

[19] Exceptions: https://www.youtube.com/watch?v=6SPDvPK38tw

[20] Functions: https://www.youtube.com/watch?v=BVfCWuca9nw

[21] Arguments: https://www.youtube.com/watch?v=ijXMGpoMkhQ

[22] Return value: https://www.youtube.com/watch?v=nuNXiEDnM44

[23] Strings: https://www.youtube.com/watch?v=lSItwlnF0eU

[24] String functions: https://www.youtube.com/watch?v=9a3CxJyTq00

[25] Lists: https://www.youtube.com/watch?v=Eaz5e6M8tL4

[26] List methods: https://www.youtube.com/watch?v=8-RDVWGktuI

[27] Tuples: https://www.youtube.com/watch?v=bdS4dHIJGBc

[28] Tuple operations: https://www.youtube.com/watch?v=TItKabcTTQ4

[29] Dictionary: https://www.youtube.com/watch?v=4Q0pW8XBOkc

[30] Dictionary methods: https://www.youtube.com/watch?v=oLeNHuORpNY

[31] Files: https://www.youtube.com/watch?v=vuyb7CxZgbU

[32] https://www.youtube.com/watch?v=FqcjKewJTQ0

[33] File organization: https://www.youtube.com/watch?v=MRuq3SRXses

[34] OOP‘s concepts: https://www.youtube.com/watch?v=qiSCMNBIP2g

[35] Inheritance: https://www.youtube.com/watch?v=Cn7AkDb4pIU

[36] Overriding: https://www.youtube.com/watch?v=CcTzTuIsoFk

Book Resources

For more supplementary concepts, programs, question bank, old question papers

(VTU), quiz, recent trends in Python and educational resources, kindly visit the

author's website at:

https://tocxten.com/

https://www.youtube.com/watch?v=gCCVsvgR2KU
https://www.youtube.com/watch?v=v5MR5JnKcZI
https://www.youtube.com/watch?v=PqFKRqpHrjw
https://www.youtube.com/watch?v=0ZvaDa8eT5s
https://www.youtube.com/watch?v=HZARImviDxg
https://www.youtube.com/watch?v=6SPDvPK38tw
https://www.youtube.com/watch?v=BVfCWuca9nw
https://www.youtube.com/watch?v=ijXMGpoMkhQ
https://www.youtube.com/watch?v=nuNXiEDnM44
https://www.youtube.com/watch?v=lSItwlnF0eU
https://www.youtube.com/watch?v=9a3CxJyTq00
https://www.youtube.com/watch?v=Eaz5e6M8tL4
https://www.youtube.com/watch?v=8-RDVWGktuI
https://www.youtube.com/watch?v=bdS4dHIJGBc
https://www.youtube.com/watch?v=TItKabcTTQ4
https://www.youtube.com/watch?v=4Q0pW8XBOkc
https://www.youtube.com/watch?v=oLeNHuORpNY
https://www.youtube.com/watch?v=vuyb7CxZgbU
https://www.youtube.com/watch?v=FqcjKewJTQ0
https://www.youtube.com/watch?v=MRuq3SRXses
https://www.youtube.com/watch?v=qiSCMNBIP2g
https://www.youtube.com/watch?v=Cn7AkDb4pIU
https://www.youtube.com/watch?v=CcTzTuIsoFk
https://tocxten.com/

